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Article 

Dynamic Probabilistic Risk Assessment of 
Commercial‐Off‐The‐Shelf Drones in   
Nuclear‐Contaminated Search and Rescue Missions 
Arjun Earthperson and Mihai A. Diaconeasa * 

Department of Nuclear Engineering, North Carolina State University, 27695 Raleigh, North Carolina, USA 
*  Correspondence: madiacon@ncsu.edu; Tel.: +1 (919) 515‐3768 

Abstract:  This  paper  presents  a  limited  scope  dynamic  probabilistic  risk  assessment  (D‐PRA)  on  the 
survivability of commercial of the shelf (COTS) drones tasked with surveilling areas with varying radiation 
levels after a nuclear accident. The D‐PRA  is  founded on a discrete‐dynamic event  tree  (D‐DET) approach, 
which couples with the OpenEPL error propagation framework to model sequences leading to Loss of Mission 
(LOM) scenarios due to component failures in the drone’s navigation system. Radiation effects are simulated 
by  calculating  the  total  ionizing  dose  (TID)  against  the  permissible  limit  per  component,  and  errors  are 
propagated within the electronic hardware and software blocks to quantify navigation system availability per 
radiation zone. The proposed methods are integrated into the traditional event tree/fault tree approach and the 
most vulnerable components are  radiation‐hardened  (RAD‐HARD)  to  the extent  specified by a predefined 
mission success criterion. The results demonstrate the usefulness of the proposed approach in performing trade 
studies for incorporating COTS components into RAD‐HARD drone designs. 

Keywords: dual‐graph error propagation model; discrete dynamic event tree; dynamic probabilistic 
risk assessment; error propagation; OpenEPL; OpenPRA; COTS 

 

1. Introduction 

Uncrewed Aerial Vehicles (UAVs) have become  increasingly popular in various applications, 
including search and rescue (SAR) activities. In the aftermath of a nuclear accident, SAR missions are 
critical to assess the extent of damage, locate survivors, and monitor radiation levels [1,2]. However, 
the high radiation levels in such environments pose a significant risk to the electronic components of 
UAVs,  potentially  leading  to mission  failure.  This  paper  presents  a  dynamic  probabilistic  risk 
assessment (D‐PRA) approach to assess the survivability of commercial off‐the‐shelf (COTS) drones 
in radiological SAR operations and identify the most vulnerable components for radiation hardening 
(RAD‐HARD) improvements. 

The use of COTS drones in SAR missions offers several advantages, such as cost‐effectiveness, 
rapid  deployment,  and  ease  of  operation. However,  these  drones  are  not  typically  designed  to 
withstand the harsh radiation environments encountered in nuclear accidents. On the other hand, 
radiation hardened UAVs may be  employed, but  all use  cases may  justify  their use.  Influencing 
factors  include  availability,  cost,  and mission‐specific  requirements.  Therefore,  it  is  essential  to 
develop a systematic approach to assess the survivability of COTS drones in nuclear SAR missions 
to  identify  the  most  critical  components  for  RAD‐HARD  improvements.  Probabilistic  Risk 
Assessment  (PRA)  is  a  well‐established  methodology  used  in  the  nuclear  engineering  field  to 
evaluate the safety and reliability of nuclear power plants. PRA techniques have been successfully 
applied to various complex systems, including space missions, aviation, and chemical plants. In this 
paper, we extend the application of PRA to assess the survivability of COTS drones in nuclear SAR 
missions. 

PRA  techniques  have  been  established  to  evaluate  risks  by  identifying  potential  failure 
scenarios,  assessing  their  likelihood,  and  determining  the  consequences  if  these  failures  occur. 
Consequently, risk is formally expressed as a comprehensive set of  𝑁  triplets that include a scenario 
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description  𝑠௜ ,  its  probability  𝑝௜ ,  and  the  consequences,  i.e.  the  resulting  damage measure  or 
evaluation metric  𝑥௜:  ℛ ൌ ሼ〈𝑠௜ , 𝑝௜ , 𝑥௜〉ሽ௖ , 𝑖 ൌ 1, 𝑁തതതതത  (1) 

PRA offers a comprehensive approach that is well‐suited for modeling intricate dependencies 
and failure modes in static systems. These methods have significantly contributed to ensuring safety 
in current nuclear and aerospace operations. Conventional PRA approaches involve sequence‐based 
modeling where initiating events are chosen, conditional event progressions are analyzed, leading to 
end states of interest. By incorporating consequence information into these PRA models, frequency‐
consequence  curves  can  be  formulated  [3].  In  event  tree  analysis,  probabilities  are  assigned  to 
functional events depicting various components, systems, or operator actions using fault trees. These 
probabilities  take  into  account  either  time‐dependent  or  on‐demand  failure  modes  given 
predetermined mission durations [4]. Although this approach offers more insights than traditional 
deterministic methods, it may not be sufficient for accurately modeling systems that exhibit intricate 
time‐ and event‐based dependencies or  feedback mechanisms. For  instance,  certain events might 
have  failure  rates  that  evolve  over  time.  In  such  cases,  a  sophisticated modeling  technique  is 
necessary to conservatively divide the timeframe into longer intervals so as to properly establish basic 
event  failure  rates  and mission  durations.  Integrating  additional  dynamic methods within  PRA 
models can lead to improved accuracy when dealing with complex temporal dependencies among 
system elements. 

The proposed D‐PRA approach utilizes OpenEPL error propagation library to model sequences 
leading to Loss of Mission (LOM) and Loss of Vehicle (LOV) scenarios due to component failures in 
the droneʹs navigation system. Radiation effects are simulated by calculating the total ionizing dose 
(TID) against the permissible limit per component, and errors are propagated within the electronic 
hardware and  software blocks  to quantify navigation  system availability per  radiation zone. The 
proposed methods  are  integrated  into  the  traditional  event  tree/fault  tree  approach  to provide  a 
demonstrative assessment of the droneʹs survivability in nuclear SAR missions. 

The remainder of this paper is organized as follows: Section 2 provides a brief overview of the 
problem scope and the methodology behind the proposed solution. This includes the proposed D‐
PRA  approach,  including  the  modeling  of  radiation  effects  on  electronic  components  and  the 
integration  of  dynamic  failure  scenarios.  Section  3  presents  a  case  study  demonstrating  the 
application of the proposed approach to a COTS drone system. Section 4 discusses the results and 
their  implications  for  drone  design  and  selection  in  nuclear  SAR  missions.  Finally,  Section  5 
concludes the paper and outlines ideas for future research directions. 

2. Methodology 

In this section, we provide a brief overview of the problem scope and the methodology behind 
our proposed solution for assessing COTS drone survivability in nuclear SAR missions. We introduce 
a few terms within resilience ontology in the context of temporal logic using Kripke structure notation 
to model time‐dependent risk [5–8]. The formal equation and definitions are introduced in Equation 
(2) and Table 1. 

A system  𝑀  consists of states  𝑆  that  transition along a bounded, but countably  infinite  long 
path  𝑃  ,  starting with  the  initial  state  𝑖.  𝑅  is  the  transition  relation  that maps all  the valid  state 
transitions. An equivalent definition can be expressed using the edge list  𝑒 ൌ ሼ𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼ሽ, 
which  forms  our  alphabet.  Traversal  of  path  𝑃   produces words  𝑊 .  This  allows  us  to  build  a 
grammar, with which we  can define  events, or  system properties, and  emergent behaviors. This 
grammar can includes words of our choosing, some examples are listed in in Table 2. By extension, 
each trajectory, or word is expressible in a temporal sense, as depicted in Figure 1 [9].   𝑀 ∶ൌ 〈𝑆, 𝑖, 𝑅〉  (2) 
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Table 1. 3‐tuple Kripke terms for a 3‐state transition system. 

Ter

m  Definition  Description 

𝑆  𝑆ൌ ሼnominal, degraded, failureA set of possible states 𝑖  𝑖 ⊆ 𝑆 ൌ ሼnominalሽ  The initial state, which is nominal 𝑅  𝑅 ⊆ 𝑆 ൈ 𝑆  A mapping or transition relation, where  𝑅  is left‐
total1, and  𝑀  is fully‐connected. 

 

Figure 1. State transitions within a three‐state system, initialized as nominal. (left) temporal, (right) 
state machine. 

Table 2. State transition definitions for three state model referenced in Figure 1. 

Regular Expression  Term  Description 

A* 
Ideal/Perfect 
System 

No errors, faults, or failures occur. 

B  Fault 
A fault is a weakness that can potentially lead 
to errors.   

DF*|C+ 
Error 
Propagation 

Move from an initial error state leads to a 
subsequent one. 

D|I  Failure 
System fails from either a degraded or a 
nominal state. 

E|G|H 
Recoverable 
System 

Move from higher to lower degradation. 

B(C*|E)  Fault Tolerant  Avoid transition to failure, given a fault. 

A*|(B(C*|E)) 
Failure 
Avoidant 

No failures occur. 

G|H  Resilient System 
Recover from a failure, either fully or 
partially. 

B(C*|D(F*|G))|(I(F*

|G))   
Irrecoverable 
System 

Neither completely fails, nor returns to 
nominal. 

F+ 
Permanently 
Failed 

System remains irrecoverable forever. 

In certain situations, traditional and dynamic PRA methods may need to be supplemented with 
specialized  analysis  techniques  for modeling  the  systems  that  involve  error  propagation  failure 
modes,  or  incorporate multiple  failure  paths,  such  as  the  example  in  the  previous  section  [10]. 

 
1  If the source set 𝑋 equals the domain,  𝑅 ⊆ 𝑋 ൈ 𝑌  is left‐total. 
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Tracking the propagation of errors from discrete sub‐components to system or functional levels in 
such  systems  presents  a  unique  challenge.  The  dual‐graph  error  propagation method  (DEPM) 
enables the separate modeling of data flows and control flows within a system [11]. In DEPM, we 
consider a system as independent, and discrete elements, which can be sensor modules, or software 
blocks in a mechatronic system [12]. When a fault activates, it can propagate to connected elements, 
which may corrupt data, or alter the control and data flows. We present the DEPM formalism with 
an example in the following figures. DEPM ∶ൌ 〈𝐸, 𝐷, 𝐴஼ி , 𝐴஽ி , 𝐶〉  (3) 

Table 3. Definitions for terms in Dual‐Graph Error Propagation Model (DEPM). 

Term  Definition 𝐸  A set of elements, always non‐empty. 𝐷  A set of optional data terms. 𝐴஼ி  An edge‐list representing control flows. 𝐴஽ி  An edge‐list representing data flows. 𝐶  A list of conditional expressions, which apply to the element set  𝐸. 
Flows  from  an  element  may  branch  erroneously,  depending  on  its  corresponding  failure 

rates/probabilities. By extension, error propagation analyses can simulate single‐event upsets (SEUs). 
To perform quantitative evaluations, we transform our DEPM models into continuous time (CTMCs) 
or discrete‐time Markov Chains (DTMCs), depending on the use case. Figure 2 and Table 4 illustrate 
an example DEPM with associated conditional logic expressions. 

 

Figure 2. Example DEPM with a legend. 

The  DEPM  model  in  Figure  2,  a  depicts  execution  of  serial  code.  Assembly  operations, 
represented as elements A, B, and C, read and write data variables 1, 2, and to and from CPU registers. 
Element A changes variables 1 and 3. Elements B and C change variables 2 and 4. Element B reads 
from data variable 1 while element C reads from both variable 2 as well as variable 3.   

Table 4. Conditional Logic Table for example DEPM in Figure 2. 

Element  Conditional Expressions   

A 
always: 

with P(0.8): DATA VARIABLE 1, DATA VARIABLE 2 = error 
with P(0.2): DATA VARIABLE 1, DATA VARIABLE 2 = ok 

B 

if DATA VARIABLE 1 = error, then: 
with P(0.9): DATA VARIABLE 2 = ok 
with P(0.1): DATA VARIABLE 2 = error 

else: 
with P(1.0): DATA VARIABLE 2 = ok 
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C 

if DATA VARIABLE 2 & DATA VARIABLE 3 = ok, then:   
with P(1.0): DATA VARIABLE 4 = ok 

else: 
with P(0.2): DATA VARIABLE 4 = ok 
with P(0.8): DATA VARIABLE 4 = error 

This DEPM  computes  the probability  that  the output variable, data variable 4,  is  corrupted. 
Given  that  SEUs  are  stochastic  in  nature,  this may  occur  at  any  time  [13]. To  achieve  this  goal, 
expressions  can  be  evaluated  by  employing  quantifiable  Boolean  formulae  (QBF)  evaluating 
satisfiability solvers [14,15]. Relevant metrics  like the mean time to failure (MTTF), the number of 
total  failures,  and  time‐dependent  failure  probability,  can  be  quantified  directly  using  formal 
verification  and model  checking methods.  Since  it  is  based  on  probabilistic modeling  checking, 
DEPM is better suited for modeling the behavior of smaller, but highly interdependent systems, as 
compared to traditional methods like fault trees and Markov chains. 

3. Demonstration Case 

In  this demonstration  case, we  consider  a COTS drone  equipped with  a navigation  system, 
communication system, and radiation sensor payload. The droneʹs primary mission  is  to perform 
SAR activities in a nuclear‐contaminated environment, which includes monitoring radiation levels, 
identifying damaged infrastructure, and locating survivors. The droneʹs navigation system comprises 
a power subsystem,  inertial measurement unit  (IMU) sensors, positioning sensors, and a Kalman 
filter. The drone is tasked with flying over a predefined search area, which is divided into three zones 
with  varying  radiation  levels.  The  drone  starts  its mission  in  the  low  radiation  zone  (Zone A), 
transitions to the medium radiation zone (Zone B), and finally enters the high radiation zone (Zone 
C) before returning to the base. Radiation levels in Zone A are based on background radiation[16,17]. 
Radiation levels in Zone B and C are sourced from samples in and around Unit 4 and surrounding 
buildings at  the Chernobyl nuclear power plant  (NPP)  shortly after explosion  [18]. Since mission 
success is dependent on the UAV successfully performing SAR activities for each zone before Loss of 
Vehicle (LOV) occurs, the analysis is finished once the drone completes its mission objectives in Zone 
C. The absorbed dose rates, time in each zone, and total absorbed dose are sampled from a truncated 
normal distribution2  and a  loguniform distribution3,  listed  in Table 5. The proposed approach  is 
applied to assess the droneʹs survivability in each radiation zone by considering the potential failure 
scenarios due to radiation‐induced component failures. TID is calculated for each component in the 
droneʹs navigation system and compared against the componentʹs permissible limit to determine the 
likelihood of failure. 

Table 5. Ambient radiation dose rates for radiation zones A, B, C. 

Zone 
Dose Rate 
[rad/hour] 

Elapsed Time 
[minute] 

Total Received Dose 
[rad] 

A  𝒩ሺ𝜇 ൎ 2.50 , 𝜎 ൎ 1.50ሻ ൈ 10ି5  𝒩ሺ𝜇 ൎ 6.44 𝑚𝑖𝑛 , 𝜎ൎ 3.97 𝑚𝑖𝑛ሻ  𝒩ሺ𝜇 ൎ 3.41 , 𝜎 ൎ 2.52ሻൈ 10ି6 
B 

ℒ𝒰ሺ𝑚𝑖𝑛 ൌ 0.30 , 𝑚𝑎𝑥 ൌ 3.00ሻൈ 10ି2  𝒩ሺ𝜇 ൎ 51.4 𝑚𝑖𝑛 , 𝜎ൎ 6.38 𝑚𝑖𝑛ሻ  𝒩ሺ𝜇 ൎ 8.79 , 𝜎 ൎ 5.73ሻൈ 100 
C  𝒩ሺ𝜇 ൎ 2.52 , 𝜎 ൎ 0.98ሻ ൈ 104  𝒩ሺ𝜇 ൎ 61.7 𝑚𝑖𝑛 , 𝜎ൎ 7.93 𝑚𝑖𝑛ሻ  𝒩ሺ𝜇 ൎ 4.33 , 𝜎 ൎ 2.70ሻൈ 103 

 
2  𝒩ሺ𝜇, 𝜎ሻ  – Normal distribution, truncated to represent a realistic and physically meaninginful sampling 
space. For example, time cannot be negative. 
3  ℒ𝒰ሺ𝑚𝑖𝑛 , 𝑚𝑎𝑥ሻ– Loguniform distribution with  𝑚𝑖𝑛  and  𝑚𝑎𝑥. 
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Figure 3. Kernel Density Estimates for Total Received Dose by Zone. 

3.1. Scenario Description 

The event tree for the droneʹs mission is constructed based on the sequence of events that the 
drone is expected to encounter during its mission. Starting with the initiating event, the likelihood of 
navigation system availability is computed for zones A, B, and C. At each functional event, the tree 
branches  into  two outcomes: success or  failure. The success branch  leads  to  the next event  in  the 
sequence,  while  the  failure  branch  leads  to  a  Loss  of  Mission  (LOM)  end  state.  The  failure 
probabilities at each node are calculated using the navigation system fault tree. Figure 4 illustrates 
this event tree, modeled in the OpenPRA framework [19].   

 

Figure 4. Event tree description of navigation system availability for radiation zones A,B, and C. 

3.2. Assumptions and Simplifications 

In order to concentrate on the methodology presented, we have made several assumptions and 
simplifications. These are necessary to streamline the discussion and focus on the core concepts, but 
itʹs important to note that they may limit the comprehensiveness of the model. 

Firstly,  the  event  tree depicted  in  Figure  4  only  considers  the  availability  of  the  navigation 
system. A more comprehensive model would take into account all components of the UAV and their 
interdependencies, including the potential for common cause failures (CCFs). As a result, the baseline 
failure probabilities presented in this study may appear lower than they would be in a more complex 
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model  that  includes  CCFs.  Secondly,  when  mechatronic  systems  are  exposed  to  radiation 
environments, they can fail due to a variety of mechanisms. These include TID effects, displacement 
damage, and single‐event effects (SEEs). In this study, we only consider TID effects, which are the 
cumulative effects of ionizing radiation on materials and devices. Other failure mechanisms are not 
considered  in  this model. Thirdly, our model does not  take  into  account  the potential  impact of 
weather  conditions  or  terrain  on  the  droneʹs  ability  to  navigate  each  zone.  These  factors  could 
significantly affect the droneʹs performance and the likelihood of mission success. Lastly, our model 
does not factor in the potential for human error in drone operation. In real‐world scenarios, human 
error can significantly contribute to mission failure. However, incorporating such effects would add 
a layer of complexity that is beyond the scope of this study. 

3.3. Navigation System Fault Tree 

The  fault  tree  for  the droneʹs navigation system  is constructed based on  the potential  failure 
modes of the systemʹs components. It is depicted in Figure 5. A fault tree is a graphical representation 
of the logical relationships between the failures, or ̋ basic eventsʺ, and the system‐level failure, or ̋ top 
eventʺ. The basic events are the lowest level failures that can occur in the system, while the top event 
is  the  failure of  the entire system. The  intermediate events  represent  the  failure of subsystems or 
groups  of  components. The  logical  relationships  between  these  events  are  represented  by  gates, 
which can be ʺANDʺ gates, ʺORʺ gates, or more complex logical gates.   

 
Figure 5. Navigation system failure fault tree. 

In the given fault tree, the top event is the failure of the droneʹs navigation system, represented 
by the gate ʺTOPʺ. This event can occur due to the failure of the power system ʺSYSTEM_POWʺ, the 
positioning sensors ʺSENSOR_POSʺ, the Kalman filter ʺFILTER_KALʺ, or the inertial measurement 
unit sensors ʺSENSOR_IMUʺ. The intermediate events are represented by the gates ʺSENSOR_POSʺ, 
ʺFILTER_KALʺ,  ʺSYSTEM_POWʺ,  ʺSENSOR_GPSʺ,  ʺSENSOR_VIZʺ,  ʺBATT_FAILʺ,  and 
ʺGPS_SIGNALʺ. Each of these gates represents a failure mode that can contribute to the top event. 
For example, the ʺSENSOR_POSʺ gate represents the failure of the positioning sensors, which can 
occur due to the failure of the GPS hardware ʺGPS_HWʺ or the visual sensors ʺSENSOR_VIZʺ. 
  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 July 2023                   doi:10.20944/preprints202307.0395.v1

https://doi.org/10.20944/preprints202307.0395.v1


  8 

 

The basic events are  the  lowest  level  failures  that can occur  in  the system. These  include  the 
failure of the power supply ʺSUPPLY_POWʺ, the battery running low “BAT_LOWʺ, the loss of the 
battery  ʺBATT_LOSSʺ,  the  failure  of  the  GPS  hardware  ʺGPS_HWʺ,  the  loss  of  the  GPS  signal 
ʺGPS_LOSSYʺ, the failure of the camera hardware  ʺCAM_HWʺ, the failure of the radiation sensor 
hardware ʺRAD_HWʺ, the failure of the Kalman filter code ʺCODE_KALʺ, the failure of the Kalman 
filter DSP  ʺDSP_KALʺ, and  the  failure of  the  IMU sensors  ʺSENSOR_IMUʺ. Failure rates  for each 
hardware component and basic event are listed in Tables 6 and 7. These rates were acquired from the 
Texas Instruments reliability database [20]. They are used to calculate the probability of each basic 
event for the elapsed time at each radiation zone, which is used to calculate the probability of the 
intermediate and top events using the logical relationships defined by the gates. This allows for a 
quantitative assessment of the reliability of the droneʹs navigation system. Basic event BATT_LOW 
models  battery  drain, with  the  cumulative  distribution  function  (CDF)  plotted  in  Figure  6. We 
observe that the battery has been chosen to last well beyond the mission time.   

Table 6. Manufacturer (Texas Instruments) provided failure rates for generic drone hardware 
components. 

Basic Event  Part Number  Component Type  Derated Failure Rate 
[𝒇𝒂𝒊𝒍𝒖𝒓𝒆𝒔/𝒉𝒓] 

SENSOR_IMU TI‐MSP430 Series  MEMS IMU  𝒩ሺ𝜇 ൌ 2.90 , 𝜎 ൎ 2.00ሻൈ 10ିଽ 
CAM_HW  TI‐TDA4AL‐Q1  Vision SoC + DSP  𝒩ሺ𝜇 ൌ 2.10 , 𝜎 ൎ 5.00ሻൈ 10ିଽ 
RAD_HW 

TI‐
IWR1642AQAGABL 

mmWave Radar + 
DSP 

𝒩ሺ𝜇 ൌ 3.80 , 𝜎 ൎ 5.00ሻൈ 10ିଽ 
DSP_KAL  TI‐TMS320C6678  Kalman Filter DSP  𝒩ሺ𝜇 ൌ 5.90 , 𝜎 ൎ 3.50ሻൈ 10ିଽ 

Table 7. Basic event probabilities for drone navigation system failure fault tree. 

Basic Event  Basic Event Description  Failure Rate 
[𝒇𝒂𝒊𝒍𝒖𝒓𝒆𝒔/𝒉𝒓] 

SENSOR_IMU  Inertial Measurement Unit Failure  𝒩ሺ𝜇 ൌ 2.90 , 𝜎 ൎ 2.00ሻ ൈ 10ିଽ 
CAM_HW  Vision System‐on‐Chip Module Failure  𝒩ሺ𝜇 ൌ 2.10 , 𝜎 ൎ 5.00ሻ ൈ 10ିଽ 
RAD_HW  mmWave Radar Module Failure  𝒩ሺ𝜇 ൌ 3.80 , 𝜎 ൎ 5.00ሻ ൈ 10ିଽ 
DSP_KAL  Filter DSP Hardware Failure  𝒩ሺ𝜇 ൌ 5.90 , 𝜎 ൎ 3.50ሻ ൈ 10ିଽ 
CODE_KAL  Kalman Filter Software Failure  DEPM, see section on Page 12 
GPS_HW  GPS Sensor Module Failure  𝒩ሺ𝜇 ൌ 2.00 , 𝜎 ൎ 1.00ሻ ൈ 10ିଽ 
GPS_LOSSY  Lossy GPS Signal  𝒩ሺ𝜇 ൌ 1.00 , 𝜎 ൎ 0.01ሻ ൈ 10ି଺ 
SUPPLY_POW  Switching Power Supply Circuit Failure 𝒩ሺ𝜇 ൌ 1.00 , 𝜎 ൎ 0.50ሻ ൈ 10ି଺ 
BATT_LOW  Battery Low  Time dependent, see Figure 6 

BATT_LOSS  Post Irradiation Battery Capacity Loss 
P = 1 as TID approaches TID 

limit 
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Figure 6. Cumulative Distribution Function for Probability of Battery Drain for a range of mission 
times. 

3.4. Modeling Kalman filter software failures using dual graph error propagation method (DEPM) 

The Kalman  filter software block  is a critical component of  the droneʹs navigation system.  It 
processes  the  sensor  data  to  estimate  the  droneʹs  position  and  velocity, which  are  essential  for 
controlling the droneʹs flight. The Kalman filter code  is  implemented on a digital signal processor 
(DSP), which  is susceptible to radiation‐induced single event upsets (SEUs) as well as TID effects. 
These events can cause bit flips in the processorʹs memory, leading to errors in the Kalman filterʹs 
calculations.  In  our model, we  consider  TID  related  permanent  failures. A  detailed  analysis  of 
transient and accumulated failures in DEPM can be found in [21]. 

Failure analysis is performed by building a DEPM model from the Kalman filter assembly block, 
listed in Table 8. The Kalman filter algorithm is a recursive algorithm used for estimating the evolving 
state of a system. It consists of two main steps: the prediction step and the update step. The prediction 
step predicts the next state of the system and the update step corrects the prediction based on the 
actual measurement. 

In the DEPM, the assembly code is first translated into a control flow graph (CFG) and a data 
flow graph (DFG). The CFG represents the flow of control in the program, while the DFG represents 
the flow of data between operations. The DEPM then combines these two graphs into a dual‐graph, 
which represents both the control flow and data flow in the program. The DEPM is used to analyze 
the propagation of accumulated errors in the software, caused by TID effects in the DSP hardware. 
Figure  6  illustrates  the  DEPM  for  the  Kalman  filter  assembly  in  Table  8,  compiled  using  the 
LLVMPars framework [12]. 

Table 8. Assembler code for single variable Kalman filter algorithm. 

/** 
* Kalman Filter (Single Variable) 
* Assume the input is in register R0 
* Assume the initial state estimate is in register R1 
* Assume the initial error covariance is in register R2 
* Assume the process noise variance is in register R3 
* Assume the measurement noise variance is in register R4 
**/ 
Initialization 
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1. MOV R5, R1                // R5 = State estimate (copy of initial state estimate) 
2. MOV R6, R2                // R6 = Error covariance (copy of initial error covariance) 
3. LOOP: 
Prediction step 
4. MOV R7, R5                // R7 = Predicted state estimate (copy of state estimate) 
5. ADD R5, R7                // R5 = State estimate = State estimate + Predicted state estimate 
6. MOV R8, R6                // R8 = Predicted error covariance (copy of error covariance) 
7. ADD R8, R3                // R8 = Predicted error covariance + Process noise variance 
8. MOV R6, R8              // R6 = Error covariance = Predicted error covariance + Process noise 
variance 
Update step 
9. MOV R9, R6                // R9 = Error covariance (copy of error covariance) 
10. ADD R9, R4                // R9 = Error covariance + Measurement noise variance 
11. MOV R10, R9          // R10 = Temporary variable for division 
12. DIV R8, R10              // R8 = Kalman gain = Error covariance / (Error covariance + 
Measurement noise variance) 
13. MOV R11, R0          // R11 = Measurement 
14. SUB R11, R7              // R11 = Measurement ‐ Predicted state estimate 
15. MUL R11, R8          // R11 = Innovation = (Measurement ‐ Predicted state estimate) * 
Kalman gain 
16. ADD R5, R11          // R5 = State estimate = State estimate + Innovation 
17. MOV R12, R8        // R12 = Kalman gain (copy of Kalman gain) 
18. SUB R12, R8            // R12 = 1 ‐ Kalman gain 
19. MUL R6, R12        // R6 = Error covariance = Error covariance * (1 ‐ Kalman gain) 
// Continue the loop or terminate 

3.5. Modeling Total Ionizing Dose limits for Electronic Hardware 

TID is a measure of the amount of radiation absorbed by electronic components. Excessive TID 
can cause degradation or failure of these components, leading to mission failure. In order to assess 
the survivability of the droneʹs electronic hardware in each radiation zone, the TID limits for each 
component need to be determined. The TID limits for electronic components are typically provided 
by manufacturers  and  are based on  the  radiation hardness of  the  components  [22]. These  limits 
specify  the  maximum  TID  that  a  component  can  withstand  without  experiencing  significant 
degradation or failure. It is important to note that these limits may vary depending on the specific 
component  and  its  application.  For  the purpose  of  this demonstration  case, we  assume  that  the 
droneʹs electronic hardware consists of off‐the‐shelf components from a reputable manufacturer. The 
TID  limits  for  these components are obtained  from  the manufacturerʹs specifications or empirical 
tests and are listed in Table 9. 

Using the TID limits from Table 9, the probability of failure for each component can be calculated 
based  on  the  total  received  dose.  This  probability  is  then  used  to  determine  the  likelihood  of 
component failure in each radiation zone. For example, letʹs consider the COTS Inertial Measurement 
Unit (IMU) component. The TID limit for the IMU is in the range of  𝒰ሺ𝑚𝑖𝑛 ൌ 1.00 , 𝑚𝑎𝑥 ൌ 5.50ሻ ൈ10ସ  [23]. Based on the total received dose in each radiation zone, the probability of exceeding the TID 
limit  for  the  IMU  can  be  calculated.  If  the  probability  of  exceeding  the  TID  limit  is  below  this 
threshold,  the  IMU  is  considered  to have  survived  in  that  radiation zone. Otherwise,  the  IMU  is 
considered to have failed. Similarly, the probability of failure can be calculated for other components 
such as the power switching circuit, lithium‐ion battery [24], GPS sensor module, vision SoC module, 
mmWave radar module, and filter DSP hardware [25,26]. 

By  assessing  the probability of  failure  for  each  component  in  each  radiation  zone,  the most 
vulnerable  components  can  be  identified.  These  components  can  then  be  targeted  for  radiation 
hardening measures, such as shielding or  the use of  radiation‐hardened components,  to  improve 
their survivability in nuclear‐contaminated environments. In the next section, we present the results 
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of  this  analysis,  and  re‐run  it  after  radiation  hardening  the  components  that  contribute most  to 
navigation system failure and LOM. 

 
Figure 7. Dual Graph Error Propagation  (DEPM)  representation of assembly  for a  single variable 
Kalman filter. 
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Table 9. Total Ionizing Dose (TID) limits, COTS Components. 

Component 
Commercial Off The Shelf 

(COTS) 

Inertial Measurement Unit  𝒰ሺ𝑚𝑖𝑛 ൌ 1.00 , 𝑚𝑎𝑥 ൌ 5.50ሻ ൈ 10ସ 
Power Switching Circuit  𝒰ሺ𝑚𝑖𝑛 ൌ 1.50 , 𝑚𝑎𝑥 ൌ 2.00ሻ ൈ 10ସ 
Lithium Ion Battery  𝒰ሺ𝑚𝑖𝑛 ൌ 0.10 , 𝑚𝑎𝑥 ൌ 2.74ሻ ൈ 10଺ 
GPS Sensor Module  𝒰ሺ𝑚𝑖𝑛 ൌ 1.43 , 𝑚𝑎𝑥 ൌ 1.74ሻ ൈ 10ସ 
Vision SoC Module  𝒰ሺ𝑚𝑖𝑛 ൌ 0.10 , 𝑚𝑎𝑥 ൌ 1.00ሻ ൈ 10ସ 
mmWave Radar Module  𝒰ሺ𝑚𝑖𝑛 ൌ 0.10 , 𝑚𝑎𝑥 ൌ 1.00ሻ ൈ 10ସ 
Filter DSP Hardware  𝒰ሺ𝑚𝑖𝑛 ൌ 0.10 , 𝑚𝑎𝑥 ൌ 1.00ሻ ൈ 10ସ 

4. Results and Discussion 

The results of the D‐PRA for the droneʹs navigation system are presented in this section. The D‐
PRA was  performed  using  the OpenPRA  framework, which  integrates  the  event  tree/fault  tree 
approach with DEPM to model the propagation of errors in the droneʹs navigation system. The results 
are presented in terms of the LOM likelihood in each radiation zone, as well as the most vulnerable 
components that contribute to LOM. 

4.1. Probability of Loss of Mission (LOM) using Commercial‐Off‐The‐Shelf (COTS) Components 

The probability of LOM in each radiation zone is calculated based on the failure probabilities of 
the components  in the droneʹs navigation system. The results are plotted in Figure 8 and listed  in 
Table 10. As expected, the probability of LOM  increases with the radiation level, with the highest 
probability  in Zone C,  the highest  radiation zone. This  is due  to  the higher TID  received by  the 
components in this zone, which increases the likelihood of component failure.   

 
Figure 8. Density estimates of COTS Navigation System Failure probabilities by Zone and TID effects. 

Table 10 presents the probability of LOM due to the failure of the droneʹs navigation system in 
each radiation zone (A, B, and C). The sampled probabilities are parametrized using a log‐normal 
distribution (LN), with the mean (m) and error factor (EF) parameters provided. The probability of 
LOM is low and dependent on non‐radiation related phenomena for all parts in Zones A and B, and 
most parts of Zone C. This suggests that the droneʹs navigation system is relatively reliable in low 
radiation  environments,  averaging  about  one  LOM  per  ten  thousand  missions.  However,  the 
probability of LOM increases significantly in Zone C. This is due to the higher TID received by the 
components in this zone, which increases the likelihood of component failure. This is a significant 
concern,  as  it  suggests  that  the drone may not be  able  to  complete  its mission  in high  radiation 
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environments. This could have serious consequences for SAR missions, as it could prevent the drone 
from reaching survivors or accurately assessing the extent of the damage. 

Table 10. Probability of Loss of Mission (LOM) due to COTS drone Navigation System Failure. 

End State  End State Description  P(End State) 𝑳𝑶𝑴_𝑨  Loss of Mission in Zone A  ℒ𝒩ሺ𝑚ഥ ൎ 1.35 ൈ 10ି଻, 𝐸𝐹 ൎ 6.29ሻ 𝑳𝑶𝑴_𝑩  Loss of Mission in Zone B  ℒ𝒩ሺ𝑚ഥ ൎ 1.20 ൈ 10ି଺, 𝐸𝐹 ൎ 3.56ሻ 𝑳𝑶𝑴_𝑪  Loss of Mission in Zone C  ℒ𝒩ሺ𝑚ഥ ൎ 1.39, 𝐸𝐹 ൎ 0.35ሻ ൈ 10ହ 𝑺𝑼𝑪𝑪𝑬𝑺𝑺  Mission Success  ℒ𝒩ሺ𝑚ഥ ൎ 2.70 ൈ 10ିଵ, 𝐸𝐹 ൎ 10.5ሻ 
In terms of mission success, the results indicate a relatively low probability. This suggests that 

the current design of the droneʹs navigation system may not be suitable for SAR missions in nuclear‐
contaminated environments. Therefore,  improvements to the design, such as the use of radiation‐
hardened components or shielding, may be necessary to increase the probability of mission success. 

4.2. Selective Radiation Hardening using Mission Success Criteria 

With the objective of improving the unacceptably low likelihood of mission success, we propose 
a strategy to selectively harden the most vulnerable components in the navigation system. We begin 
by choosing a vulnerable component and assign a wide distribution for its TID limit. For instance, 
we choose  the DSP and assign  its TID  limit as  𝑇𝐼𝐷஽ௌ௉ ൌ ℒ𝒰ሺ𝑚𝑖𝑛 ൌ 1.0 ൈ 10଴, 𝑚𝑎𝑥 ൌ 1.00 ൈ 10଺ሻ. 
Here,  𝑇𝐼𝐷஽ௌ௉  is a loguniform distribution, and much wider than the nominal value specified in Table 
9. Next, we invert the probability of mission success, making it conditional on the event  𝑇𝐼𝐷஽ௌ௉, and 
accept  𝑇𝐼𝐷஽ௌ௉  values only when LOM does not occur. Figure 9 plots the kernel density estimates for 
the sampled, accepted and rejected DSP TID limit ranges at the 95th percentile for 1 in 10,000 mission 
failures. By extension, sampling over a range of expected mission failure rates, we can construct a 
radiation hardening vs mission failure curve. This curve has been illustrated in Figure 10. Pୗሺ𝑇𝐼𝐷ሻ ൌ Pሺ𝑇𝐼𝐷஽ௌ௉ | ൓𝐿𝑂𝑀ሻ  (4) 

 
Figure 9. Digital Signal Processor Total Ionizing Dose Limits for 1 in 10,000 Mission Failures. 

The results of the analysis allow us to choose a radiation hardening limit based on target mission 
success criteria. 
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Figure 10. Radiation Hardening Targets vs Likelihood of Mission Failure. 

5. Conclusion 

This paper presented a dynamic probabilistic risk assessment (D‐PRA) approach for assessing 
the  survivability  of  commercial  off‐the‐shelf  (COTS)  drones  in  nuclear‐contaminated  search  and 
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rescue (SAR) missions. The D‐PRA approach integrates the traditional event tree/fault tree approach 
with the dual‐graph error propagation method (DEPM) to model the propagation of errors  in the 
droneʹs navigation system. The results of the D‐PRA demonstrated the usefulness of the proposed 
approach  in  identifying  the most  vulnerable  components  for  radiation  hardening  (RAD‐HARD) 
improvements. 

The results of the D‐PRA showed that the probability of loss of mission (LOM) increases with 
the radiation level, with the highest probability in the high radiation zone. This is due to the higher 
total ionizing dose (TID) received by the components in this zone, which increases the likelihood of 
component failure. The results also showed that the current design of the droneʹs navigation system 
may  not  be  suitable  for  SAR  missions  in  nuclear‐contaminated  environments,  suggesting  that 
improvements  to  the  design,  such  as  the  use  of RAD‐HARD  components  or  shielding, may  be 
necessary to increase the probability of mission success. 

Future work will  focus on  extending  the D‐PRA approach  to  include other potential  failure 
modes, such as single‐event effects (SEEs) and displacement damage, which were not considered in 
this  study. Additionally,  the  impact  of weather  conditions  and  terrain  on  the  droneʹs  ability  to 
navigate  each  radiation  zone will be  considered. Finally,  the potential  for human  error  in drone 
operation, which can significantly contribute to mission failure, will be incorporated into the model. 

In  conclusion,  the  proposed  D‐PRA  approach  provides  a  systematic  and  comprehensive 
framework for assessing the survivability of COTS drones in nuclear SAR missions. By identifying 
the most vulnerable components for RAD‐HARD improvements, the approach can help to improve 
the reliability and safety of these drones, thereby enhancing their effectiveness in SAR missions in 
nuclear‐contaminated environments. 
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