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Abstract: Background: The purpose of this study is to carry out bioinformatic analysis of lncRNA 

data obtained as a result of genomic analysis of kidney tissue samples taken from rats with 

nephrotoxicity induced by methotrexate (MTX) and from rats without pathology and modeling 

with tree-based machine learning method. Another aim of the study is to identify potential 

biomarkers for the diagnosis of nephrotoxicity and to provide a better understanding of the 

nephrotoxicity formation process by providing the interpretability of the model with explainable 

artificial intelligence methods as a result of the modeling. Methods: To identify potential indicators 

of drug-induced nephrotoxicity, 20 female Wistar Albino rats were separated into two groups: 

nephrotoxicity and control. Kidney tissue samples were collected from the rats, and genomic, 

histological, and immunohistochemical analyses were performed. The data set obtained as a result 

of genomic analysis was modeled with Random Forest (RF), one of the tree-based methods. 

Modeling results were evaluated with sensitivity (Se), specificity (Sp), balanced accuracy (B-Acc), 

negative predictive value (Npv), accuracy (Acc), positive predictive value (Ppv), and F1-score 

performance metrics. The Local Interpretable Model-Agnostic Annotations (LIME) method was 

used to determine the lncRNAs that could be biomarkers for nephrotoxicity by providing the 

interpretability of the RF model. Results: The outcomes of the histological and 

immunohistochemical analyses done in the study supported the conclusion that MTX use caused 

kidney injury. According to the results of the bioinformatics analysis, 52 lncRNAs showed different 

expression in the groups. As a result of modeling with RF for lncRNAs selected with Boruta variable 

selection, the B-Acc, Acc, Sp, Se, Npv, Ppv, and F1-score were 88.9%, 90%, 90.9%, 88.9%, 90.9%, 

88.9% and 88.9%. respectively. lncRNAs with id rnaXR_591534.3 rnaXR_005503408.1, 

rnaXR_005495645.1, rnaXR_001839007.2, rnaXR_005492056.1 and rna_XR_005492522.1 the lncRNAs 

with the highest variable importance values produced from RF modeling can be used as 

nephroxicity biomarker candidates. Also, according to the LIME results, the high level of lncRNAs 

with id rnaXR_591534.3 and rnaXR_005503408.1 especially increased the possibility of 

nephrotoxicity. Conclusions: With the possible biomarkers obtained as a result of the analyses made 

within the scope of this study, it can be ensured that the procedures for the diagnosis of drug-

induced nephrotoxicity can be carried out easily, quickly and effectively. 
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1. Introduction 

Kidneys play an important role in many vital tasks such as maintaining water and electrolyte 

balance in our body, regulating acid-base balance, regulating blood pressure with the renin they 

secrete, regulating the body's production of erythropoietin with erythrocyte, activating vitamin D3, 

and removing drugs and toxins from the body [1]. Kidneys are the target organs for many drugs and 

toxic substances, especially due to their high metabolic activity, removal of harmful substances from 

the body and active transport functions. [2]. Nephrotoxicity is the condition in which the structure of 

the kidney is damaged by chemicals and decreases by affecting the kidney function negatively. In the 

case of drug-induced nephrotoxicity, acute kidney injury occurs with cell death due to apoptosis and 

necrosis, and may lead to death due to kidney failure. Therefore, drug-induced nephrotoxicity may 

be the primary cause of morbidity and mortality [3]. Today, the use of chemotherapeutic agents has 

increased considerably due to the increase in cancer cases. MTX, a chemotherapeutic agent, is widely 

used in leukemia, osteosarcoma, lymphoma, head and neck tumors, breast cancer, lung cancer, and 

some other cancer types [4]. MTX and its metabolites are largely eliminated by the kidney and enter 

cells by active transport. In the mechanism of MTX-induced kidney toxicity; The direct toxic effect of 

MTX, inhibition of enzymes related to DNA synthesis and increasing the production of free oxygen 

radicals (ROS) are seen. ROS are directly or indirectly involved in a wide variety of clinical disorders 

such as atherosclerosis, viral infection, reperfusion injury, macular degeneration, pulmonary toxicity, 

cataractogenesis, diabetes, cancer, and toxic cell damage [5,6]. Clinical and toxicological assessment 

of kidney function routinely relies on measurement of blood urea nitrogen and serum creatinine, but 

their relatively low sensitivity often precludes early detection of kidney injury. Therefore, it is 

important to identify new sensitive and reliable biomarkers of renal nephrotoxicity. In addition, the 

development of new biomarkers that can accurately detect drug-induced kidney damage is needed 

both for drug development studies and for clarification and treatment of the mechanism of this type 

of kidney damage [7]. One way to discover potential biomarkers is to use omics data [8]. Recently, 

genomic data has been used a lot in the determination of diseases, and these data have had a very 

important effect on the creation of personal profiles by examining the diseases on the basis of genes, 

and in the regulation of personal treatment and side effects. Detection of drug-induced gene changes 

is of critical importance for the detection of drug-induced kidney damage [9]. With the increasing use 

of both experimental and computational methods in RNA-seq technologies, the number of long non-

coding RNAs (lncRNA) has increased greatly in the last few years [10,11]. It has been reported that 

lncRNAs are associated with kidney diseases such as acute kidney disease, chronic kidney disease 

and kidney transplantation [12,13].However, although there are genomic studies for drug-related 

nephrotoxicity, studies related to lncRNA are not frequently encountered. For this reason, there is a 

need for such studies in the literature in order to eliminate the deficiencies in this area.  

Machine learning (ML) methods, which have been to a large extent used in the health field 

recently, help researchers in the early prediction, diagnosis, prognosis and individual patient care 

decision making of various diseases and other medical disorders [14,15]. In addition, in recent years, 

ML has contributed to the literature in identifying possible biomarkers for many disease states such 

as cancer [16]. Some methods were needed in order to make the results obtained as a result of 

modeling of ML methods more interpretable and explainable. Based on these requirements, the 

concept of explicable artificial intelligence (XAI) was introduced. The use of classification models to 

diagnose disease in the field of health largely depends on the ability of the models to be interpreted 

and explained by the researcher [17,18]. The XAI methods used for this purpose provide a patient-

specific explanation for a particular classification, thus allowing for a more understandable 

explanation of any complex classifier in the clinical [19]. 
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This study aims to model the lncRNA data of kidney tissues taken from rats without pathology 

and treated with methotrexate with ML methods and to determine possible biomarkers for early 

diagnosis of nephrotoxicity by providing the interpretability of the model with XAI methods as a 

result of the modeling. 

2. Materials and Methods 

2.1. Dataset 

In order to discover probable biomarkers underlying drug-induced nephrotoxicity and classify 

nephrotoxicity at the clinical level, 20 female Wistar Albino rats (weight: 250 ± 20g; age: 3 months;) 

were acquired from the Inonu University Experimental Animal Production and Research Center. 

 Control group (MK): This group was injected intraperitoneally with physiological saline as a 

carrier solvent on the first day of the experiment. 

 Nephrotoxicity group (M): This group was given a single dose of 20 mg/kg MTX intraperitoneal 

on the first day of the experiment. 

On the 4th day of the experiment, xylazine (24 mg/kg intraperitoneal) and ketamine (225 mg/kg 

intraperitoneal) were given to the rats under high-dose anesthesia, and kidney tissue samples of the 

rats were taken and genomic, histopathological and immunohistochemical analyses were performed. 

2.2. Random Forest Method 

The RF technique, put up by Breiman in 2001, is a machine learning algorithm with several 

decision trees that combines the Bagging and Random Subspaces methodologies. In RF algorithm, it 

is a supervised machine learning algorithm in which calculations of multiple decision trees are 

combined to produce a final result. Thanks to its ease of use and flexibility, it has accelerated its 

adoption as it addresses both classification and regression problems [20].  In the RF algorithm, the 

dataset is first randomly divided into two sections in the RF algorithm: the training data for learning 

and the validation data for assessing the learning level. Following this, multiple decision trees are 

randomly generated from the dataset using the "boostrap method". The branching of each tree is 

determined by randomly picked determinants at node positions. The RF outcome estimate is the 

mean of all the tree's outcomes. As a result, each tree effects the RF estimation for certain weights. 

The RF method outperforms other machine learning algorithms because of its capacity to accept 

training data from subsets at random and generate trees using random approaches. Furthermore, 

because training is performed on numerous randomly selected sub-datasets via boostrap sampling, 

the RF technique minimizes overfitting. [21,22]. 

2.3. Data Analysis and Modeling Tasks 

The Shapiro-Wilk test was used to assess the conformance of quantitative data to normal 

distribution. Non-normal distribution data were presented using the median (minimum-maximum), 

whereas normal distribution data were summarized using the mean±standard deviation. The Mann-

Whitney U test was used to compare non-normally distributed data, while the independent sample 

t-test was used to examine normal distributed data. All analyses were performed using IBM SPSS 

Statistics 26.0 for Windows (New York, USA). The TMM (Trimmed mean of M values) normalization 

method was employed for the relevant data. In bioinformatics analysis, the False Discovery Rate 

(FDR) was utilized to make evaluations. 

Within the scope of the investigation, the Boruta technique was applied as the variable selection 

method. Python programming language will be used for the application of tree-based model planned 

to be used within the scope of the study and for explainable artificial intelligence modeling 

afterwards. In this study, the model performance was evaluated using Se, Sp, B-Acc, Npv, Acc, Ppv, 

and F1-score metrics. Furthermore, the images used in the visualizations were developed using the 

R programming language and Excel software. 

2.4. Histopathological and Immunohistochemical Analyses 
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2.4.1. Histopathological analyses 

Rat kidney tissues were divided into tiny fragments of 3–4 mm for histological analysis. 

Following that, plastic tissue was put in follow-up cassettes and preserved for 24 hours in 10% 

formaldehyde. The tissues were rinsed in running tap water for 24 hours after fixation. They were 

rendered transparent in xylene, dehydrated in various grades of alcohol, and then imbedded in 

paraffin. A Leica RM2145 microtome was used to cut sections from paraffin blocks that were 5 

microns thick. To study the overall histological structure, the slices were stained using the 

hematoxylin-eosin procedure. Renal damage was evaluated in terms of peritubular infiltration, 

vacuolization of tubular epithelial cells, shedding and necrosis. Ten areas were examined at X20 

magnification from each section, and histopathological scoring was determined according to the 

degree and extent of renal damage. According to the severity of the damage; It was rated as 0 (no 

change), 1 (mild), 2 (moderate), and 3 (severe) [23]. The preparations were examined with the Leica 

DFC280 light microscope and the Leica Q (Leica Micros Imaging solution Ltd, Cambridge, UK) image 

analysis system, scored and photographed. 

2.4.2. Immunohistochemical analyses 

Immunohistochemical staining with Cystatin C antibody was used to observe tubule damage in 

kidney sections. For immunohistochemistry analyses, sections that were deparaffinized and 

rehydrated were placed in a 2100 Antigen Retriever incubator and boiled in 0.01 M citrate (pH 6.0) 

for 15 to 20 minutes. The sections were exposed to 3% hydrogen peroxide for 12 minutes in order to 

inhibit the endogenous peroxidase enzyme activity. After washing the sections with Phosphate Buf-

fered Saline (PBS), protein block (ultra V block) was applied for 5 minutes. After that, the sections 

were exposed to primary antibody for 60 minutes at 37°C. The tissues were treated with biotin-based 

secondary antibodies for 10 minutes at 37 °C after being rinsed with PBS. Following this process, the 

slices were treated with streptavidin peroxidase for 10 minutes at 37°C. Following hematoxylin 

staining, slices with chromogen applied were covered with water-based concealer. Semi-quantitative 

scoring was used to determine the staining immunoreactivity prevalence (0: 0-25%, 1: 26-50%, 2: 51-

75%, and 3: 76-100%) and severity (0: none, +1: mild, +2: moderate, +3: severe) [24]. 

2.5. Genomic analyses 

2.5.1. Total Rna Isolation and Quality Control from Harvested Tissues 

Total RNA was isolated from kidney tissue samples using kits that allow for high-efficiency 

isolation even with low-volume samples. The miRNeasy Serum/Plasma Kit (Qiagen, Cat. No./ID: 

217184) is developed to purification cell-free total RNA, namely miRNA and other small RNA, from 

very tiny amounts of serum and plasma. Qubit (Life Technologies, Carlsbad, California, USA) was 

used to fluorometrically quantify the amount of RNAs collected. The RNAs were verified for quality 

using a Bioanalyzer before sequencing. RNA integrity number (RIN) ≥7 samples were sequenced 

with the control. 

2.5.2. Preparing and sequencing NGS libraries for lncRNA sequences 

The "TruSeq Stran-ded Total RNA Library Prep Kit" from the Illumina corporation was used to 

create the sequencing library for lncRNA sequences under the following circumstances: 

Ribosomal RNAs (rRNAs) were isolated from the total RNA, and the remaining RNAs were 

purified and fragmented. The Bioanalyzer was used to verify the elimination of rRNA. First strand 

cDNA was created by reverse transcription of the remaining RNA fragments using random hexamer 

sequences. The RNA template was then removed, and the second strand of cDNA (blunt ds cDNA) 

was synthesized [25]. To prevent the fragments from attaching to one other during the adaptor 

ligation procedure, a single 'A' nucleotide was inserted to the 3' ends of the blunt ds cDNAs. To 

hybridize the ds cDNA fragments to the flow cell surface, indexing adapters were introduced. Finally, 

DNA fragments were enriched, and sample libraries were standardized and pooled. The samples 
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were read using the paired-end (PE) 2x150 llumina NovaSeq 6000 platform with 50M reads as the 

baseline [26].  

3. Results 

3.1. Histopathological Results 

In the kidney sections of the control group stained with the hematoxylin-eosin staining method, 

the outer leaf of the Bowman capsule in the renal corpuscle and the glomerular tuft within it had a 

normal appearance. The macula densa formed by changing the morphology of the distal tubule cells 

approaching the vascular pole of the renal corpuscle was observed as normal. The Bowman distance 

between the outer leaf of the Bowman's capsule and the inner leaf surrounding the glomerular tuft 

was of normal width. 

The epithelial cells surrounding the lumen of the proximal tubule around the renal corpuscles 

in the cortex were normal in appearance with round and central nuclei and acidophilic cytoplasm. 

The inner lumen borders were not very clear due to the microvilli located at the apical part of the 

cells. Distal tubular epithelial cells were easily distinguished from proximal tubules by their paler 

staining and wider lumens (Figure 1a). In the MTX group, in the preparations examined by the 

hematoxylin-eosin staining method, prominent areas of inflammation were observed in the 

intertubular regions of the cortex (Figure 1b). 

Figure 1. (a) Normal-looking glomeruli (star), macula densa (arrowhead), Bowman's space (arrow), 

proximal (p) and distal tubules (d) in the renal tissue section of the control group. H-E X400; (b) MTX 

group, areas of inflammation (asterisk) monitored. H-E X400. 

In the sections, epithelial cells of some tubules were observed to spill into the lumen (Figure 2a). 

In this group, vacuolization was also detected in the cytoplasm of some tubule cells (Figure 2b). 

  

(a) (b) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 July 2023                   doi:10.20944/preprints202307.0398.v1

https://doi.org/10.20944/preprints202307.0398.v1


 6 

 

  

(a) (b) 

Figure 2. (a) MTX group, epithelial cells shed into the lumen; (b) MTX group, areas of inflammation 

(star) and cells with vacuolization in their cytoplasm (arrows) are observed H-E; X400. 

Another remarkable finding was the presence of necrotic cells with eosinophilic cytoplasm and 

dark nuclei in some tubules (Figure 3). 

 

Figure 3. MTX group, necrotic cells (arrows) are observed in the tubule epithelium H-E; X200. 

3.2. Immunohistochemical Results 

In the control group, positive tubule cells were not found in the sections where the Cystatin C 

immunohistochemical staining method was applied (Figure 4a). In the MTX group, the density of 

positively stained tubules in the sections using the Cystatin C immunohistochemical staining method 

was observed to increase in this group compared to the control group (Figure 4b). 
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(a) (b) 

Figure 4. (a) Control group. Tubule cells stained positive with Cystatin C were not detected. Cystatin 

CX400; (b) Cystatin C positive stained tubule cells of MTX group (arrows) are observed. Cystatin 

CX400. 

The descriptive statistics for the rats used in the experiment are shown in Table 1. 

Table 1. Descriptive statistics for the rats utilized in the investigation. 

Variables Mean ± Standard Deviation 

Rat weight starting (g) 249.15±22.32 

Rat weight end (g) 252.1±24.05 

Kidney weight (g) 0.968±0.1 

Table 2 provides descriptive statistics by the nephrotoxicity and control groups. 

Table 2. Descriptive statistics for the nephrotoxicity and control groups. 

Variables Control Nephrotoxicity 

Rat weight starting (g) 245.3±24.02 253±21.01 

Rat weight end (g) 252±24.03 252.2±25.37 

Kidney weight (g) 0.97±0.08 0.96±0.12 

3.3. Differential Expression Results 

There are 16.386 expressions in the dataset that was used for the investigation. The 

bioinformatics study found that 52 lncRNAs expressed differently in the groups (FDR < 0.05). A total 

of 35 of them displayed up-expression (logFC > 1), while 17 displayed down-expression (logFC < - 1). 

A presentation of the dataset can be found in the supporting materials. 

The distribution of the samples was found to be consistent in terms of lncRNA expression levels 

in the comparison of the nephrotoxicity group (M) and the control group (MK) based on the principal 

components (PCO) analysis. Controls and application examples show some unity among themselves. 

However, although this distinction is not sharp, a distinction has emerged due to the lower number 

of lncRNAs showing total expression changes. When the nephrotoxicity group and control group 

samples were compared individually with each other, it was determined that more lncRNAs were 

exposed to expression level changes in M2 and MK2 samples. Figure 5 depicts a graphic 

representation of PCO analysis. 
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Figure 5. Nephrotoxicity group vs control group comparison based on PCO analysis. 

Figure 6 shows a heatmap representation of the 50 lncRNA expressions with the highest 

variation in expression levels comparison. 

 

Figure 6. Heatmap for the 50 lncRNAs with the most variation for the two groups. 

Overexpressed lncRNAs are indicated in red and suppressed lncRNAs are shown in green for 

the 50 lncRNAs that exhibited the highest variation in the M versus MK comparison. When compared 

to the control, the application samples had different expression patterns. However, it was determined 

that some samples (such as M-10, MK-4 and MK-2) deviated from the application and control groups. 

Figure 7 shows the volcano plot used to visualize differentially expressed genes. Figure 7 shows 

that the red and blue lncRNAs represent up-regulated and down-regulated, respectively, lncRNAs. 

The lncRNAs in black are those that do not differ in expression between the two groups. 
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Figure 7. Volcana plot for differentially expressed genes. 

3.4. Biostatistics Analysis and Modeling Results 

The TMM (Trimmed mean of M values) normalization approach was used to extract data from 

16.386 lncRNAs in the data set. In the study, 31 lncRNAs that may be associated with the disease state 

were selected using the Boruta variable selection method, one of the variable selection methods from 

lncRNAs that show different regulations (up and down) in order to reveal lncRNAs that may be 

associated with the disease state. Table 3 contains the selected expressions and data set descriptions, 

the descriptors of the expressions chosen for the target variable under consideration, their statistical 

significance, the log fold change (LogFC) per gene for the target variable, and the data analysis results 

of these selected expressions. 

Table 3. Detailed information about the data analysis results. 

 

Gene Name 

 

Chromosome 

 

ID 

Group   

M MK 
LogFC p 

Mean ± SD Median (Min-Max) Mean ± SD Median (Min-Max) 

LOC102555118 NC_051337.1 rna-XR_351582.4 226.4±116.41 248(42-447) 35.6±16.85 34(17-66) 1.616 0.001* 

LOC106736471 NC_051345.1 rna-NR_133655.1 102.4±76.73 88(5-257) 11.9±9.48 10.5(1-34) 2.198 0.005* 

LOC103691349 NC_051336.1 rna-XR_590665.2 281.2±123.78 294(49-470) 68.4±78.82 46(26-290) 1.247 0.001** 

LOC108351528 NC_051342.1 
rna-

XR_001839007.2 
454.2±191.95 486.5(96-661) 117.1±118.09 80.5(55-449) 1.118 0.001** 

LOC120098801 NC_051336.1 
rna-

XR_005497310.1 
166±92.76 164.5(29-370) 38.6±36.34 26.5(13-139) 1.187 0.001** 

LOC120094778 NC_051344.1 
rna-

XR_005489439.1 
140±90.62 125(28-296) 28.9±14.03 30(9-51) 1.248 0.004* 

LOC120099280 NC_051336.1 
rna-

XR_005498350.1 
109.6±68.4 96(13-206) 21.6±21.84 15.5(7-82) 1.488 0.002** 

LOC120096007 NC_051347.1 
rna-

XR_005492056.1 
134.4±91.26 123.5(17-332) 32.6±28.96 25.5(6-111) 1.087 0.004** 

LOC120098788 NC_051336.1 
rna-

XR_005497230.1 
27.3±13.61 29.5(3-52) 4.6±4.62 2.5(0-15) 1.751 <0.001** 

LOC120098190 NC_051353.1 
rna-

XR_005496257.1 
85.5±54.7 70(9-172) 19.5±18.58 16(4-70) 1.277 0.004** 

LOC108348888 NC_051354.1 
rna-

XR_005496888.1 
71.2±32.64 75.5(12-112) 17.1±20.59 11.5(3-74) 1.250 0.002** 

LOC103691816 NC_051338.1 rna-XR_591534.3 210.4±116.14 230.5(54-421) 49.2±36.54 40.5(19-147) 1.171 0.001** 

LOC120098816 NC_051355.1 
rna-

XR_005497370.1 
220.6±173.89 186(48-552) 31.3±22.35 30(6-73) 1.992 0.007* 
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LOC120096731 NC_051349.1 
rna-

XR_005493563.1 
6.6±6.64 3.5(0-18) 13.2±14.34 8(3-51) -1.862 0.093** 

LOC120098521 NC_051354.1 
rna-

XR_005496784.1 
362.1±181.28 349.5(74-587) 88.8±100.42 58(33-369) 1.249 0.001** 

LOC120102202 NC_051339.1 
rna-

XR_005503371.1 
84.1±63.57 73(13-208) 15.6±11.47 13.5(3-37) 1.559 0.008* 

LOC102549457 NC_051346.1 rna-XR_358189.4 77.7±42.9 75.5(8-154) 21.1±26.93 12.5(4-96) 1.078 0.007** 

LOC120102261 NC_051339.1 
rna-

XR_005503535.1 
215.2±138.84 176.5(16-442) 47±27.2 38.5(26-116) 1.205 0.003** 

LOC120100781 NC_051337.1 
rna-

XR_005500805.1 
51.1±23.38 49(11-82) 14.4±20.5 8(2-71) 1.114 0.002** 

LOC108348808 NC_051353.1 
rna-

XR_005496283.1 
42.2±26.1 37.5(5-84) 9.1±5.61 9(2-19) 1.287 0.003* 

LOC103691306 NC_051336.1 
rna-

XR_005499594.1 
6.2±4.47 5.5(0-12) 0.6±0.52 1(0-1) 2.178 0.001** 

LOC102552040 NC_051344.1 
rna-

XR_001839839.2 
3.8±4.49 3(0-15) 0.1±0.32 0(0-1) 3.296 0.002** 

LOC120099889 
 rna-

XR_005499330.1 
282.2±232.78 197(41-831) 68.2±86.7 35(24-308) 1.431 0.002** 

NC_051336.1 

LOC120099800 NC_051336.1 
rna-

XR_005499033.1 
53.7±33.95 45(5-102) 14.2±19.85 9.5(1-69) 1.176 0.004** 

LOC120097836 NC_051352.1 
rna-

XR_005495645.1 
32.8±16.73 28.5(13-62) 7.7±4.32 8.5(1-14) 1.089 0.001* 

LOC120102212 NC_051339.1 
rna-

XR_005503408.1 
18.5±10.54 14.5(8-42) 4±2.31 3.5(2-10) 1.313 <0.001** 

LOC102555751 NC_051355.1 
rna-

XR_005497840.1 
54.9±45.9 41(1-162) 12.1±12.54 8.5(3-47) 1.431 0.008** 

LOC120102327 NC_051339.1 
rna-

XR_005503688.1 
50.7±46.08 41.5(1-165) 9.8±8.04 7.5(3-30) 1.612 0.005** 

LOC120099962 NC_051336.1 
rna-

XR_005499541.1 
1±0.94 1(0-3) 2.3±0.82 2(1-4) 2.047 0.005** 

LOC108352129 NC_051345.1 
rna-

XR_001840278.2 
26±18.34 21(0-59) 5.8±6.94 3(2-25) 1.282 0.008** 

LOC102554372 NC_051339.1 rna-XR_353438.4 48.4±27.61 49.5(3-84) 12.1±6.05 11.5(4-21) 1.037 0.002* 

*: Independent sample t-test; **: Mann–Whitney U test; LogFC: Log fold change; M: nephrotoxicity 

group; MK: control group. 

Table 3 shows that statistically significant differences in lncRNA expression were identified 

between the rat group with nephrotoxicity and the control group for all lncRNA expressions except 

rna-XR_005493563.1 (LOC120096731) (p<0.05). 

The findings of performance metrics achieved as a result of the tree-based RF model using 

selected lncRNAs are shown in Table 4. 

Table 4. The findings of performance metrics achieved as a result of the tree-based RF model. 

Metric Value (%) (95% CI) 

B-Acc 88.9 (76.7-100)  

Acc 90 (76.9-100)  

Sp 90.9 (58.7-99.8) 

Se 88.9 (51.8-99.7) 

Npv 90.9 (58.7-99.8) 

Ppv 88.9 (51.8-99.7) 

F1-score 88.9 (75.1-100) 

According to the classification performance of the RF model’s B-Acc was 88.9%, Acc was 90%, 

Sp was 90.9%, Se was 88.9%, NPV was 90.9%, PPV was 88.9%, and F1-score was 88.9%. 

A graph of the RF model's performance metrics is shown in Figure 8. 
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Figure 8. Graph of Performance Metrics Values for the RF Model. 

Variable importance  values of expressions for the genes selected to explain the target variable 

(nephrotoxicity) are shown in Table 5. 

Table 5. Depicts the variable importance values of chosen lncRNAs used to explain the target variable. 

Gene Name Variable Importance Value 

rnaXR_591534.3 100 

rnaXR_005503408.1 80.127 

rnaXR_005495645.1 80.02 

rnaXR_001839007.2 47.205 

rnaXR_005492056.1 45.374 

rnaXR_351582.4 42.972 

rnaXR_001840278.2 42.9 

rnaXR_005496784.1 41.422 

rnaXR_005498350.1 39.116 

rnaXR_005503371.1 38.433 

rnanr_133655.1 38.301 

rnaXR_005497370.1 35.986 

rnaXR_005500805.1 33.445 

rnaXR_005496283.1 31.788 

rnaXR_353438.4 30.313 

rnaXR_005499330.1 29.65 

rnaXR_005497310.1 29.435 

rnaXR_005503535.1 29.232 

rnaXR_358189.4 27.716 

rnaXR_005499033.1 24.311 

rnaXR_005496888.1 24.018 

rnaXR_590665.2 23.715 

rnaXR_005497840.1 23.365 

rnaXR_005503688.1 19.988 

rnaXR_005499541.1 18.123 

rnaXR_005496257.1 17.68 

rnaXR_005499594.1 17.632 

rnaXR_005497230.1 15.566 

rnaXR_005493563.1 8.101 
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rnaXR_001839839.2 5.695 

rnaXR_005489439.1 0 

rnaXR_591534.3 (LOC103691816) lncRNA with id has the highest variable importance value with 

100%, rnaXR_005503408.1 (LOC120102212), rnaXR_005495645.1 (LOC120097836), 

rnaXR_00183900l007 (LOC1083560015nc) rnaXR_001839001800 (LOC1083560015nc) 

rnaXR_005503408. rna_XR_005492522 lncRNA with id (LOC120096269) had the other highest variable 

importance values with 80.127%, 80.02%, 47.205%, 45.374%, respectively. 

Figure 9 shows the variable importance levels of the top five expressions with the highest 

variable significance for the genes selected to explain the output variable. 

 

Figure 9. Variable importance values graph for RF model 

LIME, one of the local explainable artificial intelligence methods, was applied to the tree-based 

Random Forest model. Figures 10–12 show the results for the first three rats as a result of the LIME 

method. Green bars show features that are positively correlated with the target variable, while red 

bars show features that are negatively correlated with the target variable. 

 

Figure 10. LIME results for the first rat in the nephrotoxicity group. 
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Figure 11. LIME results for the second rat in the nephrotoxicity group . 

 

Figure 12. LIME results for the third rat in the nephrotoxicity group. 

It was estimated that the rat in Figure 10 did not have Nephrotoxicity with 90% probability. This 

rat has rna-XR_005499594.1 value less than 1.0, rna-XR_005503408.1 value less than 3.75, rna-

XR_591534.3 value less than 49.50, rnaXR_001839007.2 value less than 89.00, rna-XR_001839839.2 

value less than 0.00, rna-XR_005497230.1 value between 2.75 and 12.00, rna-XR_005496888.1 value 

less than 11.75, rna-XR_005493563.1 value between 7.5 and 9.5 rna-XR_005497370.1 less than 32.5 

reduced the likelihood of nephrotoxicity. On the other hand, rnaXR_005489439.1 value between 41.50 

and 152.00 increased the probability of nephrotoxicity. 

It was estimated that the rat in Figure 11 did not have Nephrotoxicity with a probability of 93%. 

This rat has rnaXR_005495645.1 value less than 8.50, rnaXR_351582.4 value less than 40.50, 

rnaXR_351582.4 value less than 35.50, rnaXR_591534.3 value less than 49.50, rnaXR_005503408.1 
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values between 3.75 and 9.00, rna-XR_005499594.1 value less than 1.00, rna-XR_005497370.1 value 

less than 32.50, rna-XR_005497230.1 value less than 2.75 and rnaXR_005499541.1 values between 1.50 

and 2.00 reduced the possibility of nephrotoxicity. On the other hand, rna-XR_001839839.2 value 

between 0.0 and 3.00 increased the probability of nephrotoxicity. 

The rat in Figure 12 was estimated to have 90% probability of Nephrotoxicity. This rat has 

rnaXR_005503408.1 value greater than 13.50, rna-XR_005499594.1 value greater than 3.75, rna-

XR_005497370.1 value greater than 124.5, rna-XR_005497230.1 value greater than 23.00, 

rnaXR_351582. 4 value greater than 228.50, rna-XR_001839839.2 value between 0.0 and 3.00, 

rnaXR_005499541.1 value less than 1.00, rnaXR_005503371.1 value greater than 46.50, and 

rnaXR_005503535.1 value greater than 159.50 increased the possibility of nephrotoxicity. On the other 

hand rnaXR_005495645.1 value between 8.50 and 13.50 decreased the possibility of nephrotoxicity. 

4. Discussion 

Antineoplastic drugs not only kill pathologically growing cancer cells in the body, but also 

destroy rapidly proliferating normal cells. Therefore, many cancer drugs also have side effects on 

tissues including bone marrow, blood cells, and other rapidly proliferating cells. Although kidney 

cells do not divide fast, their high blood flow, ability to concentrate poisons in the medullary 

interstitium, and particular transporters in the tubular epithelium make them highly susceptible to 

toxic injury [27,28]. Tubulopathies, acute renal failure, and glomerulopathies as prevalent clinical 

manifestations and nephrotoxicity, defined as any kidney injury directly or indirectly caused by 

drugs; it occurs when kidney-specific detoxification and excretion does not work properly due to 

damage or destruction of kidney function by exogenous or endogenous toxic substances [3].  

Drug toxicity frequently occurs in the kidney, which is the principal control mechanism that 

maintains the body's homeostasis and is hence highly vulnerable to xenobiotics [29]. Understanding 

the harmful mechanisms of nephrotoxicity can help in the creation of medications with fewer side 

effects and more therapeutic advantages. Mechanisms of drug-induced nephrotoxicity include 

tubular cell toxicity, inflammation, changes in glomerular hemodynamics, crystal nephropathy, 

thrombotic microangiopathy, and rhabdomyolysis. New biomarkers that can detect kidney damage 

early and more precisely must be discovered and developed in order to effectively prevent drug-

induced nephrotoxicity. Biomarker candidates for nephrotoxicity assessment have been identified. 

Although some fail to provide specificity and sensitivity, studies are promising [30-32]. The most 

effective technique for preventing or limiting nephrotoxicity is to have sensitive and specific 

biomarkers available early in the drug development process, well before clinical trials begin. In 

preclinical models and clinical settings, these biomarkers should be able to accurately anticipate 

toxicity, enabling drug developers to successfully counsel patients to modify or abandon potential 

medicines and switch to alternatives that affect the same target without toxicity [32]. 

In this study, genomic, histopathological and immunohistochemical analyses were performed 

with samples taken from rats with nephrotoxicity induced by an antineoplastic drug, methotrexate, 

and from rats in the control group, in order to determine biomarkers for drug-induced 

nephrotoxicity. lncRNA sequence analyses, which are known to be involved in many regulatory 

mechanisms in the case of transcription and subsequent gene expression, and fulfill primary 

functions for quite different biological processes, were performed from tissue samples taken within 

the scope of genomic analyses.  

According to the histopathological analyses performed in this study, the outer leaf of the 

Bowman capsule in the renal corpuscle and the glomerular tuft in the cortex were normal in the 

kidney sections stained with the hematoxylin-eosin staining method in the control group. In the MTX 

group, significant areas of inflammation were observed in the intertubular areas of the cortex in the 

preparations examined by the hematoxylin-eosin staining method. In the control group, the macula 

densa formed by changing the morphology of the distal tubule cells approaching the vascular pole 

of the renal corpuscle was observed to be normal, and the Bowman distance between the outer leaf 

of the Bowman's capsule and the inner leaf surrounding the glomerular tuft was also of normal width. 

In the MTX group, it was observed that epithelial cells of some tubules spilled into the lumen in some 
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stained sections. Another observed condition was the presence of necrotic cells with eosinophilic 

cytoplasm and dark nuclei in some tubules. With all these results, it is said that the general structure 

of the kidney went beyond what is known and the formation of necrotic cells was observed in the 

experimental group using MTX. This produces symptoms of kidney damage caused by the drug. 

According to the results of the immunohistochemical analysis, positive tubule cells were not 

found in the control group in the sections where the Cystatin C immunohistochemical staining 

method was applied, while the density of the positively stained tubules in the MTX group was 

increased in this group when compared to the control group. It is said that these differences are based 

on drug use and liver damage occurs in the drug-administered group compared to the control group. 

These analyses reveal that histopathologically and immunohistochemically, MTX causes damage to 

the kidney. 

In this study, a genomic dataset containing 16,386 lncRNAs obtained from kidney tissues of rats 

with nephrotoxicity and control group rats was used. According to the findings of the bioinformatic 

analysis, rna-XR_005487515.1 id lncRNA showed significantly higher gene expression in the 

hepatotoxicity group than in the control group. Similarly rna-XR_361074.4, rna-XR_001839839.2, rna-

XR_005486989.1, rna-NR_133655.1, rna-XR_005499594.1, rna-XR_005499333.1, rna-XR_005497370.1, 

rna-XR_005497370.1, rna-XR_005499594.1_ lncRNAs with rna-XR_351582.4 id have higher gene 

expression in the group with nephrotoxicity than in the control group. rna-XR_005489095.1, rna-

NR_131064.1, rna-XR_005494344.1, rna-XR_005503866.1, rna-XR_005491414.1, rna-XR_360468.4, rna-

XR_005501201.1, rna-XR_7.1, 00549338 XR_005499541.1, rna-XR_005493563.1 lncRNAs with id have 

very low gene expression in the group with nephrotoxicity compared to the control group. 

According to the results of the biostatistical analysis, all genes except rna-XR_005493563.1 

(LOC120096731) lncRNA out of 31 lncRNA obtained by Boruta variable selection showed statistically 

significant differences for the two groups. It shows that it can correctly classify nephrotoxicity 

according to the performance criteria obtained as a result of the tree-based RF machine learning 

modeling made by taking the target (nephrotoxicity) variable with 31 lncRNA selected by Boruta 

variable selection method used in the study. In addition, as a result of RF modeling, lncRNAs with 

the id rnaXR_591534.3, rnaXR_005503408.1, rnaXR_005495645.1, rnaXR_001839007.2, 

rnaXR_005492056.1 and rna_XR_005492522.1 have the highest five variable significance values. 

Therefore, these lncRNAs can be used as biomarker candidates for nephroxicity. When the LIME 

results are considered, it has been observed that the high level of lncRNAs with id rnaXR_591534.3 

and rnaXR_005503408.1 increases the possibility of nephrotoxicity. 

This study has some limitations. This study was carried out with the data obtained from the 

mouse experiment and lays the groundwork for future studies. However, human studies are needed 

to confirm the results so that the results of the study can be generalized and used in potential drug 

development studies. 

5. Conclusions 

In order for the possible biomarkers obtained within the scope of this study to be used in the 

presence of drug-induced nephrotoxicity, the results obtained from various studies should be 

supported. In addition, after the possible biomarker candidates discovered with the results of high-

performance tree-based modeling and LIME method are supported by other studies, results for the 

personalization of diagnosis and treatment can be provided. 
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