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Abstract: The quantile estimation of extreme wind speed is needed in various environmental fields such as
climatology, design of structures, renewable energy sources and agricultural operations. These calculations are
crucial for the coding of wind speed. In this study, the required wind speed series of 16 stations in Khyber
Pakhtunkhwa, Pakistan, was obtained from the NASA official website and measured in meters per second (m/s)
at a 10-meter distance. A Regional Frequency Analysis of 16 AMWS stations was performed using L-moments.
The quantile estimates of extreme wind speed are needed for various areas of interest using Regional Frequency
Analysis (RFA) and extreme value theory. These calculations are crucial for the coding of wind speed. The data
was taken from the NASA official website at a 10-meter distance and measured in meter per second (m/s). A
Regional Frequency Analysis of AMWS using L-moments is performed utilizing wind speed data from sixteen
sites (16) in Pakistan's Khyber Pakhtunkhwa province. There are no sites that are found to be discordant. The
wards method is used to construct a homogenous region and make two homogenous regions from 16 sites. The
heterogeneity test justifies that both clusters are homogeneous. The most appropriate probability distribution
from the Generalized Normal (GNO), Generalized Logistic (GLO), Pearson Type-3 (P3), Generalized Pareto
(GPA), and Generalized Extreme Value (GEV) distributions are chosen to calculate regional quantiles.
According to the L-moments diagram and Z statistics, GEV for Cluster- I and GLO for Cluster- II are the best
suggestions from the others. Both clusters” robustness is measured utilizing Relative Bias (RB) and Relative
Root Mean Square Error (RRMSE). Overall, GEV distribution is fit for cluster-I, and the GLO distribution is fit
for cluster-II. Utilizing the site mean and median as index parameters, we can also find at-site quantiles from
regional quantiles. The study’s quantile estimates can be employed in codified structural designs with policy
consequences.

Keywords: linear-moments; Monte Carlo simulation; quantile estimates; wind speed

1. Introduction

Wind speed is also known as wind flow speed. It is a basic atmospheric volume produced by air
flowing from high to low pressure due to temperature variations. Due to the earth’s rotation, the
direction of the wind is usually parallel to the isobar. Anemometers are usually used to measure wind
speed. Wind speed affects weather forecasts, aviation, and maritime operations; wind energy is a
source of energy that is fast growing in popularity worldwide. It is clean and brings many benefits to
human beings. There are many different wind sources, and they change throughout time in different
regions (Ma, 1997). Many countries support the use of renewable energy sources; one of the most
prominent cleaner energy sources is wind energy (Sarrias et al., 2010). Environmental challenges have
arisen due to the rising cost of fossil fuels and other factors. It is important to appreciate the potential
of unconventional energy generations. The most parts of our country, the wind speed is slow. There
are many places where wind power can be generated. Coastal regions are prospective locations for
wind turbine development and some hilly regions (Ahmed and Ahmad, 2004). Fossil fuel power
generation technologies, which have been used for centuries, are becoming problematic as the world's
energy consumption and pollution levels rise, many countries are considering shifting away from
fossil fuels and toward non-fossil fuels as their economies grow to help mitigate climate change,
which is mostly caused by excessive carbon emissions around the world (Fawad et al., 2019). Wind,
solar, and geothermal energy are examples of fuel sources for energy generation. Renewable energy
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is defined as energy that is regularly regenerated for human benefit while posing no significant
environmental risk.

Wind energy, often known as wind power, is a clean, low-cost, and renewable resource. The
process of using wind power to transform the kinetic energy of the wind into mechanical or electrical
energy via a wind turbine is known as "wind energy generation." Wind energy generation does not
release pollutants and is often referred to as "Green Power Technology" because it does not
threaten the global environment.

Compared with fossil fuels, wind energy has no negative influence on the environment or
ecosystems (Dai et al., 2015). That is why more than 100 countries use wind energy (Huang and
McElroy, 2015). Many countries are currently heavily investing in wind energy. As a result, the
worldwide market for wind energy is rapidly rising (Darbandi et al., 2012). According to the Pakistan
meteorological department (PMD), the alternative energy development board (AEDB), and the
national renewable energy laboratory in Pakistan, the overall installed capacity in Pakistan is
expected to be around 346 GW (Aized et al., 2019). According to estimates, wind energy is suitable
for roughly 9.06 percent of Pakistan’s geographical zone (Hulio et al., 2019).

The most important part of wind energy is wind speed. Policymakers can use wind speed data
to choose whether or not to construct and build a wind farm in a certain region. Before a wind
conversion system can be implemented, the potential wind energy of a certain region must be
determined. Wind speed varies randomly; hence proper modelling of wind speed is required for
future wind energy design. Then probabilistic modeling of wind speed data is required. To anticipate
the energy output of a wind conversion system for a specific site,

Two procedures are utilized to evaluate extreme events. At-site frequency analysis and regional
frequency analysis are two types of frequency analysis. The primary drawbacks of at-site frequency
include sampling variability, which is especially problematic for quantile estimates overhead for a
long period (Hosking and Wallis, 1993). The RFA of AMWS data examined at sixteen sites in Khyber
Pakhtunkhwa , Pakistan, was also explored in this research.

The objective of this study consists of: 1) ensuring that all study sites fulfil assumptions of
stationarity, independence, and homogeneity; 2) Data screening for regional frequency analysis. 3)
Identifying homogeneous regions for a set number of sites. 4) Determine the best probability
distribution for the identified homogeneous regions. 5) Determine the quantiles for different return
periods by estimating the parameters of the various best-fit regional distributions identified in this
study. 6) To give some solutions to mitigate the losses due to these extreme events for policy
implications and to address the advantages of wind energy.

The remainder of this work is structured as follows. Section 2 will go through the materials and

techniques utilized in this paper in detail; Section 3 will go over the study area; Section 4 will go
over the results and discussion, and Section 5 will finalize the paper.

In Pakistan's Khyber Pakhtunkhwa region, the first REA of AMWS utilizing linear moments is
planned. NASA provided the AMWS data for these sites, which is measured in m/sec.

2. Methodology

The analysis of the AMWS is discussed in this section. The AMWS was fitted with a variety of
distributions, and goodness of fit tests was employed to evaluate the results.

2.1. The Initial Examination of the Annual Maximum Wind Speed (AMWS) Series

Before the regional frequency analysis, we check the basic assumptions, which are stationarity,
independence and homogeneity. These are also mutual assumptions for the RFA of maximum events,
such as maximum floods, rainfall, and droughts. For stationarity, Spearman’s order rank correlation
test, for independence, the Wald-Wolfowitz test, and for homogeneous Man-Whitney U (MWU) test
is used in this study.

2.1.1. Spearman’s Order Rank Correlation Test for Checking the Trend

The spearman’s order rank correlation test is based on a rank, which is a non-parametric test
and is used for checking the monotonic pattern of increasing or decreasing trend in the data. In
statistical methods, we call it a monotonic trend. “Spearman’s order correlation coefficient” refers to
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the well-known non-parametric statistical dependence measure named after British psychologist
Charles Spearman (1863-1945). It indicates if the trend is positive, negative, or non-existent. The null
and alternative hypothesis of the spearman’s order rank correlation test is

H,: there is no trend in the series

H;:there is trend in the series

The significance threshold is 0.05, and the test statistics are

6 — Y d;
=1—-———= 1
While p = Spearman’s rank correlation coefficient, d;= difference between the two ranks of

each observation, n = Number of observations

2.1.2. The Wald-Wolfowitz (WW) Test for Checking Independence

According to the Independence, at the site, observed data of wind speed cannot affect the
occurrence or non-occurrence of any other observed wind speed at that site. The assumptions of
independence are checked frequently for hydrological data, which includes yearly means, totals,
maxima, or minima, monthly, seasonal, and other time interval data, such as non-annual maximum
data samples and partial duration series. The nonparametric WW test, first introduced by (Wald and
Wolfowitz, 1943), is widely used to test the independence of observations in a recorded series. It's
also utilized to see whether there are any trends in the data. Let X1, X, X5...cooonenni. X, represent
the experimental values of the variable under investigation. The Rao and Hamed recommended R
statistics are

n-1
R = z XiXiy1 + X1 X (2)
i=
The R statistic follows a normal distribution with the mean and variance shown below.
2
(51" = 52)
n—1
(5,2 =5,) "2 4 (S,* — 485,%S, + 4SS5 + S, — 25,) @
-1 ' n-1)-m-2)
Where the term S, = nth, and 1h, is the r** moment with respect to the origin of the sample.
The test statistics of the WW test is given as

R= (3)

V ar(R) =

R—-R
U = —— (5)

Jvar(R)

Where u is used to test the data set for independence at 5 % level of significance.

2.1.3. Mann-Whitney U (MWU) test for Homogeneity

The Mann-Whitney U (MWU) test is a non-parametric test devised by (Mann and Whitney, 1947)
to test the null hypothesis that the two samples come from the same population or not. When the
data does not follow the normality assumption, the MWU test is the alternative to the t-test. The
MWU test, often known as the U test, is frequently used in frequency analysis of extreme occurrences
to test the homogeneity assumption. Let’s say we have two independent samples of sizes n; andn,,
and the total sample sizeN, whichis N = n; +n, almost similar length yielding n, < n,. All of the
samples are ranked from best to worst. The MWU test is based on the lowest value of "U," which is
the minimum of the V and W variables defined in.

V=R, - {M} (6)

W == n1n2 - V (7)
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U = min(V, W) 8)

Where n; and n, are both sample, R; is the sum ranking order of the first sub sample n; in
the combined series N, R; = Y., R; where R; is the rank of the first sample n; in the combined
series N. where V denotes the number of times an element from the first sample n; is ranked
after an element from the second sample n,. Similarly, W denotes the case in which the second
sample n, is ranked after the first sample n;. When N = 20 and n;, n, = 3 under the same null
hypothesis, the U test statistic can be regarded normally distributed. The U statistic is written as

follows.
U-0
U=—— 9
JVar(U)
_ nyn,
U= 10
> (10)
nn,(n+n, +1
Var(U)=[ 172 12 2 ] (11)

The formula for the variance of U should be modified as follows in the presence of tied ranks.

k
Jid =1
(N+1)—;—N(N_1)

Var(U) = (ni;lz) (12)

Where J; is the number of observations that share rank i and k is the number of ranks that
are tied.

2.2. Linear Moments

In this work, the method of L-moments was utilized to estimate the parameters of PDs, which
has been employed in the frequency analysis of severe wind speeds (Fawad et al., 2018; Goel et al.,
2004; Modarres, 2008; Yu et al., 2016). The L-moments are more reliable than the method of moments
and the maximum likelihood approach because they are less sensitive to outliers and are suited for
smaller sample sizes (Alam et al., 2016; Hosking, 1990).

(Hosking, 1990) defines a L-moment as the expectation of a linear arrangement of order statistics.
They may be used to explain any random variable with a mean. Let X;,X,, ..., X, represent a random
sample of magnitude r with cumulative distributions functions F(X) and quantile functions X (F). Let
X1 £ Xy < - < X be the random sample order statistics. (Hosking, 1990) explained the rt
population L-moment for the random variable X as follows:

A, = %z(—uk (T . 1) E(X ) r=12.. (13)

When it comes to L-moments, A, is a linear function of the predicted order of statistics
according to L-moments. The following have provided the first four L-moments

A1 = E(X1:1) (14)
1

Ay = EE(Xz:z - X1:2) (15)

1
Az = §E(X3:3 —2X53 + X13) (16)

1
Ay = ZE(X4:4 —3X3.4 +3Xp.4 + X1.4) (17)

The ratio of L-moments will be determined as follows
A

t="2/y (18)

1
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v ="/, (19)
w =" (20)

A1 Is the measure of locations, 7 is the measure of L-coefficient of variations (L-cv), 73 and t,
are L- skewness and L-Kurtosis, respectively in the preceding equation.

2.3. Application of the L-Moments Based on Regional Frequency Analysis

(Hosking and Wallis, 1997) proposed the following four steps for regional frequency
analysis of extreme occurrence based on L- moment’s theory. These steps are as follows.
1. Screening of the data
2. Recognition of Homogeneous Regions
3.  Selections of the best fit distribution
4. Quantile estimation

2.3.1. Screening of the Data

Before beginning with statistical analysis, data screening ensures that the data is clean and ready.
The data must be checked to ensure that it is available, trustworthy, and suitable for testing the
causality theory. On the LM basis (Hosking and Wallis, 1997) depicted a discordance amount D; to
differentiate those locations that are completely discordant with the group as a whole

Dy =5 (u — "™ (uy — ) (20)

—_1 yN = =T
S = Ezi=1(ui — ) (w; — ) (21)
Sum of Squares and Cross Products Matrix Where u; =[t®,t{”, t{” ] vector consisting sample
LMR % = N"t3¥ u; N = Total enumerate of sites Hosking plied a touchstone for discordancy
statistic, site’s collection and relevant D; brink point.

2.3.2. Recognition of Homogeneous Regions

The development of homogeneous regions is the most important phase in RFA. A region is said
to be homogenous if all of its sites share some common characteristics. There is a substantial quantity
of literature on various grouping strategies, such as geographical convenience, subjective
partitioning, objective partitioning, and cluster analysis. According to (Hosking and Wallis, 1997),
administrative zones or focal physical groupings include adjacent sites in a region for geographical
convenience. Many site characteristics, including sewerage zone, mean annual rainfall, wind speed,
latitude, longitude, drainage area, and time of occurrence of the most significant flood in the year,
can be used to characterize regions subjectively. Using Ward’s methods for hierarchical clustering in
this study, all sixteen sites were classified as two homogeneous clusters. Their homogeneity was
confirmed using the regional heterogeneity measure, ensuring that both clusters are two
homogeneous clusters. Cluster analysis is a multivariate approach to data analysis used to form
groups having the least variability, similar characteristics and features. Each site is assigned a data
vector, which is then dispersed or combined into a set of uniform vectors formation of regions can
have practiced. At-site characteristics are commonly used in cluster analysis to structure homogenous
regions, but site statistics can also strengthen the process. Characteristics of the site can be latitude
and longitude, annual average rainfall, level of elevation and drainage area can be added to construct
cluster (Ouarda et al., 2008).

2.3.2.1. Cluster Analysis

Cluster analysis is a multivariate technique used to form groups having the least variability,
matching characteristics, and matching features. By allocating a data vector to each site and adding
these sites into groups of uniform vectors, regions can be practiced. Site characteristics are commonly
used in cluster analysis to structure homogenous regions, but additionally, site statistics can
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strengthen the process. The characteristics of a site can be latitude and longitude, the annual average
maximum wind, level of elevation, and drainage area can be added to the constructed cluster.

2.3.2.2. Hierarchical Clustering

Hierarchical clustering is a well-known and simple clustering technique. One of them is
agglomerative hierarchical clustering. Agglomerative Hierarchical Clustering Technique In this
method, each data point is treated as a separate cluster at first. Similar clusters merge with other
clusters in each repetition until one cluster or K clusters are produced.

2.3.2.3. Ward’s Method

Ward’s approach is based on hierarchical clustering (Ward, 1963). Because entering a group
causes one to become a square hierarchal clustering is based on the standardized Euclidean distance
(d), which is provided in equations

dz(p' q) = (xp - xq)D_l(xp - xq)T (22)

Where X, and X are the physiographic coordinates of places p and q respectively and

D! is a diagonal matrix each coordinate is expressed as a sum of squares because the variables are
presented in different units. To avoid proportional effects, this coordinate is inversely weighted by
the sample variance. In terms of variables, the cluster's sum of squares inside the cluster (GSS is
defined as the sum of the distances between all objects in the cluster and their center of gravity
(Ouarda et al., 2008). An equation can be used to express it as.

Ny
GSS, = ) d? (s = ) (23)
i=1
where n, and X, are the cluster r size and centroid, respectively.

2.3.2.4. Heterogeneity Test
Hosking and Wallis discuss the homogeneity test (1997). By using H test, we approach the
homogeneity of the sites in the region, whether the region is homogenous or heterogeneous.

H = (V;—u") (24)

“Where v is standard deviation of sample Icv”

1
i=1 ni(ti - tR)2 ’

n
i=1 i

V =

(25)
t® lev of regional average

N @
tR = Z—“}V : (26)
i=1 T

ly, oy Represents the mean and variance of population V. According to the criteria, if H<1, the
region is homogeneous,H is in among 1 and 2. It can be considered homogeneous but not perfectly
homogeneous. H = 2, then the region will be considered as perfectly heterogeneous. The use of
Kappa distribution for simulations is common because of its tremendous qualities, generated by
emerging two gamma distributions, having four parameters (a, ¢, k, h) indicating scale, location,
shape and redundant shape parameter, x values lower and upper as [ + % 1- hik),f + %]. Kappa
distribution is generalizing GEV distribution when h=0, of GPA, if h=1, of EXP if h =1, k = 0, of
Uniform distribution (UD) at h =1, k = 1and GLO when h = —1. Its density, distribution and
quantile functions are given below.
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{1 ok (x B g)}(rl)

F(x) =[1—h 1—k(x—§) I (28)

a 1—Fh
o= e (155 »

2.3.3. Selections of the Best Fit Distribution

The next stage is to select the right distribution after passing the homogeneity test. After making
homogeneous regions, the following step is the description of the appropriate statistical model by
choosing a suitable regional frequency distribution.

(Peel et al., 2001) suggested an L-Moment (LM) ratio diagram to select suitable probability
distribution in regional frequency analysis of homogeneous regions. (Vogel and Fennessey, 1993)
determined that in the use of extreme events in hydrology, LM ratio diagrams are always employed
instead of product-moment ratio diagrams. (Hosking, 1990) found that LM ratio diagrams can
distinguish between candidate distributions and explain regional data.

Low flow occurrences within the regions be analyzed based on the fitted regional distribution
using goodness-of-fit criterion in terms of L-moments using L-moments ratio diagrams and Z-
Statistics (Hosking and Wallis, 1997). The average moments of the regional data are compared to the
moments of the distribution in this criterion. The main goal is to choose the optimal distribution for
the observed data among the above-mentioned simulated candidate distributions. The best fit of the
simulated distribution depends on how well L-skewness and L-kurtosis support regional average L-
Skewness and L-kurtosis.

The procedure for selection of distribution accordingly is as follows.

Pt — R4+ B,

ZDist — o (3 0)

Where
_ IR -
N
{ %S:I{n( tELm) - tf}{) - NsimBz} %
(Nsim - 1)

B, (31)

04 =

(32)

tDist = L — Ck of fitted distribution
B, = Regional Bias
o, = Regional Standard Deviation
Ngim = Quantity of Simulated Regional Data by Kappa Distribution

The fit is considered to be good if |ZP%t| have the small value or sufficiently close to zero. In the
statistical technique of hypothesis testing if |Z2*¢| < 1.64, then at 90% confidence level, the candidate
distribution is considered the best-fitted probability distribution. If more than one candidate
probability distribution meets the above criteria, the distribution with the lowest |ZP%¢| value is
chosen as the best-suited probability distribution.

2.3.4. Quantile Estimation

The final phase of RFA is to estimate the parameters of the chosen frequency distribution and
assess its robustness in giving valid quantile estimates for all sites in the homogenous region.
(Hosking and Wallis, 1997) suggested that the regional L-moment algorithm is more convenient
despite the non-fulfillment of some fundamental assumptions of the index flood procedure. For
various non-exceedance probabilities, regional quantiles estimations are calculated using a
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simulation process. Furthermore, by scaling Q (.) with an estimate of the scaling factor of
y; corresponding to non-exceedance probability F, the quantile estimates of each site might be
obtained as follows:

0,(F) = £Pq(F) (33)

where Q;(F) is the estimation of the at-sit quantile, fgi) is the individual sites mean and §(F)
is refers to the regional quantile function. Other scaling factors that can be used include median,
mean, etc. We used the Monte Carlo simulation technique given by (Meshgi and Khalili, 2009) to test
the robustness of the specified regional frequency distribution in this work, with 10,000 simulations.
We calculated the errors between simulated quantiles and calculated regional quantiles estimations
using this technique. These differences are then used to calculate relative bias (RB) and relative root
mean square error (RRMSE) for various non exceedance probabilities, which are then used to examine
the robustness of best fit distributions. Below is the mathematical form of RB and RRMSE.

0™ - Q:(F)
=3y fl a0

M~ [m] 2
|1 Qi  —Qi(F)
RRMSE = MTZ&{W} (35)

Here M is the sample size, Oi[m] (F) and Q;(F) is the simulated and computed regional
quantiles, respectively, in the above equation.

On the basis of standard error of at-site quantile estimations under best-fit distribution, (Hosking
and Wallis, 1997) proposed the following equation to check robustness.

var{Q;(F)} ~ {(x(F; 6-)Yvar (i) + fi;*var{x(F; )} (36)

This can be further written like this

£2
var{Q;(F)} = {q:(F)}? % + x;2{Regional RMSE — (Regional Bias)?} (37)

In additions we can use sample variance of median and sample median instead of sample mean
of variance and sample mean. In that case the relationship will become
noi?

var{Q;(F)} = {q:(F)}* =~

i2
Where the X represent the sample median and % is the sample variance of median.

+ x;*{Regional RMSE — (Regional Bias)?} (38)

3. Study Area and Data

Khyber Pakhtunkhwa (30°-35N & 67°-72°E) is one of Pakistan’s five provinces, It is located on
the Iranian plateau and Eurasian land plate with an area of 74,521 km?, It is separated into two zones
geographically, from the Hindu Kush to the northern section of Peshawar and from Peshawar to the
southern half of the Derjat basin, KPK climate shifted from severely cold (in places like Chitral) to
highly hot (in places like Dera Ismail Khan) (Lubna and Sapna, 2019). On availability of required data
sets, only sixteen (16) palaces of KPK (Cherat, Chitral, D.I. Khan, Tang, UpperDir, Drosh,
Kakul(Abbottabad), Parachinar, SaiduSharif, Kalam, Malam Jabba, MirKhani, Peshawar, LowerDir,
Kohistan) were selected for this study. All site names and characteristics are shown in Table 1 and
Figure 1.

d0i:10.20944/preprints202307.0383.v1
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Figure 1. Geographical locations of the 16 stations of KPK, Pakistan.

4. Results and Discussion
4.1. Basic Assumption

Prior to performing the RFA of AMWS, we investigated three main assumptions of RFA:
independence, homogeneity, and stationarity. The term “independence” refers to the notion that no
single observation in a data series affects subsequent observations. In practice, the degree of
dependency between successive portions of a series varies with the interval between them and is
commonly small between yearly maximum values, but the degree of dependence between
consecutive daily values is typically substantial. The term “homogeneity” means that all observations
within a data series originate from the same population. When the variety in severe events such as
floods, snowmelt, rainfall, wind speed, and drought is large, it becomes hard to identify non-
homogeneity. Stationarity implies that the AMWS series is invariant in time, excluding random
variations. Trends, leaps, and cycles describe non-stationarity. While trends may be attributed to
periodic changes in climatic circumstances, cycles can be linked to long-term climate oscillations.
Jumps occur most often in flood series caused by a sudden change in the river system, such as the
structure of a dam.

The required assumptions should fulfill by the data of annual maximum wind speed. Therefore
time series graphs and various non-parametric tests are applied to justify these assumptions.

The Wald-Wolfowitz Test is used to verify AMWS’ assumption of independence. The results are
given in detail in Table 1. The Wald-Wolfowitz test statistic values are usually small, and the p-value
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is greater than the (0.05) for each site. According to this test, we conclude that AMWS data of the
different sites is independent.

We used the Man-Whitney U (MWU) test to check the assumption of homogeneity in the data
of AMWS. The results verified that the probability “P” value is greater than the critical value of 0.05
such that It means that we accept the null hypothesis (the sample comes from a homogenous
population) of the MWU test and we conclude that the data of AMWS is homogeneous. The details
of the results are given in Table 1.

We used the Spearman order rank correlation test to check the stationarity of AMWS. The
Spearman’s rank order correlation test statistic values for each site are small, and the p-value is larger

than the level of significance, i.e. (P> 0.05). Therefore, we conclude that based on the results given
in Table 1, the data of each site of AMWS fulfills the assumption of stationarity.

Table 1. The results of basic assumptions for 16 sites.

. Spearman test Wald & Wolfowitz test Mann Whitney U test
Name of the sites . . .

Test statistic P-value Test statistic P-value Test statistic ~ P-value
Abbottabad 0.569 0.285 -1.135 0.128 -0.975 0.165
Bannu -0.806 0.210 -0.857 0.196 -0.767 0.221
Cherat -0.861 0.195 0.353 0.362 -1.597 0.055
Chitral -0.717 0.237 0.791 0.214 -1.389 0.082
D.I. Khan 0.274 0.392 0.837 0.201 -0.353 0.362
Drosh -0.837 0.201 0.814 0.208 -1.638 0.051
Kalam -0.277 0.391 0.081 0.468 -0.306 0.380
Kohistan -1.017 0.154 0.940 0.174 -1.016 0.155
Lower Dir -1.305 0.096 0.376 0.353 -1.472 0.070
Malam Jabba 0.598 0.275 1.558 0.060 -0.353 0.363
Mir Khani 0.720 0.236 0.968 0.166 -0.726 0.234
Parachinar -0.372 0.355 0.097 0.461 -0.228 0.410
Peshawar 0.059 0.477 -1.029 0.152 -0.643 0.260
Saidu Sharif -0.658 0.255 -0.409 0.341 -1.390 0.341
Tank -0.492 0.311 0.405 0.343 -0.311 0.378
Upper Dir -0.416 0.339 0.402 0.344 -1.141 0.127

4.1.2. Time Series Plots

As time goes by, stationarity is one of the basic assumptions when dealing with hydrological
data. The graphs of ordered data on variables give us a good understanding of stationarity. The time
series plots in Figures 4.1 and 4.2 show that the data series of Cherat and D.I. Khan Sites have a
uniform increasing/declining trend, indicating randomness in the observation of all sites and that the
time series data is stationary.
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Figure 2. Time series plot of all stations.

4.2. Screening of the Data Using Discordancy Measure

The data screening to detect certain discordant sites is the initial stage in regional frequency
analysis. We analyzed two clusters, the first of which has 12 sites and the second of which have four,
and we calculated the discordancy measure for each site. For each site, the discordancy statistics are
computed. As shown in Tables 2 and 3, for all sites, the computed values are less than the critical
value of 3.

Table 2. Summary Statistics Based on L-moments for Cluster-I various Wind Sites.

Latitude  Longitude Elevation

Stations (North) (East) (meter) I t f3 ts Di
Abbottabad 34.11 73.15 1418.53 8.363 0.099 0.053 0.167 1.22
Bannu 33 70.06 1337.87 12.481 0.101 0.177 0.241 2.11
Cherat 33.49 71.33 632.28 9.576 0.083 0.161 0.171 1.24
Chitral 35.51 71.50 3392.71 8.048 0.102 0.106 0.082 0.75
D.I. Khan 31.49 70.56 29441 10.503 0.068 0.017 0.119 2.28
Drosh 35.34 70.47 3174.26 7.390 0.093 0.130 0.128 0.14
Kalam 35.5 72.59 3782.04 9.346 0.090 0.028 0.030 1.04
Kohistan 35.06 73 2969.68 8.918 0.080 0.007 0.121 1.08
Lower Dir 34.5 70.49 2061.64 8.314 0.096 0.148 0.116 0.41
Malam Jabba 34.45 72.44 706.05 7.298 0.093 0.082 0.127 0.08
Mir Khani 35.30 74.42 3462.82 10.038 0.095 0.179 0.067 1.91
Parachinar 33.52 70.05 1727.58 12.036 0.108 0.071 0.143 1.66
Peshawar 34.02 71.56 713.79 7.757 0.083 0.099 0.094 0.23
Saidu Sharif 34.44 72.21 706.05 7.675 0.094 0.083 0.068 0.48
Tank 31.55 70.52 256.26 10.600 0.085 0.148 0.191 1.04
Upper Dir 35.12 70.51 3061.05 7.526 0.087 0.044 0.119 0.32

In Tables 2 and 3, n denotes the record length, which is set at 30 across all sites. [; Stands for
the sample mean, t for the sample L-CV, t; for the sample L-skewness, and t, for the sample L-
kurtosis. The mean of the data in Table 2 of cluster-I ranges from 7.390667 to 10.03833, whereas sample
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L-CV ranges from 0.079843 to 0.102031. The data skewnes coefficient ranges from 0.006789 to

0.179212.
Table 3. Summary Statistics Based on L-moments for Cluster-II various Wind Sites.
Name n 4 t ts ty D;
Bannu 30 12.481 0.101 0.177 0.241 2.11

Tank 30 10.600 0.085 0.148 0.191 1.04

Similarly, the average value of the data in Cluster-II in Table 3 varies from 10.50267 to
12.48133, while the sample L-CV is 0.066783 to 0.107685. The skewness coefficient for data varies
between 0.017385 and 0.177261. In both Clusters, all sites are favorably skewed.

4.3. Cluster Analysis

Cluster analysis is used to split data into several groups such that places belonging to the same
cluster have related climatic/geographical features. The Ward algorithm is utilized in this work to
create Clusters based on the basin average slope and drainage area; because this technique may
produce homogenous Clusters of the same size (Ward et al. 1963).

We applied the wards method for further clarification and justification about the number of
homogenous regions. This method investigated that there are more than two homogenous regions in
this study.

Rescaled Distance Cluster Combine

Dendrogram using Ward Linkage

SIS s o s = g = = = = = &= = = =

=

=

g

- =
= 8 2 s = B

- =} s = = = 2 = = =
S § = = g 8 £ %2 ¢ 2 I v § z & _
s & 2 2 2 &5 = BB = 8 =3 2 5 B = =B
S e - 5 = = = o = a = oS o0a @wWm o @ -

A

Figure 3. Dendrogram using Wards Methods.

4.3.1. Regions and Heterogeneity Measure

The next stage in RFA is to examine the heterogeneity value of the underwork areas after
obtaining the discordancy value. It's basically a heterogeneity assessment employing L-CV, L-
Skewness, and L-kurtosis forH;, H, and Hj. In practice H,, is regarded as a good indicator of observed
with L-CV. Similarly, if the L-skewness and L-Kurtosis are naturally larger, the H, and
Hzmeasurements have less discriminating value.

The cluster analysis findings are shown in Table 4. Table 4 shows that both Clusters I and II are
“acceptably homogenous.”
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Table 4. Homogeneity measures of both Clusters.

Number of )
Cluster sites H,; H, H, Homogeneity
Cluster-I 12 -1.76 -1.26 177 Homofeneou
Cluliter - 04 0.90 -0.36 -0.69 Homofeneou

(Hosking and Wallis, 1997) give three different aspects of heterogeneity values. If H<1, the
region is completely homogeneous. If 1<H<2, the region can be homogeneous. If, on the other
hand,H = 2, the region is completely heterogeneous. In the Table 4 the values of H of both clusters
indicate that no value is greater than 2, which meet the criteria of homogeneous region.

4.4. Selections of Best Fit Distribution

The third stage of RFA is fitting of the distribution and selection of the best fitting distributions.
(Hosking and Wallis, 1997) used standards to determine the first three perimeter distributions, such
as Generalize Pareto (GPA), Generalized Logistic (GLO), Generalize Extreme Value (GEV), Generalize
Normal (GNO), and Generalize Pearson type 3 ( P3). When starting this process, we will keep two
goals in mind. The first is the nomination of the best distribution. The ordinal is the estimate of the
quantile for each region in several time periods. Hosking provides two methods to achieve the best
distribution. Mainly Z-fit, others are ratio graphs

The selections of the fit distribution for each cluster are based on the L-moment ratio diagram,
and Z statistical test. Z- Fit applies through the critical value if |ZP%!| < 1.64 at level of Significance
5%. It might be possible that more than one distribution strike to the said limits, than the distribution
approaching to zero will be best considered as best fit.

Table 5 summarizes the appropriate Z statistics and best distributions of both homogeneous
clusters. For cluster-I the values of GEV and P3 are the smallest among other values. The values of
GEV and P3 are less than the critical values of 1.64 and the selected distribution is required to be
closer to zero. Therefore, according to this criterion, it can be said that the distribution of GEV and P3
is acceptable if the statistic is less than 1.64. Similarly, for cluster-II the values of GLO and GNO are
the smallest among other values. The values of GLO and GNO are less than the critical values of 1.64
and the selected distribution is required to be closer to zero. Therefore, according to this criterion, it
can be said that the distribution of GLO and GNO is acceptable if the number is less than 1.64.

Table 5. Goodness of Fit test for Homogeneous Clusters.

Clusters DIStrﬂs’“tm GLO GEV  GNO P3 GPA
Cluster-I | ZDist | 3692  1.01 % 126  1.02 %+ 4362
Cluster-II | zDist|  0.02 * 1.22 1.14 xx  1.27 3.74a

* show the best distribution; ** show the second best distribution; 2 indicates that the calculated values
are more than the critical value of 1.64.

4.4.1. L-Moments Ratio Diagram

L-moment ratio diagrams (scatter plots) display L-moments of various distributions that are
commonly used and are useful for providing guidelines for selecting an appropriate distribution for
the study area based on average values of L-Skewness and L-Kurtosis. Although it is a subjective
method, it is a very popular tool for selecting candidate distributions at the outset. Another advantage
of the L-moments Ratio Diagram is the ability to display moment ratios from multiple distributions
on the same graph paper.

L-moments ratio diagram/plot for two Clusters is shown in Figures 3a and 4b. For Cluster-I
regional average L-Skewness and L-Kurtosis average lies closest to the GEV distribution similarly for
Cluster-II regional average L-Skewness and L-Kurtosis average lies closest to GLO. In the Both
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diagram points (L, N, G, E, U) stand for Logistic distribution, Normal distribution, Gumbel
distribution, Exponential Distribution, and Uniform Distribution, respectively.

04

— GLO
— GEV
— GPA
— GNO
0.3 P3

A Clusterl
Cluster I

0.2

L -kurtosis

0.0 T T T T T
0.0 0.1 0.2 0.3 04 0.5 0.6

L -skewness

Figure 4. L-Moments Ratio Diagram for both regions.

4.4.2. Constructions of Growth Curves and Accuracy Measures for Best Fit Distributions

To evaluate which of these two distributions was the most accurate we performed a Monte Carlo
simulation provided by (Meshgi and Khalili, 2009). For design flood estimate relative bias (RB) and
relative root mean square error (RRMSE) were used to examine the robustness of the RFA
distributions.

For the Cluster-I Table 7 shows the RB and RRMSE simulation results for GEV and P3
distributions for various return times up to 1,000 years. Table 7 shows that the RB values for GEV are
lower than the P3 distribution at all periods of return except years 2. As a result of the RB measures,
GEV is the best robust distributions. Also the value of RRMSE outperforms the P3 distributions
during return period of 5 and 10 years. However, the RRMSE of the GEV distribution is higher than
that of the P3 distribution for return periods 2, 20, 50, 100, 500, and 1,000. Overall, Table 7 shows that
the GEV distribution outperforms than the P3 distribution however RRMSE shows that P3 has little
advantage over GEV over longer return periods.

Similarly Table 6 shows the RB and RRMSE simulation results for GLO plus GNO distributions
for various return times up to 1,000 years for Cluster-II. Table 6 shows that the RB values for the GLO
distribution are lower than the GNO distribution for all return periods except 2 and 1000 years. As a
result of the RB measures, GLO is most robust distribution. Also the RRMSE value of the GLO
distribution outperforms than the GNO distribution during return periods of 2, 5, 10, 20, 50, and 100
years. However, at return times of 500 and 1,000 the GLO a distribution has a higher RRMSE than the
GNO distributions. General Table 7 shows that the GLO distribution outperforms than the GNO
distribution however RRMSE shows that GNO has a little advantage above GLO for longer return
period. So the GLO distributions is a robust distributions for cluster-II
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Table 6. Accuracy Measure for best fit Distributions for Cluster-I and Cluster-II.

DlSt”';’u“O“Meassure Q2 05 Q10 Q20 Q50 Q100 Q500 Q1000
cpy KB 0.00030.0001 ) o -0.0002 00002 0.001 0.0025
Cluste RRMSE 0.0062 0.0117 0.0186 0.0261 0.0363 0.04460.06420.0738
r-1 -
pps BB 1o 0-0004 0.0008 0.0011 0.00150.00180.00260.0029
RRMSE 0.0057 0.0129 0.0192 0.0249 0.03190.03680.04750.0519
0.0000 -

cLo RB 0000877 o -0.00020.00030.00130.00580.0089
Cluste RRMSE 0.008 0.0172 0.0283 0.0393 0.05470.06740.1012 0.117

11 .
"GN RB 00003 0.0001 0.0004 0;)09 0.002 0.003 0.00590.0073

O

RRMSE 0.009 0.0214 0.0343 0.0461 0.06070.07140.09560.1058

4.5. Regional Quantiles Estimations for Different Return Periods

After selecting the best fit distributions, the next stage in regional frequency analysis is to find
the quantile estimates for each return period. The return period “T” can be defined as the likelihood
of repeated interval estimates, such as floods, droughts, stream flow, rainfall or earthquakes. The

return time period T can be called % with its exceedance probability P. The probability of
occurrence or exceedance is the chance of an event occurring within a specific time period, thatis, P =
% probability of occurrence .For example, in the case of 20 years (% = 0.05) can be defined as the
chance of exceeding, where(1 — % = 0.95) is the probability of non-exceedance .

After selecting the most suitable regional distribution, we estimate the regional quantiles and
parameters of the two clusters. Table 7 shows the best-fit distribution of both Clusters and regional
quantiles.

Table 7. Regional quantile estimation for best fit Distributions of both clusters.

parameters regional quantiles
estimate with non-exceedance probability F

Cluster Dist £ a k 0.500 0.800

0.900 0.950 0.980 0.990 0.998 0.999

2

5 10 20 50 100
500 1000

I G 0.931 0.1450.122 0.984 1.131 1.218 1.294 1.383 1.443 1.565 1.610

EV 8 6 7 0 3 2 4 4 8 1 3

G
- 0984 1.116 1.203 1.289 1.409 1.505 1.756
II é 0.984 0.088 0103 7 7 1 5 0 6 5 1.877

4.5.1. At-sites Quantiles Estimations by using Mean as Index Parameter

For fitted regional frequency distributions, the regional At-sit quantile may be calculated by
multiply the regional quantile by the sample mean a single site. By definition, the regional At-site
quantile estimation by mean is

d0i:10.20944/preprints202307.0383.v1
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0,(F) = ¢94(F) (33)

Where Q;(F) is the regional at-sit quantiles estimations, ff) is the individual sites mean and
G(F) is the functions quantile of the fitted, RFD.

The results of regional at-sits quantiles estimate by using the sample mean for Cluster-I and
cluster- II the following Table 8 show the results. We find at-site quantile estimate for that cluster
which is best fit distribution. For Cluster-I the best fit distributions is GEV and we can interpret as a
1000 years return period computed in Table 8. We may calculate quantile estimate for each i*" site
in the Cluster-I for a particular return period. We consider the site Upper Dir which has on the average
annual maximum wind speed is 7.525667.we obtained by multiplying the regional quantile estimate
to the mean of the relevant site. As the §sg,(0.980)=1.3834, interpretable as 7.525667* 1.3834=10.596
is the amount of extreme wind once in coming 50 years (for given return period) with non-exceedance
probability 0.980. All other sites and for cluster-II can be interpreted in the similar way.

Table 8. At site Quantiles Estimate for the best fit Distributions using mean as Index Parameter of Cluster-I and

cluster-11.
0.500 0.800  0.900 0950  0.980 0.990 0.998
Clusters and Sites names 0.999
best fit dist 2 5 10 20 50 100
500 1000

Upper Dir. 74203 84219 9070 97141 10596 11.304 13.120 13.9872

Drosh 72871 82708 89079 95398 10406 11.101 12.88  13.7362

Chiral 79353  9.0065 9.7002 10.388 11.332 12.088 14.030 14.95801

Lower Dir. 81976 93041 10.020 10731 11706 12.488 14.494  15.4524

Cluster-I Kalam 92154 10459 11265 12.064 13.160 14.039 16294 17.37109
Kohistan 87928 99797 10748 11510 125569 13.395 15547 16.57438
Mirkhani 9.8977 11233 12.099 12.957 14.1349 15078 17.500 18.65724
CEV SaiduSharif 75678 85894 92510 9.907 10.8076 11.529 13.381 14.26537
Malam Jabba ~ 7.1958  8.1671 87962 9.4202 102763 10962 12.723 13.56406
RMC Peshawar  7.6484  8.6808 9.3495 10.012 109226 11.651 13523 14.41716
Abbottabad 82462 93594 10.080 10.795 11.7764 12.562 14.580 15.54409
Cherat 94419 10716 11541 12360 13.4839 14.384 16.694 17.79795

Parachinar 11.8518 13.440 14480 15520 16958 18.121 21.141 22.5915

Cluster-IT Bannu 122903 13.937 15016 16.094 17586 18.791 21.923 23.4274
cLO D.I Khan 103419 11728 12.635 13.543 14.798 15812 18.447 19.7135
Tank 104381 11.837 12.753 13.669 14935 15959 18.619 19.8968

4.5.2. The Standard Errors of the Estimated At-Site Quantile

For the (Hosking and Wallis, 1997) simulation process (algorithm), accuracy estimation is
usually done by “Abs. Bias”, “Bias” and “RMSE” for regional assessment. However, we can use the
extra results to get the standard mistake of the calculated amount of each site in the region.

For all sites, we used Equation (36) to compute the standard errors of these at site quantile
estimations. The at-site quantile estimates for both clusters are calculated use the sample mean as
index parameter, and the best-fit regional frequency distribution is GEV for cluster-I and GLO is for
cluster-II, Table 9 show the results of both cluster.

Table 9. Standard Errors of At-site Quantile Estimate using median as an index parameter for both Clusters.

0.500 0.800  0.900 0.950

Giroe  0-980 0.990 0.998 0.999
2 5 10

names 50 100 500

1000
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. 0.8471.0561.243 1.463 1.6171.942
Upper Dir.0.6266 0 9 8 9 > 9 2.0719

0.8371.0431.226 1.442 1.5931.912
Drosh 0.6213 6 3 y 6 1 9 2.0395

. 0.9191.1421.342 1.577 1.7402.088
Chiral 0.6837 5 7 1 1 9 9 2.2268

. 0.9451.1761.382 1.6251.7942.154
Lower Dir.0.7017 0 ’ A ) 5 1 2.2966

1.0531.3131.546 1.8192.0092.414
Kalam 0.7796 3 9 0 ) 6 1 2.5743

) 0.9971.2461.468 1.729 1.9112.297
Kohistan 0.7361 5 6 A 3 0 1 2.4500

. . 1.1391.4181.667 1.961 2.1652.599
Mirkhani 0.8458 6 3 9 1 5 . 2.7717

SaiduShari 0.8691.0831.273 1.497 1.6541.986
) 0.6447 4 1 5 3 1 ) 21177

Malam 0.8271.0311.212 1.4251.5731.889
Jabba 0.6143 9 0 0 3 3 6 2.0146

RMC 0.8701.0871.279 1.506 1.6642.000
Peshawar 0.6434 7 1 9 8 8 6 2.1336

Abbottaba 0.9531.1861.393 1.637 1.8072.169
d 0.7091 9 ) 5 . 9 6 2.3129

1.0771.3441.582 1.862 2.0572.472
Cherat 0.7971 6 6 5 5 6 0 2.6362

Parachinar 1.1506 1.674222832%43 2.872 3'12843'8594 4.1859

CIuI&‘iter- Bannu 1.19071.71012.11582.5431 2.%77 3'2994.(136 43382

1.3981.7862.101 2.7463.362
CLO D.I. Khan 0.9655 9 3 1 2475 4 6 3.6147

1.3741.7482.052 2.416 2.6793.278
Tank  0.9564 3 ’ 9 ’ 1 3 3.5238

Cluster-I

GEV

5. Summary and Conclusions

This study investigated the RFA of AMWS at 16 stations in Khyber Pakhtunkhwa, Pakistan. The
initial screening of the AMWS is checked through the time series plot, spearman test, Mann-Whitney
U test, and Wald and Wolfowitz test. The finding indicates that all 16 stations of AMWS passed the
initial screening and were used further for RFA of AMWS. In the first step of RFA of AMWS, the
discordancy measure was used, and the findings revealed that none of the sites was discordant,
suggesting that all 16 stations should be included in RFA. All sixteen stations were identified as two
homogeneous clusters using Ward’s hierarchical clustering techniques. According to the Z Statistics
criterion and the L-moment ratio diagram, the GEV and GLO distributions were the best fit among
all other PDFs for clusters I and II, respectively.

The Monte Carlo method was used to test the accuracy and efficacy of the estimated quantiles
for Clusters I and II by running ten thousand simulations. Measures including Root Mean Square
Error (RMSE), Relative Bias, Relative Absolute Bias, Lower Error bound, and Upper Error bound
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were established and introduced in Tables 8 and 9 to examine the quantile estimates and growth
curves of both clusters during the Monte Carlo simulation technique.

The robustness of both clusters was assessed using the RB and RRMSE measures. When RB and
RRMSE measures are employed to compare GEV and P3 distributions in cluster-I, the results
demonstrate that GEV distribution has smaller RB and RRMSE measures generally, while P3
performs better to some extend at longer return periods. In cluster-1I, RB and RRMSE measures are
employed to analyses GLO and GNO distributions, and the results demonstrate that GLO
distribution has lower RB and RRMSE measures generally, while GNO perform better to some extent
at longer return periods. The GEV distribution for Cluster-I and the GLO distribution for Cluster- II
are the most acceptable choices for regional AMWS analysis in this study, according to the Z-test and
LM ratio diagram.

By multiplying the regional quantiles by the sample mean and median as index parameters, we
were able to derive the at-site quantiles (index flood procedure). The standards errors of these at site
quantiles were likewise discovered under both index parameters. Frequency analysis at the site can
be performed to compare these results to quantiles and standard errors. For Cluster-I, the sites
including Upper Dir, Lower Dir, Kalam, Kohistan, and Peshawar have lesser standard errors for all
return periods when using mean as index parameters. On the other hand, Mirkhani and Kakul
(Abbottabad) with median as index parameters had considerably lesser standard errors for all return
periods than the same sites with mean as index parameters. Furthermore, Drosh, Chitral, SaiduSharif,
Malam Jabba, and Cherat with median as index parameters had considerably reduced standard
errors for all return periods except 2 and 5 years when compared to data from the same sites with
mean as the index parameters. Similarly, the D.I. Khan and Tank sites in cluster-II had lower standard
errors for all return periods when using mean as the index parameters, as compared to the same sites’
findings when using median as the index parameters. When comparing the findings of the same sites
using median as the index parameters, the Parachinar site has a lower mean except for 50, 100, 500,
and 1000 years. In contrast, when using the bannu median as index parameters, the standard errors
for all return periods except 2 and 5 years are significantly lower than when using the mean as index
parameters.

The predicted AMWS quantiles from these distributions might be used for policy implications
in codifying the wind load for various codified structural designs to avoid losses due to high wind
speeds.
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