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Abstract: Modern power system integrates more and more new energy and use a large number
of power electronic equipment. This makes it face more challenges in online optimization
and real-time control. Deep reinforcement learning(DRL) has the ability of processing big data
and high-dimensional features, as well as the ability of independently learning and optimizing
decision-making in complex environments. In this paper, we explore DRL based online combination
optimization method of grid section for large complex power system. In our method, to improve the
convergence speed of the model, we propose to discretize the output action of the unit and simplify
the action space. We also design a reinforcement learning loss function with strong constraints to
further improve the convergence speed of the model and facilitate the algorithm to obtain the stable
solution. Moreover, to avoid the local optimal solution problem caused by the discretization of the
output action, we propose to use the annealing optimization algorithm to make the granularity of the
unit output finer. We verify our method on IEEE 118-bus system. The experimental results show that
our model has fast convergence speed and better performance, and can obtain stable solutions.

Keywords: combination optimization; grid section; deep reinforcement learning; annealing
optimization algorithm

1. Introduction

The fundamental issue of power systems is to ensure that the grid operates economically, reliably
and stably. Nowadays, as new energy develops rapidly and its proportion in the total power supply
continues to increases, the power system faces the new challenges in terms of real-time dispatch and
stability control.

Most of the traditional power dispatching solutions are based on accurate modeling of the system,
mainly using classical methods [1–3], meta-heuristic methods [4,5], and hybrid methods [6,7]. However,
in modern power systems, the integration of renewable energy brings randomness into the energy
output of unit commitment. It greatly increases the uncertainty of system operation. At the same time,
as modern power systems use a large number of power electronic equipment, it reduces the system
inertia, while decreasing the ability of resist faults. It also makes the fault form more complex and
further increases the risk of chain reaction. Therefore, in modern power systems, the traditional power
dispatching methods face the problems such as large action space, long decision-making steps, high
computational complexity and poor performance. They also have to deal with uncertainty and sudden
situations. In order to meet the high accuracy and real-time requirements of grid dispatching for the
modern power system, it is of great practical significance to explore how to minimize the system
power generation cost while maximizing the release of system regulation capacity under the premise
of ensuring the safety and stability of the operation of the new power system, meanwhile, promote
clean energy consumption and ensure the stable operation of the power grid.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 July 2023                   doi:10.20944/preprints202307.0386.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202307.0386.v1
http://creativecommons.org/licenses/by/4.0/


2 of 11

Power dispatching is a multi-constraint, nonlinear, high-dimensional optimization decision
problem. On the other hand, deep reinforcement learning combines the decision-making ability
of reinforcement learning and the feature representation ability of deep learning, as well as the
powerful approximation function of neural networks, so it has the ability to process large data and
high-dimensional features. And, it can independently learn and optimize decision-making in complex
environments. All these make the DRL very suitable for power dispatching. Actually, in recent years,
DRL has gained momentum in the fields of power dispatching and system control.

The basic principle of reinforcement learning is that the agent performs a series of actions in an
environment and obtains feedback from the environment to adjust its strategy, thus achieving optimal
decision-making. [8] proposes an optimal power flow method based on Lagrangian deep reinforcement
learning for real-time optimization of power grid control. [9] implements an online AC OPF by
combining reinforcement learning and imitation learning. Imitation learning is a kind of supervised
learning. It can improve the learning efficiency of agents in reinforcement learning by learning
from expert experience. [10] uses DQN(Deep Q-network)-based reinforcement learning to model the
reactive voltage optimization problem. It realizes the online optimization under the condition of new
energy, load fluctuation and N-1 fault. Both [11] and [12] use the policy-based reinforcement learning
algorithm PPO to realize autonomous dispatching of the power system. Different from [12], [11]
combines graph neural network with reinforcement learning. Graph neural network is used to model
the power grid structure and its topological changes, achieving autonomous dispatch of the power
system with variable topology. [13] explores how to autonomously control of the power system under
the influence of extreme weather. It proposes a DRL method based on imitation learning. Their method
takes generation redispatch and load shedding, together with topology switching, into consideration.
Imitation learning is used in their method to learn from domain knowledge, historical data, and
expert experience. The imitation learning module interacts with agents during reinforcement learning,
making the system to operate as much as possible in the original topology. Besides, imitation learning
can also accelerate convergence speed of DRL model. [14] aims at the AC-OPF problem. It proposes a
DRL base on the penalty convex process. In their method, a systematic control strategy is obtained
through DRL, and the operation constraint is satisfied by using the convex safety layer.

All of the above works have investigated the application of deep reinforcement learning in power
dispatching. In this paper, we explore the section control of the modern power system with which
integrated new energy. We aim at online optimization for large-scale power system whose optimization
goals are complex. In our method, we propose a DRL method with accelerated convergence speed to
solve the problem of dimensional disaster that occurs when the problem scale and decision variables
increase. We also addresses the problem that the dispatching algorithm is difficult to obtain a stable
solution because the optimization targets are coupling and mutually constrained, moreover, each
target is inconsistent sensitivity to the unit adjustment.

The contributions of this paper are as follows:
(1) We propose a combination optimization method for grid dispatching based on deep

reinforcement learning, in which we simplify the action space and improve the convergence speed of
the model by discretizing the unit output action.

(2) We also propose a reinforcement learning loss function with strong constraints to further
improve the convergence speed of the model as well as achieve the stability of the algorithm solution.

(3) We propose the annealing optimization algorithm to make the granularity of the unit output
finer and avoid the problem of local optimal solutions caused by the discretization of the output
actions.

Experimental results on IEEE 118-bus system show that our method is effective. By using our
method, the converge speed of the DRL model is faster, and stable solutions can be achieved.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 July 2023                   doi:10.20944/preprints202307.0386.v1

https://doi.org/10.20944/preprints202307.0386.v1


3 of 11

2. Mathematical model for combination optimization of grid sections

2.1. Objective function

With the objective of minimizing the total power generation costs of the hydro, thermal and wind
power multi-energy complementary systems, and improving the system’s new energy consumption
(see equation (1) for details), a short-term optimal scheduling model for combination optimization of
grid sections is established.

Fc = min
T

∑
t=1

(w1 ∑
i∈I f

Ci,t(pi,t) + w2 ∑
i∈Iw

Ci,t(pi,t) + w3 ∑
i∈Ine

Ci,t(pi,t) + w4 ∑
i∈Ine

pi,t

pmax
i

) (1)

Where Ci,t(pi,t) is the operating cost of the i-th generator unit at interval t , it is a quadratic function
related to the output range of each section of the generator unit and the corresponding energy price (see
Equation (2) for details); pi,t is the active power output of the i-th generator unit at interval t; w1 , w2 ,
w3 , w4 are combination coefficients; I f is the hydroelectric generator sets; It is the thermal generator
sets and Iw is the wind generator sets; pmax

i is the maximum active output of the i-th generator unit; T is
the number of time slots in the scheduling cycle; N is the number of units participating in combination
calculation.

Ci,t(pi,t) = a ∗ p2
i,t + b ∗ pi,t + c (2)

Where a , b and c are the coefficients for the quadratic, linear, and constant terms of the operating cost
function, respectively.

2.2. Constraints

(1) Load Balance Constraint
In the power system, the total output of the generator units should be equal to the system load at

any time, which can be expressed as:

Lt −
N

∑
i=1

pi,t = 0, ∀t (3)

Where Lt is the total load data of the power system at interval t.
(2) Maximum and minimum output constraints of generator units
Considering the physical properties of the generator unit, the output of each generator unit in

operation is adjustable within a certain range, which can be expressed as:

pmin
i ≤pi

≤ pmax
i , ∀i (4)

where pmin
i and pmax

i are the minimum and maximum output of the nth generator unit, respectively.
(3) Cross-section power flow limit constraint In the power system, the active power flow of the

grid section should be within a certain range at any time, which can be expressed as:

|Ps(a)| ≤ |Pmax
s |, ∀s ∈ S (5)

where Ps(a) is the active power flow of the section s based on the current output p of the generator
unit, Pmax

s is the active power flow limit of the section s, and S represents the section set.

3. Combination optimization of grid section

3.1. Deep reinforcement learning

Reinforcement learning is an important method suitable for solving optimization problems. Its
mathematical basis and modeling tool are Markov decision process (MDP). The components of an
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MDP include state space, action space, state transition function and reward function etc. Reinforcement
learning implements MDP with agent, environment, state, reward and action.

Recently, deep reinforcement learning combines deep learning with reinforcement learning, and
deep neural networks greatly improves the efficiency and performance of reinforcement learning. In
DRL, deep learning models are used to learn the value function or the policy function so that agents can
learn to make better decisions. Commonly used DRL algorithms include DQN (Deep Q-Network) [15],
DDPG (Deep Deterministic Policy Gradient) [16] and Actor-Critic [17].

In this paper, we adopt the Actor-Critic(AC) algorithm and introduce two neural networks into
it. One of the neural networks is the policy generation network. The other is the policy evaluation
network.

The policy network π(a|s; θ) is equivalent to an actor. It can choose the corresponding action a

based on the state s which is fed back by the environment. The policy network in the AC algorithm
adopts a policy-gradient (PG) network to optimize the policy. The optimization method is that the
agent learns to estimate the expected reward of each state, and use the learned knowledge to decide
how to choose action.

The policy evaluation network plays the role of critic by using the value network q(s; v) . The
value network evaluates the action a of the policy network, and feed back a temporal-difference
(TD) [18] value to the policy network, evaluating whether the behavior of the policy network is good
or bad.

The objective of policy network is to obtain a higher evaluation by adjusting action , where θ and
v are the parameters to be trained in the policy network and value network respectively. In this paper,
to reduce the network update error, we incorporate the TD error [19] method with baseline. We also
use the asynchronous parallel computing method to maximize computing performance. We will give
the detailed method In the following sections.

3.2. Environment setting for reinforcement learning

The basic elements of this reinforcement learning environment are as follows:
(1) Environment. The environment mainly includes various grid section information, such as

grid topology, system load, bus load, generator unit status and section data. Also, there are grid
system constraints in the environment, including power flow constraints, load balance constraints and
generator unit constraints.

(2) Agents. It is sets of generator unit participating in combination optimization calculation of
grid section.

(3) State space. The state space in the grid section combination optimization problem includes
current active power output of generator units, system load, bus load and branch load etc. The state
transition function refers to the probability that the generator unit will take the next action in the
current state.

(4) Actions and action space. Actions represent current decisions made by the agent. Action space
represents the set of all possible decisions. In the combination optimization problem of the grid section,
action represents the active power output of the generator unit at the next moment. Action space is all
possible values of the active power output of generators, which is constrained by the maximum and
minimum value of the generators output.

In this paper, to improve the learning speed of the policy network, we simplify the action space
from the absolute output of the generator unit to one of the three discrete values, i.e. 1, 0, -1, which
represent the next output of the generator unit is upward adjusted (represented as 1 in Table 1),
downward adjusted (-1), or not adjusted(0), respectively. This optimization method transforms the
multi-dimensional continuous action space into a multi-dimensional discrete action space, avoiding
the curse of dimensionality and slow model convergence. Below, Table 1 gives the illustration.
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Table 1. action space

generator Traditional method action space The action space of the proposed method

0 [0,30] {-1,0,1}
1 [0,100] {-1,0,1}
...

...
...

N [0,80] {-1,0,1}

action space ∞ 3N

(5) Reward function. The reward function represents the reward value obtained by the agent
after taking a certain action. The optimization goal is to obtain the maximum reward value. In view of
the combination optimization problem of grid section, we design five types of rewards: 1) system cost
rewards, 2) power flow limitation rewards, 3) load balancing rewards, 4) clean energy consumption
rewards, 5) generator unit limitation rewards. The purpose of optimizing the reward function is to
minimize the system cost and maximize the proportion of clean energy on the premise that the power
flow does not exceed the boundary, the output of the generator unit does not exceed the boundary and
the load is balanced in the grid system.

For each time step t, the evaluation score Rt of the system is as follows:

Rt =
5

∑
i=1

ri,t (6)

where ri,t is the reward of i-th type at the time step t. For simplicity, the subscript in the following
formulas is omitted. Specifically, each type of reward is calculated as follows:

1) system cost (positive reward), its value range is A0*[0,100],

r0 = A0 ∗ 100 ∗min

(

Cmin

∑
N
i=1 Ci

, 1

)

(7)

where A0=1 is the score weight. ci is the cost of the corresponding generator and the system has N
generators in total.Cmin is the normalization constant, which is the minimum cost of the system at a
moment over a period of time. The lower the system cost is, the higher the reward score is.

2) power flow limit reward (positive reward), its value range is ,

r1 = A1 ∗max

((

100−
S

∑
s=1

rs

)

, 0

)

) (8)

where A1=4 is the score weight. S is the total number of sections, and rs is the reward value of the
s-th section. It is calculated according to different situations (over-limit or normal). When over-limit
(that is, exceeding the upper or lower limit of the predetermined value) severe penalties are imposed,
whereas under normal circumstances, there is no penalty. The specific calculation method is as follows:

rs =











|Ps−Pmin
s |

10 , if Ps < Pmin
s

0, else
|Ps−Pmax

s |
10 , if Ps > Pmax

s

(9)

where Ps is the power flow of section s, Pmax
s is the upper limit of section s, and Pmin

s is the lower limit
of section s.

3) load balance reward (positive reward), its value range is ,
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r2 = A2 ∗max



100 ∗



1−

∣

∣

∣L−∑
N
i=1 Pi

∣

∣

∣

(0.1 ∗ L)



 , 0



 (10)

where A2=3 is the score weight.L represents the total real load of system at time t and the denominator
0.1 ∗ L is a normalization parameter which is set according to the comprehensive consideration of
ultra-short-term forecast deviation and score interval. Pi is the active power output of generator unit i

and N is the total number of generator unit.
4) clean energy consumption reward (positive reward), its value range is ,

r3 = A3 ∗ 100 ∗
1
M

M

∑
i=1

min(1,
Pi

Pmax
i

) (11)

where A3 is the score weight,Pi represents the active power output of the clean energy generator unit i

and Pmax
i represents the maximum output of the clean energy generator unit i. In order to avoid the

denominator being 0 when calculating the score, when Pmax
i appears 0, the score of generator unit i

will be 0. There are totally M clean energy generators.
5) generator unit limit reward(positive reward), its value range is ,

r4 = A4 ∗max((100−
N

∑
i=1

ri), 0) (12)

where A4=1 is the score weight, N is the total number of units and ri is the reward value of the s-th
generator. It is calculated according to different situations (over-limit or normal). When over-limit
(that is, exceeding the upper or lower limit of the predetermined value) severe penalties are imposed,
whereas under normal circumstances, there is no penalty. The specific calculation method is as follows:

ri =















|Pi−Pmin
i |

10 , if Pi < Pmin
i

0, else
|Pi−Pmax

i |
10 , if Pi > Pmax

i

(13)

where Pi is the active output of generator i, Pmax
i is the upper limit of active output of generator unit i,

and Pmin
i is the lower limit of active output of generator i.

3.3. Constrained reinforcement learning loss

In AC algorithm, the training of critic is to fit the reward. Its loss function is as follows:

Lcritic =
1
N

N

∑
i

(Gt −V (st0)) (14)

Where Gt is Rt+1 + γRt+2 + · · ·+ γn−1 + γn, and the training of actor is to find the optimal action a

for the following minimization problem:

minimize Lactor = w1

∣

∣

∣

∣

∣

L−∑
i∈I

ai

∣

∣

∣

∣

∣

+ w2 ∑
s∈S

|Ps(a)− Pmax
s |

−w3 ∑
i∈Ine

ai

amax
i

+ w4 ∑
i∈I

ciai

(15)

Where w1 − w4 are the weight values of each item,L represents the total load of the grid system,
ai represents the active power output of the i-th generator, I represents the set of all generators; S

represents the set of all grid sections, Ps(a) represents the power flow value of the section s, and a
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is the output of the generator unit. Pmax
s is the maximum power flow of the section s,Ine represents

the clean energy generator set,amax
i represents the maximum active output of the i-th clean energy

generator, ci represents the cost coefficient of the i-th generator.
However, in the above formula, the two strong constraints, namely load balance and power flow

constraint, are relaxed as objective functions with weights, making the algorithm unable to obtain
a stable solution in principle. Therefore, we proposes a constrained reinforcement learning loss as
follows:

minimize Lactor constrained = −W1 ∑
i∈I

ai

amax
i

+ w2 ∑
i∈I

ciai (16)

s.t.

{

L−∑i∈I ai = 0
Ps(a) <= Pmax

s

While satisfying the load balance and power flow constraints, the objective function above can
fits those actions that maximize clean energy consumption and minimize cost. It restores the essence
of the grid section combination optimization problem, which is more conducive to the convergence of
the reinforcement learning algorithm. We incorporate this loss into the training of the reinforcement
learning algorithm by using Lagrangian constraints.

3.4. Training method and process

In this paper, we choose the Actor-Critic reinforcement learning algorithm. The implementation
of DRL combined with Constrained RL Loss is shown in the Algorithm 1 below. The training process
is as follows:

1) Firstly, generate the sample data by using the PYPOWER simulator. Then, clear the cache in
the experience pool, set the initial state of the power system and reset the reward value.

2) Input the observed state st of the current grid section system into the policy network, and
obtain the active power output at of the generator unit through the policy network.

3) Input the output at of the generator unit into the reinforcement learning environment, and
obtain the grid state st+1 in the next stage, the reward value r corresponding to the current policy and
the completion state done.

4) Save the grid state st, the next moment’s state st+, the output policy at, the current reward
value r and the completion state done into the experience pool.

5) Judge whether the current experience pool has reached the upper limit of capacity. If the
experience pool has not reached the limit, repeat step 3), otherwise go to step 6).

6) When the accumulated data in the experience pool reaches the batch size, it will be input into
the policy network and value network as training data to train the network parameters, and return to
step 1).

The detailed algorithm is described in Algorithm 1.

Algorithm 1 AC training based on constrained RL loss

Require: episode ep, discount factor γ, LRa, LRc, batch size b, θa, θc, maxsize
while i < ep do

reward=0; reset env; reset the experience pool
collect the trajectories information including (St, At, Rt, St+1)
if poolsize < maxsize then

pool ← (St, At, Rt, St+1)
end if
if poolsize > b then

update θa with Lactorconstrained
update θc with Lcritic

end if
end while
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4. Annealing optimization algorithm

In this paper, the action space is discretized, so the granularity of action output by the model is
not fine enough, resulting in the obtained solution is still a distance from the optimal solution. In view
of this problem, we use the annealing algorithm [20] after our DRL algorithm to optimize the output
of generator unit. We call it the annealing optimization algorithm. It can further improve the above
DRL method to find the optimal fine-grained solution.

Annealing algorithm is a global optimization method based on simulated physical annealing
process. The basic idea of the algorithm is to start from an initial solution, continuously perturb
the current solution randomly, and choose to accept the new solution or keep the current solution
according to a certain probability. The function of this probability of accepting a new solution is called
the "acceptance criterion". Acceptance criterion allows the algorithm to perform a random walk in the
search space, and gradually reduce the temperature (that is, reduce the probability of accepting a new
solution), until it reaches a stable state.

In annealing optimization algorithm, temperature parameter is usually used to control the
variation of the acceptance criterion. At the beginning of the algorithm, the temperature is relatively
high, so acceptance criterion is easy to accept new solutions. Therefore, a large-scale random search can
be performed in the search space. As time goes by, the temperature gradually decreases, acceptance
criterion becomes more and more difficult to accept the new solution, making the search process
gradually stabilizes. Eventually, the algorithm arrives at a near-optimal solution.

Annealing optimization algorithms are often used to solve nonlinear optimization problems,
especially those with a large number of local optima. The advantage of the algorithm is that it can
avoid falling into a local optimal solution and can perform a global search in the search space. We
use the output of the DRL model as the initial solution of the annealing optimization algorithm. The
process of the annealing algorithm is as follows:

(1)Initialize the temperature T and the initial solution x.
(2)At the current temperature, a random perturbation of the current solution produces a new

solution x′.
(3)Calculate the energy difference ∆E between the new solution and the current solution.
(4)If ∆E < 0, accept the new solution as the current solution.
(5)If ∆E ≥ 0, accept the new solution as the current solution with probability P = exp(−∆E/T).
(6)Lower the temperature T.
(7)Repeat steps 2-6 until the temperature drops to the end temperature or the maximum number

of iterations is reached.

5. Case study

To verify the effectiveness of our method, this paper uses IEEE 118 calculation example. Power
system IEEE 118 is a standard power system network example. It consists of 118 bus, 54 generators
and 186 branches, representing a real power system network. In this paper, the generators Gen 1-Gen
20 are set as the new energy units.

The computing environment in this paper is based on PYPOWER. We set the scheduling cycle to
15min a day. According to the above description of the MDP process, AC algorithm has 20 dimensions
of state space. The dimension of the action space is 54. The detailed setting of hyper-parameters is
shown in Table 2.

Using the environment in this paper and our AC algorithm based on the Constrained
Reinforcement Learning Loss, the agent maximizes the reward by adjusting the active power generated
by the generator unit, while minimizing the total cost and enhancing the new energy consumption. It
can be seen from the Figure 1 that the AC algorithm based on Constrained Reinforcement Learning
can converge and solve after 30 episodes. In contrast, it can be found that the traditional AC algorithm
(Vanilla AC) cannot achieve convergence in the same episode, and it even cannot always reach the
optimal solution. Table III shows that vanilla AC training takes much longer than 4 hours, but after
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using the Constrained Reinforcement Learning Loss we proposed, the model convergence time is
reduced to 1 hour. By comparison, we can see that the proposed loss function plays a vital role in the
stability of the solution and the convergence speed of model training.

Table 2. Setting of hyper-parameters

Hyper-parameter Value

discount factor δ 0.95
BATCH SIZE 64

A LR 0.0001
C LR 0.001

w1 in Lactor constained 1
w2 in Lactor constained 1

Figure 1. The scheduling results of the AC algorithm based on Constrained Reinforcement Learning
Loss and the traditional AC algorithm.

In Table 3, we compare experimental result of three methods: 1) Vanilla AC, 2) Vanilla AC plus
Constrained Reinforcement Learning Loss, 3) Vanilla AC plus Constrained Reinforcement Learning
Loss and annealing optimization algorithm. The score for all three methods is made up of five items.
The full scores of system cost, power flow limit, load balance, clean energy consumption and generator
unit limit are 100, 400, 300, 100 and 100, respectively. Among them, power flow limit, load balance and
generator unit limit are strong constraints in the power grid section system. Our goal is to make these
three items close to full marks.

As shown in Table 3, the scores of all indicators have been greatly improved due to the proposed
loss function, meeting the safety requirements of power grid. The total reward score of the Vanilla AC
is 380, while the AC algorithm with Constrained Reinforcement Learning Loss achieves a higher total
reward score of 890.

Table 3. Control experiment to verify the effectiveness of the proposed method. CRLL:Constrained
Reinforcement Learning Loss; AO:Annealing optimization algorithm

model
convergence time

system
cost

power flow
limt

load
balance

clean energy
consumption

generator
unit limit

total
reward score

Vanilla
AC

>>4h 50 100 150 30 50 380

+
CRLL

1h 55 395 295 50 95 890

+ CRLL
+ AO

1h 63 397 287 55 98 910

Besides, by combing the DRL with the annealing optimization algorithm, it further improve the
accuracy of the solution. In Table 3, the average reward score of the final model is 910, among which
the reward of power flow limit, the reward of generator unit limit and the reward of load balance are
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all almost full scores. It indicates that the addition of the annealing optimization algorithm further
improves the performance of the algorithm and obtains a fine-grained optimal solution.

We also present the results of the three methods in Figure 2 as a histogram. It intuitively
demonstrate that the algorithm proposed in this paper is able to optimize the objective function
under multiple strong constraints. So, we conclude that our method has good robustness and can meet
the requirements of grid section dispatching.

Figure 2. Control experiment to verify the effectiveness of the proposed method.

6. Conclusion

In the face of high proportion of new energy generator unit and complex constrained environment,
this paper uses deep reinforcement learning algorithm of simplified action space, together with
Constrained Reinforcement Learning Loss, to search for the optimal active power output of generators.
It also use annealing optimization algorithm to avoid the local optimal solution. The formulation and
implementation process are introduced in detail. The test results on IEEE 118-bus system show that
our method is effective and suitable for scheduling problems.

Author Contributions: Author 1 (Huashi Zhao):Conceptualization, Methodology of deep reinforment learning,
Annealing optimization algorithm design and implementation, Writing - Original Draft; Author 2 (Zhichao
Wu):Conceptualization, Methodology of section control, Mathematical model of grid dispatching, Formal analysis,
Writing - Original Draft; Author 3(Yubin He): Validation, Writing - Original Draft; Author 4(Qiujia Fu): Data
Curation; Author 5(Shouyu Liang): Resources, Supervision; Author 6(Guang Ma):Software, Validation; Author
7(Wenchao Li): Visualization; Author 8(Qun Yang): (Corresponding Author): Conceptualization, Funding
Acquisition, Resources, Supervision, Writing - Review & Editing.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gherbi, F.; Lakdja, F. Environmentally constrained economic dispatch via quadratic programming. 2011

International Conference on Communications, Computing and Control Applications (CCCA). IEEE, 2011,

pp. 1–5.

2. Irisarri, G.; Kimball, L.; Clements, K.; Bagchi, A.; Davis, P. Economic dispatch with network and ramping

constraints via interior point methods. IEEE Transactions on Power Systems 1998, 13, 236–242.

3. Zhan, J.; Wu, Q.; Guo, C.; Zhou, X. Fast λ-iteration method for economic dispatch with prohibited operating

zones. IEEE Transactions on power systems 2013, 29, 990–991.

4. Larouci, B.; Ayad, A.N.E.I.; Alharbi, H.; Alharbi, T.E.; Boudjella, H.; Tayeb, A.S.; Ghoneim, S.S.;

Abdelwahab, S.A.M. Investigation on New Metaheuristic Algorithms for Solving Dynamic Combined

Economic Environmental Dispatch Problems. Sustainability 2022, 14, 5554.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 July 2023                   doi:10.20944/preprints202307.0386.v1

https://doi.org/10.20944/preprints202307.0386.v1


11 of 11

5. Modiri-Delshad, M.; Kaboli, S.H.A.; Taslimi-Renani, E.; Abd Rahim, N. Backtracking search algorithm

for solving economic dispatch problems with valve-point effects and multiple fuel options. Energy 2016,

116, 637–649.

6. Aydın, D.; Özyön, S. Solution to non-convex economic dispatch problem with valve point effects by

incremental artificial bee colony with local search. Applied Soft Computing 2013, 13, 2456–2466.

7. Alshammari, M.E.; Ramli, M.A.; Mehedi, I.M. Hybrid Chaotic Maps-Based Artificial Bee Colony for

Solving Wind Energy-Integrated Power Dispatch Problem. Energies 2022, 15, 4578.

8. Yan, Z.; Xu, Y. Real-time optimal power flow: A lagrangian based deep reinforcement learning approach.

IEEE Transactions on Power Systems 2020, 35, 3270–3273.

9. Guo, L.; Guo, J.; Zhang, Y.; Guo, W.; Xue, Y.; Wang, L. Real-time Decision Making for Power System via

Imitation Learning and Reinforcement Learning. 2022 IEEE/IAS Industrial and Commercial Power System

Asia (I&CPS Asia). IEEE, 2022, pp. 744–748.

10. Jiang, L.; Wang, J.; Li, P.; Dai, X.; Cai, K.; Ren, J. Intelligent Optimization of Reactive Voltage for Power

Grid With New Energy Based on Deep Reinforcement Learning. 2021 IEEE 5th Conference on Energy

Internet and Energy System Integration (EI2). IEEE, 2021, pp. 2883–2889.

11. Zhao, Y.; Liu, J.; Liu, X.; Yuan, K.; Ren, K.; Yang, M. A Graph-based Deep Reinforcement Learning

Framework for Autonomous Power Dispatch on Power Systems with Changing Topologies. 2022 IEEE

Sustainable Power and Energy Conference (iSPEC). IEEE, 2022, pp. 1–5.

12. Zhou, Y.; Lee, W.J.; Diao, R.; Shi, D. Deep reinforcement learning based real-time AC optimal power flow

considering uncertainties. Journal of Modern Power Systems and Clean Energy 2021, 10, 1098–1109.

13. Liu, X.; Liu, J.; Zhao, Y.; Liu, J. A Deep Reinforcement Learning Framework for Automatic Operation

Control of Power System Considering Extreme Weather Events. 2022 IEEE Power & Energy Society

General Meeting (PESGM). IEEE, 2022, pp. 1–5.

14. Sayed, A.R.; Wang, C.; Anis, H.; Bi, T. Feasibility Constrained Online Calculation for Real-Time Optimal

Power Flow: A Convex Constrained Deep Reinforcement Learning Approach. IEEE Transactions on Power

Systems 2022.

15. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari

with deep reinforcement learning. arXiv preprint arXiv:1312.5602 2013.

16. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control

with deep reinforcement learning. arXiv preprint arXiv:1509.02971 2015.

17. Sutton, R.S.; McAllester, D.; Singh, S.; Mansour, Y. Policy gradient methods for reinforcement learning

with function approximation. Advances in neural information processing systems 1999, 12.

18. Sutton, R.S. Learning to predict by the methods of temporal differences. Machine learning 1988, 3, 9–44.

19. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient

algorithms. International conference on machine learning. Pmlr, 2014, pp. 387–395.

20. Kirkpatrick, S.; Gelatt Jr, C.D.; Vecchi, M.P. Optimization by simulated annealing. science 1983, 220, 671–680.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 July 2023                   doi:10.20944/preprints202307.0386.v1

https://doi.org/10.20944/preprints202307.0386.v1

	Introduction
	Mathematical model for combination optimization of grid sections
	Objective function 
	Constraints

	Combination optimization of grid section
	Deep reinforcement learning
	Environment setting for reinforcement learning
	Constrained reinforcement learning loss
	Training method and process

	Annealing optimization algorithm
	Case study
	Conclusion
	References

