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Abstract: We consider new insights into the origin and nature of pointer states and their role in

wave function collapse in macroscopic quantum coherence. The work includes new theory of

quantum coherence underpinned by turbulence, generated by a field of pointer states in the form

of recirculating vortices (toroids), interconnected via a vortex cascade. Decoherence occurs when

the interconnected field of vortices between pointer states is disrupted by external forces, leading to

their localisation. The applicability of this work is considered in addressing unresolved questions

in high temperature superconductivity and macroscopic quantum processes in biological systems.

We also consider its implications for our understanding of intrinsic spin and pointer states within

the standard "point source" representation of a quantum particle, which intuitively requires a more

complexed description.

Keywords: quantum decoherence; macroscopic quantum mechanics; high temperature

superconductivity; quantum biology

1. Introduction

1.1. The general principles underpinning decoherence in quantum system

A well established mathematical framework exists to describe the outcome of experiment in

quantum mechanics (QM) with high levels of precision. However, a number of questions remain

relating to the fundamental physical processes that define a quantum system. Building on a body of

earlier work [1–6], we consider new insights into the processes that underpin quantum coherence

and wave function collapse. Through this process we shed new light on a number of inter-related

postulates that underlie the present axiomatic foundation of QM [7]. Explicit examples include the

complex state function, Born’s postulate, the spin-statistic theorem and the Pauli exclusion principle.

1.1.2. Competing forces in diffusive and quantum systems

As described in [4], a diffusive system of environmental fluctuations that leads to collapse of a

wavefunction can be written in the form of a Euler equation (Eq 1), in which D represents a standard

diffusion coefficient, with the force expressed in terms of probability density P

(
∂

∂t
+ V.∇

)
V = −2D2 ∇

(
∆
√

P√
P

)
. (1)

Comparing this with the quantum equivalent in the free case [8].

(
∂

∂t
+ V.∇

)
V = +2D̃2 ∇

(
∆
√

P√
P

)
, (2)

we see an equivalence between a standard fluid subjected to a force field and a diffusion process with

the force expressed in terms of the probability density at each point and instant.
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The "diffusion force" derives from an external potential

φdiff = +2D2∆
√

P/
√

P. (3)

which introduces a square root of probability in the description of a classical diffusion process, whilst

the quantum force is the exact opposite, derived from an internally generated "quantum potential",

Q/m = −2D̃2∆
√

P/
√

P. (4)

This interpretation offers an insight into quantum decoherence in both standard QM and

macroscopic quantum systems such as High Temperature Super Conductivity (HTSC) [1]. At both

scales the two forms of potential energy exist and compete in quantum systems, summarised by the

total System-Environment Hamiltonians (HS-HE), and their interaction (Hint)

H = HS + HE + Hint. (5)

When the diffusive potential (Eq 3) exceeds the internal quantum potential (Eq 4), it leads to

wave function collapse. This fits well with decoherence theory in "quantum Brownian motion",

where during the decoherence process, the time evolution of position-space and momentum-space is

reflected in the superposition’s of two Gaussian wave packets [9]. Interference between the two wave

packets is represented by oscillations between the direct peaks. Interaction with the environment φdiff

damps these oscillations leading to the emergence of "pointer states", which are minimum-uncertainty

Gaussians (coherent states), well-localized in both position and momentum, thus approximating to

classical points in phase space [9–15]. However, the origin and nature of "pointer states" and how they

fit within the description of a wave function remains an open question.

1.1.3. The origin of pointer states and their role in decoherence

Within the theoretical framework of scale relativity, a coherent wave packet is underpinned by a

fractal velocity field [1,3,17]. Whilst the concept of pointer states is highlighted, it was not dealt with

in detail in this earlier work. However, it seems intuitive that pointer states equate with a fundamental

"root structure", which represents a ubiquitous characteristic of fractal networks. This implies that

the emergence of pointer states during wave function collapse somehow equates with the collapse

of a fractal velocity field to a more robust root structure, which resists environmental interaction and

accounts for the transition from a quantum to a classical description.

To clarify what this means in practice, we begin with a brief review of macroscopic quantum

phenomena observed in High Temperature Superconductivity (HTSC), biological systems, superfluid

helium and fully developed turbulence. From these examples we consider a number of insights which

support a new description of pointer states and their role in decoherence in quantum systems.

2.0. A review of macroscopic quantum phenomena.

2.1. High Temperature Superconductivity: the role of fractal networks in the emergence of a coherent state.

In a lattice of the p-type cuprates, collective excitations of the electron spin structure leads to

spin waves (magnons), which play a key role in forming a super conducting fluid [1]. However, the

coupling mechanism that underpins the formation of an electron pair (e-pair) has not yet been fully

described.

In what follows, we build on the foundations of earlier work to construct a more detailed

description of e-pair coupling, which fills an important gap in our understanding of superconductvity

in HTSC materials.

We begin with a review of factors reported in [1], which contribute to the emergence of

macroscopic quantum coherence. Key to this is the incorporation of charged dopants within the
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structure. To summarise their role, we denote ψn the wave function of all doping charges, whilst

ψs represents the fraction of mobile e-pairs (≈ 20 %), which form a superconducting fluid and ψd

represents the fraction of charges which do not participate in superconductivity, i.e.

ψn =
N

∑
n=1

ψsn +
N

∑
n=1

ψdn
. (6)

During the annealing stage in the manufacture of the cuprates, charged dopants ψd diffuse in a

thermodynamically driven process to create a disordered network across the cuprate lattice [1].

At low levels of doping, repulsive forces (coulomb interactions) between dopants are minimal.

However, as dopant density (which equates with charge density ρ) increases, random fluctuations

lead to increasing interactions between dopants. Beyond a critical charge density, dopants will begin

to cluster, creating attractive Å-scale potential well’s, with the capability to harbour one or more

electron-pairs. Simple models described in [1] show that this can occur in the case of 4 or more

dopants with a range of possible "well configurations". An example involving eight dopants is given

in Figure 1a, along with its computed quantum potential (Figure 1b).

Figure 1. Reproduced from [1]. (a) A model of dopant density distribution, with 8 dopant sites

surrounding a void zone. (b) A quantum potential well computed from the dopant density distribution,

which can trap (localise) one or more electron pairs.

At this scale, a small cluster of charges can be seen as a quantum fluid

ψd =
N

∑
n=1

ψd (7)

which is expected to be the solution of a Schrödinger equation

h̄2

2m
∆ψd + ih̄

∂ψd

∂t
= φ ψd, (8)

where φ represents an external potential.

Introducing ρ and phase, defined as a dimensioned action A of the wave function ψd =
√

ρd ×
eiAd/h̄ along with the velocity field of the quantum fluid (d), given by Vd = (h̄/m)∇Ad/h̄, we can

rewrite the Schrödinger equation in equivalent form as Euler (Eq.9) and continuity equations (Eq.10),

which reflect the real and imaginary part of the Schrödinger equation,

∂Vd

∂t
+ Vd.∇Vd = −∇φ

m
− ∇Qd

m
, (9)

∂ρd

∂t
+ div(ρdVd) = 0, (10)

where Qd represents a localized quantum potential,

Qd = − h̄2

2m

∆
√

ρd√
ρd

, (11)
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which is implicit in the Schrödinger equation (Eq. 8), but now explicit in the Euler equation (Eq. 9).

Whilst a superconductive fluid is expected to lie preferentially in such a well, connectivity between

adjacent wells is required to support macroscopic quantum coherence and superconductivity (SC)

[1]. A hint at a potential mechanism is illustrated in a second, more random assembly of 8 dopants in

Figure 2A. The geometry of it’s corresponding potential well (Figure 2B) reveals three open channels

radiating from a central point. The probability of forming such a structure increases with increasing ρ.

At larger scale, the interaction of a randomised distribution of individual dopants (at a critical

point), leads to a charge-induced fractal network of interconnected channels of the kind illustrated in

Figure 3.

Figure 2. Reproduced from [1]. (A) A more random assembly of 8 dopant sites. (B) A quantum

potential well, calculated from the distribution of the eight dopants, in which three open channels

emerge to support an interconnected network at a larger scale.

Figure 3. Reproduced from [2]. A disordered distribution of individual charges (left). The interaction

of quantum potentials associated with each charge, collectively create a fractal network of hills and

valleys (right).

When the fractal network reaches a "percolation threshold" (qc), previously localised quantum

potentials such as Figure 1b begin to merge with the network. The change reflects a transition

from a collection of localised charges ψd =
√

ρd × eiAd/h̄ (where Ad is a microscopic action), into a

charge-induced fractal network, which takes the form of a macroscopic wave function ψD,

N

∑
n=1

ψd → ψD =
√

ρD × eiAD/2D̃, (12)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 July 2023                   doi:10.20944/preprints202307.0325.v1

https://doi.org/10.20944/preprints202307.0325.v1


5 of 25

where AD is a macroscopic action, QD (Eq 13) is ψD’s associated macroscopic quantum potential

(MQP) and h̄ is substituted with a macroscopic parameter D̃, which characterizes the amplitude and

correlation length of fractal fluctuations across the MQP. The net effect is a system specific, macroscopic

de Broglie scale λdeB = 2D̃/v. In standard QM, h̄ = 2mD̃ [1,2].

QD = −2D̃2 ∆
√

ρD√
ρD

. (13)

At the onset of the SC phase at qc, ψs transforms from a microscopic scale ψs =
√

ρs × eiAs/h̄

(where As is a microscopic action), to a macroscopic scale, i.e.

N

∑
n=1

ψs → ψS =
√

ρS × eiAS/2D̃, (14)

where AS is a macroscopic action, framed by the charge induced scaffold ψD and its associated fractal

network QD.

During the formation of this fractal network, bosonic quasiparticles (e.g., magnons and phonons)

may initially be present at a range of frequencies. However, at qc, destructive interference effects cancel

out most frequencies, leaving a coherent resonant frequency, in a process, analogous with coherent

random lasing [1], which is discussed in more detail in Section 5. Evidence suggests that magnons

(mg), rather than phonons, play the dominant role in e-pair coupling [1].

As doping increases beyond qc, equilibrium between dopant repulsion and the thermodynamic

drive to fractal organisation of the charges is reached, which correlates with a peak in Tc (optimal

doping). Up to this point, wells, which constitute the PG phase ψpg remain localised. However, at

optimum doping, ψpg merges with ψS, creating a single macroscopic condensate ψC

ψC =
√

ρC × eiAC/2D̃. (15)

To clarify the different contributions to ψC, we first separate the different components.

D̃2∆ψC + iD̃
∂ψC

∂t
− φ ψC = −D̃2∆ψMG − iD̃

∂ψMG

∂t
+ φ ψMG

− D̃2∆ψS − iD̃
∂ψS

∂t
+ φ ψS − D̃2∆ψD − iD̃

∂ψD

∂t
+ φ ψD, (16)

which when written in terms of a Euler and continuity equation reveals the four quantum potentials

(QC, Q
MG

, QS and QD )

∂VC

∂t
+ VC.∇VC = −∇φ

m
− ∇QC

m
−
(

∂VMG

∂t
+ VMG.∇VMG +

∇QMG

m

)

−
(

∂VS

∂t
+ VS.∇VS +

∇QS

m

)
−
(

∂VD

∂t
+ VD.∇VD +

∇QD

m

)
(17)

∂ρC

∂t
+ div(ρCVC) = −∂ρMG

∂t
− div(ρMGVMG)−

∂ρS

∂t
− div(ρSV2e)−

∂ρD

∂t
− div(ρDVD). (18)

Whilst ψD remains static, in analogy with Eq’s (9 & 10), it plays a key, but indirect role as a fractal

electromagnetic scaffold, acting as an exterior potential (QD), within which spin-waves ψmg merge to

form a macroscopic bosonic condensate ψMG,

N

∑
n=1

ψmg → ψMG =
√

ρS × eiAS/2D̃. (19)
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As initially proposed in [1], on re-integration under the form of a macroscopic Schrödinger

equation, the exterior macroscopic quantum potentials QD and QMG become explicit, whilst Qd,

present as an exterior potential in the microscopic equation Eq.8, disappears as it becomes internalized

as part of QD at the macroscopic scale. This allows a simplification of Eq.16 to

D̃2∆ψC + iD̃
∂ψC

∂t
−
(

φ + QD + QMG

2

)
ψC = 0. (20)

However, we also proposed a second interpretation in which ψMG and its associated quan- tum

potential QMG might play a more dynamic, integral part of the conducting fluid ψC. In this scenario

ψMG and QMG would become absorbed into ψC and Eq.20 becomes

D̃2∆ψC + iD̃
∂ψC

∂t
−
(

φ + QD

2

)
ψC = 0. (21)

To clarify which of these two interpretations is correct, we need to determine the precise role of

magnons in the e-pairing mechanism. In addition we revisit two unresolved questions, including:

• Why Tc is significantly higher in HTSC materials, compared with conventional SC materials.
• Why are critical temperatures in the pseudo gap ψPG significantly higher than in the super

conducting fluid ψS.

We consider these questions alongside a proposed new mechanism to account for the role of

ψMG as an internal potential (implicit in Eq.21), which is fundamental to the coupling of e-pairs and

ψC. Before addressing these issues (in Section 5), we consider a number of additional factors, which

contribute to the construction of a more detailed picture of the underlying mechanisms at play.

As a final point, originally made in [1], we note that as doping increases beyond an optimum

level associated with maximum Tc, dopant packing density increases to a point where we see the

emergence of a more homogenous dopant lattice structure. Under these conditions, the charge induced

fractal network which underpins quantum coherence declines, leading to a decline in the strength of

fractal spin wave fluctuations ψMG and coupled e-pairs. At this second quantum critical point, the SC

properties of the material disappear.

2.2. Macroscopic quantum behaviour in biological structures.

On first sight HTSC and biological systems appear to have little in common. However, recent

studies [1–4] have identified a number of shared macroscopic quantum processes, which have the

potential to explain the emergence of a range of structures and processes typically associated with

living organisms.

We illustrate the concept with a summary of work on biomimetic structures grown from BaCO3 −
SiO2 solutions [3,4], where sources of "charge" included protons (from atmospheric CO2) and charged

biomolecules, in the form of gibberellic acid (GA) and cytokinin (CK).

At a molecular scale the emergence of structure in biological systems is strongly influenced by

quantum vacuum and thermal fluctuations (collectively "environmental fluctuations") which act as a

sea of harmonic oscillators. A combination of "environmental fluctuations" and levels of ionisation

(which dictate charge density ρ), have a fundamental impact on the trajectory and dynamics of particles

as they interact to form larger structures. The principle is illustrated in Figure 4a, where ρ → 0 in

an inert gas environment. In this scenario BaCO3 − SiO2 assembly, unhindered by repulsive charges

(normally generated by protons from atmospheric CO2), led to the growth of a crystal lattice.

By contrast, as ρ increases, repulsive forces between adjacent charged particles create a barrier to

bonding, facilitating greater particle interaction with environmental fluctuations. The implications

of this are illustrated in Figure 4b, where we see successive solutions during the evolution of a

time-dependent Schrödinger equation in a 2D harmonic oscillator potential, which leads to a model of

bifurcation at a molecular scale. The jump from a one-body to a two-body branched structure occurs
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as the energy level increases from a fundamental level (n = 0) to the first excited level (n = 1). An

iterative bifurcation process leads to a branched molecular assembly, high levels of disorder and a

fractal charge density distribution.

Figure 4. (a) A BaCO3 − SiO2 crystalline lattice structure, reproduced from [3]. (b). A model of

bifurcation, described by successive solutions of the time-dependent 2D Schrödinger equation in an

harmonic oscillator potential plotted as isodensities, reproduced from [? ].

As with discussions on HTSC in Section 2.1, as the charge induced fractal network increases

beyond a percolation threshold qc, the interaction of quantum potentials associated with individual

charges creates a fractal network of interconnected channels. This can be seen as analogous with that

illustrated in Figure 3, but now in 3D, that can support the emergence of a bosonic condensate, which

underpins the emergence of different structures [3,4].

To illustrate this principle we consider structures grown from BaCO3 − SiO2 solutions, with ρ

being dictated by protons, released through dissolution of atmospheric CO2. Figure 5a illustrates a

fern-like (fractal leaf) structure, which reflects partial decoherence of a macroscopic wave function [3].

Despite its relatively low fractal dimension (DF), it still exhibits a component of long range order, its

DF being determined by the strength of a residual field (QD) and associated fractal fluctuations D̃,

relative to external diffusive forces. As ρ increases further, we see a change in packing of dendritic

nm-scale fibrils, with an increase in DF leading to a more classic leaf-like form illustrated in Figure 5b.

Figure 5. (a) A fractal leaf-like structure. (b). A standard leaf structure. (c). A cell-like structure.

As illustrated in Figure 5c, a further increase in ρ, through the incorporation of GA as an additional

source of charge in the BaCO3 − SiO2 system, led to a spherical, non-differentiated stem cell-like

structure of ≈ 15 µm diameter. The structure is composed of densely packed (≈ 5 nm diameter)

dendrites, grown symmetrically from a centre to fill the space via an iterative process of bifurcation.
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The structure closely resembles a real cell (without a cell wall) with BaCl2 − Na2SiO3/GA composite

dendrites replicating the dendritic structures formed by microtubules and actin filaments, which

dominate the cytoplasm where most cellular activities, including cell division occur [4].

The hypothesis that this cell-like structure is underpinned by a macroscopic quantum wave

function is illustrated in Figure 6a, which reveals a collection of structures comparable to the single cell

in Figure 5c. Some structures are captured in what looks like a process of division. This is confirmed in

Figure 6b, which captures the transition from a one-body to a two-body structure.

Figure 6. (a). A monoculture of spherical structures with evidence of a division process. (b). The

process of cell division. In order to grow beyond a critical point, a symmetric one-body structure,

composed of a fractal fluid of molecular trajectories becomes unstable and is forced to divide. Here

frozen in time, we see an unstable intermediate step in the dynamic transition from a one-body to a

two-body structure. (c.) A branched multicellular structure.

We identify the process which underpins the cell division process captured in Figure 6b with an

earlier theoretical description [3,4,8,16,17]. The process, summarised in Figure 7a, reveals stationary

solutions of a time-dependent Schrödinger equation in a 3D harmonic oscillator potential, whilst

Figure 7b, reveals successive figures, giving the isovalues of the density of probability for 16 time

steps. The first and last steps (1, n = 0 and 16, n = 1) are solutions of the stationary (time-independent)

Schrödinger equation, whilst intermediate steps are exact solutions of the time-dependent Schrödinger

equation reflecting transient structures. Figure 7b shares a number of common features with the

bifurcation process in Figure 4b, the key difference being that in the case of bifurcation, the previous

structures remain and add to themselves instead of disappearing as in cell division. The only other

difference lies in the quantum of action, with Figure 4b being based on h̄ rather than a macroscopic

constant in Figure 7b, although the bifurcation process (Figure 4b) is also valid for a macroscopic

quantum system at both sub-cellular and multicellular scales.

Like Figure 7a, Figure 6b reflects a point-like probability density. However, it also reveals that

division is supported by a single, interconnected system of coherent fluctuations, in which at each

point in the initial one-body system, trajectories exist that connect the two-body structures.
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Figure 7. Reproduced from [4]. (a). A generic model of division, (b). Model of cell division.

It appears that the cell division is underpinned by a macroscopic quantum process with an

increase in energy, associated with higher levels of quantisation, being linked to increasing ρ [4]. This is

supported by Figure 6c, where a further increase in ρ leads to branched multicellular structure, which

bears a striking resemblance to early stem cell division in Arabidopsis thaliana reported in [4].

Alongside charge density, bifurcation processes, driven by environmental fluctuations are

fundamental to the emergence of the fractal architecture required to determine whether a macroscopic

quantum system emerges. Depending on conditions, the process of bifurcation can repeat itself over a

broad range of scales, to create a range of structures, from proteins to cell organelles and cell walls,

which constitute a living cell. The cell as the "quanta of life", then has the potential to repeat the process,

creating new networks and levels of organisation, through spontaneous duplication and bifurcation.

The fractal dimension of a multicellular structure is dictated by charge density and its spatial

distribution. Depending on the average charge on each cell and the level of interaction with the

environment (external to the system under consideration), we see the emergence of a diverse range of

cellular and multicellular structures [3,4].

One of the experimental phenomena reported in [4], of particular interest when considering

intrinsic spin in quantum systems, relates to the emergence of spiral structures (e.g. Figure 8a) at

higher levels of charge density generated using CK. These structures share features comparable to

structures in single-celled spiral diatoms such as Chaetoceros debilis and multicellular organisms such

as Arapidopsis thaliana, where spiral thickening occurs in tracheary elements [4].
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Figure 8. (a) Reproduced from [4]. Growth of continuous spiral, underpinned by a coherent bosonic

field. Each stage of assembly adds to previous growth, creating an aggregated time series. (b).

Schematic representation of a fractal curve in space time from [18]. The evolution of its coordinates is

described by four fractal functions of the normalized curvilinear coordinate s intrinsic to the fractal

curve. (c). Numerical simulation of a typical spinorial geodesic in a fractal space, reproduced from [19].

The x, y coordinates of the spiral path are quantized in units of h̄.

A step towards understanding these spiral features emerges in earlier work, which modelled the

emergence of a spin-like internal angular momentum in a fractal spacetime [18–20]. The Principle,

illustrated in Figure 8b shows a schematic representation of the fractal path of a particle in an

inertial frame of reference. The spiral path emerges as a dynamic causal structure; causal order

being determined by the specific spacetime coordinates in a series of sequential events within a 4D

space-time, in which all four dimensions, including the invariant proper time s, are fractal.

Both Figure 8a and 8b feature a vortex-like structure, which reflects the physical integration of

consecutive slices of a fractal space. As the cell in Figure 8a grows in length, rotational forces lead to

the emergence of a spiral structure, supported by a macroscopic wave front, as it evolves over time, to

produce a continuous 4D fractal spacetime construct.

The helical (solenoidal) structure in Figure 8a emerges as an aggregated time series, with not just

one, but a range of probable outcomes (paths) being revealed, with an average wavelength λ ≈ 6µm

in the mid infrared range of 3 − 8µm (37-100 THz). It suggests that the force dictating the structure is

underpinned by coherent thermal phonons in the mid IR range.

The phenomena offers an important insight into some recent developments in quantum biology

[4]. For example, it is a small step to visualise how such a system could play a role in photosynthetic

systems, offering a mechanism for translating photons into a coherent energy flux, which is transferred

via coherent thermal phonons to different sites within a plant. In the case of the single celled spiral

diatoms where this kind of spiral structure dominates the cell’s anatomy, it could play a particularly

effective role in facilitating photosynthetic processes.

The concept of spin in macroscopic quantum systems is of considerable interest, not just for

biological systems, but also for what we may learn with respect to spin in standard quantum systems.

We explore this further in Section 3.3, once we have completed the preliminary background work

required to support new proposals.

2.3. Turbulent fluids and the link to quantum coherence.

The emergence of quantum-like forces in fractal media represents one of the founding principles

of the theory of scale relativity. However, an important question remains relating to the origin of a

fractal space time.

In developing the theory of scale relativity, it was suggested as early as 1993 ([18] Chap. 7) that

a fractal medium could simulate, at some level, a fractal space, and that particles moving in such a

medium may therefore acquire macroscopic quantum-type properties.
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One of the key objectives of earlier work [1–4], was to test the hypothesis that quantum forces could

emerge in fractal media, at macroscopic scales. Work on HTSC and biological systems, summarised in

Sections 2.1 and 2.2, demonstrated a remarkable level of support for this hypothesis.

Taking the idea a step further, recent work [6] reveals fresh insights into the properties of turbulent

systems, including the identification of a quantum signature at high levels of turbulence in "classical

fluids".

The analysis in [6] involved data generated from von Karman experiments, with turbulence

generated by two contra-rotative disks. During this work, pathways through the fluid were monitored

with the aid of tracer particles (<≈ 100µm). Results suggest that in fully developed turbulence,

(a Reynolds number Rλ >≈ 500), a cascade of eddies/vortices, collectively generate a saturated,

interconnected, vortex field and the emergence of macroscopic fluctuations, which underpin what

appears to be a first stage in the emergence of a macroscopic wave function, within which both classical

and coherent signatures were identified. An analogy with such a system can be found in the early

onset of a coherent state, described at qc (Eq.14) in HTSC [1], where we see the emergence of a critical

percolation threshold within the fractal network. Within this context, we identify the emergence of a

macroscopic wave function as the sum of interconnected individual (classical) vortices (vo), leading to

a vortex induced macroscopic field (VO).

N

∑
n=1

vo = VO → ψVO
=

√
ρVO

× eiAVO
/2D̃. (22)

where AV is a macroscopic action and Qv (Eq 23) is its associated MQP.

Qv = −2D̃2
v

∆v
√

Pv√
Pv

, (23)

The above discussions are based upon a 2D analogy between HTSC and turbulent systems. Figure

14 in [21] illustrates simulations of high intensity, 3D vortex network in homogeneous and isotropic

turbulence reported for Rλ ≈ 150. The simulation suggests that the strongest vorticity is organised in

elongated thin tubes.

As a general point, vortices, in close proximity and circulating in the same direction, attract and

interconnect at points along their length. This can ultimately lead to the merger of vortices to form

larger vortex structures whose circulation will equal the sum of the circulations of the constituent

vortices. In the simulation work in [21], there is no mention of interconnection between vortices.

However, the high vortex density image (Figure 14 in their paper), suggests that this could be

reasonably anticipated within a network of vortices at Rλ ≈ 150. When considering vortex densities at

Rλ >≈ 500, reported in [6], the probability of an interconnected vortex field → 1.

The largest, most energetic vortices in a turbulent fluid dominate the space. As they interact,

they generate a cascade of smaller eddies/vortices, which act as carriers of force between them. It

appears intuitive that larger vortices, with the potential to facilitate transport of tracer particles, may be

regarded as analogous with quantum tunnelling, whilst the less energetic component of the turbulent

field reflects the classical component of the system.

The analysis raises an interesting question around the relationship between turbulent space time

and the origins of quantum particles (bosons and fermions). It suggests that the origins of fractal space

time, chaos and irreversibility, that sit at the heart of a coherent quantum system in scale relativity

theory emerge from pure turbulence. These concepts are developed further with respect to superfluid

helium in Section 2.4 and HTSC materials in Section 5.

2.4. Superfluid Helium.

The report of a quantum signature in fully developed turbulence (Rλ > 500) [6], suggests that

a macroscopic quantum phenomena such as superfluid helium may be underpinned by turbulence
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at microscopic scales. To explore this idea further, we consider the different processes that define a

coherent state.

In the turbulent fluid scenario in Section 2.3, two contra-rotating discs generate a turbulent fluid,

which can lead to partial coherence. Comparing this with superfluid helium, the turbulent fluid which

underpins coherence is generated by a collection of spinning nuclei, whose magnetic flux interacts to

create a Bose-Einstein Condensate (BEC). Within this system, the nuclei remain localised, whilst the

magnetic flux becomes delocalised (shared between nuclei). From this description, we identify the

nuclei with first order "pointer states".

We have discussed how a rotating vortex like structure naturally emerges from a fractal network

as a causal dynamic structure in both classical and quantum systems, but with important differences

between the two. In a classical turbulent fluid, the energy of a vortex dissipates due to fluid viscosity,

so a vortex line generally ends within the fluid. We see this clearly in a recent study [22] of superfluid

helium, where just above the critical transition temperature (Tc), Figure 9a reveals a chaotic distribution

of localised vortices, highlighted by small, frozen tracer particles of hydrogen. The image is typical of

what one might expect in a classical turbulent fluid. It confirms that not all turbulent systems result in

a coherent fluid.

Figure 9. Quantized vortex cores in liquid helium, reproduced from [22]. Images of particles under

different conditions: a, just above the transition temperature, when they are uniformly dispersed; b,c,

on branching filaments just below the transition temperature; and d, regrouping along vertical lines for

steady rotation about the vertical axis. Scale bar, 1mm.

Contrasting Figure 9a with the superfluid phase of helium (Figure 9b and Figure 9c), viscosity → 0,

so vortices propagate without resistance and exist almost indefinitely as "string-like" vortex filaments.

Fluid in the form of a vortex (and matter trapped by it) transports mass, energy and momentum

over considerable distances without dissipation. According to Helmholtz’s second theorem, a vortex

filament cannot end in a fluid; it must extend to the boundaries of the fluid or form a closed path.

Whilst limited by this constraint, vortex filaments may in theory also form either an ouroboros, or

bifurcate (in the case of Figure 9b and Figure 9c), leading to the emergence of an interconnected fractal
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network of extended vortices. As suggested in Section 2.3, this has the potential to facilitate tunnelling

in quantum systems.

Note that fewer vortices are apparent when comparing Figure 9b and 9c to Figure 9a, because

light intensity was reduced to highlight the brighter filaments in the image [22]. In addition, only a

small proportion of the filamentous network of vortices present in the system were recorded due to a

limit on the availability of tracer particles.

The example illustrates how the emergence of quantised vortices represents a key feature of a

quantum fluid such as a BEC. By implication, it is interesting to consider the occurrence of an analogous

mechanism within a quanta of superfluid that takes the form of a particle in standard QM. We explore

this idea further in Section 4.

A further insight from the results reported in [22], is hightlighted in Figure 9d. The figure

illustrates that when a force (rotational in this case) is applied to superfluid helium, vortices align in

the direction of the force applied. In an analogous way (see Section 5), one would expect vortices in a

magnon condensate in HTSC media to align within an electric field and facilitate superconductivity.

3.0. A geometric interpretation of spin.

Having reviewed some useful examples of macroscopic quantum coherence, we build on this

work with a more detailed consideration of the properties of quantum systems. We begin with a review

of the current status of spin as generally portrayed within the context of SU(2) and the Lorentz group

SO(3, 1).

3.1.SU(2)

In the special unitary group SU(2), the j = 1/2 representation in Eq.24, represents quantum

mechanical spin in spin-1/2 particles as rotations in complex space,

Jx
1/2 =

1

2

(
0 1

1 0

)
=

σ1

2
, J

y
1/2 =

1

2

(
0 −i

i 0

)
=

σ2

2
, Jz

1/2 =
1

2

(
1 0

0 −1

)
=

σ3

2
, (24)

where σi are the Pauli Matrices. Choosing the Cartan generator Jz
1/2 as the diagonal, its

eigenvectors

| ↑ 〉z =

(
1

0

)
, | ↓ 〉z =

(
0

1

)
. (25)

are the basis vectors upon which SU(2) acts, with eigenvalues

Jz| ↑ 〉z = +
1

2
| ↑ 〉z, Jz| ↓ 〉z = −1

2
| ↓ 〉z. (26)

In contrast to the j=1/2 representation, particles with spin-1 are portrayed by the adjoint, j = 1

representation of the rotation group (Eq.27), in which only Jz
1 is diagonal, with eigenvalues 1, 0,−1.

Jx
1 =

1√
2




0 1 0

1 0 1

0 1 0


 = τ1, J

y
1 =

i√
2




0 −1 0

1 0 −1

0 1 0


 = τ2, Jz

1 =




1 0 0

0 0 0

0 0 −1


 = τ3. (27)

The tau matrices τi represent the 3 × 3 analog of the Pauli matrices.

Within this "framework", intrinsic spin of a "point particle" such as an electron, is seen as a

purely quantum mechanical phenomenon, generally visualised within the context of a Bloch sphere

interpretation [25], in which the two spin states (S+, S−) reflect the two sides of a complex projective

plane CP
1.
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This interpretation falls short of an intuitive description of the internal structure of a spin-1/2

particle and the concept of spin as a rotation through spacetime, analogous with SO(3) in classical

physics. The gap necessitates a fresh look at the underlying meaning of SU(2) and additional

information required to describe the structures and processes that are implicit (but not explicit)

within the group.

As an emergent property of a 4D fractal space-time, intrinsic spin is supported in part by work

illustrated in Figure 8c, which represents a model of a spiral fractal path of an electron, underpinned

by a Pauli spinor. The figure represents just one of an infinite number of possible realisations of an

electron, which collectively represent a coherent rotating "fluid" of geodesics. However, the concept of

a rotating fluid does not on its own reveal the full picture.

To develop a more comprehensive description we begin with the vortex-like rotating matter wave

illustrated in Figure 8a, which is underpinned by a macroscopic wave function. Whilst the structure

is quantised along x and y coordinates, the axis of rotation (the z coordinate) remains open. If we

compare this with an electron’s vortex-like path in Figure 8c, there are some important differences.

1. As stated previously in [4], with respect to Figure 8a, only the macroscopic bosonic field (which

underpins the structure as it grows along its z axis) is coherent.
2. Figure 8a represents a bundle of geodesics, whilst Figure 8c reflects just one, which suggests an

incomplete representation of an electron.
3. The nature of a coherent packet of matter such as an electron, quantised along all three (x,y,z)

coordinates suggests some form of closed, recirculating "fluid of geodesics" in the form of a

torus, such as illustrated in (Figure 10). However, to meet a criteria that relate to CP
1, we need to

translate this into an approximation of a two-dimensional torus

−2

−1

0

1

2
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

Figure 10. A torus.

Digging deeper into these issues, consider a tracer trapped within a rotating vortex analogous

to that illustrated in Figure 8c. We begin with a tracer sitting in the North East (NE) quadrant of the

vortex, pointing NE, then map the tracer’s position and orientation as it rotates around the z axis.

After a 360o rotation it will have changed position along the z axis, but will point once again in the

same direction (NE). In other words, an open vortex clearly reflects the statistical description of a j = 1

representation of SU(2) (Eq.27), in which a spin-1 particle (a boson) requires a 360o rotation to resume

its original state.

At a simplistic level, it seems intuitive that a vortex plays the role of a boson with the capability

to transfer energy, via the fabric from which it is constructed.

If we consider the emergence of vortex like structures at a larger scale, an analogous scenario can

be found in a highly ionised atmosphere (or plasma), associated with an intense fire or thunderstorm,
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where charge density reaches extremely high levels. At a critical point, the build up of a potential

difference between different points in space creates a force and an associated "action", in the form of a

rotating vortex (a tornado) as an emergent property of a charge induced fractal network. Once the

difference in charge between points in space reaches equilibrium (via the action of the vortex), the

vortex dissipates. This description represents a striking example of boson-like behaviour, with the

vortex transferring energy from one point to another. As seen in superfluid helium (Figure 9b and 9c),

it can also transport matter. This principle has important implications with respect to HTSC, which we

elucidate in Section 5.

When we reflect on these new insights, we see the validation of an earlier prediction of the

emergence of a macroscopic quantum potential and quantum force from an ionised fractal media such

as a plasma [26]. As an example from this earlier work, numerical integration of a Euler plus continuity

one-dimensional system, with generalised quantum potential, reproduced the expected motion of an

quantum oscillating wave packet in an harmonic oscillator field (Figure 1). In practice, the emergence

of a 3 dimensional wave packet as revealed in Figure 8a, offers an insight into how the simplified, one

dimensional model in [26] translates into a 3 dimensional wave packet.

To shed light on what differentiates a spin-1 structure from a spin-1/2 particle, we contrast the

spin-1 vortex scenario with a continuously recirculating fluid in the form of a torus such as Figure 10.

Once again we visualise a tracer starting in the NE quadrant (of the torus), pointing NE and map its

orientation relative to its position, as it travels through the structure.

After a 360o rotation through the torus there is an equal probability that the tracer will sit in either

the NE or North West (NW) quadrant. If by chance it returns to the same (NE) quadrant, it will (in all

scenarios) have reoriented to face the opposite direction to which it started.

As the tracer continues its path on a second 360o rotation through the torus, there is once again an

equal probability that it will sit in the NE or NW quadrant. In the event that it returns to the original

NE quadrant it will have reoriented once again, to point in the original direction (NE).

The scenario clearly describes the j = 1
2 representation of SU(2) (Eq.24) in which a spin-1/2

particle requires a 720o rotation to resume its original state.

The concept of a closed vortex (toriodal) ansatz to describe a quantum particle such as an electron

or proton is not new [23,24].

A number of useful insights emerge from such a description:

• When considering flow within a recirculating torus it is impossible to predict the precise position

and orientation of a tracer at any specific point in time. It can only be described in terms of a

probability P ∝ ψ2 (the Born postulate [7]) after two full rotations of the torus (which defines ψ),

explaining the statistical origins of a spin-1/2 particle in standard QM.
• The double rotation through a torus gives physical meaning to the 2 → 1 relationship between

SU(2) and SO(3) [25].
• A toriodal interpretation of a spin-1/2 particle resolves the problem of infinities associated with

a point particle, in which angular momentum of a point mass following a classical spiral path

should vanish as r → 0. Instead, we can intuitively link h̄ as a minimum measure of action with

the rotation of a torus (or a vortex in the case of a spin-1 boson).
• If we consider a particle as a dynamic recirculating torus and c represents an upper limit on

rotational velocity (ω̇), its rotational energy equates with the mass of a stationary particle, i.e.,

e = mc2. It means that as a measure of action, h̄ defines a lower limit on a scale at which velocity,

scale and mass are unified.

these results support our understanding of the main postulates of QM in Nottale 2007

3.2. The Lorentz group SO(1, 3).

As the double cover of SU(2), the Lorentz group SO(1, 3) represents transformations in flat, 4D

Minkowski space, but how do we explain this in terms of relations between the Euclidean, Kronecker
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delta matrix (δij) and the Minkowski metric (ηµν) and how CP
1 relates to an intuitive understanding of

a quantum particle.

Having established a fermion as a recirculating torus represented by the j = 1/2 representation

of SU(2), we consider the transition to a relativistic scenario represented by SO(1, 3) as ω̇ → c. If we

exclude the influence of other possible factors, we can expect that in such a scenario, rotation of a

particle with mass, will lead to extreme dilation of its toroidal structure along x and y coordinates with

a corresponding contraction in the z coordinate. The action reflects symmetry breaking associated with

a transition from a 3D torus, represented by δij, into an approximation of a 2D torus, represented by

ηµν and the dot product

v.v = ηµννµνν = −t2 + x2 + y2 + z2. (28)

Whilst an event measured in different inertial reference frames may give different values (observer

A sees t, x, y and z, and observer B sees t′, x′, y′ and z′), they are still physically equivalent, i.e.,

− t2 + x2 + y2 + z2 = −t′2 + x′2 + y′2 + z′2, (29)

being related through Lorentz transformations Λ (a combination of Euler transformations and

Lorentz boosts), that preserve the dot product (Eq.28).

Whilst Euler transformations take the form of rotations (R) of vectors around the origin, where θ

represents an angle mixing spatial dimensions,

[Rx(θx)]
µ
ν =




1 0 0 0

0 1 0 0

0 0 cos θx sin θx

0 0 − sin θx cos θx


 ,

[Ry(θy)]
µ
ν =




1 0 0 0

0 cos θy 0 − sin θy

0 0 1 0

0 sin θy 0 cos θy


 ,

[Rz(θz)]
µ
ν =




1 0 0 0

0 cos θz sin θz 0

0 − sin θz cos θz 0

0 0 0 1


 ,

(30)

Lorentz Boosts (B), mix space and time dimensions. For a rotation mixing time and the x spatial

dimension, the dot product is the equation for a hyperbola [25],

− c2t2 + x2 = const. (31)

From the general hyperbolic trig relationship

cosh2 φ − sinh2 φ = 1. (32)

Angle φ represents three boosts, which mix space and time.
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[Bx(φx)]
µ
ν =




cosh φx − sinh φx 0 0

− sinh φx cosh φx 0 0

0 0 1 0

0 0 0 1


 ,

[By(φy)]
µ
ν =




cosh φy 0 − sinh φy 0

0 1 0 0

− sinh φy 0 cosh φy 0

0 0 0 1


 ,

[Bz(φz)]
µ
ν =




cosh φz 0 0 − sinh φz

0 1 0 0

0 0 1 0

− sinh φz 0 0 cosh φz


 .

(33)

To clarify the meaning of φ.

cosh φ = γ (34)

and

tanh φ = β, (35)

so sinh φ = βγ. We can therefore write the transformation

Λ
µ
v =




cosh φ − sinh φ 0

− sinh φ cosh φ 0

0 0 1


 , (36)

as

Λ
µ
v =




γ −βγ 0

−βγ γ 0

0 0 1


 (37)

and rewrite Eq.32 as

γ2 − β2γ2 = 1 =⇒ γ =
1√

1 − β2
, (38)

where

β =
v

c
. (39)

So Eq.36 becomes

Λ
µ
ν =




1√
1− v2

c2

−
v
c√

1− v2

c2

0

−
v
c√

1− v2

c2

1√
1− v2

c2

0

0 0 1




. (40)

To visualise this in an intuitive way, its helpful to consider three separate stages:

1. Transform Euclidean geodesics on a complex plane under Lorentz boosts to generate the

equivalent of a "Poincaré disk" (Figure 11), whose hyperbolic geodesics can be represented

at varying levels of complexity.
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Figure 11. A Poincaré hyperbolic disk.

2. Substitute the Poincaré disc with an approximation of a static, 2D torus, constructed from a set of

hyperbolic geodesics to create what might be termed a "Poincaré hyperbolic torus".
3. A final step in the visualisation would be to represent an infinite set of geodesics associated

with the dynamic, fluid nature of the recirculating torus under rotation at relativistic velocities.

However, even the most detailed set of geodesics that one could technically visualise would

represent only a fraction of the geodesics associated with such a complexed fluid structure.

So the Lorentz transformations (Eq’s.30 and 33), summarised as

Λ = ei J.θ+iK.φ, (41)

reflect the emergence of a causal dynamic structure from a 4D fractal, fluid space time, which

approximates a 2D, hyperbolic spin-1/2 torus, induced by rotational forces as ω̇ → c.

In addition to a transformation of geodesics under rotation, we also need to accommodate a

doubling of the wave function associated with the Lorentz group. Whilst a representation of SU(2) is

specified by j (either integer or half-integer), SO(1, 3) is specified by two copies of SU(2) (j, j′) [25],

which reflect a particle and its antiparticle partner in the Dirac equation. This reverts to a single copy

of SU(2) at its non-relativistic limit in the Pauli equation.

3.3. The interaction of a torus with the quantum vacuum.

As a toroidal particle rotates, the background media (the quantum vacuum) in which it sits will

be continually drawn through its core, then expelled and recirculated, creating a secondary, polarised

flux to form a two-component nested torus, analogous with that illustrated in Figure 12.
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Figure 12. A model of a proton and a secondary, polarised flux (not to scale), creating a charged particle,

reproduced from [27].

With a quantum vacuum defined as a field of virtual electrons and photons, it’s a small step to

identify the outer torus with the permanent magnetic moment (charge) along the axis of a fermion.

Such a model offers a very clear insight into the mechanism which underpins the Pauli exclusion

principle.

Whilst not to scale, or necessarily of the correct form, we can identify Figure 12 with a simplistic

model of a proton with an S1 orbit, which binds an electron, to produce hydrogen. The model implies

a composite, spin-1/2 particle in which an electron is free to pass through its core, traversing parallel

hyperbolic flux lines, as it absorbs or emits a quanta of energy (a photon) and changes wavelength.

3.4. A reinterpretation of the macroscopic helix in Figure 8a

.

In earlier comments relating to the double helix structure in Figure 8a [4], it was proposed that

the j = 1/2 representation (Eq.24) of SU(2) formed the basis of the macroscopic Pauli equation

iD̃
∂φ

∂t
=

[(
iD̃∇− qA

)2
− qD̃ œ.B + qA0

]
φ, (42)

which could be used as a basis to describe the structure. Within Eq.42, charge (q), may include an

"average charge" on a macroscopic quantum object, such as a protein complex or a stem cell. In this

context helicity ĥ is generally defined as the projection of spin along the direction of motion:

ĥ = Σ.p̂ = 2Sp̂ =

(
σ 0

0 σ

)
.p̂, (43)

with eigenvalues equal to +1 (right-handed) where the spin vector is aligned in the same direction

as the momentum vector or -1 (left-handed), where the spin vector is aligned in the opposite direction.

Helicity as defined in terms of Eq.43 for a spin 1
2 particle, represents the product of a two component

spinor,

φ =

(
ψ1

ψ2

)
. (44)
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However, we now consider an alternative perspective, motivated by a study of vortices in

polariton condensates [28]. Images from this work illustrate how coherent quantum vortices can

"co-wind", to create a vortex doublet with a structure very similar to that in Figure 8b. Within this

context, and that of the more detailed analysis relating to different spin representations in Section 3.1,

we conclude that the vortex-like double helix in Figure 8a, more accurately reflects the co-winding of

two macroscopic spin-1 vortices.

This reinterpretation also offers a natural fit with the hypothesis that the vortex structure in

Figure 8a is underpinned by a coherent macroscopic phonon wave function in the mid infrared range

[3], which emerges through a process, which is analogous with Coherent Random Lasing (CRL), within

the fractal mesoscale substructure within the vortex. See Section 5 for more detailed discussion on the

emergence of CRL

Building on earlier proposals [29,30], a solution to this change of perspective, can be found in

SU(2), by substituting the j = 1/2 scenario, represented by the 2 × 2 Pauli matrices in Eq.24, with the

spin-1 scenario represented by the 3 × 3 tau matrices τi in Eq.27. The result is a three component wave

function

|ψ〉 =




ψ1

ψ2

ψ3


 , (45)

which we substitute for the two component wave function (Eq.44) within the macroscopic Pauli

equation (Eq.42). Within this new context, helicity ĥ in Eq.43 is now redefined

ĥ = Σ.p̂ = 3Sp̂ =

(
τ 0

0 τ

)
.p̂. (46)

4. The origin of pointer states and their role in the emergence of quantum particles as causal dynamic structures.

Moving beyond the intrinsic spin of a particle, we examine the concept of "pointer states", whose

existence implies some form of hidden, "root-like" substructure, yet to be described as part the internal

geometric description of a particle.

If we are to describe these pointer states, we need to understand their origin, nature and role within

a wave function, including its transition from a probabilistic to a deterministic classical description.

In addition, we need to determine how the new description impacts on a broader understanding of

quantum and classical systems.

We begin with a conceptual model in which superfluid helium represents a macroscopic analog

of the basic "fabric" of a quantum particle. Within this context the individual magnetic flux generated

by each nucleus is shared, the spinning nuclei generating a cascade of eddies/vortices, to create a

composite (spin-1/2, spin-1) turbulent field, which defines a BEC. In a decoherence scenario, individual

nuclei remain coherent, but localised, thus meeting the definition of pointer states described in Section

1.2.

As a next step we consider the behaviour of a classical fluid in zero gravity space, where a free

floating droplet of fluid forms an approximation of a spherical "spin-0" structure, which rotates under

the collective angular momentum of individual nuclei. Contrast this with a drop of superfluid helium,

allowed to float freely, suspended in zero gravity, below Tc. In such a scenario we would again, initially

expect the emergence of a spin-0 structure. However, in the absence of friction (associated with a

superfluid), rotational velocity (ω̇) should increase with time. At a critical point in the process of

acceleration, we anticipate that centrifugal forces will lead to a transition from a spin-0 structure to a

spin-1 (open) vortex, which falls within the definition of a j = 1 representation of SU(2) (Eq.27).

From here, we consider a hypothetical process in which a continued increase in ω̇ drives an

increase in x and y coordinates and a contraction along the z axis of the vortex. At a critical point

in vortex dilation, an increasingly large potential energy, in the form of the basin of attraction (i.e., a
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macroscopic quantum potential) created by the vortex core, will attract fluid expelled from the vortex

to create a 3D, recirculating torus.

In a final step, as ω̇ → c, the torus would transform into an approximation of a 2D "Poincaré

torus", which falls within our definition of a j=1/2 representation of SU(2) (Eq.24).

The concept offers an insight into a fractal landscape of bifurcating, hyperbolic geodesics within a

quantum particle. In this scenario, pointer states (Helium nuclei,) as roots of a finer fractal network,

play a key role, generating and maintaining the coherent field that would underpin a macroscopic

quantum particle.

Whilst individual nuclei represent pointer states in this scenario, we have yet to describe their

equivalence and general applicability of the principle in standard QM.

Within the context of He nuclei representing the roots of a macroscopic quantum particle, it seems

a small step to consider a set of nucleons in a larger nuclei in the periodic table, as pointer states,

which generate a turbulent field that underpins a coherent nucleus. A cascade of eddies filling the

space between nucleons explains the breaking of the internal symmetry of the particle dt ↔ −dt under

reflection [3,17].

The description of the macroscopic spin-0 structure shares some features with the nuclear

"liquid-drop model", but with nucleons substituting for nuclei without binding associated with

the nuclear force. The proposal also shares with the liquid drop model the limitation that it fails to

accommodate the nuclear force and the existence of lines of greater binding energy at certain numbers

of protons and neutrons, which forms the basis of the "nuclear shell model".

As in the case for individual nucleons, we can anticipate a breaking of 3D Euclidean symmetry of

a large nucleus under rotation. However, it is not clear if this always translates into a spin-1/2 torus,

as spin in large nuclear structures is often quoted as an aggregated value of the spin of individual

nucleons. Whilst large nuclear structures appear variable, they are generally reported as a broken

3D spherical (e.g., prolate) structures, rather than two dimensional. Although such structures neither

confirm or preclude a toroidal structure, a toroidal scenario is supported by NMR measurements on

Plutonium 239 (239Pu) [31], which reveal a spin-1/2 nucleus, rotating at ≈ 1021 times per second. It is

currently unclear what specific set of conditions might be responsible for the transition from spin-1 to

spin-1/2. However, it seems likely that a particle must either aquire mass as a precursor to the process

or as a result of it.

If the concept of nucleons as pointer states is correct, it still leaves an open question relating to

a description of an equivalent generators of turbulence (pointer states) which underpin subatomic

particles.

Any future model to accommodate the concept of pointer states within a new representation,

must at a more simplistic level of interpretation, be naturally reducible to SU(2) and SO(1, 3). At the

same time one must ultimately be able to describe the smallest level (e.g., quark or subquark structure)

at which such an interpretation is valid.

If a subatomic particle such as a proton or quark is represented by a fractal fluid, it suggests

some form, of as yet to be defined toroidal field at smaller scale. As summarised in Eq.5, below

a critical energy level associated with the quantum force/s within the system (HS), environmental

perturbation of the system (HE), is insufficient to induce decoherence at a specific scale of quantisation.

This theoretically applies until the minimal scale of quantisation at the Planck scale, where forces

dictated by the limits of C reach a maximum. Since no external potential could exceed this force, it

forms the bedrock of quantum systems. Wave function collapse at this scale would lead to pure chaos

in which quantum forces would cease to exist.

One final point of interest to note from the description above relates to the implication that

different structures (spin-0, spin-1 and spin-1/2) may emerge from the same 4D turbulent spacetime

geometry as "dynamic causal structures". Whilst this interpretation does not necessarily imply the

existence of supersymmetry, it does offer a possible insight into how an underlying principle of shared

symmetry might work in practice
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5.0. Outstanding questions relating to HTSC materials.

In Section 2.1 we summarised progress in describing the emergence of superconductivity in

the p-type cuprates, when charged dopants are incorporated in a thermodynamically driven fractal

arrangement. As charge density (ρ) increases, individual charges (ψd) begin to interact to generate

a charge-induced network of channels ψD (Eq.12), illustrated in Figure 3. Above a critical charge

density, a critical percolation threshold qc is crossed. At this point (if T < Tc), magnetic flux (magnons)

associated with individual charges, begin to interact. Based upon the case studies that have been

considered it is proposed that, spinning charges ψd (Eq.6) act as pointer states, which generate a

turbulent (coherent) magnon condensate ψMG (Eq.14).

ψMG preferentially sits in localised wells, such as Figure 1b and the interconnected network of

well’s and channels (Figure 3). Within this scenario, vortices analogous with that in superfluid Helium

(Figure 9b & c) emerge within the magnon condensate in the SC phase ψS and pseudo gap ψPG.

If we consider mechanically induced turbulence in a classical fluid (Section 2.3), we see the transfer

of rotational energy throughout the fluid via a cascade of "short-lived", short-range, interacting vortices.

By contrast, in a zero viscosity superfluid, there is no dissipation of energy within a vortex. It has the

potential to persist indefinitely. However, as seen in Figure 9b & c, energy associated with vortices can

bifurcate, with a series of iterations, facilitated by the fractal network of channels (Figure 3), leading to

the emergence of a fractal vortex network. In such a scenario the collective correlation energy [1] of

vortices is maintained within the fractal network.

When it comes to a description of the mechanism which underpins e-pair formation, we consider

a parallel with that of an e-pair traversing the recirculating (spin-1/2) magnetic flux of a nucleus,

idealised in Figure 12. In an analogous way, an e-pair can be trapped within spin-1 vortices, which

emerge within the magnon condensate. This may explain (at least in part), why e-pair coupling

energies are significantly higher than phonon mediated e-pairs in conventional SC, leading to higher

values for Tc.

As seen in superfluid He (Figure 9d), when applying a rotational force to the network of vortices

in a superfluid, vortices align with that force. An analogous action is anticipated in HTSC. If an

electric current is passed through the material, e-pair carrying vortices will align with the electric field,

leading to resistance free transport of electrons through the vortex network, creating a superconducting

medium.

To clarify additional factors at play in HTSC in more detail, consider two photon vortices rotating

at different frequencies. If they collide, the higher energy vortex will disrupt the lower energy vortex,

whose energy may then be absorbed in part (or completely) into the dominant vortex, leading to a

change in wavelength. Following an iterative series of such interactions in a constrained cavity (which

plays the role of a Fabry-Perot resonator), lower energy frequencies will eventually cancel out, to leave

a dominant wavelength. We associate such a process with the emergence of a coherent light source,

i.e., "lasing". Vortex interactions of this kind, within a localised potential well associated with the PG

explains the presence of vortex bound e-pairs ψpg, which differ from the main superconducting fluid

ψS. In ψS, an analogous process emerges in the fractal network, which supports coherence of a specific

wavelength analogous with CRL [1,2]. Within this context, IR frequencies normally associated with

e-pair decoherence, will be cancelled out. In other words, the fractal network acts as an insulator

against frequencies outside a specific range, which facilitates a higher Tc, compared to conventional

SC materials.

At another level, the potential of the vortex network in ψS to fractionate (described above) will

lead to a lower frequency, lower energy vortex network compared to the PG. This may also explain in

part a higher critical temperature in the PG.

A further contribution to higher Tc in the PG arises from the trapping of vortices in potential

wells associated with the PG. The localised nature of the well provides an additional level of insulation

against spectral perturbation and resistance to decoherence.
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6. Conclusions.

6.1. The origins of quantum coherence.

The identification of a quantum signature in turbulent fluids [6], lends support to the hypothesis

that a superfluid is underpinned by turbulence generated by a set of interacting pointer states which

take the form of a fractal toroidal field. The space between peaks of high energy rotation associated

with these pointer states is filled with an interconnected cascade of eddies/vortices, which define

a coherent quantum state. Decoherence occurs when spectral density, in the form of an external

potential (Eq.3), exceeds the cohesive force of the eddy/vortex cascade, leading to a breakdown of

interconnectivity and the localisation of pointer states.

In Section 3.4 we discussed the origin of the magnetic flux (Figure 12) which forms the S1 orbit of

an atom. Taking collective insights from this, superfluid helium (section 2.4) and the p-type cuprates

(Section 2.1), a new mechanism for e-pair coupling via magnon vortices in HTSC media is proposed in

which a densely packed assembly of charges, acting as pointer states, generate a turbulent magnon

superfluid. Vortices which spontaneously emerge as causal dynamic structures within the magnon

superfluid bind electron pairs, offering a resistance free highway across the material, to create a

superconducting medium.

The concept of macroscopic quantum coherence in HTSC has an analog in biological systems

(Section 2.2), where a bosonic condensate, remains coherent in fractal mesoscale networks at room

temperatures. Such a system offers a mechanism to transport solar energy (photons) throughout a

plant, via a phonon condensate in photosynthetic processes. When we add to this, new insights relating

to the emergence of macroscopic vortices emerging within a BEC, then boson condensates associated

with fractal media such as cell cytoplasm, offer the potential to facilitate superfluid transport of a

range of different "charges" (e.g., electrons, protons, ions and charged biomolecules) across cellular

structures, to support processes fundamental to life.

6.2. The Limits of SU(2) and the requirement for a more complexed representation.

Whilst SU(2) is effective in representing a particle such as a proton, it is limited to the extent that

it fails to accommodate any form of internal structure which might relate to a description of pointer

states and their role in quantum decoherence. It also fails to offer an intuitive insight into intrinsic spin.

In the development of a more detailed description, a number of useful insights have emerged

which build upon the basic level of interpretation of SU(2):

• A spin-1/2 fermion is represented by a closed recirculating torus, with its own localised energy

and mass, quantised along all three (x,y,z) coordinates. A secondary flux generated by a rotating

torus generates the particles magnetic moment (charge).
• A spin-1 boson is represented by an "open vortex", quantised on its x,y coordinates, which

facilitates the role of energy transfer.
• A spin-1 boson could also be represented by a closed vortex if the vortex forms a closed loop

(or ouroboros). In this scenario, rotation remains along the axis of the vortex, with the winding

number (n) impacting on the properties of the system.
• The problem of infinities associated with a point particle is eliminated within the context of a

torus or vortex.
• A vortex/torus hypothesis accounts for the probabilistic nature of QM, including spin-1 and

spin-1/2 statistics.

Through this process, we identify the complex plane generated by 2D toroidal structures, with

the origin of spinors and the complex projective plane (CP1), which leads to a doubling of the wave

function (ψ+/ψ−) and a description in terms of quaternions H and the Pauli equation. A further

doubling of the wave function leads to particles and antiparticles, and a description in terms of

bi-quaternions H2 and the Dirac equation.
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SU(2) implies no internal structure, which might reflect pointer states within a particle. Further

work is required to consider a more complexed representation, which translates to an intuitive sense

that some form of internal structure exists.
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