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Abstract: This paper presents a limited scope dynamic probabilistic risk assessment (D-PRA) on the
survivability of commercial of the shelf (COTS) drones tasked with surveilling areas with varying radiation
levels after a nuclear accident. The D-PRA is founded on a discrete-dynamic event tree (D-DET) approach,
which couples with the OpenEPL error propagation framework to model sequences leading to Loss of Mission
(LOM) scenarios due to component failures in the drone’s navigation system. Radiation effects are simulated
by calculating the total ionizing dose (TID) against the permissible limit per component, and errors are
propagated within the electronic hardware and software blocks to quantify navigation system availability per
radiation zone. The proposed methods are integrated into the traditional event tree/fault tree approach and the
most vulnerable components are radiation-hardened (RAD-HARD) to the extent specified by a predefined
mission success criterion. The results demonstrate the usefulness of the proposed approach in performing trade
studies for incorporating COTS components into RAD-HARD drone designs.

Keywords: dual-graph error propagation model; discrete dynamic event tree; dynamic probabilistic
risk assessment; error propagation; OpenEPL; OpenPRA; COTS

1. Introduction

Uncrewed Aerial Vehicles (UAVs) have become increasingly popular in various applications,
including search and rescue (SAR) activities. In the aftermath of a nuclear accident, SAR missions are
critical to assess the extent of damage, locate survivors, and monitor radiation levels [1,2]. However,
the high radiation levels in such environments pose a significant risk to the electronic components of
UAVs, potentially leading to mission failure. This paper presents a dynamic probabilistic risk
assessment (D-PRA) approach to assess the survivability of commercial off-the-shelf (COTS) drones
in radiological SAR operations and identify the most vulnerable components for radiation hardening
(RAD-HARD) improvements.

The use of COTS drones in SAR missions offers several advantages, such as cost-effectiveness,
rapid deployment, and ease of operation. However, these drones are not typically designed to
withstand the harsh radiation environments encountered in nuclear accidents. On the other hand,
radiation hardened UAVs may be employed, but all use cases may justify their use. Influencing
factors include availability, cost, and mission-specific requirements. Therefore, it is essential to
develop a systematic approach to assess the survivability of COTS drones in nuclear SAR missions
to identify the most critical components for RAD-HARD improvements. Probabilistic Risk
Assessment (PRA) is a well-established methodology used in the nuclear engineering field to
evaluate the safety and reliability of nuclear power plants. PRA techniques have been successfully
applied to various complex systems, including space missions, aviation, and chemical plants. In this
paper, we extend the application of PRA to assess the survivability of COTS drones in nuclear SAR
missions.

PRA techniques have been established to evaluate risks by identifying potential failure
scenarios, assessing their likelihood, and determining the consequences if these failures occur.
Consequently, risk is formally expressed as a comprehensive set of N triplets that include a scenario
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description s;, its probability p;, and the consequences, i.e. the resulting damage measure or
evaluation metric x;:

R={sppux)les i=1N 1)

PRA offers a comprehensive approach that is well-suited for modeling intricate dependencies
and failure modes in static systems. These methods have significantly contributed to ensuring safety
in current nuclear and aerospace operations. Conventional PRA approaches involve sequence-based
modeling where initiating events are chosen, conditional event progressions are analyzed, leading to
end states of interest. By incorporating consequence information into these PRA models, frequency-
consequence curves can be formulated [3]. In event tree analysis, probabilities are assigned to
functional events depicting various components, systems, or operator actions using fault trees. These
probabilities take into account either time-dependent or on-demand failure modes given
predetermined mission durations [4]. Although this approach offers more insights than traditional
deterministic methods, it may not be sufficient for accurately modeling systems that exhibit intricate
time- and event-based dependencies or feedback mechanisms. For instance, certain events might
have failure rates that evolve over time. In such cases, a sophisticated modeling technique is
necessary to conservatively divide the timeframe into longer intervals so as to properly establish basic
event failure rates and mission durations. Integrating additional dynamic methods within PRA
models can lead to improved accuracy when dealing with complex temporal dependencies among
system elements.

The proposed D-PRA approach utilizes OpenEPL error propagation library to model sequences
leading to Loss of Mission (LOM) and Loss of Vehicle (LOV) scenarios due to component failures in
the drone's navigation system. Radiation effects are simulated by calculating the total ionizing dose
(TID) against the permissible limit per component, and errors are propagated within the electronic
hardware and software blocks to quantify navigation system availability per radiation zone. The
proposed methods are integrated into the traditional event tree/fault tree approach to provide a
demonstrative assessment of the drone's survivability in nuclear SAR missions.

The remainder of this paper is organized as follows: Section 2 provides a brief overview of the
problem scope and the methodology behind the proposed solution. This includes the proposed D-
PRA approach, including the modeling of radiation effects on electronic components and the
integration of dynamic failure scenarios. Section 3 presents a case study demonstrating the
application of the proposed approach to a COTS drone system. Section 4 discusses the results and
their implications for drone design and selection in nuclear SAR missions. Finally, Section 5
concludes the paper and outlines ideas for future research directions.

2. Methodology

In this section, we provide a brief overview of the problem scope and the methodology behind
our proposed solution for assessing COTS drone survivability in nuclear SAR missions. We introduce
a few terms within resilience ontology in the context of temporal logic using Kripke structure notation
to model time-dependent risk [5-8]. The formal equation and definitions are introduced in Equation
(2) and Table 1.

A system M consists of states S that transition along a bounded, but countably infinite long
path P, starting with the initial state i. R is the transition relation that maps all the valid state
transitions. An equivalent definition can be expressed using the edge list e = {4,B,C,D,E,F,G,H, I},
which forms our alphabet. Traversal of path P produces words W. This allows us to build a
grammar, with which we can define events, or system properties, and emergent behaviors. This
grammar can includes words of our choosing, some examples are listed in in Table 2. By extension,
each trajectory, or word is expressible in a temporal sense, as depicted in Figure 1 [9].

M:= (S,i,R) (2)
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Table 1. 3-tuple Kripke terms for a 3-state transition system.

T
mer Definition Description
S S A set of possible states
= {nominal, degraded, failure p
i i SS={nominal} The initial state, which is nominal
R RCSxXS A mapping or transition relation, where R is left-

total!, and M is fully-connected.

Resilience: The ability to recover from failures.

Failure & y, possibly to a mode. ‘ /@
N

\
FAILURE )
\

3

NOMINAL

- MissionTime @

Error Propagation: One Error leads to another Error. ‘

Failure: An incorrect delivered service, externally visible i
deviation from system specification. Can be caused by an Error.

Fault Tolerance: The ability to avoid failures in the presence of | _
faults. Error Detection & Recovery.

functional objective, possibly in a Degraded State.

Error: An incorrect system state. System can still complete ‘

[ Fault: A system defect that might lead to an Error.

|eujwoN papeibag ainjeq

| Nominal: Normal system operation

Figure 1. State transitions within a three-state system, initialized as nominal. (left) temporal, (right)
state machine.

Table 2. State transition definitions for three state model referenced in Figure 1.

Regular Expression Term Description
Ideal/Perf
A’ deal/Perfect No errors, faults, or failures occur.
System
B Fault A fault is a weakness that can potentially lead
to errors.
DF'|C* Error Move from an initial error state leads to a
Propagation subsequent one.
DII Failure Syste.m fails from either a degraded or a
nominal state.
Recoverable . .
EIGIH Move from higher to lower degradation.
System
B(C'|E) Fault Tolerant ~ Avoid transition to failure, given a fault.
i § Failure .
A’ (B(C'IE)) Avoidant No failures occur.
GlH Resilient System Rec9ver from a failure, either fully or
partially.
B(C*ID(F*1G)) | I(F* Irrecoverable Neither completely fails, nor returns to
| G)) System nominal.
F+ Pe?‘manently System remains irrecoverable forever.
Failed

In certain situations, traditional and dynamic PRA methods may need to be supplemented with
specialized analysis techniques for modeling the systems that involve error propagation failure
modes, or incorporate multiple failure paths, such as the example in the previous section [10].

1 If the source set X equals the domain, R € X XY is left-total.
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Tracking the propagation of errors from discrete sub-components to system or functional levels in
such systems presents a unique challenge. The dual-graph error propagation method (DEPM)
enables the separate modeling of data flows and control flows within a system [11]. In DEPM, we
consider a system as independent, and discrete elements, which can be sensor modules, or software
blocks in a mechatronic system [12]. When a fault activates, it can propagate to connected elements,
which may corrupt data, or alter the control and data flows. We present the DEPM formalism with
an example in the following figures.

DEPM :=(E,D, A¢p, Apr, C) 3

Table 3. Definitions for terms in Dual-Graph Error Propagation Model (DEPM).

Term Definition

E A setof elements, always non-empty.
D A set of optional data terms.
Acr An edge-list representing control flows.
Apr  An edge-list representing data flows.
C  Alist of conditional expressions, which apply to the element set E.

Flows from an element may branch erroneously, depending on its corresponding failure
rates/probabilities. By extension, error propagation analyses can simulate single-event upsets (SEUs).
To perform quantitative evaluations, we transform our DEPM models into continuous time (CTMCs)
or discrete-time Markov Chains (DTMCs), depending on the use case. Figure 2 and Table 4 illustrate
an example DEPM with associated conditional logic expressions.

() uNINITIALIZED ELEMENT

@D eement
v DATA VARIABLE | @D AL ELEMENT
| DATA VARIABLE 3 | | = e & e e
1
I DATA VARIABLE 2 | i [ oara/state
g T e e e B e R
4 2 ) 1 () osserver

( OUTPUT CORRUPTION ) /(' DATA-FLOW ARC

DATA VARIABLE 4 | _§7 CONTROL-FLOW ARC

Figure 2. Example DEPM with a legend.

The DEPM model in Figure 2, a depicts execution of serial code. Assembly operations,
represented as elements A, B, and C, read and write data variables 1, 2, and to and from CPU registers.
Element A changes variables 1 and 3. Elements B and C change variables 2 and 4. Element B reads
from data variable 1 while element C reads from both variable 2 as well as variable 3.

Table 4. Conditional Logic Table for example DEPM in Figure 2.

Element Conditional Expressions

always:
A with P(0.8): DATA VARIABLE 1, DATA VARIABLE 2 = error
with P(0.2): DATA VARIABLE 1, DATA VARIABLE 2 = ok

if DATA VARIABLE 1 = error, then:
with P(0.9): DATA VARIABLE 2 = ok
B with P(0.1): DATA VARIABLE 2 = error
else:
with P(1.0): DATA VARIABLE 2 = ok
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if DATA VARIABLE 2 & DATA VARIABLE 3 = ok, then:
with P(1.0): DATA VARIABLE 4 = ok
C else:
with P(0.2): DATA VARIABLE 4 = ok
with P(0.8): DATA VARIABLE 4 = error

This DEPM computes the probability that the output variable, data variable 4, is corrupted.
Given that SEUs are stochastic in nature, this may occur at any time [13]. To achieve this goal,
expressions can be evaluated by employing quantifiable Boolean formulae (QBF) evaluating
satisfiability solvers [14,15]. Relevant metrics like the mean time to failure (MTTF), the number of
total failures, and time-dependent failure probability, can be quantified directly using formal
verification and model checking methods. Since it is based on probabilistic modeling checking,
DEPM is better suited for modeling the behavior of smaller, but highly interdependent systems, as
compared to traditional methods like fault trees and Markov chains.

3. Demonstration Case

In this demonstration case, we consider a COTS drone equipped with a navigation system,
communication system, and radiation sensor payload. The drone's primary mission is to perform
SAR activities in a nuclear-contaminated environment, which includes monitoring radiation levels,
identifying damaged infrastructure, and locating survivors. The drone's navigation system comprises
a power subsystem, inertial measurement unit (IMU) sensors, positioning sensors, and a Kalman
filter. The drone is tasked with flying over a predefined search area, which is divided into three zones
with varying radiation levels. The drone starts its mission in the low radiation zone (Zone A),
transitions to the medium radiation zone (Zone B), and finally enters the high radiation zone (Zone
C) before returning to the base. Radiation levels in Zone A are based on background radiation[16,17].
Radiation levels in Zone B and C are sourced from samples in and around Unit 4 and surrounding
buildings at the Chernobyl nuclear power plant (NPP) shortly after explosion [18]. Since mission
success is dependent on the UAV successfully performing SAR activities for each zone before Loss of
Vehicle (LOV) occurs, the analysis is finished once the drone completes its mission objectives in Zone
C. The absorbed dose rates, time in each zone, and total absorbed dose are sampled from a truncated
normal distribution? and a loguniform distribution?, listed in Table 5. The proposed approach is
applied to assess the drone's survivability in each radiation zone by considering the potential failure
scenarios due to radiation-induced component failures. TID is calculated for each component in the

drone's navigation system and compared against the component's permissible limit to determine the
likelihood of failure.

Table 5. Ambient radiation dose rates for radiation zones A, B, C.

Zone Dose Rate Elapsed Time Total Received Dose
[rad/hour] [minute] [rad]

~ ~ 5 N(u~=644min,o N(u=~341,0 =~ 2.52)

A N(Qu=250,0=150)%10 ~ 3.97 min) % 107
B ZU(min = 030, max = 3.00) N(u~ 514 min,c N(u=879,0 =5.73)
x 1072 ~ 6.38 min) x 10°
_ ~ , N(u=6l7min,o N(u=~433,0 ~2.70)
C Nu=252,0~098)x10 ~ 7.93 min) % 10°

2 NM(u, 0) —Normal distribution, truncated to represent a realistic and physically meaninginful sampling
space. For example, time cannot be negative.
3 LU(min, max)- Loguniform distribution with min and max.
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Figure 3. Kernel Density Estimates for Total Received Dose by Zone.

3.1. Scenario Description

The event tree for the drone's mission is constructed based on the sequence of events that the
drone is expected to encounter during its mission. Starting with the initiating event, the likelihood of
navigation system availability is computed for zones A, B, and C. At each functional event, the tree
branches into two outcomes: success or failure. The success branch leads to the next event in the
sequence, while the failure branch leads to a Loss of Mission (LOM) end state. The failure
probabilities at each node are calculated using the navigation system fault tree. Figure 4 illustrates
this event tree, modeled in the OpenPRA framework [19].

e SUCCESS
nter Radiation -
TS Navigation Navigation Navigation Mission
Success
System System Systems
Operational Operational Operational
O
LOM @ Zone C
>
no
LOM_B
> LOM @ Zone B
no
LOM_A
. | LOM@ Zone A

>
no

Figure 4. Event tree description of navigation system availability for radiation zones A,B, and C.

3.2. Assumptions and Simplifications

In order to concentrate on the methodology presented, we have made several assumptions and
simplifications. These are necessary to streamline the discussion and focus on the core concepts, but
it's important to note that they may limit the comprehensiveness of the model.

Firstly, the event tree depicted in Figure 4 only considers the availability of the navigation
system. A more comprehensive model would take into account all components of the UAV and their
interdependencies, including the potential for common cause failures (CCFs). As a result, the baseline
failure probabilities presented in this study may appear lower than they would be in a more complex


https://doi.org/10.20944/preprints202307.0395.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 July 2023 d0i:10.20944/preprints202307.0395.v1

model that includes CCFs. Secondly, when mechatronic systems are exposed to radiation
environments, they can fail due to a variety of mechanisms. These include TID effects, displacement
damage, and single-event effects (SEEs). In this study, we only consider TID effects, which are the
cumulative effects of ionizing radiation on materials and devices. Other failure mechanisms are not
considered in this model. Thirdly, our model does not take into account the potential impact of
weather conditions or terrain on the drone's ability to navigate each zone. These factors could
significantly affect the drone's performance and the likelihood of mission success. Lastly, our model
does not factor in the potential for human error in drone operation. In real-world scenarios, human
error can significantly contribute to mission failure. However, incorporating such effects would add
a layer of complexity that is beyond the scope of this study.

3.3. Navigation System Fault Tree

The fault tree for the drone's navigation system is constructed based on the potential failure
modes of the system's components. It is depicted in Figure 5. A fault tree is a graphical representation
of the logical relationships between the failures, or "basic events", and the system-level failure, or "top
event". The basic events are the lowest level failures that can occur in the system, while the top event
is the failure of the entire system. The intermediate events represent the failure of subsystems or
groups of components. The logical relationships between these events are represented by gates,
which can be "AND" gates, "OR" gates, or more complex logical gates.

aaaaa

SYSTEM_POW| SENSOR_POS FILTER_KAL . SENSOR_IMU

Filter Failure

: = —

SUPPLY_POW/ BATT_FAIL BATT_LOSS SENSOR_GPS| SENSOR_VIZ {CODE_KAL DSP_KAL

Vision Guided

Post Irradiation e Fter
Battery Drained Battery Capacity GPS Failure Positioning System
Loss Failure

Software Failure

Filter DSP Hardware

Power Switching
Circuit Failure Failure

Cae ] e e

GPS_HW. 1GPS_SIGNAL CAM_HW! RAD_HW,

mmWave Rad:

Consider Battery or
Drain Module Failure

GPS Sensor Module 6PS Unavailabl
Failure

Battery Low Vision SoC Module
Failure

-

(- ) ﬁ - ) &

{GPS_LOST————{GPS_LOSSY|

‘ GPSLost ‘ Lossy GPS Signal

A
Figure 5. Navigation system failure fault tree.

In the given fault tree, the top event is the failure of the drone's navigation system, represented
by the gate "TOP". This event can occur due to the failure of the power system "SYSTEM_POW", the
positioning sensors "SENSOR_POS", the Kalman filter "FILTER_KAL", or the inertial measurement
unit sensors "SENSOR_IMU". The intermediate events are represented by the gates "SENSOR_POS",
"FILTER_KAL", "SYSTEM_POW", "SENSOR_GPS", "SENSOR_VIZ", "BATT FAIL", and
"GPS_SIGNAL". Each of these gates represents a failure mode that can contribute to the top event.
For example, the "SENSOR_POS" gate represents the failure of the positioning sensors, which can
occur due to the failure of the GPS hardware "GPS_HW" or the visual sensors "SENSOR_VIZ".
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The basic events are the lowest level failures that can occur in the system. These include the
failure of the power supply "SUPPLY_POW?", the battery running low “BAT_LOW?", the loss of the
battery "BATT_LOSS", the failure of the GPS hardware "GPS_HW?", the loss of the GPS signal
"GPS_LOSSY", the failure of the camera hardware "CAM_HW", the failure of the radiation sensor
hardware "RAD_HW?", the failure of the Kalman filter code "CODE_KAL", the failure of the Kalman
filter DSP "DSP_KAL", and the failure of the IMU sensors "SENSOR_IMU". Failure rates for each
hardware component and basic event are listed in Tables 6 and 7. These rates were acquired from the
Texas Instruments reliability database [20]. They are used to calculate the probability of each basic
event for the elapsed time at each radiation zone, which is used to calculate the probability of the
intermediate and top events using the logical relationships defined by the gates. This allows for a
quantitative assessment of the reliability of the drone's navigation system. Basic event BATT_LOW
models battery drain, with the cumulative distribution function (CDF) plotted in Figure 6. We
observe that the battery has been chosen to last well beyond the mission time.

Table 6. Manufacturer (Texas Instruments) provided failure rates for generic drone hardware

components.

. Derated Failure Rate
Basic Event  Part Number Component Type [failures/hr]
SENSOR_IMU TI-MSP430 Series ~ MEMS IMU N=290,0 zx2.1000_)9
CAM_HW  TI-TDA4AL-Q1 Vision SoC + DSP Np=210,0 zXS '1000_)9

TI- mmWave Radar + N(u=3.80,0 =~ 5.00)
RAD_HW ’
- IWR1642AQAGABL DSP x 107°

N(u=590,0 = 3.50)

DSP_KAL TI-TMS320C6678 Kalman Filter DSP % 10-2

Table 7. Basic event probabilities for drone navigation system failure fault tree.

Failure Rate
[failures/hr]
SENSOR_IMU Inertial Measurement Unit Failure N(u=290,0 ~2.00)x107°
CAM_HW Vision System-on-Chip Module Failure N (u = 2.10,0 ~ 5.00) x 107°

Basic Event Basic Event Description

RAD_HW mmWave Radar Module Failure N(u=3.80,0~5.00)x10°
DSP_KAL Filter DSP Hardware Failure N(u=590,0 ~3.50)x107°
CODE_KAL Kalman Filter Software Failure DEPM, see section on Page 12
GPS_HW GPS Sensor Module Failure N(u=2.00,0~1.00)x107°
GPS_LOSSY  Lossy GPS Signal N(u=100,0~0.01) x107°
SUPPLY_POW Switching Power Supply Circuit Failure N (u = 1.00,0 = 0.50) x 107°
BATT_LOW Battery Low Time dependent, see Figure 6

P =1 as TID approaches TID

BATT_LOSS Post Irradiation Battery Capacity Loss limit
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Figure 6. Cumulative Distribution Function for Probability of Battery Drain for a range of mission
times.

3.4. Modeling Kalman filter software failures using dual graph error propagation method (DEPM)

The Kalman filter software block is a critical component of the drone's navigation system. It
processes the sensor data to estimate the drone's position and velocity, which are essential for
controlling the drone's flight. The Kalman filter code is implemented on a digital signal processor
(DSP), which is susceptible to radiation-induced single event upsets (SEUs) as well as TID effects.
These events can cause bit flips in the processor's memory, leading to errors in the Kalman filter's
calculations. In our model, we consider TID related permanent failures. A detailed analysis of
transient and accumulated failures in DEPM can be found in [21].

Failure analysis is performed by building a DEPM model from the Kalman filter assembly block,
listed in Table 8. The Kalman filter algorithm is a recursive algorithm used for estimating the evolving
state of a system. It consists of two main steps: the prediction step and the update step. The prediction
step predicts the next state of the system and the update step corrects the prediction based on the
actual measurement.

In the DEPM, the assembly code is first translated into a control flow graph (CFG) and a data
flow graph (DFG). The CFG represents the flow of control in the program, while the DFG represents
the flow of data between operations. The DEPM then combines these two graphs into a dual-graph,
which represents both the control flow and data flow in the program. The DEPM is used to analyze
the propagation of accumulated errors in the software, caused by TID effects in the DSP hardware.
Figure 6 illustrates the DEPM for the Kalman filter assembly in Table 8, compiled using the
LLVMPars framework [12].

Table 8. Assembler code for single variable Kalman filter algorithm.

/**

* Kalman Filter (Single Variable)

* Assume the input is in register RO

* Assume the initial state estimate is in register R1

* Assume the initial error covariance is in register R2

* Assume the process noise variance is in register R3

* Assume the measurement noise variance is in register R4
>(->(-/

Initialization
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1.  MOVR5,RI1 /1 R5 = State estimate (copy of initial state estimate)
2. MOVR6,R2 /I R6 = Error covariance (copy of initial error covariance)
3. LOOP:
Prediction step
4. MOVR7,R5 /I R7 = Predicted state estimate (copy of state estimate)
5. ADD R5, R7 /I R5 = State estimate = State estimate + Predicted state estimate
6. MOVRS R6 /1 R8 = Predicted error covariance (copy of error covariance)
7. ADD RS, R3 // R8 = Predicted error covariance + Process noise variance
8. MOV R6, R8 // R6 = Error covariance = Predicted error covariance + Process noise
variance
Update step
9.  MOVRY, R6 /I R9 = Error covariance (copy of error covariance)
10. ADD R9, R4 /I R9 = Error covariance + Measurement noise variance
11. MOV R10, R9 /I R10 = Temporary variable for division
12. DIV RS, R10 /I R8 = Kalman gain = Error covariance / (Error covariance +

Measurement noise variance)

13. MOV R11, RO // R11 = Measurement

14. SUBRI11, R7 /l R11 = Measurement - Predicted state estimate

15. MULR11, R8 // R11 = Innovation = (Measurement - Predicted state estimate) *
Kalman gain

16. ADD R5, R11 /I R5 = State estimate = State estimate + Innovation

17. MOV RI12,R8  // R12 = Kalman gain (copy of Kalman gain)

18. SUBR12,R8 /I R12 =1 - Kalman gain

19. MULR®6,R12  // R6 = Error covariance = Error covariance * (1 - Kalman gain)

/I Continue the loop or terminate

3.5. Modeling Total lonizing Dose limits for Electronic Hardware

TID is a measure of the amount of radiation absorbed by electronic components. Excessive TID
can cause degradation or failure of these components, leading to mission failure. In order to assess
the survivability of the drone's electronic hardware in each radiation zone, the TID limits for each
component need to be determined. The TID limits for electronic components are typically provided
by manufacturers and are based on the radiation hardness of the components [22]. These limits
specify the maximum TID that a component can withstand without experiencing significant
degradation or failure. It is important to note that these limits may vary depending on the specific
component and its application. For the purpose of this demonstration case, we assume that the
drone's electronic hardware consists of off-the-shelf components from a reputable manufacturer. The
TID limits for these components are obtained from the manufacturer's specifications or empirical
tests and are listed in Table 9.

Using the TID limits from Table 9, the probability of failure for each component can be calculated
based on the total received dose. This probability is then used to determine the likelihood of
component failure in each radiation zone. For example, let's consider the COTS Inertial Measurement
Unit (IMU) component. The TID limit for the IMU is in the range of U(min = 1.00,max = 5.50) x
10* [23]. Based on the total received dose in each radiation zone, the probability of exceeding the TID
limit for the IMU can be calculated. If the probability of exceeding the TID limit is below this
threshold, the IMU is considered to have survived in that radiation zone. Otherwise, the IMU is
considered to have failed. Similarly, the probability of failure can be calculated for other components
such as the power switching circuit, lithium-ion battery [24], GPS sensor module, vision SoC module,
mmWave radar module, and filter DSP hardware [25,26].

By assessing the probability of failure for each component in each radiation zone, the most
vulnerable components can be identified. These components can then be targeted for radiation
hardening measures, such as shielding or the use of radiation-hardened components, to improve
their survivability in nuclear-contaminated environments. In the next section, we present the results
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of this analysis, and re-run it after radiation hardening the components that contribute most to

navigation system failure and LOM.

<
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I
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Figure 7. Dual Graph Error Propagation (DEPM) representation of assembly for a single variable

Kalman filter.
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Table 9. Total Ionizing Dose (TID) limits, COTS Components.

Commercial Off The Shelf

Component (COTS)

Inertial Measurement Unit U(min = 1.00,max = 5.50) x 10*
Power Switching Circuit U(min = 1.50,,max = 2.00) x 10*
Lithium Ion Battery U(min = 0.10, max = 2.74) x 10°
GPS Sensor Module U(min = 1.43,max = 1.74) x 10*
Vision SoC Module U(min = 0.10,max = 1.00) x 10*
mmWave Radar Module U(min = 0.10,,max = 1.00) x 10*
Filter DSP Hardware U(min = 0.10,max = 1.00) x 10*

4. Results and Discussion

The results of the D-PRA for the drone's navigation system are presented in this section. The D-
PRA was performed using the OpenPRA framework, which integrates the event tree/fault tree
approach with DEPM to model the propagation of errors in the drone's navigation system. The results
are presented in terms of the LOM likelihood in each radiation zone, as well as the most vulnerable
components that contribute to LOM.

4.1. Probability of Loss of Mission (LOM) using Commercial-Off-The-Shelf (COTS) Components

The probability of LOM in each radiation zone is calculated based on the failure probabilities of
the components in the drone's navigation system. The results are plotted in Figure 8 and listed in
Table 10. As expected, the probability of LOM increases with the radiation level, with the highest
probability in Zone C, the highest radiation zone. This is due to the higher TID received by the
components in this zone, which increases the likelihood of component failure.
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Figure 8. Density estimates of COTS Navigation System Failure probabilities by Zone and TID effects.

Table 10 presents the probability of LOM due to the failure of the drone's navigation system in
each radiation zone (A, B, and C). The sampled probabilities are parametrized using a log-normal
distribution (LN), with the mean (m) and error factor (EF) parameters provided. The probability of
LOM is low and dependent on non-radiation related phenomena for all parts in Zones A and B, and
most parts of Zone C. This suggests that the drone's navigation system is relatively reliable in low
radiation environments, averaging about one LOM per ten thousand missions. However, the
probability of LOM increases significantly in Zone C. This is due to the higher TID received by the
components in this zone, which increases the likelihood of component failure. This is a significant
concern, as it suggests that the drone may not be able to complete its mission in high radiation
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environments. This could have serious consequences for SAR missions, as it could prevent the drone
from reaching survivors or accurately assessing the extent of the damage.

Table 10. Probability of Loss of Mission (LOM) due to COTS drone Navigation System Failure.

d0i:10.20944/preprints202307.0395.v1

End State End State Description P(End State)

LOM_A Loss of Mission in Zone A LN (m = 1.35 X 107, EF ~ 6.29)
LOM_B Loss of Mission in Zone B LN (M ~ 1.20 X 1075, EF ~ 3.56)
LOM_C Loss of Mission in Zone C LN (m =~ 1.39,EF ~ 0.35) x 10°
SUCCESS  Mission Success LN (m =~ 2.70 x 107%, EF ~ 10.5)

In terms of mission success, the results indicate a relatively low probability. This suggests that
the current design of the drone's navigation system may not be suitable for SAR missions in nuclear-
contaminated environments. Therefore, improvements to the design, such as the use of radiation-
hardened components or shielding, may be necessary to increase the probability of mission success.

4.2. Selective Radiation Hardening using Mission Success Criteria

With the objective of improving the unacceptably low likelihood of mission success, we propose
a strategy to selectively harden the most vulnerable components in the navigation system. We begin
by choosing a vulnerable component and assign a wide distribution for its TID limit. For instance,
we choose the DSP and assign its TID limit as TIDpsp = LU(min = 1.0 X 10°, max = 1.00 X 10°).
Here, TIDpsp is aloguniform distribution, and much wider than the nominal value specified in Table
9. Next, we invert the probability of mission success, making it conditional on the event TIDjgp, and
accept TIDpsp values only when LOM does not occur. Figure 9 plots the kernel density estimates for
the sampled, accepted and rejected DSP TID limit ranges at the 95th percentile for 1 in 10,000 mission
failures. By extension, sampling over a range of expected mission failure rates, we can construct a
radiation hardening vs mission failure curve. This curve has been illustrated in Figure 10.

Ps(TID) = P(TIDpsp | ~LOM) (4)
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Figure 9. Digital Signal Processor Total Ionizing Dose Limits for 1 in 10,000 Mission Failures.

The results of the analysis allow us to choose a radiation hardening limit based on target mission
success criteria.
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5. Conclusion

This paper presented a dynamic probabilistic risk assessment (D-PRA) approach for assessing
the survivability of commercial off-the-shelf (COTS) drones in nuclear-contaminated search and


https://doi.org/10.20944/preprints202307.0395.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 July 2023 doi:10.20944/preprints202307.0395.v1

15

rescue (SAR) missions. The D-PRA approach integrates the traditional event tree/fault tree approach
with the dual-graph error propagation method (DEPM) to model the propagation of errors in the
drone's navigation system. The results of the D-PRA demonstrated the usefulness of the proposed
approach in identifying the most vulnerable components for radiation hardening (RAD-HARD)
improvements.

The results of the D-PRA showed that the probability of loss of mission (LOM) increases with
the radiation level, with the highest probability in the high radiation zone. This is due to the higher
total ionizing dose (TID) received by the components in this zone, which increases the likelihood of
component failure. The results also showed that the current design of the drone's navigation system
may not be suitable for SAR missions in nuclear-contaminated environments, suggesting that
improvements to the design, such as the use of RAD-HARD components or shielding, may be
necessary to increase the probability of mission success.

Future work will focus on extending the D-PRA approach to include other potential failure
modes, such as single-event effects (SEEs) and displacement damage, which were not considered in
this study. Additionally, the impact of weather conditions and terrain on the drone's ability to
navigate each radiation zone will be considered. Finally, the potential for human error in drone
operation, which can significantly contribute to mission failure, will be incorporated into the model.

In conclusion, the proposed D-PRA approach provides a systematic and comprehensive
framework for assessing the survivability of COTS drones in nuclear SAR missions. By identifying
the most vulnerable components for RAD-HARD improvements, the approach can help to improve
the reliability and safety of these drones, thereby enhancing their effectiveness in SAR missions in
nuclear-contaminated environments.

Author Contributions: Conceptualization, A.E. and M.A.D.; methodology, A.E. and M.A.D.; verification, A.E.
and M.A.D; formal analysis, A.E.; investigation, A.E. and M.A.D; resources, A.E. and M.A.D; data curation, A.E.;
writing —original draft preparation, A.E.; writing—review and editing, M.A.D; visualization, A.E.; supervision,
M.A.D; project administration, M.A.D; funding acquisition, M.A.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. M. L Ahmad, M. H. Ab. Rahim, R. Nordin, F. Mohamed, A. Abu-Samah, and N. F. Abdullah, “Ionizing
Radiation Monitoring Technology at the Verge of Internet of Things,” Sensors, vol. 21, no. 22, p. 7629, Nov.
2021, doi: 10.3390/s21227629.

2. L.R. Pinto et al., “Radiological Scouting, Monitoring and Inspection Using Drones,” Sensors, vol. 21, no. 9,
p- 3143, Apr. 2021, doi: 10.3390/s21093143.

3. B.]. Garrick, Quantifying and Controlling Catastrophic Risks. Academic Press, 2008.

4. W.E. Vesely,F.F. Goldberg,N.H. Roberts,D.F. Haasl, “NUREG-0492, ‘Fault Tree Handbook’.” Jan. 1981.
[Online]. Available: https://drum.lib.umd.edu/handle/1903/7729

5. S. A. Kripke, “Semantical Considerations on Modal Logic,” Acta Philos. Fenn., vol. 16, pp. 83-94, 1963,
[Online]. Available: http://saulkripkecenter.org/wp-content/uploads/2019/03/Semantical-Considerations-
on-Modal-Logic-PUBLIC.pdf

6. M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic Model Checking,” in Formal Methods for
Performance Evaluation, M. Bernardo and J. Hillston, Eds., in Lecture Notes in Computer Science, vol. 4486.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 220-270. doi: 10.1007/978-3-540-72522-0_6.

7. C.Baier and J.-P. Katoen, Principles of model checking. Cambridge, Mass: The MIT Press, 2008.

8. K. Schneider, Verification of reactive systems: formal methods and algorithms. in Texts in theoretical computer
science. Berlin ; New York: Springer-Verlag, 2004.

9. M. O. Rabin and D. Scott, “Finite Automata and Their Decision Problems,” IBM ]. Res. Dev., vol. 3, no. 2,
pp. 114-125, Apr. 1959, doi: 10.1147/rd.32.0114.

10. M. A. Diaconeasa and A. Mosleh, “The ADS-IDAC Dynamic Platform with Dynamically Linked System
Fault Trees,” Philadelphia, PA, 2017.


https://doi.org/10.20944/preprints202307.0395.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 July 2023 d0i:10.20944/preprints202307.0395.v1

16

11. A. Morozov and K. Janschek, “Dual Graph Error Propagation Model for Mechatronic System Analysis,”
IFAC Proc. Vol., vol. 44, no. 1, pp. 9893-9898, Jan. 2011, doi: 10.3182/20110828-6-1T-1002.03371.

12. V. Vidineev, N. Yusupova, K. Ding, A. Morozov, and K. Janschek, “Improved stochastic control flow model
for LLVM-based software reliability analysis,” Ind. 40, vol. 3, no. 4, pp. 172-174, 2018, Accessed: Aug. 02,
2022. [Online]. Available: https://stumejournals.com/journals/i4/2018/4/172

13. K. Ding, S. Ding, A. Morozov, T. Fabarisov, and K. Janschek, “On-Line Error Detection and Mitigation for
Time-Series Data of Cyber-Physical Systems using Deep Learning Based Methods,” in 2019 15th European
Dependable Computing Conference (EDCC), Naples, Italy: IEEE, Sep. 2019, pp. 7-14. doi:
10.1109/EDCC.2019.00015.

14. ]. Marques-silva, “Practical applications of boolean satisfiability,” in In Workshop on Discrete Event Systems
(WODES, TIEEE Press, 2008.

15. R. E. Bryant and M. J. Heule, “Generating extended resolution proofs with a BDD-based SAT solver,” in
International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Springer, 2021,
pp- 76-93.

16. K. Vetter, “The Institute of Resilient Communities,” in Resilience: A New Paradigm of Nuclear Safety, J. Ahn,
F. Guarnieri, and K. Furuta, Eds., Cham: Springer International Publishing, 2017, pp. 207-218. doi:
10.1007/978-3-319-58768-4_16.

17. K. Vetter, “Multi-sensor radiation detection, imaging, and fusion,” Nucl. Instrum. Methods Phys. Res. Sect.
Accel. Spectrometers Detect. Assoc. Equip., vol. 805, pp. 127-134, Jan. 2016, doi: 10.1016/j.nima.2015.08.078.

18. G.U. Medvedevs, “JPRS Report, Soviet Union: Economic Affairs (‘“Chernobyl Notebook’),” Soviet Union:
Economic Affairs, JPRS-UEA-89-034, Oct. 1989. Accessed: Jun. 19, 2023. [Online]. Available:
https://apps.dtic.mil/sti/pdfs/ADA335076.pdf

19. OpenPRA Community, “OpenPRA Initiative,” Apr. 01, 2019. https://openpra.org/ (accessed Jan. 17, 2022).

20. “Texas Instruments - Reliability —Testing,” Texas Instruments Quality &  Reliability.
https://www.ti.com/support-quality/reliability/reliability-testing.html (accessed Jan. 10, 2022).

21. A. Earthperson, C. M. Otani, D. Nevius, S. R. Prescott, and M. A. Diaconeasa, “A combined strategy for
dynamic probabilistic risk assessment of fission battery designs using EMRALD and DEPM,” Prog. Nucl.
Energy, vol. 160, p. 104673, Jun. 2023, doi: 10.1016/j.pnucene.2023.104673.

22.  “GSFC Radiation Data Base.” https://radhome.gsfc.nasa.gov/radhome/RadDataBase/RadDataBase.html
(accessed Jun. 16, 2023).

23. G.Bazzano et al., “Radiation testing of a commercial 6-axis MEMS inertial navigation unit at ENEA Frascati
proton linear accelerator,” Adv. Space Res., vol. 67, no. 4, pp. 1379-1391, Feb. 2021, doi:
10.1016/j.asr.2020.11.031.

24. ].Qiuet al., “Effects of neutron and gamma radiation on lithium-ion batteries,” Nucl. Instrum. Methods Phys.
Res. Sect. B Beam Interact. Mater. At., vol. 345, pp. 27-32, Feb. 2015, doi: 10.1016/j.nimb.2014.12.058.

25. M. Markgraf and O. Montenbruck, “Total Ionizing Dose Testing of the Orion and Phoenix GPS Receivers,”
German Space Operations Center (GSOC), TN 04-01, Feb. 2004. [Online]. Available:
https://www.dlr.de/rb/Portaldata/38/Resources/dokumente/GSOC_dokumente/RB-RFT/TN_0401.pdf

26. N. Rezzak, J.-J. Wang, C.-K. Huang, V. Nguyen, and G. Bakker, “Total Ionizing Dose Characterization of
65 nm Flash-Based FPGA,” in 2014 IEEE Radiation Effects Data Workshop (REDW), Paris, France: IEEE, Jul.
2014, pp. 1-5. doi: 10.1109/REDW.2014.7004606.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202307.0395.v1

