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Abstract: In order to realize the performance degradation trend prediction accurately, a prediction 

method based on multi-domain features and temporal convolutional network (TCN) is proposed. 

Firstly, construct a high-dimensional feature set in the multi-domain of vibration signals, and use 

comprehensive evaluation indicators to preliminarily screen performance degradation indexes with 

good sensitivity and strong trend. Secondly, the kernel principal component analysis (KPCA) 

method is adopted to eliminate redundant information between multi-domain features, and 

construct a health index (HI) based on convolutional auto-encoder (CAE) network. Thirdly, a TCN-

based performance degradation trend prediction model is constructed, and direct multi-step 

prediction is used to predict the performance degradation trend of the monitored object. On this 

basis, the validity of the proposed method is verified using the bearing public data, and it is 

successfully applied to performance degradation trend prediction of rolling contact fatigue 

specimen. The results show that the feature set can be reduced from 14 dimensions to 4 dimensions 

by using KPCA, while 98.33% of the information of the original feature set is retained. Furthermore, 

the method of constructing HI based on CAE network is effective. The change process of the HI 

constructed truly reflects the performance degradation process of the rolling contact fatigue 

specimen. Compared with the two commonly used HI construction methods, auto-encoding (AE) 

network and gaussian mixture model (GMM), this method has obvious advantages. At the same 

time, the prediction model based on TCN can accurately predict the performance degradation of 

the rolling contact fatigue specimen with the root mean square error 0.0146 and the mean absolute 

error 0.0105, which has better performance and higher prediction accuracy than the prediction 

model based on the long short-term memory (LSTM) network and the gated recurrent unit (GRU). 

This method has general significance and may be extended to the performance degradation 

prediction of other mechanical equipment/parts. 

Keywords: contact fatigue; feature extraction; health index; degradation prediction; temporal 

convolutional network; convolutional auto-encoder network 

 

1. Introduction 

With the rapid progress of manufacturing technology, the structure of mechanical equipment 

becomes more and more complex, and the operating conditions of parts become more and more 

severe [1], and the probability of failure increases accordingly. Therefore, the predictive monitoring 

of mechanical equipment/components is particularly important. It is helpful for the scientific 

formulation of maintenance strategies and the health management of equipment. At the same time, 

the application of technologies such as the internet, smart sensors and wireless communication in the 

mechanical field enables more information to be collected. These massive data reflect the health status 

and performance changes of mechanical equipment/components, and contain rich information. It has 

prompted the field of mechanical health monitoring to enter the era of "big data". However, the 

existing fault diagnosis and early warning methods are difficult to reliably realize the fault diagnosis 

and early warning of the status of mechanical equipment/components under the background of 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 July 2023                   doi:10.20944/preprints202307.0326.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202307.0326.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

massive data, which makes the data-driven mechanical equipment/component health monitoring 

technology arouse extensive attention of researchers [2,3]. Therefore, how to deeply mine and utilize 

historical and real-time data in massive data to accurately grasp the health status of mechanical 

equipment/components and accurately analyze its performance degradation trend has become one 

of the research hotspots in the condition monitoring field [4]. 

Contact fatigue is mainly due to damage caused by cyclic loading below the contact surface, 

until it extends to the surface to form pitting or spalling. The failure process is essentially the initiation 

and propagation of cracks. Contact fatigue strength is an important index that affects the service 

performance of basic components such as gears and bearings. At present, the only way to obtain the 

contact fatigue properties of materials is through rolling contact fatigue tests, which take a long time 

and are labor-intensive. Therefore, it is of great significance to realize the accurate prediction of the 

performance degradation trend of the rolling contact fatigue specimen. It can not only predict the 

fatigue failure time point of the specimens in advance and shorten the test time, but also enrich the 

ways to obtain the contact fatigue properties of the materials. That is to say, in the context of big data, 

the contact fatigue properties of materials can be obtained by analyzing historical data of materials, 

rather than relying only on rolling contact fatigue tests. 

To realize the prediction of the degradation trend of the monitored objects, the core work mainly 

includes two parts. One is to construct a Health Index (HI) that can truly reflect the performance 

degradation process of the monitored object throughout its life cycle. The other is to build a predictive 

model that can accurately predict the changing trend of HI. In the construction of HI, one idea is to 

extract features from raw data and use them for state monitoring. This method is widely used, such 

as extracting single-domain multi-features, multi-domain multi-features, as well as directly 

extracting deep features from raw data, etc., and take the extracted features directly as HI or take the 

dimension-reduced features as HI [5–12]. Another idea is to divide the feature data into healthy 

samples and test samples based on the extracted features, measure the health degree of the test 

samples by calculating the similarity, and define the health degree as HI. The change process of the 

health degree is regarded as the process of performance degradation [13–16]. In addition, some 

researchers directly use the raw vibration signal as the input of the neural network [17–20], and use 

the deep features contained in the extracted signal as a HI. However, the first two methods have 

problems such as incomplete use of the state information of the monitored object and ignoring the 

nonlinear relationship between the characteristics. The third method needs to fully consider the 

operating characteristics of the monitored objects, because different monitored objects have different 

mechanical structures, operating environments and damage mechanisms. In terms of building 

degradation trend prediction models, most researchers use shallow machine learning methods such 

as support vector machine (SVM) and extreme learning machine (ELM) [21–24], or use the long short-

term memory (LSTM) neural network, the gated recurrent unit (GRU) model and the deep learning 

method optimized on this basis [25–32]. However, it is difficult for shallow machine learning methods 

to fully exploit the correlation between data, which will have a great impact on the accuracy of 

prediction results. While for deep learning methods, as far as the current recurrent neural network 

model, it is most suitable for sequence data prediction and still difficult to perform a large number of 

parallel calculations due to the network structure, which affects the calculation speed of the model. 

The vibration signal contains the most essential information of the operating state of the 

monitored object [33]. In this paper, a research on the performance degradation prediction of the 

rolling contact fatigue specimen based on the vibration signal is carried out. Aiming at the 

shortcomings of existing performance degradation prediction research, such as information loss 

when building HI, poor parallel computing performance and small receptive field when constructing 

prediction models, combined with the non-stationary and nonlinear vibration characteristics of the 

monitored object, as well as the timing characteristics of performance degradation, a performance 

degradation trend prediction method based on multi-domain features and temporal convolutional 

network (TCN) is proposed, and the effectiveness of the method is verified by using the bearing 

public data. On this basis, relying on the monitoring data of the rolling contact fatigue testing 
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machine independently developed by the research group, the accurate performance degradation 

prediction of the rolling contact fatigue specimen is realized. 

2. Theory and Method 

2.1. Multi-domain Feature Extraction and Feature Screening 

2.1.1. Multi-domain Feature Extraction 

In view of the fact that the information contained in a single feature or single-domain feature 

has certain limitations, it cannot fully reflect the complete process of the performance degradation of 

the monitored object. Therefore, this paper extracts the vibration signal from time domain, frequency 

domain and time-frequency domain. Note that the discrete vibration signal value collected each time 

during the test is  11 2 3( ) , , , ,N Nx n x x x x x−= , where N
 

is the number of sampling points each 

time. For the convenience of subsequent description, the extracted features are numbered. 

Time domain analysis is to describe vibration signals through statistical features, including 

dimensional indicators and dimensionless indicators. In this paper, the 7 dimensional features 

extracted such as mean and root mean square value, and 6 dimensionless features extracted such as 

skewness index and kurtosis index are shown in Table 1 [34]. 

Table 1. Time domain feature parameters. 

No. Feature Calculation formula 

Dimensional Time Domain Features 

1f
 mean 

1

1 N

i

i

X x
N

−

=
= 

 

2f  rms value 
2

1

1 N

rms i

i

X x
N =

= 
 

3f  variance 
2

var

1

1
( )

1

N

i

i

X x X
N =

= −
− 

 

4f  absolute mean 
1

1 N

abs i

i

X x
N =

= 
 

5f  root amplitude 

2

1

1 N

sra i

i

X x
N =

 
=   
 


 

6f  peak ( )
1
maxp i

i N
X x

 
=  

7f  peak-to-peak ( ) ( )max minp p i iX x x− = −  

Dimensionless time domain features 

8f  skewness index ( )3 3

1

1 N

skew i std

i

X x X X
N =

= −
 

9f  kurtosis index ( )4 4

1

1 N

kur i std

i

X x X X
N =

= −
 

10f  peak indicator c f p rmsX X X− =  

11f  margin indicator cl f pX X Xsra− =  

12f  impulse indicator i f p absX X X− =  

13f  waveform indicator s f rms absX X X− =  

The frequency domain analysis is to transform the vibration signal into the frequency domain 

through Fourier Transform (FT), and then analyze the obtained signal spectrogram. Compared with 

time domain analysis, it can display more details of fault characteristics. In this paper, the 12 

frequency domain features extracted such as the frequency amplitude mean and frequency 

amplitude variance are shown in Table 2 [34], where ( )s k  represents the spectrum obtained by the 
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Fast Fourier Transform (FFT) of each sampled signal, and kf  represents the frequency value of the 

k-th spectral line. 

Table 2. Frequency domain feature parameters. 

No. Feature Calculation formula 

14f  
frequency amplitude 

mean 
( )1

1

1 K

k

F s k
K =

=   

15f  
frequency amplitude 

variance 
( ) 2

2 1

1

1
( )

1

K

k

F s k F
K =

= −
−   

16f  
first-order center of 

gravity 
( ) ( )3

1 1

K K

k

k k

F f s k s k

= =
=   

17f  
second-order center of 

gravity 
( )2

4 3

1

1
( )

K

k

k

F f F s k
K =

= −  

18f  rms frequency ( ) ( )2
5

1 1

K K

k

k k

F f s k s k

= =
=  

 

19f  
frequency domain 

features 1 
( ) ( )33

6 1 2

1

( )
K

k

F s k F K F

=

 = −   
  

20f  
frequency domain 

features 2 
( ) ( )4 2

7 1 2

1

( )
K

k

F s k F KF

=
= −

 

21f  
frequency domain 

features 3 
( ) ( ) ( )2 4

8

1 1 1

K K K

k k

k k k

F f s k s k f s k

= = =
=    

22f  
frequency domain 

features 4 
9 4 3F F F=  

23f  
frequency domain 

features 5 
( ) ( )4 2

10

1 1

K K

k k

k k

F f s k f s k

= =
=    

24f  
frequency domain 

features 6 
( ) ( )3 3

11 3 4

1

( )
K

k

k

F f F s k KF

=
= −  

25f  
frequency domain 

features 7 
( ) ( )4 4

12 3 4

1

( )
K

k

k

F f F s k KF

=
= −  

Time-frequency analysis can capture transient characteristics, making up for the limitation that 

a single time-domain analysis or frequency-domain analysis cannot fully reflect fault characteristics 

when dealing with complex non-stationary signals. In this paper, the wavelet packet transform is 

used to extract the time-frequency domain features of the vibration signal, and the wavelet basis 

selects the db3 function to decompose the signal in three layers, as shown in Figure 1. 

 

Figure 1. Schematic diagram of three-layer wavelet packet decomposition. 

After the original signal is decomposed by wavelet packet, the second norm of the node 

coefficient is called the node energy. When the monitored object fails, some node energy may change. 

ADDADAAADAAA DAA DAD DDA DDD
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Therefore, the ratio of the node energy to the total node energy in the corresponding decomposition 

layer is used as the time-frequency domain feature parameter. 

2
= ( )i ie c t                                     (1) 

 
1

M

i i m

m

E e e
=

=                                    (2) 

where ie
 represents the energy of the i-th node coefficient; ( )ic t represents the wavelet packet coefficient 

of the i-th node decomposed at each layer; M represents the total number of nodes obtained by each layer 

decomposition. 

Considering the features number and the decomposition degree of the signal, this paper selects 

a total of 12 feature parameters of the energy ratio of each node in the second and third layers of the 

signal wavelet packet decomposition as the time-frequency domain features. According to the 

position of each nod e in the wavelet packet signal decomposition tree diagram shown in Figure 1, 

for the second layer and the third layer in order from left to right, the eigenvalues calculated by the 

coefficients of each node are numbered as f26-f29 and f30-f37. 

2.1.2. Feature Screening 

A total of 37 multi-domain features have been extracted based on the original vibration signal, 

but not every feature can well reflect the performance degradation process of the monitored object. 

Therefore, it is unscientific to screen features only based on the visualization results of features, and 

it is necessary to establish evaluation indicators to get the optimal feature set. In this paper, the 

monotonicity of features, the correlation between features and the trend evaluation index of features 

are integrated [35], and a comprehensive evaluation index Ch(F) is constructed for feature screening. 

It should be noted that, since the change of the feature may show a downward trend with time, and 

its trend value is negative, the trend value in formula (3) takes an absolute value. 

1 2 3

3

1

( ) ( ) ( ) ( )

. . 1, 0i i

i

Ch F Mon F Con F Tre F

s t

  

 
=

= + +

= 
                   (3) 

where 1 2 3  、 、 represents the proportion of monotonicity, correlation mean and trend of the 

feature respectively, and its value can be optimized according to the service environment and 

performance degradation characteristics of the monitored object. The definitions of three evaluation 

indicators are shown in formulas (4), (5) and (6), respectively. 

( ) 1
( 0) ( 0)

1

d d
Mon F S S

N dF dF
=  − 

−
                    (4) 

1

1
( ) ( , )

N

j

j

Con F Con F F
N =

=                            (5)  

1 1 1

2 2

2 2

1 1 1 1

( , )

N N N

i i i i

i i i

N N N N

i i i i

i i i i

N f t f t

Tre F T

N f f N t t

= = =

= = = =

    
−        

    =
         − −               

  

   

                 (6) 

In formula (4), N represents the number of samples in the feature F ; /d dF represents the 

derivation result of the feature F; S represents the number of /d dF is greater than zero or less than 

zero. In formula (5), if there are N feature sequences, the correlation between the feature and the 

features including itself can be obtained according to formula (7) (the correlation between the feature 

and itself is 1), and then the obtained value can be substituted into formula (5) can be used to obtain 

the mean correlation of features. In formula (6), if  represents the i-th value in the rank sequence F  
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of the feature sequence F ; it  represents the i-th value in the rank sequence T of the time series T

. 

( )( )

( ) ( )

1, 1 2, 2

1
1 2

2 2

1, 1 2, 2

1 1

( , )

N

i i

i

N N

i i

i i

f F f F

Con F F

f F f F

=

= =

− −

=

− −



 
                  (7) 

where 1 2,F F  represents any two feature sequences; N  represents the number of samples in the 

feature; 1,if  and 1F  represents the i-th eigenvalue and mean of the feature 1F , respectively; 2,if

and 2F represents the i-th eigenvalue and mean of the feature 2F , respectively. 

In order to get the features that are sensitive to the performance degradation process of the 

monitored object, the monotonicity, correlation mean and trend of 37 multi-domain features are 

calculated according to equations (4), (5) and (6). On this basis, the comprehensive evaluation index 

value of each feature is calculated according to formula (3), and the features with larger 

comprehensive evaluation index value are selected to form the optimal feature set. 

2.2. Construction of Health Index 

The construction of the HI is closely related to the extracted vibration signal characteristics, and 

the ideal HI can clearly reflect the performance degradation process of the monitored object in the 

whole life cycle. Aiming at the information loss problem faced by the existing one-dimensional HI, 

on the basis of above multi-domain feature extraction, this paper adopts kernel principal component 

analysis (KPCA) to reduce the feature dimension, and uses convolutional auto-encoding (CAE) 

network to build HI. 

2.2.1. Feature Dimensionality Reduction Based on KPCA 

The dimension of the preferred feature set obtained by the aforementioned method is still high, 

which will bring dimensional disaster to subsequent calculations. At the same time, there is coupling 

between the features of the high-dimensional feature set, which will lead to information duplication 

and overfitting. Therefore, it is necessary to reduce the dimension of the preferred feature set to retain 

as much effective information as possible while reducing the dimension of the feature set. 

Considering the non-stationary and nonlinear characteristics of vibration signals in the process 

of performance degradation of most monitored objects, it is more general to select a dimension 

reduction method suitable for nonlinear operations for feature dimension reduction. In this paper, 

the KPCA method is used to reduce the dimension of the preferred feature set. This method uses the 

kernel function to effectively capture the nonlinear characteristics of the data [14], and non-linearly 

maps the linearly inseparable data in the low-dimensional space to the high-dimensional space, so as 

to realize the linearity of the data [36,37]. 

Let the original data set be 1 2={ , , }n1X x x x  , where ix  represents a sample, and each 

sample has m features, which is mapped 1X  to a high-dimensional space F  through a nonlinear 

mapping function ( )x to get 1( ) X . Assuming that the mapping relationship has been 

decentralized, ie 
1

=0
n

i

i


=
 (x ) , the covariance matrix of 1( ) X  is: 

T
1 1

1

n
 =C (X ) (X )                               (8) 

Let the eigenvalue of C be  and the eigenvector be v , then 

 =v Cv                                         (9) 
Since 1/ n  is a coefficient, it can be omitted. When 0  , combining equations (8) and (9), then  
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T

1

1 n

i i

i

 
 =

= v (x ) (x ) v                               (10) 

Note that T
i(x ) v  is a scalar, so there is a set of coefficients  T1 2, , , n   = such that: 

1

1

n

j j

j

  
=

= =v (x ) (X )                              (11) 

Combining formula (8) and formula (9), substituting formula (11) into formula (11) can be obtained: 
T

1 1 1 1   =(X ) (X ) (X ) (X )                               (12) 

Multiply both ends of the above equation by 1
T(X ) , get: 

1 1 1 1 1 1
T T T     =(X ) (X ) (X ) (X ) (X ) (X )                      (13) 

Define matrix 1 1
T K = (X ) (X ) , then K is a symmetric positive semi-definite matrix of n n

order, Equation (13) can be simplified as: 

 =                                     (14) 
where   and   are the eigenvectors and eigenvalues of  , respectively. 

Let the eigenvalue of   be 1 2 n     , and take the first p  eigenvalues to reduce the 

dimension. Normalize the eigenvectors in F , even if T 1k k =v v ( 1,2, , )k p= , correspondingly, 

according to equations (11) and (14), get: 
T 1   ( 1,2, , )k k k k p = =                            (15) 

After obtaining the eigenvector of  , divide by k  to achieve normalization. 

And each principal component of 1X  in space F  is the projection of i(x ) on the eigenvector 

lv ( 1,2, , )l n=  of C , namely: 

T T

1 1

n n

i l lj i j lj ij

j j

K    
= =

= = (x ) v (x ) (x )                    (16) 

where lj  represents the j-th value in l . 

On this basis, the principal component can be obtained according to the matrix   and its 

eigenvector, and the kernel function ( , )k x y  is usually used to obtain  , namely: 

    T= = ( , )ij i j i jK k (x ) (x ) x x                           (17) 

It should be noted that the above calculation process is carried out on the basis of 1( ) X

decentralization, specifically: 

1 1 1( )= ( ) ( )N  −X X I X                           (18) 
where NI  represents 1 / N  multiplied by the N N -order identity matrix, and correspondingly, 

the result after decentralization of   is: 

= N N N N− +I I I I  −                              (19) 

Therefore, the contribution rate of the k-th principal component in F is calculated by the ratio of 

k   to 
1

n

i

i


=
 , and the contribution rate of the principal component represents the percentage of the 

information contained in the principal component to all the information in 1( ) X   [38]. 

2.2.2. Construction of HI Based on CAE Network 

Convolution Auto Encoders (CAE) network is a network model derived from Auto Encoders 

(AE) network, which converts the encoding and decoding calculation process of data from 

conventional linear layers to convolution layers to better obtain data deep nonlinear information. The 

simple CAE network structure is shown in Figure 2. 
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Figure 2. Schematic diagram of convolution auto encoder network. 

In the encoding stage, the input information is encoded through multi-layer convolution 

operations, and finally a one-dimensional encoded feature is obtained. For a one-dimensional input 

sequence x , the one-dimensional convolution operation at each layer is as follows: 

( )k k kf w x by = +                              (20) 
where kw  represents the k-th convolution kernel of the convolutional layer; kb represents the 

corresponding bias; “ ” represents the convolution operation; f  represents the activation function.  

In the decoding stage, the encoded features are used as input, and the dimension of the original 

information is reconstructed through layer-by-layer one-dimensional transposed convolution. The 

1D transposed convolution operation for each layer is as follows: 

( ' ' )'k k kh w y bx =  +                                  (21) 

where y  represents the input sequence of the transposed convolution; 'kw and 'kb represent the k-

th convolution kernel and the corresponding bias of the transposed convolution, respectively; “ ” 
represents the transposed convolution operation; h  represents the activation function. 

Compared with the fully connected layer in the ordinary AE network, this paper uses the 

convolution layer in the CAE network, which has stronger nonlinear mapping ability. 

2.3. Performance Degradation Prediction 

The HI constructed above can reflect the degradation process of the performance of the 

monitored object. Therefore, the prediction of the performance degradation trend of the monitored 

object is essentially the prediction of the HI value. HI is one-dimensional time series data that changes 

with time. Aiming at the shortcomings of the commonly used prediction models based on recurrent 

neural networks, such as low parallel computation and small receptive field for input data, this paper 

builds the performance degradation trend prediction model of the monitored object based on the 

Temporal Convolutional Network (TCN) and realizes the prediction. TCN adopts the structure of 

one-dimensional full convolution, causal convolution, dilated convolution and residual connection, 

which has the advantages of large receptive field, strong parallel computing and can weaken the 

gradient problem [39,40].  

2.3.1. Temporal Convolutional Networks 

Figure 3 illustrates the combined process of representing one-dimensional full convolution, 

causal convolution, and dilated convolution with dilated causal convolution, where the input 

sequence is , the output sequence after the three-layer one-dimensional dilated 

causal convolution operation with a convolution kernel size of 3 is , and the 

dilation coefficient in the convolution calculation , generally d=2. 

 1 2 1, , , ,t tX x x x x−=

 1 2 1, , , ,t tY y y y y−=

d N *
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Figure 3. Schematic diagram of dilated causal convolution operation. 

The receptive field  is related to the size of the convolution kernel, the number of layers in the 

convolution calculation and the expansion coefficient. And its calculation formula is: 

                            (22) 

where  represents the size of the convolution kernel;  represents the number of convolution 

layers in the network; represents the base of the expansion coefficient, usually set . 

In TCN, given a one-dimensional input sequence n
xR and a convolution kernel

 : 0,1 1f k − → R  , the calculation result of the dilated causal full convolution at position 3 of the 

sequence is: 

 
1

0

( ) ( )
k

s d i

i

F s f i x
−

− 
=

=                             (23) 

where s d ix −   represents the ( s d i−  )-th element in the previous layer, and the other parameters have 

the same meanings as before. 

In addition, TCN uses residual block connection to increase the network depth. By connecting 

multiple residual blocks together, the gradient problem can be effectively weakened and the model 

receptive field can be further increased. The form of each residual block is shown in Figure 4. 

 

Figure 4. Schematic diagram of residual block in TCN. 
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2.3.2. Performance Degradation Prediction Based on TCN 

Data-driven forecasting can be divided into single-step prediction and multi-step prediction. 

Since single-step prediction can only predict the value of the next moment, it is of little practical 

engineering significance. Therefore, this paper adopts multi-step prediction. 

The strategy of multi-step forecasting is divided into direct forecasting and recursive forecasting 

[4], as shown in Figure 5. There is only one time point for each prediction in recursive prediction. 

Since the errors of each prediction will accumulate, it may eventually cause a large deviation between 

the predicted sequence and the actual value. While direct prediction is to predict the target sequence 

at one time. Since there are many time points for each prediction, the prediction model is required to 

be better. Comparing two forecasting strategies and considering the engineering application value, 

this paper chooses direct forecasting. 

 

(a) Recursive multi-step prediction 

 

(b) Direct multi-step forecasting 

Figure 5. Multi-step forecasting. 

The process of using direct multi-step prediction to predict the performance degradation of the 

monitoring object is as follows: 1) Combine the HI samples number of the monitored objects, divide 

them into training sets and test sets according to an appropriate ratio, and use the spatial phase 

reconstruction technology to form the training set and test set of the prediction model respectively. 

And set the time step and prediction step of each input; 2) Set the key parameters of the prediction 

model and model training, input the training set into the prediction model, use the obtained predicted 

value and the actual value to calculate the error, and optimize the hyperparameters in the model 

through error backpropagation. This cycle is repeated until the set number of training times is 

reached or the prediction error reaches the threshold; 3) Input the test set into the trained model to 

obtain the predicted value, and calculate the evaluation index based on the error between the 

predicted value and the actual value, and evaluate the prediction ability of the model. 

    In this paper, the root mean square error (RMSE) and the mean absolute error (MAE) are used as 

the evaluation indicators of the model, and their calculation formulas are: 

2

1

1 ˆ( )
N

i

RMSE y y
N =

= −                           (24) 

1

1 ˆ
N

i

MAE y y
N =

= −                             (25) 

where ŷ  represents the predicted value of the model, and y  represents the true value. 
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3. Verification 

The data used in the verification test come from the rolling bearing life data set of the NSF I/UCR 

Intelligent System Maintenance Center in the United States. The structure of the test bench is shown 

in Figure 6. The DC motor drives the drive shaft to rotate with the speed 2000r/min. The applied 

radial load is 6000lbs (ie 2721.5kg), and four double-row cylindrical roller bearings (Rexnord ZA-

2115) are installed on the drive shaft. The 353B33 high-sensitivity ICP accelerometer of PCB company 

and the 6062E acquisition card of NI company are used to collect the vibration signal of the bearing. 

 

Figure 6. Rolling bearing full life test bench. 

The bearing public data contains three test data, and the 2nd test data is used in this paper. 

Among them, the sampling frequency of the experiment is 20 kHz, data is collected every 10 minutes, 

and 20480 sampling points are collected each time. The test ran for a total of 8 days. The acceleration 

signals of the four bearings corresponded to the four channels in the data set respectively. Finally, 

the test ended when the outer ring of 1#bearing failed. A total of 984 times were collected. Therefore, 

a total of 984×20480 sampling points were collected.  

The change of the vibration signal during the whole life of the 1#bearing is shown in Figure 7. It 

can be seen that: 1) In the early stage of the test, the running state of the 1#bearing was relatively 

stable, and its vibration signal had no obvious abnormal change; 2) After a minor fault of the 

1#bearing occurs, the amplitude of the vibration signal begins to increase; 3) With the progress of the 

test, the failure of the 1#bearing intensified, the vibration signal began to change abruptly, the 

amplitude further increased, and finally the 1#bearing suffered a serious outer ring failure, and the 

value of the vibration signal at the corresponding time also reflected this situation more clearly. The 

above phenomenon shows that it is feasible to analyze the bearing performance degradation trend 

based on the vibration signal. However, the degradation trend of the original vibration signal is not 

intuitive enough to better analyze the performance degradation process of the 1#bearing, and only 

when the 1#bearing fault is serious will it be reflected on the original vibration signal, which is 

obviously disadvantageous for the identification of early/weak faults. Therefore, it is necessary to 

analyze the performance degradation process of the 1#bearing through feature extraction. 

 

Figure 7. Lifetime vibration signal of 1#bearing. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 July 2023                   doi:10.20944/preprints202307.0326.v1

https://doi.org/10.20944/preprints202307.0326.v1


 12 

 

3.1. Verification of Feature Screening Method 

Combined with the experimental plan, an eigenvalue is calculated for the 20480 sampling points 

collected in a single time, and each eigenindex sequence consists of 984 values. According to Tables 

1 and 2, the change trends of the time domain and frequency domain characteristics in the whole life 

cycle of 1#bearing are shown in Figure 8 and Figure 9, respectively. Figure 10 shows the change trend 

of the time-frequency domain characteristics in the whole life cycle of the 1#bearing extracted 

according to equations (1) and (2). In order to visualize the change trend of each feature more 

conveniently, the features are normalized. 

According to Figure 8, it can be found that the time-domain features can more intuitively reflect the 

performance degradation process of the 1#bearing than the original vibration signal, but not every 

time-domain feature can describe this process well. The 13 time-domain features can be divided into 

the following four categories according to the changing trend: 1) The first type of characteristic, such 

as the mean characteristic etc., although the amplitude fluctuates from the beginning of the test to the 

end of the test, it is not sensitive to the slight and moderate faults of the 1#bearing. Until the 1#bearing 

fails completely, its amplitude changes significantly; 2) The second type of features, such as skewness 

and kurtosis characteristics, is relatively stable in the early stage, which corresponds well with the 

running state of the 1#bearing, but is not sensitive enough to minor faults. After the 1#bearing is 

slightly damaged, the characteristics are not displayed in time, and can not show changes until the 

degree of failure is more serious; 3) The third type of characteristics, such as peak index, margin index 

and pulse index, etc., fluctuates violently from the beginning, and shows a certain change trend with 

the operation of the 1#bearing. But the fluctuation of this type of characteristics is too large, so that 

the change trend of the characteristics is not obvious enough to be submerged in it; 4) The changes of 

the fourth type of characteristics, such as the root mean square value, variance and root square 

amplitude, are similar to those of the second type in the early stage, but the difference is that when 

the 1#bearing has a slight fault, the amplitude of the characteristics also changes correspondingly. 

And with the deepening of the failure degree, this change will be more obvious, which can better 

reflect the performance degradation trend of the bearing during the entire life. 

     
         (a) Dimensional time domain features                         (b) Dimensionless time domain features 

Figure 8. Variation trend of time domain feature. 
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Figure 9. Variation trend of frequency domain feature.  Figure 10. Variation trend of time-frequency domain features. 

According to Figure 9, it can be found that the change process of the 12 frequency-domain 

features over time is not the same. Except for the frequency-domain feature 7, other features can 

change when the 1#bearing fails, which shows that the frequency domain features can better reflect 

the performance degradation process of the 1#bearing. However, some frequency domain features, 

such as frequency domain features 1, 2, 5 and 6, etc., decrease in amplitude after the 1#bearing failure, 

and further decrease over time until the performance degrades sharply and their amplitude fluctuates 

drastically.  

According to Figure 10, it can be found that most of the time-frequency domain features do not 

reflect the performance degradation process of the 1#bearing well, and the trend is not obvious and 

the fluctuation is large. 

Therefore, the feature screening is carried out according to the aforementioned method. At this 

time, the performance degradation of the 1#bearing is paid attention to, and 1=0.3 , 2 =0.3 , 3 =0.4  

during the calculation, and the result is shown in Figure 11. If the mean value of the comprehensive 

evaluation value of 37 features is 0.4013 as the threshold, then the comprehensive evaluation value 

of 25 features is greater than or equal to 0.4013. However, combined with the changing trends of the 

aforementioned features, it is found that some of these 25 features fluctuate greatly or are relatively 

gentle in the changing process, such as features f16 and f22, etc. Therefore, considering the 

comprehensive evaluation value, degradation process of each feature and the dimension of the 

feature set, the features with the comprehensive evaluation value greater than or equal to 0.48 are 

reserved to form the optimal feature set, which includes 14 features such as features f4, f5 and f2, etc. 

Among these features, even the feature f7 with the smallest comprehensive evaluation value, when 

the 1#bearing is running well, its amplitude fluctuation is small. Although it is not sensitive enough 

to minor damage, it can also be reflected after obvious failure of the 1#bearing. Therefore, these 14 
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features can be used as the preferred feature set for performance degradation assessment of 

1#bearing. 

 

Figure 11. Comprehensive evaluation index of characteristics. 

3.2. Verification of of HI Construction Method 

The KPCA method is used to reduce the dimensionality of the aforementioned 14 preferred 

features. Firstly, the features of the low-dimensional space are mapped to the high-dimensional 

space. In this paper, the rbf radial basis function is selected as the kernel function. The specific type 

is the Gaussian kernel function, and its expression is: 

2
1 2

1 2

- x - x
(x x ) exp( )

2
k ,


=                              (26) 

where 1x 、 2x  can be regarded as two feature sequences;   is the kernel parameter. 

Secondly, the contribution rate of each principal component is calculated in a high-dimensional 

space. Taking the previous 10 principal components as an example, the respective contribution rates 

are shown in Figure 12. It can be seen that the first and second principal components occupy 77.32% 

and 15.26% of the original data information respectively. The larger the subsequent principal 

component number, the smaller the contribution rate, and gradually approach zero. 

 

Figure 12. The contribution rate of the top 10 principal components. 

In order to determine the appropriate dimension, the cumulative contribution rate curve of the 

principal components is drawn as shown in Figure 13. It can be seen that: 1) With the increase of the 

principal components, the cumulative contribution rate of principal components becomes smooth 

after a large increase, and finally approaches 1 infinitely; 2) The inflection point of the curve is roughly 

at the fourth principal component. After that, even if the principal components number continues to 

increase, the cumulative contribution rate will not increase significantly. Therefore, this paper selects 

the first four principal components as the features after dimension reduction, and their cumulative 

contribution rate reaches 97.63%. That is to say, the features after dimension reduction contain 97.63% 
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of the information of the original data, and it is the most appropriate that the dimension is reduced 

from 14 dimensions to 4 dimensions. 

 

Figure 13. The cumulative contribution rate of the principal components. 

The variation trends of the first four main elements of 1#bearing are shown in Figure 14, which 

are used as the input value and target value of the CAE network for training, and the obtained 

encoded features are used as the HI of 1#bearing. For the convenience of comparison, the HI of 

1#bearing is constructed using the Auto-Encoding (AE) network and the Gaussian Mixture Model 

(GMM) respectively. The HI obtained by three different methods is shown in Figure  15 after 

denoising and smoothing. 

 

Figure 14. Variation trend of the top 4 principal components. 

   

                    (a) CAE-HI                                           (b) AE-HI 
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(c) GMM-HI  

Figure 15. HI constructed by different methods. 

The comparative analysis shows that: 1) The HI constructed by three different methods show a 

consistent degradation trend, and the change process reflects the performance degradation process 

of 1#bearing. 2) In the early stage of the test, since the running state of the 1#bearing is relatively 

stable, the amplitude of its HI should be relatively stable on the whole. Considering the actual 

operation situation, the amplitude of the HI slightly fluctuates more in line with reality. Observing 

Figure 15, it is found that the early stage of GMM-HI is too stable and has almost no fluctuation. The 

early stage of AE-HI fluctuates greatly, which is different from the actual situation. While the early 

stage of CAE-HI is in line with the expectation of overall stability and slight fluctuation. 3) As the test 

progresses, the 1#bearing begins to be damaged, and the amplitude of the HI should show an 

increasing trend. Observing Figure 15, it is found that GMM-HI began to increase significantly after 

the 5240th minute, while AE-HI and CAE-HI began to increase after the 5200th minute. That is to say, 

40 minutes ahead of GMM-HI. It is very important for the actual industrial production to be able to 

detect the early damage of the monitored object in time. From this level of analysis, it is obvious that 

AE-HI and CAE-HI are better. 4) When the 1#bearing fails, the amplitude of the HI should fluctuate 

greatly. Observing Figure 15, it is found that AE-HI and CAE-HI began to fluctuate greatly after the 

6820th minute, while GMM-HI was delayed by 10 minutes. 5) As the test continues, the 1#bearing 

fails completely, and the amplitude of the HI should change sharply. Observing Figure 15, it was 

found that CAE-HI showed a steep change at the 9360th minute, while AE-HI and GMM-HI were 

delayed at the 9370th and 9400th minutes, respectively. 

Therefore, whether from the qualitative analysis reflecting the early running state of the 

1#bearing, or from the quantitative analysis of the 1#bearing damage and failure time point, the 

results show that the CAE-HI constructed in this paper is superior to AE-HI and GMM-HI. 

Further, characteristic evaluation indicators, such as monotonicity and trend established by 

formula (4) and formula (6), can be used to evaluate the HI constructed by three different methods. 

The results are shown in Table 3. It can be seen that the CAE-HI constructed in this paper is better 

than AE-HI and GMM-HI. 

Table 3. Performance of HI constructed by different methods. 

Evaluation 

indicator 
CAE-HI AE-HI 

GMM-

HI 

Monotonicity 0.2513 0.2411 0.1801 

Trend 0.9462 0.9430 0.9454 

3.3. Verification of Performance Degradation Prediction Model 

Based on the TCN algorithm, the aforementioned direct multi-step prediction is used to predict 

the performance degradation trend of 1#bearing. By comparing with the prediction models 

constructed based on the Long Short-Term Memory (LSTM) network and the Gated Recurrent Unit 
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(GRU) algorithm, the superiority of the performance degradation prediction method proposed in this 

paper is verified.  

The HI of 1#bearing has a total of 984 data files, which are divided into training set and test set 

according to the ratio of 7:3, that is, the first 689 data files and the remaining 295 data files respectively 

form the training set and test set of the prediction model through spatial phase reconstruction 

technology. Set the time step of each input to 8 and the prediction step to 3. Set the size of the 

convolution kernel in the model to 3, the number of convolution layers to 4 and the expansion 

coefficient to 2. The number of iterations for training the model is 150, and the input batch size in 

each training is 10. The prediction results based on the TCN model are shown in Figure 16, which 

also shows the prediction results based on LSTM and GRU models. It should be noted that in order 

to prevent the model from overfitting, the number of hidden layers for training LSTM and GRU is 

set to 1, the maximum number of iterations is 100, and the dropout is 0.3. 

 

Figure 16. Performance degradation prediction of 1#bearing based on different methods. 

According to Figure 16, it can be seen that: 1) The prediction models established by three 

different methods can make accurate performance degradation predictions of the 1#bearing, and the 

difference between the predicted values of three different methods at certain time points is very small 

or even the same; 2) In the failure stage of 1#bearing, the deviation between the predicted value and 

the actual value of two methods based on the LSTM algorithm and the GRU algorithm is large. 

Further, combined with the evaluation indicators established by Equation (28) and Equation 

(29), the prediction models constructed by three different methods were evaluated, and the results 

are shown in Table 4. It can be seen that compared with the other two models, the performance 

degradation trend prediction model constructed based on TCN in this paper has better prediction 

performance and higher prediction accuracy. 

Table 4. Evaluation metrics for different prediction models. 

Evaluation 

indicator 

Predictive model 

TCN LSTM  GRU 

RMSE 0.0257 0.0385 0.0366 

MAE 0.0187 0.0264 0.0234 

4. Application 

The feasibility of the performance degradation trend prediction method based on multi-domain 

features and TCN proposed in this paper is verified by using the bearing public data. Now, it is 

applied to predict the performance degradation trend of rolling contact fatigue specimen to further 

verify the effectiveness of the method. 
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4.1. Introduction of Rolling Contact Fatigue Test Equipment 

According to "Rolling Contact Fatigue Test Method for Metal Materials" (YB/T 5345.2014) [41], 

the contact fatigue properties of materials are obtained by testing on a rolling contact fatigue testing 

machine. The research group successfully developed a rolling contact fatigue testing machine, as 

shown in Figure 17, which solved the problems of similar test technologies, such as discontinuous 

data collection, untraceable damage evolution and difficulty in accurately obtaining fatigue strength. 

                

(a) 3D model                       (b) Prototype 

Figure 17. The structure of the self-developed RCF-A test machine. 

The testing machine is mainly composed of mechanical system, electrical system, vision system, 

measurement and control software system and lubrication system, etc. It can monitor the running 

state of the sample in real time. During the test, various sensors were installed to realize the 

measurement and control of key parameters such as vibration, load, oil temperature, rotational speed 

and torque. At the same time, an image acquisition system with independent intellectual property 

rights has been developed, which realizes real-time acquisition and accurate quantitative analysis of 

damage images. 

4.2. Rolling Contact Fatigue Test 

The test was carried out on the RCF-A type testing machine, as shown in Figure 18. The specimen 

and the accompanying specimen are processed according to the YB/T 5345.2014 test standard, the 

material is 40Cr, and the quenching and tempering process is used. During the test, set the rotational 

speed of the main shaft (specimen) to 1000 r/min, the rotational speed of the accompanying shaft 

(accompanying specimen) to 1100 r/min, the slip rate to be 10%, and the radial load to be 2071 N. The 

1A307E accelerometer is installed on the headstock box by magnetic attraction (as shown in Figure 

19), and the EM9118B-6/ICP data acquisition card is used to collect vibration signals. The control 

interface of the testing machine is shown in Figure 20. 

 
1. Accompanying axle box; 2. Spindle box 

Figure 18. Schematic diagram of the shaft box of the RCF-A test machine. 
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1.specimen; 2.Accompanying specimen;3.Acceleration sensor; 4.Fuel injection pipe 

Figure 19. The installation position of the accelerometer. 

 

Figure 20. The control interface of the RCF-A test machine. 

The performance degradation of the specimen is a gradual process, and the period of rolling 

contact fatigue test is relatively long. In order to avoid too much repetitive information in the data, 

the vibration signal is collected by interval sampling during the test. The sampling frequency was 10 

kHz, and the samples were collected every 2 min. The time of each collection was 1s. The collected 

data points were 10,000 until the specimen failed. 

Finally, when the test went to 1632min, the contact fatigue failure of the specimen occurred. 

Figure 21 shows the good state and failure state of the specimen before and after the test. It can be 

seen that due to rolling contact fatigue, pitting corrosion and crack-induced spalling occurred at 1 

and 2 in Figure 21(b), respectively. Although the naked eye cannot easily found, but with the help of 

the image acquisition system of the testing machine, the time of fatigue failure was accurately 

captured. Figure 22 is the acquired image information of the contact surface of the specimen at key 

time points, which truly records the evolution process of the contact surface of the sample from the 

initiation of fatigue damage to the appearance of cracks and then to spalling. 

      

       1.pitting;             2.crack spalling 

    (a) Before the test       (b) After the test 
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Figure 21. Comparison of specimen before and after test. 

   

                 (a) normal status             (b) pitting              (c) Cracks appear 

    

               (d) Crack propagation      (e) further crack growth      (f) flaking occurs 

Figure 22. Fatigue damage and evolution process of specimen surface. 

According to the above-mentioned test process and data collection method, if the data collected 

every 1s is a data file and each file contains 10,000 sampling points, then a total of 816 data files are 

obtained until the specimen fails. The vibration signal in the whole life cycle of the specimen is shown 

in Figure 23, which contains 8.16106 sampling points. It can be seen that: 1) From the beginning of 

the test to about 3106 sampling points, the value of the specimen vibration signal does not fluctuate 

much, indicating that the specimen is in a relatively stable state; 2) From 3106 to 7106 sampling 

points, the signal amplitude increases significantly. Fatigue pitting damage should have occurred in 

the specimen; 3) After 7106 sampling points, the signal amplitude continued to increase, indicating 

that cracks appeared on the surface of the specimen, and the crack area expanded rapidly. Finally, 

spalling was formed and the specimen failed completely. 

 

Figure 23. Vibration signal during the whole life cycle of the specimen. 

4.3. Feature Screening 

A feature value is calculated for the data points obtained at each sampling time, and each 

feature sequence has a total of 816 values. The variation trend of the time-domain characteristics of 

the specimen in the whole life cycle is shown in Figure 24. It can be seen that: 1) In the dimensioned 

time domain feature, the mean value feature is not sensitive to the contact fatigue of the specimen, 

and the amplitude changes of other features can better reflect the state change of the specimen 

compared with the original vibration. The signal is more timely and clear; 2) Among the 

dimensionless time domain features, in addition to the skewness index feature, other features can 

also better reflect the change process of the specimen from normal to failure. 

Figure 25 shows the variation trend of the frequency-domain characteristics of the specimen in 

the whole life cycle. It can be found that in terms of reflecting the operating state of the specimen, the 

overall performance of the frequency domain features is not as good as the time domain features. 

Except for the amplitude mean and amplitude variance, other frequency domain features have large 

fluctuations in the whole life cycle. Although there is a certain trend in the performance degradation 

process of the specimen, this trend is not stable, and even jumps at some time points. 

 

41 10
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            (a) Dimensional feature                      (b) Dimensionless features 

Figure 24. Variation trend of time domain feature. 

The three-layer wavelet packet decomposition is performed on the vibration signal of the 

specimen, and the obtained energy changes of each frequency band in the second layer and the third 

layer are shown in Figure 26. It can be found that most of the time-frequency domain features do not 

reflect the performance degradation process of the specimen well, and the trend is not obvious and 

the fluctuation is large. 

      

Figure 25. Variation trend of frequency domain feature.      Figure 26. Variation trend of time-frequency domain features. 
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Similarly, in order to get the features that are sensitive to the contact fatigue degradation process 

of the specimen, the monotonicity, correlation mean and trend of 37 multi-domain features are 

calculated according to equations (4), (5) and (6). On this basis, the comprehensive evaluation index 

of each feature is calculated according to formula (3), and the result is shown in Figure 27. 

Considering the comprehensive evaluation value and degradation process of each feature, and 

considering the dimension of the feature set, the features with comprehensive evaluation value 

greater than or equal to 0.4 are reserved to form the optimal feature set, which includes 14 features 

such as feature , feature and feature . These preferred features can better reflect the 

performance degradation process of the specimen. 

 

Figure 27. Comprehensive evaluation index value of each feature. 

4.4. Feature Dimensionality Reduction 

The rolling contact fatigue performance of the specimen is degraded, and its vibration signal 

also has non-stationary and nonlinear characteristics. The dimensionality reduction of the 

aforementioned 14 preferred features was carried out by using KPCA method. 

When mapping the features of the low-dimensional space to the high-dimensional space, the 

Gaussian kernel function shown in equation (26) is also selected, and the respective contribution rates 

of the first 10 principal components are calculated as shown in Figure 28. The plotted pivotal 

cumulative contribution rate curve is shown in Figure 29. It can be seen that: 1) As the number of 

principal components increases, the cumulative contribution rate of the principal components also 

increases, and more information is contained; 2) The inflection point of the curve is roughly at the 

fourth principal component. At this time, even if the number of principal components continues to 

increase, the cumulative contribution rate will not increase significantly. Therefore, it is most 

appropriate to reduce dimensions from 14 to 4. 

 

Figure 28. The contribution rate of the top 10 principal components. 
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Figure 29. The cumulative contribution rate of the principal components. 

The variation trends of the first four principal components of the specimen are shown in Figure 

30. Through feature dimensionality reduction, the optimal feature set of the specimen is reduced from 

14 dimensions to 4 dimensions. The feature set after dimensionality reduction contains 98.33% of the 

information of the optimal feature set, achieving the purpose of reducing the dimension without 

losing a lot of information. 

 

Figure 30. Variation trend of the top 4 principal components. 

4.5. Construction of HI 

The dimensionality-reduced features are used as the input value and target value of the CAE 

network for training, and the obtained encoded features are used as the HI of the specimen. Similarly, 

the AE network and the GMM were used to construct the HI of the specimen respectively for 

comparison. The HI obtained by three different methods were denoised and smoothed, as shown in 

Figure 31. 

   

                    (a) CAE-HI                                           (b) AE-HI 
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(c) GMM-HI 

Figure 31. HI constructed by different methods. 

The comparative analysis shows that: 1) The HI constructed by three different methods show a 

consistent degradation trend, and the change process reflects the performance degradation process 

of the contact fatigue of the specimen, which is consistent with the process of rolling contact fatigue 

of the specimen in Figure 22. 2) In the early stage of the test, due to the relatively stable running state 

of the specimen, the amplitudes of HI were generally stable, but slightly fluctuated due to the 

influence of the test environmental conditions. 3) With the progress of the test, the specimen began 

to be damaged, and the amplitude of the HI showed an increasing trend. Observing Figure 31, it was 

found that AE-HI and GMM-HI began to increase significantly after 520min and 600min respectively, 

while CAE-HI began to show an increasing trend after 502min. That is to say, compared with AE-HI 

and GMM –HI, it was advanced by 18min and 98min respectively. Therefore, the HI construction 

method proposed in this paper has more advantages. 4) When the specimen has serious fatigue 

damage such as crack, the amplitude of the HI should fluctuate greatly. Observing Figure 31, it was 

found that CAE-HI began to fluctuate greatly after 1224 minutes, while the large fluctuations of AE-

HI and GMM-HI were delayed by 24 minutes and 10 minutes, respectively. 5) With the continuous 

progress of the test, the fatigue failure of the specimen occurs, and the amplitude of the HI changes 

sharply. Observing Figure 31, it was found that CAE-HI and GMM-HI showed a steep change at 1424 

min, while the abrupt change of AE-HI appeared at 1432 minute, and there was a lag. 

In a word, whether from the qualitative analysis reflecting the early running state of the 

specimen or from the quantitative analysis of the time point of the fatigue damage and fatigue failure 

of the specimen, the results show that the CAE-HI constructed in this paper is superior to the AE-HI 

and GMM-HI. Therefore, the method of constructing HI based on CAE network is reasonable and 

effective, and this method has obvious advantages compared with AE network and GMM, two 

commonly used methods of constructing HI. 

4.6. Performance Degradation Prediction of Rolling Contact Fatigue 

Based on the TCN algorithm, the direct multi-step prediction is also used to performance 

degradation prediction of the rolling contact fatigue specimen. By comparing with the prediction 

models based on the LSTM algorithm and the GRU algorithm, the superiority of the proposed 

performance degradation trend prediction method is further verified. 

The HI of specimen has a total of 816 data files, which are divided into training set and test set 

according to the ratio of 7:3, that is, the first 571 data files and the remaining 245 data files respectively 

form the training set and test set of the prediction model through spatial phase reconstruction 

technology. Other parameters are the same as that of the performance degradation prediction of 

1#bearing. 

The prediction results based on the TCN model are shown in Figure 32, and the prediction starts 

from the 580th sampling time, that is, the 1160th minute. In order to illustrate the superiority of the 

method, the prediction results of two commonly used time series data prediction models, LSTM 

network and GRU, are also shown in Figure 32. The evaluation indicators of three different prediction 
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models are shown in Table 5. It can be seen that the prediction model based on the TCN can well 

predict the performance degradation of the rolling contact fatigue specimen. Moreover, it is the best 

fit with the actual performance degradation curve, and the prediction accuracy is higher. At the same 

time, the model evaluation index is also the best among three models. 

 

Figure 32. Prediction results of different prediction models. 

Table 5. Evaluation index of different prediction models. 

Evaluation 

indicators 

Predictive model 

TCN GRU LSTM 

RMSE 0.0146 0.0555 0.0744 

MAE 0.0105 0.0308 0.0423 

5. Discussion 

In practical applications, the number of predicted steps can be appropriately increased according 

to demand. Figure 33 shows the prediction results based on the TCN model in the prediction time 

period when the prediction steps are 3, 4, and 5 respectively. It can be seen that: 1) In the early stage 

of prediction, the difference between the predicted values under different prediction step sizes is 

small and close to the actual value; 2) With the passage of time, the variation range of the HI increases, 

and the predicted value begins to deviate from the actual value; 3) In the later stage of prediction, the 

prediction error increases. The larger the prediction step sizes is, the larger the error is. 

  

                     (a) 1#bearing                                       (b) Specimen 

Figure 33. Prediction results based on TCN under different prediction step sizes. 

Further, the evaluation indicators RMSE and MAE are used to quantitatively evaluate the 

prediction effect of the model. The evaluation index values of the models under the aforementioned 

three prediction steps are shown in Table 6. It can be seen that under the same other conditions, with 

the increase of the prediction step size each time, the error of the prediction results increases. 

Therefore, when predicting performance degradation trend of the monitored object, the prediction 
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step size can be reasonably selected according to the actual demand under the premise of satisfying 

the prediction accuracy. 

Table 6. Evaluation index of TCN model under different prediction step size. 

Evaluation 

indicators 

1#bearing Specimen 

Prediction step size 

3 4 5 3 4 5 

RMSE 0.0257 0.0333 0.0418 0.0146 0.0259 0.0393 

MAE 0.0187 0.0243 0.0305 0.0105 0.0164 0.0270 

6. Conclusions 

In this paper, a performance degradation prediction method based on multi-domain features 

and TCN is proposed and implemented, where comprehensively using theories and methods such 

as multi-feature fusion, feature space transformation and machine learning. 

1) In terms of HI construction, in view of the information loss problem faced by the construction 

of one-dimensional HI based on multi-domain feature extraction, on the basis of multi-domain 

feature extraction, a method of using KPCA to reduce feature dimensionality and using CAE network 

to construct performance degradation HI is proposed. The results show that KPCA can reduce the 

dimension of the feature set, and retain more than 97% of the information of the original data. 

Furthermore, the change process of the HI constructed based on the CAE network truly reflects the 

performance degradation process of the monitored object. Compared with AE network and GMM, 

this method has obvious advantages. 

2) In the aspect of prediction model construction, in view of the shortcomings of the commonly 

used prediction model based on recurrent neural network, such as low parallel computation and 

small receptive field of input data, a performance degradation trend prediction method based on 

multi-domain features and TCN is proposed. The results show that the prediction model constructed 

by the TCN algorithm can accurately predict the performance degradation trend of the monitored 

object, and the constructed prediction model has better performance and higher accuracy than the 

prediction models based on LSTM network and GRU. 

The verification results of the bearing public data and the application results of the rolling 

contact fatigue show that the performance degradation prediction method based on multi-domain 

features and TCN proposed in this paper is feasible and effective. This method has general 

significance and can be extended to the performance degradation prediction of other mechanical 

equipment/components. 
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