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Article 
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Pakistan Using Robust Estimation Methods 

Muhammad Salman 1, Alnazi Talal Abdulrahman 2, Etaf Alshawarbeh 2 and Ishfaq Ahmad 1 

1 Department of Mathematics and Statistics, International Islamic University Islamabad, Pakistan. 
2 Department of Mathematics, College of Science =, University of Hail, Hail Saudi Arabia 

Abstract: The quantile estimation of extreme wind speed is needed in various environmental fields such as 
climatology, design of structures, renewable energy sources and agricultural operations. These calculations are 
crucial for the coding of wind speed. In this study, the required wind speed series of 16 stations in Khyber 
Pakhtunkhwa, Pakistan, was obtained from the NASA official website and measured in meters per second (m/s) 
at a 10-meter distance. A Regional Frequency Analysis of 16 AMWS stations was performed using L-moments. 
The quantile estimates of extreme wind speed are needed for various areas of interest using Regional Frequency 
Analysis (RFA) and extreme value theory. These calculations are crucial for the coding of wind speed. The data 
was taken from the NASA official website at a 10-meter distance and measured in meter per second (m/s). A 
Regional Frequency Analysis of AMWS using L-moments is performed utilizing wind speed data from sixteen 
sites (16) in Pakistanʹs Khyber Pakhtunkhwa province. There are no sites that are found to be discordant. The 
wards method is used to construct a homogenous region and make two homogenous regions from 16 sites. The 
heterogeneity test justifies that both clusters are homogeneous. The most appropriate probability distribution 
from the Generalized Normal (GNO), Generalized Logistic (GLO), Pearson Type-3 (P3), Generalized Pareto 
(GPA), and Generalized Extreme Value (GEV) distributions are chosen to calculate regional quantiles. 
According to the L-moments diagram and Z statistics, GEV for Cluster- Ι and GLO for Cluster- ΙΙ are the best 
suggestions from the others. Both clusters’ robustness is measured utilizing Relative Bias (RB) and Relative 
Root Mean Square Error (RRMSE). Overall, GEV distribution is fit for cluster-Ι, and the GLO distribution is fit 
for cluster-ΙΙ. Utilizing the site mean and median as index parameters, we can also find at-site quantiles from 
regional quantiles. The study’s quantile estimates can be employed in codified structural designs with policy 
consequences. 

Keywords: linear-moments; Monte Carlo simulation; quantile estimates; wind speed 

 

1. Introduction 

Wind speed is also known as wind flow speed. It is a basic atmospheric volume produced by air 
flowing from high to low pressure due to temperature variations. Due to the earth’s rotation, the 
direction of the wind is usually parallel to the isobar. Anemometers are usually used to measure wind 
speed. Wind speed affects weather forecasts, aviation, and maritime operations; wind energy is a 
source of energy that is fast growing in popularity worldwide. It is clean and brings many benefits to 
human beings. There are many different wind sources, and they change throughout time in different 
regions (Ma, 1997). Many countries support the use of renewable energy sources; one of the most 
prominent cleaner energy sources is wind energy (Sarrias et al., 2010). Environmental challenges have 
arisen due to the rising cost of fossil fuels and other factors. It is important to appreciate the potential 
of unconventional energy generations. The most parts of our country, the wind speed is slow. There 
are many places where wind power can be generated. Coastal regions are prospective locations for 
wind turbine development and some hilly regions (Ahmed and Ahmad, 2004). Fossil fuel power 
generation technologies, which have been used for centuries, are becoming problematic as the worldʹs 
energy consumption and pollution levels rise, many countries are considering shifting away from 
fossil fuels and toward non-fossil fuels as their economies grow to help mitigate climate change, 
which is mostly caused by excessive carbon emissions around the world (Fawad et al., 2019). Wind, 
solar, and geothermal energy are examples of fuel sources for energy generation. Renewable energy 
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is defined as energy that is regularly regenerated for human benefit while posing no significant 
environmental risk. 

Wind energy, often known as wind power, is a clean, low-cost, and renewable resource. The 
process of using wind power to transform the kinetic energy of the wind into mechanical or electrical 
energy via a wind turbine is known as ʺwind energy generation.ʺ Wind energy generation does not 

release pollutants and is often referred to as ʺGreen Power Technologyʺ because it does not 
threaten the global environment. 

Compared with fossil fuels, wind energy has no negative influence on the environment or 
ecosystems (Dai et al., 2015). That is why more than 100 countries use wind energy (Huang and 
McElroy, 2015). Many countries are currently heavily investing in wind energy. As a result, the 
worldwide market for wind energy is rapidly rising (Darbandi et al., 2012). According to the Pakistan 
meteorological department (PMD), the alternative energy development board (AEDB), and the 
national renewable energy laboratory in Pakistan, the overall installed capacity in Pakistan is 
expected to be around 346 GW (Aized et al., 2019). According to estimates, wind energy is suitable 
for roughly 9.06 percent of Pakistan’s geographical zone (Hulio et al., 2019).  

The most important part of wind energy is wind speed. Policymakers can use wind speed data 
to choose whether or not to construct and build a wind farm in a certain region. Before a wind 
conversion system can be implemented, the potential wind energy of a certain region must be 
determined. Wind speed varies randomly; hence proper modelling of wind speed is required for 
future wind energy design. Then probabilistic modeling of wind speed data is required. To anticipate 
the energy output of a wind conversion system for a specific site, 

Two procedures are utilized to evaluate extreme events. At-site frequency analysis and regional 
frequency analysis are two types of frequency analysis. The primary drawbacks of at-site frequency 
include sampling variability, which is especially problematic for quantile estimates overhead for a 
long period (Hosking and Wallis, 1993). The RFA of AMWS data examined at sixteen sites in Khyber 
Pakhtunkhwa , Pakistan, was also explored in this research.  

The objective of this study consists of: 1) ensuring that all study sites fulfil assumptions of 
stationarity, independence, and homogeneity; 2) Data screening for regional frequency analysis. 3) 
Identifying homogeneous regions for a set number of sites. 4) Determine the best probability 
distribution for the identified homogeneous regions. 5) Determine the quantiles for different return 
periods by estimating the parameters of the various best-fit regional distributions identified in this 
study. 6) To give some solutions to mitigate the losses due to these extreme events for policy 
implications and to address the advantages of wind energy. 

The remainder of this work is structured as follows. Section 2 will go through the materials and 

techniques utilized in this paper in detail; Section 3 will go over the study area; Section 4 will go 

over the results and discussion, and Section 5 will finalize the paper. 
In Pakistanʹs Khyber Pakhtunkhwa region, the first RFA of AMWS utilizing linear moments is 

planned. NASA provided the AMWS data for these sites, which is measured in m/sec. 

2. Methodology 

The analysis of the AMWS is discussed in this section. The AMWS was fitted with a variety of 
distributions, and goodness of fit tests was employed to evaluate the results. 

2.1. The Initial Examination of the Annual Maximum Wind Speed (AMWS) Series 

Before the regional frequency analysis, we check the basic assumptions, which are stationarity, 
independence and homogeneity. These are also mutual assumptions for the RFA of maximum events, 
such as maximum floods, rainfall, and droughts. For stationarity, Spearman’s order rank correlation 
test, for independence, the Wald-Wolfowitz test, and for homogeneous Man-Whitney U (MWU) test 
is used in this study. 

2.1.1. Spearman’s Order Rank Correlation Test for Checking the Trend 

The spearman’s order rank correlation test is based on a rank, which is a non-parametric test 
and is used for checking the monotonic pattern of increasing or decreasing trend in the data. In 
statistical methods, we call it a monotonic trend. “Spearman’s order correlation coefficient” refers to 
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the well-known non-parametric statistical dependence measure named after British psychologist 
Charles Spearman (1863-1945). It indicates if the trend is positive, negative, or non-existent. The null 
and alternative hypothesis of the spearman’s order rank correlation test is H୭: there is no trend in the series                            Hଵ: there is trend in the series 

The significance threshold is 0.05, and the test statistics are                                                        ρ = 1 − 6 − ∑ d୧ଶn(nଶ − 1)                                                             (1) 

While  ρ = Spearman’s rank correlation coefficient, d୧= difference between the two ranks of 
each observation, n = Number of observations 

2.1.2. The Wald-Wolfowitz (WW) Test for Checking Independence 

According to the Independence, at the site, observed data of wind speed cannot affect the 
occurrence or non-occurrence of any other observed wind speed at that site. The assumptions of 
independence are checked frequently for hydrological data, which includes yearly means, totals, 
maxima, or minima, monthly, seasonal, and other time interval data, such as non-annual maximum 
data samples and partial duration series. The nonparametric WW test, first introduced by (Wald and 
Wolfowitz, 1943), is widely used to test the independence of observations in a recorded series. Itʹs 
also utilized to see whether there are any trends in the data. Let 𝑋ଵ, 𝑋ଶ, 𝑋ଷ…………… 𝑋௡ represent 
the experimental values of the variable under investigation. The Rao and Hamed recommended R 
statistics are                                                       𝑅 = ෍ 𝑥௜𝑥௜ାଵ + 𝑥ଵ𝑥௡௡ିଵ

௜ୀଵ                                                         (2) 

The 𝑅 statistic follows a normal distribution with the mean and variance shown below.                                                         Ṝ = (𝑆ଵଶ − 𝑆ଶ)𝑛 − 1                                                                      (3) 𝑉     𝑎𝑟(𝑅) = ൫𝑆ଵଶ − 𝑆ଶ൯𝑛 − 1 − Ṝଶ + ൫𝑆ଵସ − 4𝑆ଵଶ𝑆ଶ + 4𝑆ଵ𝑆ଷ + 𝑆ଶଶ − 2𝑆ସ൯(𝑛 − 1) − (𝑛 − 2)                         (4) 

Where the term 𝑆௥ = 𝑛ḿ௥ and ḿ௥ is the 𝑟௧௛ moment with respect to the origin of the sample. 
The test statistics of the WW test is given as                                                                𝑢 = 𝑅 − Ṝඥ𝑣𝑎𝑟(𝑅)                                                                   (5) 

Where 𝑢 is used to test the data set for independence at 5 % level of significance.  

2.1.3. Mann-Whitney U (MWU) test for Homogeneity  

The Mann-Whitney U (MWU) test is a non-parametric test devised by (Mann and Whitney, 1947) 
to test the null hypothesis that the two samples come from the same population or not. When the 
data does not follow the normality assumption, the MWU test is the alternative to the t-test. The 
MWU test, often known as the U test, is frequently used in frequency analysis of extreme occurrences 
to test the homogeneity assumption. Let’s say we have two independent samples of sizes 𝑛ଵ  and𝑛ଶ, 
and the total sample size𝑁, which is  𝑁 = 𝑛ଵ + 𝑛ଶ almost similar length yielding 𝑛ଵ ≤ 𝑛ଶ. All of the 
samples are ranked from best to worst. The MWU test is based on the lowest value of ʺU,ʺ which is 
the minimum of the V and W variables defined in.                                                          𝑉 = 𝑅ଵ − ቊ𝑛ଵ(𝑛ଵ + 1)2 ቋ                                                         (6)                                                                    𝑊 = 𝑛ଵ𝑛ଶ − 𝑉                                                                (7) 
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                                                                   𝑈 = min(𝑉, 𝑊)                                                               (8) 

Where 𝑛ଵ and 𝑛ଶ are both sample, 𝑅ଵ is the sum ranking order of the first sub sample 𝑛ଵ in 
the combined series N, 𝑅ଵ = ∑ 𝑅௜௡௜ୀଵ  where 𝑅௜ is the rank of the first sample 𝑛ଵ in the combined 
series N. where  𝑉  denotes the number of times an element from the first sample 𝑛ଵ is ranked 
after an element from the second sample 𝑛ଶ . Similarly, W denotes the case in which the second 
sample 𝑛ଶ is ranked after the first sample 𝑛ଵ. When 𝑁 ≥ 20 and 𝑛ଵ, 𝑛ଶ ≥ 3 under the same null 
hypothesis, the 𝑈 test statistic can be regarded normally distributed. The 𝑈 statistic is written as 
follows.                                                                     𝑈 = 𝑈 − Ūඥ𝑉𝑎𝑟(𝑈)                                                                (9) 

                                                                      Ū = 𝑛ଵ𝑛ଶ2                                                                      (10) 

                                                   𝑉𝑎𝑟(𝑈) = ൤𝑛ଵ𝑛ଶ(𝑛ଵ+𝑛ଶ + 112 ൨                                                  (11) 

The formula for the variance of U should be modified as follows in the presence of tied ranks.                           𝑉𝑎𝑟(𝑈) = ቀ𝑛ଵ𝑛ଶ12 ቁ ൥(𝑁 + 1) − ෍ 𝐽௜ଷ − 𝐽௜𝑁(𝑁 − 1)௞
௜ୀଵ ൩                                               (12) 

Where 𝐽௜ is the number of observations that share rank 𝑖 and 𝑘 is the number of ranks that 
are tied. 

2.2. Linear Moments 

In this work, the method of L-moments was utilized to estimate the parameters of PDs, which 
has been employed in the frequency analysis of severe wind speeds (Fawad et al., 2018; Goel et al., 
2004; Modarres, 2008; Yu et al., 2016). The L-moments are more reliable than the method of moments 
and the maximum likelihood approach because they are less sensitive to outliers and are suited for 
smaller sample sizes (Alam et al., 2016; Hosking, 1990).  

(Hosking, 1990) defines a L-moment as the expectation of a linear arrangement of order statistics. 
They may be used to explain any random variable with a mean. Let Χଵ, Χଶ, … , Χ௥ represent a random 
sample of magnitude r with cumulative distributions functions F(X) and quantile functions X (F). Let Χଵ:௥ ≤ Χଶ:௥ ≤ ⋯ ≤  Χ௥:௥  be the random sample order statistics. (Hosking, 1990) explained the rth 
population L-moment for the random variable X as follows:                         λ௥ = 1𝑟 ෍(−1)௞ ൬𝑟 − 1𝑘 ൰௥ିଵ

௞ୀ଴ Ε(𝑋௥ି௞:௥)                 𝑟 = 1, 2 …                              (13) 

When it comes to L-moments, λ௥  is a linear function of the predicted order of statistics 
according to L-moments. The following have provided the first four L-moments                                                          𝜆ଵ = 𝛦(𝛸ଵ:ଵ)                                                                           (14)                                                       𝜆ଶ = 12 𝛦(𝛸ଶ:ଶ − 𝛸ଵ:ଶ)                                                             (15)                                                 𝜆ଷ = 13 𝛦(𝛸ଷ:ଷ − 2𝛸ଶ:ଷ + 𝛸ଵ:ଷ)                                                    (16)                                                 𝜆ସ = 14 𝛦(𝛸ସ:ସ − 3𝛸ଷ:ସ + 3𝛸ଶ:ସ + 𝛸ଵ:ସ)                                      (17) 

The ratio of L-moments will be determined as follows                                                                 𝜏 = 𝜆ଶ 𝜆ଵൗ                                                                            (18) 
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                                                              τଷ = λଷ λଶൗ                                                                            (19)                                                              𝜏ସ = 𝜆ସ 𝜆ଶൗ                                                                             (20) 𝜆ଵ Is the measure of locations, 𝜏 is the measure of L-coefficient of variations (L-cv), 𝜏ଷ and 𝜏ସ 
are L- skewness and L-Kurtosis, respectively in the preceding equation.  

2.3. Application of the L-Moments Based on Regional Frequency Analysis 

 (Hosking and Wallis, 1997) proposed the following four steps for regional frequency 
analysis of extreme occurrence based on L- moment’s theory. These steps are as follows. 
1. Screening of the data 
2. Recognition of Homogeneous Regions 
3. Selections of the best fit distribution 
4. Quantile estimation 

2.3.1. Screening of the Data 

Before beginning with statistical analysis, data screening ensures that the data is clean and ready. 
The data must be checked to ensure that it is available, trustworthy, and suitable for testing the 
causality theory. On the LM basis (Hosking and Wallis, 1997) depicted a discordance amount 𝐷௜ to 
differentiate those locations that are completely discordant with the group as a whole                                                              𝐷௜ = ଵଷ (𝑢௜ − 𝑢ത)்𝑆ିଵ(𝑢௜ − 𝑢ത)                                        (20)                                                          𝑆 = ଵேିଵ ∑ (𝑢௜ − 𝑢ത)(𝑢௜ − 𝑢ത)்ே௜ୀଵ                                         (21) 

Sum of Squares and Cross Products Matrix Where 𝑢௜ = [𝑡(௜),𝑡ଷ(௜), 𝑡ସ(௜) ]  vector consisting sample 
LMR 𝑢ത  = 𝑁ିଵ ∑ 𝑢௜ே௜ୀଵ   ,N = Total enumerate of sites Hosking plied a touchstone for discordancy 
statistic, site’s collection and relevant 𝐷௜ brink point. 

2.3.2. Recognition of Homogeneous Regions 

The development of homogeneous regions is the most important phase in RFA. A region is said 
to be homogenous if all of its sites share some common characteristics. There is a substantial quantity 
of literature on various grouping strategies, such as geographical convenience, subjective 
partitioning, objective partitioning, and cluster analysis. According to (Hosking and Wallis, 1997), 
administrative zones or focal physical groupings include adjacent sites in a region for geographical 
convenience. Many site characteristics, including sewerage zone, mean annual rainfall, wind speed, 
latitude, longitude, drainage area, and time of occurrence of the most significant flood in the year, 
can be used to characterize regions subjectively. Using Ward’s methods for hierarchical clustering in 
this study, all sixteen sites were classified as two homogeneous clusters. Their homogeneity was 
confirmed using the regional heterogeneity measure, ensuring that both clusters are two 
homogeneous clusters. Cluster analysis is a multivariate approach to data analysis used to form 
groups having the least variability, similar characteristics and features. Each site is assigned a data 
vector, which is then dispersed or combined into a set of uniform vectors formation of regions can 
have practiced. At-site characteristics are commonly used in cluster analysis to structure homogenous 
regions, but site statistics can also strengthen the process. Characteristics of the site can be latitude 
and longitude, annual average rainfall, level of elevation and drainage area can be added to construct 
cluster (Ouarda et al., 2008). 

2.3.2.1. Cluster Analysis  

Cluster analysis is a multivariate technique used to form groups having the least variability, 
matching characteristics, and matching features. By allocating a data vector to each site and adding 
these sites into groups of uniform vectors, regions can be practiced. Site characteristics are commonly 
used in cluster analysis to structure homogenous regions, but additionally, site statistics can 
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strengthen the process. The characteristics of a site can be latitude and longitude, the annual average 
maximum wind, level of elevation, and drainage area can be added to the constructed cluster. 

2.3.2.2. Hierarchical Clustering 

Hierarchical clustering is a well-known and simple clustering technique. One of them is 
agglomerative hierarchical clustering. Agglomerative Hierarchical Clustering Technique In this 
method, each data point is treated as a separate cluster at first. Similar clusters merge with other 
clusters in each repetition until one cluster or K clusters are produced. 

2.3.2.3. Ward’s Method  

Ward’s approach is based on hierarchical clustering (Ward, 1963). Because entering a group 
causes one to become a square hierarchal clustering is based on the standardized Euclidean distance 
(d), which is provided in equations                                               𝑑ଶ(𝑝, 𝑞) = ൫𝑥௣ − 𝑥௤൯𝐷ିଵ(𝑥௣ − 𝑥௤)்                                        (22) 

Where 𝑥௣ and 𝑥௤ are the physiographic coordinates of places 𝑝 and  𝑞 respectively and Dିଵ is a diagonal matrix each coordinate is expressed as a sum of squares because the variables are 
presented in different units. To avoid proportional effects, this coordinate is inversely weighted by 
the sample variance. In terms of variables, the cluster’s sum of squares inside the cluster (GSS is 
defined as the sum of the distances between all objects in the cluster and their center of gravity 
(Ouarda et al., 2008). An equation can be used to express it as.                                                 GSS୰ = ෍ dଶ୬౨

୧ୀଵ (x୰୧ − x͞୰)                                                              (23) 

where 𝑛௥ and 𝑥͞௥ are the cluster r size and centroid, respectively. 

2.3.2.4. Heterogeneity Test 

Hosking and Wallis discuss the homogeneity test (1997). By using 𝐻  test, we approach the 
homogeneity of the sites in the region, whether the region is homogenous or heterogeneous.                                                             H = (v − μ୴)δ୴                                                                        (24) 

“Where v is standard deviation of sample lcv” 

                                              V = ൝∑  ୬୧ୀଵ n୧൫t୧ − tୖ൯ଶ∑ n୧୬୧ୀଵ ൡଵଶ                                                               (25) 

         𝑡ோ lcv of regional average                                                                 𝑡ோ =  ∑ 𝑛௜ே௜ୀଵ 𝑡(௜)∑ 𝑛௜ே௜ୀଵ                                                               (26) 

μ୚, σ୚ Represents the mean and variance of population 𝑉. According to the criteria, if 𝐻< 1, the 
region is homogeneous,𝐻 is in among 1 and 2. It can be considered homogeneous but not perfectly 
homogeneous. 𝐻  ≥ 2, then the region will be considered as perfectly heterogeneous. The use of 
Kappa distribution for simulations is common because of its tremendous qualities, generated by 
emerging two gamma distributions, having four parameters (𝛼, 𝜉, 𝑘, ℎ ) indicating scale, location, 
shape and redundant shape parameter, x values lower and upper as [𝜉 + ఈ௞ (1 − ଵ௛ೖ), 𝜉 + ఈ௞]. Kappa 

distribution is generalizing GEV distribution when h=0, of GPA, if h=1, of EXP if ℎ = 1, 𝑘 = 0, of 
Uniform distribution (UD) at  ℎ = 1 , 𝑘 = 1 and GLO when  ℎ = −1 . Its density, distribution and 
quantile functions are given below. 
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                                 𝑓(𝑥) = ൜1 − 𝑘 ቀ𝑥 − 𝜉𝛼ቁൠቀଵ௞ିଵቁ
𝛼 {𝐹(𝑥)}ଵି௛                                           (27) 

                        𝐹(𝑥) = [1 − ℎ ቐ1 − 𝑘 ൬𝑥 − 𝜉𝛼൰(ଵ௞ିଵ)ቑ]ଵ௛                                                      (28) 

                                          𝑥(𝐹) =  𝜉 + 𝛼𝑘 ቊ1 − ቆ1 − 𝐹௛ℎ ቇቋ                                                   (29) 

2.3.3. Selections of the Best Fit Distribution 

The next stage is to select the right distribution after passing the homogeneity test. After making 
homogeneous regions, the following step is the description of the appropriate statistical model by 
choosing a suitable regional frequency distribution. 

(Peel et al., 2001) suggested an L-Moment (LM) ratio diagram to select suitable probability 
distribution in regional frequency analysis of homogeneous regions. (Vogel and Fennessey, 1993) 
determined that in the use of extreme events in hydrology, LM ratio diagrams are always employed 
instead of product-moment ratio diagrams. (Hosking, 1990) found that LM ratio diagrams can 
distinguish between candidate distributions and explain regional data.  

Low flow occurrences within the regions be analyzed based on the fitted regional distribution 
using goodness-of-fit criterion in terms of L-moments using L-moments ratio diagrams and Z-
Statistics (Hosking and Wallis, 1997). The average moments of the regional data are compared to the 
moments of the distribution in this criterion. The main goal is to choose the optimal distribution for 
the observed data among the above-mentioned simulated candidate distributions. The best fit of the 
simulated distribution depends on how well L-skewness and L-kurtosis support regional average L-
Skewness and L-kurtosis. 

The procedure for selection of distribution accordingly is as follows.                                                      𝑍஽௜௦௧ = 𝜏ସ஽௜௦௧ − 𝜏ସோ + 𝐵ସ𝜎ସ                                                          (30) 

Where                                                        𝐵ସ =  ∑ ( 𝑡ସ(௠) − 𝑡ସோ)ே ௦௜௠௠ୀଵ 𝑁                                                       (31) 

                                          σସ = [{∑ ቀ tସ(୫) − tସୖ ቁ − Nୱ୧୫Bସଶ}୒ ୱ୧୫୫ୀଵ (Nୱ୧୫ − 1)  ]ଵଶ                                        (32) tସୈ୧ୱ୲ =  L − Ck of ϐitted distribution Bସ =  Regional Bias σସ =  Regional Standard Deviation Nୱ୧୫ = Quantity of Simulated Regional Data by Kappa Distribution 
The fit is considered to be good if ห𝑍஽௜௦௧ห have the small value or sufficiently close to zero. In the 

statistical technique of hypothesis testing if ห𝑍஽௜௦௧ห ≤ 1.64, then at 90% confidence level, the candidate 
distribution is considered the best-fitted probability distribution. If more than one candidate 
probability distribution meets the above criteria, the distribution with the lowest ห𝑍஽௜௦௧ห   value is 
chosen as the best-suited probability distribution. 

2.3.4. Quantile Estimation  

The final phase of RFA is to estimate the parameters of the chosen frequency distribution and 
assess its robustness in giving valid quantile estimates for all sites in the homogenous region. 
(Hosking and Wallis, 1997) suggested that the regional L-moment algorithm is more convenient 
despite the non-fulfillment of some fundamental assumptions of the index flood procedure. For 
various non-exceedance probabilities, regional quantiles estimations are calculated using a 
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simulation process. Furthermore, by scaling 𝑄 (. )  with an estimate of the scaling factor of 𝜇௜ corresponding to non-exceedance probability  𝐹 , the quantile estimates of each site might be 
obtained as follows:                                                    𝑄෠௜(Ϝ) = ℓଵ(௜)𝑞ො(Ϝ)                                                                  (33) 

where 𝑄෠௜(Ϝ) is the estimation of the at-sit quantile, ℓଵ(௜) is the individual sites mean and 𝑞ො(Ϝ) 
is refers to the regional quantile function. Other scaling factors that can be used include median, 
mean, etc. We used the Monte Carlo simulation technique given by (Meshgi and Khalili, 2009) to test 
the robustness of the specified regional frequency distribution in this work, with 10,000 simulations. 
We calculated the errors between simulated quantiles and calculated regional quantiles estimations 
using this technique. These differences are then used to calculate relative bias (RB) and relative root 
mean square error (RRMSE) for various non exceedance probabilities, which are then used to examine 
the robustness of best fit distributions. Below is the mathematical form of RB and RRMSE.                                             𝑅𝐵 = 1𝑀 ෍ ൝𝑄෠௜[௠] − 𝑄௜(𝐹)𝑄௜(𝐹) ൡெ

௠ୀଵ                                                     (34) 

                                          𝑅𝑅𝑀𝑆𝐸 = ඩ 1𝑀 ෍ ൝𝑄෠௜[௠] − 𝑄௜(𝐹)𝑄௜(𝐹) ൡெ
௠ୀଵ

ଶ                                        (35) 

Here 𝑀  is the sample size, 𝑄෠௜[௠] (𝐹)   and 𝑄௜(𝐹)   is the simulated and computed regional 
quantiles, respectively, in the above equation. 

On the basis of standard error of at-site quantile estimations under best-fit distribution, (Hosking 
and Wallis, 1997) proposed the following equation to check robustness.                            𝑣𝑎𝑟൛𝑄෠௜(Ϝ)ൟ ≈ {𝑥(𝐹; 𝜃°)}ଶ𝑣𝑎𝑟(𝜇̂௜) + 𝜇̂௜ଶ𝑣𝑎𝑟{𝑥൫𝐹; 𝜃෠൯ൟ                           (36) 

This can be further written like this  𝑣𝑎𝑟൛𝑄෠௜(Ϝ)ൟ ≈ {𝑞௜(𝐹)}ଶ 𝜎𝑖ଶ𝑛 + 𝑥̄௜ଶ{𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑅𝑀𝑆𝐸 − (𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝐵𝑖𝑎𝑠)ଶ}                  (37) 

In additions we can use sample variance of median and sample median instead of sample mean 
of variance and sample mean. In that case the relationship will become 𝑣𝑎𝑟൛𝑄෠௜(Ϝ)ൟ ≈ {𝑞௜(𝐹)}ଶ గఙ௜మଶ௡ + 𝑥̄௜ଶ{𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑅𝑀𝑆𝐸 − (𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝐵𝑖𝑎𝑠)ଶ}                 (38)  

Where the 𝑥 ̄ represent the sample median and గఙ௜మଶ௡  is the sample variance of median. 

3. Study Area and Data 

Khyber Pakhtunkhwa (30⁰-35N & 67⁰-72⁰E) is one of Pakistan’s five provinces, It is located on 
the Iranian plateau and Eurasian land plate with an area of 74,521 km², It is separated into two zones 
geographically, from the Hindu Kush to the northern section of Peshawar and from Peshawar to the 
southern half of the Derjat basin, KPK climate shifted from severely cold (in places like Chitral) to 
highly hot (in places like Dera Ismail Khan) (Lubna and Sapna, 2019). On availability of required data 
sets, only sixteen (16) palaces of KPK (Cherat, Chitral, D.I. Khan, Tang, UpperDir, Drosh, 
Kakul(Abbottabad), Parachinar, SaiduSharif, Kalam, Malam Jabba, MirKhani, Peshawar, LowerDir, 
Kohistan) were selected for this study. All site names and characteristics are shown in Table 1 and 
Figure 1. 
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Figure 1. Geographical locations of the 16 stations of KPK, Pakistan. 

4. Results and Discussion 

4.1. Basic Assumption  

Prior to performing the RFA of AMWS, we investigated three main assumptions of RFA: 
independence, homogeneity, and stationarity. The term “independence” refers to the notion that no 
single observation in a data series affects subsequent observations. In practice, the degree of 
dependency between successive portions of a series varies with the interval between them and is 
commonly small between yearly maximum values, but the degree of dependence between 
consecutive daily values is typically substantial. The term “homogeneity” means that all observations 
within a data series originate from the same population. When the variety in severe events such as 
floods, snowmelt, rainfall, wind speed, and drought is large, it becomes hard to identify non-
homogeneity. Stationarity implies that the AMWS series is invariant in time, excluding random 
variations. Trends, leaps, and cycles describe non-stationarity. While trends may be attributed to 
periodic changes in climatic circumstances, cycles can be linked to long-term climate oscillations. 
Jumps occur most often in flood series caused by a sudden change in the river system, such as the 
structure of a dam. 

The required assumptions should fulfill by the data of annual maximum wind speed. Therefore 
time series graphs and various non-parametric tests are applied to justify these assumptions. 

The Wald-Wolfowitz Test is used to verify AMWS’ assumption of independence. The results are 
given in detail in Table 1. The Wald-Wolfowitz test statistic values are usually small, and the p-value 
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is greater than the (0.05) for each site. According to this test, we conclude that AMWS data of the 
different sites is independent. 

We used the Man-Whitney U (MWU) test to check the assumption of homogeneity in the data 
of AMWS. The results verified that the probability “P” value is greater than the critical value of 0.05 
such that It means that we accept the null hypothesis (the sample comes from a homogenous 
population) of the MWU test and we conclude that the data of AMWS is homogeneous. The details 
of the results are given in Table 1. 

We used the Spearman order rank correlation test to check the stationarity of AMWS. The 
Spearman’s rank order correlation test statistic values for each site are small, and the p-value is larger 

than the level of significance, i.e. ( 05.0>p ). Therefore, we conclude that based on the results given 

in Table 1, the data of each site of AMWS fulfills the assumption of stationarity. 

Table 1. The results of basic assumptions for 16 sites. 

Name of the sites 
Spearman test Wald & Wolfowitz test Mann Whitney U test 

Test statistic P-value Test statistic P-value Test statistic P-value 
Abbottabad 0.569 0.285 -1.135 0.128 -0.975 0.165 

Bannu -0.806 0.210 -0.857 0.196 -0.767 0.221 
Cherat -0.861 0.195 0.353 0.362 -1.597 0.055 
Chitral -0.717 0.237 0.791 0.214 -1.389 0.082 

D.I. Khan 0.274 0.392 0.837 0.201 -0.353 0.362 
Drosh -0.837 0.201 0.814 0.208 -1.638 0.051 
Kalam -0.277 0.391 0.081 0.468 -0.306 0.380 

Kohistan -1.017 0.154 0.940 0.174 -1.016 0.155 
Lower Dir -1.305 0.096 0.376 0.353 -1.472 0.070 

Malam Jabba 0.598 0.275 1.558 0.060 -0.353 0.363 
Mir Khani 0.720 0.236 0.968 0.166 -0.726 0.234 
Parachinar -0.372 0.355 0.097 0.461 -0.228 0.410 
Peshawar 0.059 0.477 -1.029 0.152 -0.643 0.260 

Saidu Sharif -0.658 0.255 -0.409 0.341 -1.390 0.341 
Tank -0.492 0.311 0.405 0.343 -0.311 0.378 

Upper Dir -0.416 0.339 0.402 0.344 -1.141 0.127 

4.1.2. Time Series Plots 

As time goes by, stationarity is one of the basic assumptions when dealing with hydrological 
data. The graphs of ordered data on variables give us a good understanding of stationarity. The time 
series plots in Figures 4.1 and 4.2 show that the data series of Cherat and D.I. Khan Sites have a 
uniform increasing/declining trend, indicating randomness in the observation of all sites and that the 
time series data is stationary. 
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Figure 2. Time series plot of all stations. 

4.2. Screening of the Data Using Discordancy Measure 

The data screening to detect certain discordant sites is the initial stage in regional frequency 
analysis. We analyzed two clusters, the first of which has 12 sites and the second of which have four, 
and we calculated the discordancy measure for each site. For each site, the discordancy statistics are 
computed. As shown in Tables 2 and 3, for all sites, the computed values are less than the critical 
value of 3. 

Table 2. Summary Statistics Based on L-moments for Cluster-Ι various Wind Sites. 

Stations 
Latitude 
(North) 

Longitude 
(East) 

Elevation 
(meter) 

l1 t t3 t4 Di 

Abbottabad 34.11 73.15 1418.53 8.363 0.099 0.053 0.167 1.22 
Bannu 33 70.06 1337.87 12.481 0.101 0.177 0.241 2.11 
Cherat 33.49 71.33 632.28 9.576 0.083 0.161 0.171 1.24 
Chitral 35.51 71.50 3392.71 8.048 0.102 0.106 0.082 0.75 

D.I. Khan 31.49 70.56 294.41 10.503 0.068 0.017 0.119 2.28 
Drosh 35.34 70.47 3174.26 7.390 0.093 0.130 0.128 0.14 
Kalam 35.5 72.59 3782.04 9.346 0.090 0.028 0.030 1.04 

Kohistan 35.06 73 2969.68 8.918 0.080 0.007 0.121 1.08 
Lower Dir 34.5 70.49 2061.64 8.314 0.096 0.148 0.116 0.41 

Malam Jabba 34.45 72.44 706.05 7.298 0.093 0.082 0.127 0.08 
Mir Khani 35.30 74.42 3462.82 10.038 0.095 0.179 0.067 1.91 
Parachinar 33.52 70.05 1727.58 12.036 0.108 0.071 0.143 1.66 
Peshawar 34.02 71.56 713.79 7.757 0.083 0.099 0.094 0.23 

Saidu Sharif 34.44 72.21 706.05 7.675 0.094 0.083 0.068 0.48 
Tank 31.55 70.52 256.26 10.600 0.085 0.148 0.191 1.04 

Upper Dir 35.12 70.51 3061.05 7.526 0.087 0.044 0.119 0.32 

In Tables 2 and 3, 𝑛 denotes the record length, which is set at 30 across all sites. 𝑙ଵ Stands for 
the sample mean, 𝑡 for the sample L-CV, 𝑡ଷ for the sample L-skewness, and 𝑡ସ for the sample L-
kurtosis. The mean of the data in Table 2 of cluster-Ι ranges from 7.390667 to 10.03833, whereas sample 
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L-CV ranges from 0.079843 to 0.102031. The data skewnes coefficient ranges from 0.006789 to 
0.179212. 

Table 3. Summary Statistics Based on L-moments for Cluster-ΙΙ various Wind Sites. 

Name  𝑛     𝑙ଵ    𝑡     𝑡ଷ     𝑡ସ   𝐷௜ 
Bannu 30 12.481 0.101 0.177 0.241 2.11 
Tank 30 10.600 0.085 0.148 0.191 1.04 

 Similarly, the average value of the data in Cluster-ΙΙ in Table 3 varies from 10.50267 to 
12.48133, while the sample L-CV is 0.066783 to 0.107685. The skewness coefficient for data varies 
between 0.017385 and 0.177261. In both Clusters, all sites are favorably skewed. 

4.3. Cluster Analysis  

Cluster analysis is used to split data into several groups such that places belonging to the same 
cluster have related climatic/geographical features. The Ward algorithm is utilized in this work to 
create Clusters based on the basin average slope and drainage area; because this technique may 
produce homogenous Clusters of the same size (Ward et al. 1963). 

We applied the wards method for further clarification and justification about the number of 
homogenous regions. This method investigated that there are more than two homogenous regions in 
this study. 

 

Figure 3. Dendrogram using Wards Methods. 

4.3.1. Regions and Heterogeneity Measure 

The next stage in RFA is to examine the heterogeneity value of the underwork areas after 
obtaining the discordancy value. It’s basically a heterogeneity assessment employing L-CV, L-
Skewness, and L-kurtosis for𝐻ଵ, 𝐻ଶ and 𝐻ଷ. In practice 𝐻ଵ, is regarded as a good indicator of observed 
with L-CV. Similarly, if the L-skewness and L-Kurtosis are naturally larger, the 𝐻ଶ and 𝐻ଷmeasurements have less discriminating value. 

The cluster analysis findings are shown in Table 4. Table 4 shows that both Clusters Ι and ΙΙ are 
“acceptably homogenous.” 
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Table 4. Homogeneity measures of both Clusters. 

 Cluster 
Number of 

sites 
𝐻ଵ 𝐻ଶ 𝐻ଷ Homogeneity 

 Cluster-Ι 12 -1.76 -1.26 -1.77 
Homogeneou

s  
 Cluster -

ΙΙ 
04 0.90 -0.36 -0.69 

Homogeneou
s 

(Hosking and Wallis, 1997) give three different aspects of heterogeneity values. If 𝐻<1,   the 
region is completely homogeneous. If 1≤𝐻 ≤2, the region can be homogeneous. If, on the other 
hand,𝐻 ≥ 2, the region is completely heterogeneous. In the Table 4 the values of 𝐻 of both clusters 
indicate that no value is greater than 2, which meet the criteria of homogeneous region. 

4.4. Selections of Best Fit Distribution 

The third stage of RFA is fitting of the distribution and selection of the best fitting distributions. 
(Hosking and Wallis, 1997) used standards to determine the first three perimeter distributions, such 
as Generalize Pareto (GPA), Generalized Logistic (GLO), Generalize Extreme Value (GEV), Generalize 
Normal (GNO), and Generalize Pearson type 3 ( P3). When starting this process, we will keep two 
goals in mind. The first is the nomination of the best distribution. The ordinal is the estimate of the 
quantile for each region in several time periods. Hosking provides two methods to achieve the best 
distribution. Mainly Z-fit, others are ratio graphs 

The selections of the fit distribution for each cluster are based on the L-moment ratio diagram, 
and Z statistical test. Z- Fit applies through the critical value if ห𝑍஽௜௦௧ห ≤  1.64 at level of Significance 
5%. It might be possible that more than one distribution strike to the said limits, than the distribution 
approaching to zero will be best considered as best fit.  

Table 5 summarizes the appropriate Z statistics and best distributions of both homogeneous 
clusters. For cluster-Ι the values of GEV and P3 are the smallest among other values. The values of 
GEV and P3 are less than the critical values of 1.64 and the selected distribution is required to be 
closer to zero. Therefore, according to this criterion, it can be said that the distribution of GEV and P3 
is acceptable if the statistic is less than 1.64. Similarly, for cluster-ΙΙ the values of GLO and GNO are 
the smallest among other values. The values of GLO and GNO are less than the critical values of 1.64 
and the selected distribution is required to be closer to zero. Therefore, according to this criterion, it 
can be said that the distribution of GLO and GNO is acceptable if the number is less than 1.64. 

Table 5. Goodness of Fit test for Homogeneous Clusters. 

Clusters 
Distribution

s 
GLO GEV GNO P3 GPA 

Cluster-Ι |𝑍஽௜௦௧| 3.69 a 𝟏. 𝟎𝟏 ∗ 1.26 𝟏. 𝟎𝟐 ∗∗ 4.36 a 
Cluster-ΙΙ |𝑍஽௜௦௧| 𝟎. 𝟎𝟐 ∗ 1.22 𝟏. 𝟏𝟒 ∗∗ 1.27 3.74 a 

* show the best distribution; ** show the second best distribution; a  indicates that the calculated values 
are more than the critical value of 1.64. 

4.4.1. L-Moments Ratio Diagram 

L-moment ratio diagrams (scatter plots) display L-moments of various distributions that are 
commonly used and are useful for providing guidelines for selecting an appropriate distribution for 
the study area based on average values of L-Skewness and L-Kurtosis. Although it is a subjective 
method, it is a very popular tool for selecting candidate distributions at the outset. Another advantage 
of the L-moments Ratio Diagram is the ability to display moment ratios from multiple distributions 
on the same graph paper. 

L-moments ratio diagram/plot for two Clusters is shown in Figures 3a and 4b. For Cluster-I 
regional average L-Skewness and L-Kurtosis average lies closest to the GEV distribution similarly for 
Cluster-II regional average L-Skewness and L-Kurtosis average lies closest to GLO. In the Both 
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diagram points (L, N, G, E, U) stand for Logistic distribution, Normal distribution, Gumbel 
distribution, Exponential Distribution, and Uniform Distribution, respectively. 

 

Figure 4. L-Moments Ratio Diagram for both regions. 

4.4.2. Constructions of Growth Curves and Accuracy Measures for Best Fit Distributions 

To evaluate which of these two distributions was the most accurate we performed a Monte Carlo 
simulation provided by (Meshgi and Khalili, 2009). For design flood estimate relative bias (RB) and 
relative root mean square error (RRMSE) were used to examine the robustness of the RFA 
distributions. 

 For the Cluster-Ι Table 7 shows the RB and RRMSE simulation results for GEV and P3 
distributions for various return times up to 1,000 years. Table 7 shows that the RB values for GEV are 
lower than the P3 distribution at all periods of return except years 2. As a result of the RB measures, 
GEV is the best robust distributions. Also the value of RRMSE outperforms the P3 distributions 
during return period of 5 and 10 years. However, the RRMSE of the GEV distribution is higher than 
that of the P3 distribution for return periods 2, 20, 50, 100, 500, and 1,000. Overall, Table 7 shows that 
the GEV distribution outperforms than the P3 distribution however RRMSE shows that P3 has little 
advantage over GEV over longer return periods. 

Similarly Table 6 shows the RB and RRMSE simulation results for GLO plus GNO distributions 
for various return times up to 1,000 years for Cluster-ΙΙ. Table 6 shows that the RB values for the GLO 
distribution are lower than the GNO distribution for all return periods except 2 and 1000 years. As a 
result of the RB measures, GLO is most robust distribution. Also the RRMSE value of the GLO 
distribution outperforms than the GNO distribution during return periods of 2, 5, 10, 20, 50, and 100 
years. However, at return times of 500 and 1,000 the GLO a distribution has a higher RRMSE than the 
GNO distributions. General Table 7 shows that the GLO distribution outperforms than the GNO 
distribution however RRMSE shows that GNO has a little advantage above GLO for longer return 
period. So the GLO distributions is a robust distributions for cluster-ΙΙ 
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Table 6. Accuracy Measure for best fit Distributions for Cluster-Ι and Cluster-II. 

Distribution
s 

Measure
s 

Q2 Q5 Q10 Q20 Q50 Q100 Q500 Q1000 

Cluste
r-Ι 

GEV 
RB 0.0003 0.0001 

-
0.0001 

-0.0002 
-

0.0000 
0.0002 0.001 0.0025 

RRMSE 0.0062 0.0117 0.0186 0.0261 0.0363 0.0446 0.06420.0738 

PE3 
RB 

-
0.0000 

0.0004 0.0008 0.0011 0.0015 0.0018 0.00260.0029 

RRMSE 0.0057 0.0129 0.0192 0.0249 0.0319 0.0368 0.04750.0519 

Cluste
r-ΙΙ 

GLO 
RB 0.0008 

0.0000
2 

-
0.0002 

-0.0002 0.0003 0.0013 0.00580.0089 

RRMSE 0.008 0.0172 0.0283 0.0393 0.0547 0.0674 0.1012 0.117 

GN
O 

RB 0.0003 0.0001 0.0004 
0.0009

7 
0.002 0.003 0.00590.0073 

RRMSE 0.009 0.0214 0.0343 0.0461 0.0607 0.0714 0.09560.1058 

4.5. Regional Quantiles Estimations for Different Return Periods 

After selecting the best fit distributions, the next stage in regional frequency analysis is to find 
the quantile estimates for each return period. The return period “T” can be defined as the likelihood 
of repeated interval estimates, such as floods, droughts, stream flow, rainfall or earthquakes. The 
return time period T can be called  ଵ௉   with its exceedance probability P. The probability of 

occurrence or exceedance is the chance of an event occurring within a specific time period, that is, 𝑃 =ଵ்    probability of occurrence .For example, in the case of 20 years ( ଵଶ଴ = 0.05) can be defined as the 

chance of exceeding, where(1 − ଵଶ଴ = 0.95) is the probability of non-exceedance . 

After selecting the most suitable regional distribution, we estimate the regional quantiles and 
parameters of the two clusters. Table 7 shows the best-fit distribution of both Clusters and regional 
quantiles. 

Table 7. Regional quantile estimation for best fit Distributions of both clusters. 

Cluster
s 

                       parameters             regional quantiles 
estimate with non-exceedance probability F 

Dist         𝜺         𝜶             𝒌       0.500     0.800   
0.900      0.950     0.980      0.990        0.998      0.999 
                                                           2   

5          10           20           50           100      
500         1000 

  Ι G
EV 

0.931
8 

0.145
6 

0.122
7 

0.984
0 

1.131
3 

1.218
2 

1.294
4 

1.383
4 

1.443
8 

1.565
1 

1.610
3 

  ΙΙ 
G
L
O 

0.984 0.088 
-

0.103 
0.984

7 
1.116

7 
1.203

1 
1.289

5 
1.409

0 
1.505

6 
1.756

5 
1.877 

4.5.1. At-sites Quantiles Estimations by using Mean as Index Parameter  

For fitted regional frequency distributions, the regional At-sit quantile may be calculated by 
multiply the regional quantile by the sample mean a single site. By definition, the regional At-site 
quantile estimation by mean is 
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                                                           𝑄෠௜(Ϝ) = ℓଵ(௜)𝑞ො(Ϝ)                                                               (33) 

Where 𝑄෠௜(Ϝ) is the regional at-sit quantiles estimations, ℓଵ(௜) is the individual sites mean and 𝑞ො(Ϝ) is the functions quantile of the fitted, RFD.  
The results of regional at-sits quantiles estimate by using the sample mean for Cluster-Ι and 

cluster- ΙΙ the following Table 8 show the results. We find at-site quantile estimate for that cluster 
which is best fit distribution. For Cluster-Ι the best fit distributions is GEV and we can interpret as a 
1000 years return period computed in Table 8. We may calculate quantile estimate for each 𝑖௧௛ site 
in the Cluster-Ι for a particular return period. We consider the site Upper Dir which has on the average 
annual maximum wind speed is 7.525667.we obtained by multiplying the regional quantile estimate 
to the mean of the relevant site. As the 𝑞ොீா௏(0.980)=1.3834, interpretable as 7.525667* 1.3834=10.596 
is the amount of extreme wind once in coming 50 years (for given return period) with non-exceedance 
probability 0.980. All other sites and for cluster-II can be interpreted in the similar way. 

Table 8. At site Quantiles Estimate for the best fit Distributions using mean as Index Parameter of Cluster-Ι and 
cluster-II. 

Clusters and 
best fit dist 

Sites names 

0.500         0.800    0.900       0.950     0.980        0.990       0.998   
0.999 

2                   5           10             20         50             100  
500           1000 

Cluster-I 
 
 
 

GEV 

Upper Dir. 7.4203 8.4219 9.070 9.7141 10.596 11.304 13.120 13.9872 
Drosh 7.2871 8.2708 8.9079 9.5398 10.406 11.101 12.88 13.7362 
Chiral 7.9353 9.0065 9.7002 10.388 11.332 12.088 14.030 14.95801 

Lower Dir. 8.1976 9.3041 10.020 10.731 11.706 12.488 14.494 15.4524 
Kalam 9.2154 10.459 11.265 12.064 13.160 14.039 16.294 17.37109 

Kohistan 8.7928 9.9797 10.748 11.510 12.5569 13.395 15.547 16.57438 
Mirkhani 9.8977 11.233 12.099 12.957 14.1349 15.078 17.500 18.65724 

SaiduSharif 7.5678 8.5894 9.2510 9.907 10.8076 11.529 13.381 14.26537 
Malam Jabba 7.1958 8.1671 8.7962 9.4202 10.2763 10.962 12.723 13.56406 

RMC Peshawar 7.6484 8.6808 9.3495 10.012 10.9226 11.651 13.523 14.41716 
Abbottabad 8.2462 9.3594 10.080 10.795 11.7764 12.562 14.580 15.54409 

Cherat 9.4419 10.716 11.541 12.360 13.4839 14.384 16.694 17.79795 

Cluster-II 
 

    GLO 

Parachinar 11.8518 13.440 14.480 15.520 16.958 18.121 21.141 22.5915 
Bannu 12.2903 13.937 15.016 16.094 17.586 18.791 21.923 23.4274 

D.I. Khan  10.3419 11.728 12.635 13.543 14.798 15.812 18.447 19.7135 
Tank 10.4381 11.837 12.753 13.669 14.935 15.959 18.619 19.8968 

4.5.2. The Standard Errors of the Estimated At-Site Quantile 

For the (Hosking and Wallis, 1997) simulation process (algorithm), accuracy estimation is 
usually done by “Abs. Bias”, “Bias” and “RMSE” for regional assessment. However, we can use the 
extra results to get the standard mistake of the calculated amount of each site in the region.  

For all sites, we used Equation (36) to compute the standard errors of these at site quantile 
estimations. The at-site quantile estimates for both clusters are calculated use the sample mean as 
index parameter, and the best-fit regional frequency distribution is GEV for cluster-I and GLO is for 
cluster-II, Table 9 show the results of both cluster.  

Table 9. Standard Errors of At-site Quantile Estimate using median as an index parameter for both Clusters. 

 
Sites 

names 

0.500         0.800    0.900       0.950    
0.980        0.990       0.998        0.999 

2                   5           10      
20         50             100          500  

1000 
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Cluster-I 
 
 
 

GEV 

Upper Dir. 0.6266 
0.847

0 
1.056

9 
1.243

8 
1.463

9 
1.617

2 
1.942

9 
2.0719 

Drosh 0.6213 
0.837

6 
1.043

3 
1.226

7 
1.442

6 
1.593

1 
1.912

9 
2.0395 

Chiral 0.6837 
0.919

2 
1.142

7 
1.342

1 
1.577

1 
1.740

9 
2.088

9 
2.2268 

Lower Dir. 0.7017 
0.945

0 
1.176

2 
1.382

4 
1.625

2 
1.794

5 
2.154

1 
2.2966 

Kalam 0.7796 
1.053

3 
1.313

9 
1.546

0 
1.819

2 
2.009

6 
2.414

1 
2.5743 

Kohistan 0.7361 
0.997

5 
1.246

6 
1.468

4 
1.729

3 
1.911

0 
2.297

1 
2.4500 

Mirkhani 0.8458 
1.139

6 
1.418

8 
1.667

9 
1.961

1 
2.165

5 
2.599

7 
2.7717 

SaiduShari
f 

0.6447 
0.869

4 
1.083

1 
1.273

5 
1.497

8 
1.654

1 
1.986

2 
2.1177 

Malam 
Jabba 

0.6143 
0.827

9 
1.031

0 
1.212

0 
1.425

3 
1.573

8 
1.889

6 
2.0146 

RMC 
Peshawar 

0.6434 
0.870

7 
1.087

1 
1.279

9 
1.506

8 
1.664

8 
2.000

6 
2.1336 

Abbottaba
d 

0.7091 
0.953

9 
1.186

2 
1.393

5 
1.637

7 
1.807

9 
2.169

6 
2.3129 

Cherat 0.7971 
1.077

6 
1.344

6 
1.582

5 
1.862

5 
2.057

6 
2.472

0 
2.6362 

Cluster-
II 
 

    GLO 

Parachinar 1.1506 
1.642

7 
2.083

2 
2.443

1 
2.872 

3.184
2 

3.894
5 

4.1859 

Bannu 1.1907 
1.701

1 
2.158

1 
2.531

4 
2.977

0 
3.299 

4.036
1 

4.3382 

D.I. Khan 0.9655 
1.398

9 
1.786

3 
2.101

1 
2.475 

2.746
4 

3.362
6 

3.6147 

Tank 0.9564 
1.374

3 
1.748

2 
2.052

9 
2.416

2 
2.679

1 
3.278

3 
3.5238 

5. Summary and Conclusions 

This study investigated the RFA of AMWS at 16 stations in Khyber Pakhtunkhwa, Pakistan. The 
initial screening of the AMWS is checked through the time series plot, spearman test, Mann-Whitney 
U test, and Wald and Wolfowitz test. The finding indicates that all 16 stations of AMWS passed the 
initial screening and were used further for RFA of AMWS. In the first step of RFA of AMWS, the 
discordancy measure was used, and the findings revealed that none of the sites was discordant, 
suggesting that all 16 stations should be included in RFA. All sixteen stations were identified as two 
homogeneous clusters using Ward’s hierarchical clustering techniques. According to the Z Statistics 
criterion and the L-moment ratio diagram, the GEV and GLO distributions were the best fit among 
all other PDFs for clusters I and II, respectively. 

The Monte Carlo method was used to test the accuracy and efficacy of the estimated quantiles 
for Clusters I and II by running ten thousand simulations. Measures including Root Mean Square 
Error (RMSE), Relative Bias, Relative Absolute Bias, Lower Error bound, and Upper Error bound 
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were established and introduced in Tables 8 and 9 to examine the quantile estimates and growth 
curves of both clusters during the Monte Carlo simulation technique. 

The robustness of both clusters was assessed using the RB and RRMSE measures. When RB and 
RRMSE measures are employed to compare GEV and P3 distributions in cluster-Ι, the results 
demonstrate that GEV distribution has smaller RB and RRMSE measures generally, while P3 
performs better to some extend at longer return periods. In cluster-ΙΙ, RB and RRMSE measures are 
employed to analyses GLO and GNO distributions, and the results demonstrate that GLO 
distribution has lower RB and RRMSE measures generally, while GNO perform better to some extent 
at longer return periods. The GEV distribution for Cluster-Ι and the GLO distribution for Cluster- ΙΙ 
are the most acceptable choices for regional AMWS analysis in this study, according to the Z-test and 
LM ratio diagram. 

By multiplying the regional quantiles by the sample mean and median as index parameters, we 
were able to derive the at-site quantiles (index flood procedure). The standards errors of these at site 
quantiles were likewise discovered under both index parameters. Frequency analysis at the site can 
be performed to compare these results to quantiles and standard errors. For Cluster-I, the sites 
including Upper Dir, Lower Dir, Kalam, Kohistan, and Peshawar have lesser standard errors for all 
return periods when using mean as index parameters. On the other hand, Mirkhani and Kakul 
(Abbottabad) with median as index parameters had considerably lesser standard errors for all return 
periods than the same sites with mean as index parameters. Furthermore, Drosh, Chitral, SaiduSharif, 
Malam Jabba, and Cherat with median as index parameters had considerably reduced standard 
errors for all return periods except 2 and 5 years when compared to data from the same sites with 
mean as the index parameters. Similarly, the D.I. Khan and Tank sites in cluster-ΙΙ had lower standard 
errors for all return periods when using mean as the index parameters, as compared to the same sites’ 
findings when using median as the index parameters. When comparing the findings of the same sites 
using median as the index parameters, the Parachinar site has a lower mean except for 50, 100, 500, 
and 1000 years. In contrast, when using the bannu median as index parameters, the standard errors 
for all return periods except 2 and 5 years are significantly lower than when using the mean as index 
parameters. 

The predicted AMWS quantiles from these distributions might be used for policy implications 
in codifying the wind load for various codified structural designs to avoid losses due to high wind 
speeds. 
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