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Abstract: Mice are one of the frequently used animal models in science research whose behavioral
characteristics can provide much valuable information in biology, neuroscience, and pharmacology.
Nowadays, artificial intelligence is widely used in mice behavior analysis. Integrated Al systems
such as ChatGPT and VisualGPT are already available, and we discuss the feasibility of MiceGPT
to help researchers identify and classify mouse behavior more easily. We review the applications
of mice behavior analysis, analyze the tasks of deep learning on these applications based on an Al
pyramid, and finally summarize the Al approaches to solve these tasks. Based on these summaries,
we propose three MiceGPT architectures to demonstrate the theoretical feasibility of MiceGPT.

Keywords: mice behavior analysis; mice model; Al; computer vision

1. Introduction

Mice are one of the animal models in the biology and medical fields. It has been used for many
years and has many advantages, including similarity to humans in many physiological functions and
many methods of functional intervention through genetic modification. Researchers conducted various
experiments on mice and observed the experimental phenomena of mice for biological and medical
study, such as gene identification [1], cell classification [2] and protein prediction [3]. Among the in
vivo and in vitro experiments, mice behavior analysis is an essential topic and plays key roles in the
medicine, neuroscience, biology, genetics, and educational psychology field. For example, researchers
study behavioral patterns of mice to investigate the effect of a gene mutation, understand the efficacy
of potential pharmacological therapies, or uncover the neural underpinnings of behavior for further
treatment of mental disorders. Nowadays, mice behavior analysis has become a common approach in
a wide range of biomedical research fields.

In the early stages of research, traditional behavioral analysis approaches allow for quantification
of behavior by tracking the animal’s position in space, such as three-chamber assay [4], open-field
arena [5] and water maze [6]. However, with the development of technologies, traditional approaches
face challenges in emphasizing important details of behavior involving subtle actions [7]. Fine-grained
behavioral feature data cannot be obtained through visual observation or subjective evaluation.
Traditional approaches are time-consuming on high-precision feature computation work, and the
results are also variable [8]. A novel, automated, quantifiable approach for extracting fine-grained
behavioral features is essential. Along with the development of the artificial intelligence (Al) field, Al
can learn from large amounts of data and extract quantitative features automatically. “Al-empowered”
has become a research and application trend today. Researchers also have applied Al to mice behavior
analysis by analyzing the video or video frame data, such as by machine learning methods [9] and by
deep learning methods [10]. AI empowers mice behavior analysis and makes some creative research
possible now.

Recently, with the rapid spread of ChatGPT [11], a more convenient and intelligent Al system
has become a popular trend in the Al field. Compared with traditional Al studies, a GPT-integrated
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system can fulfill various objectives, such as translation, Q&A, dialogue, and text generation. However,
there are no Al systems like MiceGPT for biology-related researchers. The Researchers must choose
appropriate methods from a wide range of Al approaches to accomplish their research. This not only
fails to demonstrate the convenience of Al but also increases their extra study tasks, which reduces
research efficiency. Therefore, biology-related researchers require a system like “MiceGPT”, shown in
Figure 1, in which it contains diverse mice behavior analysis apps combined with lots of state-of-arts
Al models. Researchers can input their query requirements of analysis in the system, and MiceGPT can
automatically classify the queries into specific applications in Al methods, and divide the application
into the Al task, which is trained by different state-of-the-art AI models with mice behavior data, and
finally response the query results to the researchers. So, can a “MiceGPT” be true? Concretely, what
applications of mice behavior analysis can “MiceGPT” support? What tasks can the applications be
divided into? What Al models can empower the tasks? We want to answer these questions in this

paper.
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Figure 1. MiceGPT Overview.

This paper aims to make a survey to answer the above questions. Based on Figure 1, we summarize
the applications of mice behavior analysis, classify the applications into several well-known tasks of
the Al field, and propose state-of-the-art AI-empowered approaches to solve the tasks. Finally, we
propose our prospect architecture on “MiceGPT” with the content of the survey. We also propose two
improved MiceGPT architectures with state-of-the-art Natural Language Processing (NLP) and Al
generation technologies.

The rest of the paper is as follows: Section2 introduces our motivations for this survey. Section 3
summarizes all the applications on the mice behavior analysis and proposes the relationship between
applications and Al tasks. Section 4 summarizes the suitable Al-empowered task approaches. Section 5
introduces the iteration of MiceGPT’s architecture. Section 6 concludes the paper.

2. Research Questions

This section introduces the main research questions of the survey. We first retrieve the Al-based
papers of mice behavior analysis to ensure that all the studies in this survey are all Al-based. The
paper starts with a general question of "Can MiceGPT be true", which is subsequently divided into
four Research Questions (RQs) based on Figure 1. The paper answers the RQs through literature
surveys and makes summaries. Research questions include:

* RQ1: What applications can Al empowers in the mice behavior analysis studies? (Answered in
Section 3)
* RQ2: How to taxonomize the applications into Al tasks? (Answered in Section 3)
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* RQ3: What Al methods can be used for executing Al tasks? (Answered in Section 4)
e RQ4: How can MiceGPT trains the Al methods, classify the Al tasks, and identify the

applications? (Answered in Section 5)

3. Applications

In this section, we conduct a preliminary search about mice behavior with Al approaches using the
Google Scholar and SCI Expanded library with the keywords “mice behavior AND machine learning
AND deep learning”. In Google Scholar, the keywords are chiefly matched in the body of papers
instead of the abstract, and the search results contain the patents and research reports. They are not
our main focus. In the SCI Expanded library, we search the same keywords in the title, abstract, and
keywords. The search scope is “Article AND Meetings.” The initial number of retrieved documents
amounted to around 85 publications. We selected 26 papers as state-of-the-art works, according to the
following rules:

¢ Including studies whose data are videos or video frames;
¢ Including studies that have exact application goals instead of technical goals;
¢ Excluding studies that focus on machine learning instead of deep learning;

In the end, we obtained 26 related papers and grouped them into four applications. This section
summarizes the state-of-art Al-empowered mice behavior research on applications to summarize and
taxonomize Al-empowered mice behavior analysis applications for the further study of MiceGPT.

3.1. Disease Detection

Changes in daily human behavior (e.g., food intake, sleep, and activity patterns) can often reflect
symptoms of several diseases. Mice disease models [12,13] are a valuable resource in studying the
diseases [14]. However, these studies require long and systematic observations of disease-carrying
mice, which requires much labor work and is subject to human error. Fortunately, Al can be a
powerful tool for diagnosing disease in mice [15-17]. As shown in Figure 2, mice behaviors, such as
scraching and gait, are recorded as video data with high-speed cameras. Al methods, such as semantic
segmentation, pose estimation, and action recognition, diagnose disease in mice through the video
data. Al provides new insights into the pathophysiology and treatment of diseases.
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Figure 2. Disease Example.
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Most of the existing studies on Al-empowered mice disease detection are based on video data,
while a few are based on text data. Yu et al. [18] record the mice behavior from the bottom of a mouse
videotaping box with a camera. Compared to the top or side views, the bottom view can clearly capture
the key body parts involved in scratching behavior. Weber et al. [19] customize a free-walking runway
with two mirrors that allow 3D recording of the mice from the lateral/side and down perspectives.
Aljovic et al. [20] film all videos with a GoPro 8 camera positioned parallel to and at a fixed distance
and angle from the treadmill and ladder. Alexandrov et al. [9] generate a large, content-rich behavioral
data set using a series of HET Htt CAG-repeat-KI mice with a range of CAG repeat lengths, assessed
at different ages.

Weber et al. [19] reveal gait abnormalities and motor deficits in rodents after a focal ischemic stroke
with key point detection and pose estimation based on deep learning. They provide a comprehensive
3D gait analysis of mice. They further refined the widely used ladder rung test using deep learning
and compared its performance to human annotators. The results show that deep learning-based
motion tracking with comprehensive post-analysis provides accurate and sensitive data to describe
the complex recovery of rodents following a stroke.

Yu et al. [18] develop a new system, Scratch-AID (Automatic Itch Detection), based on image
classification and action recognition. The system could automatically identify and quantify mice
scratching behavior with high accuracy. They design a CRNN (Convolutional Recurrent Neural
Network) by combining CNN (Convolutional Neural Network) and RNN (Recurrent Neural Network).
The CNN extracts static features, and the RNN extracts dynamic features. Finally, a classifier combines
the features extracted by both CNN and RNN and generates the prediction output (scratching or
non-scratching). The best-trained network achieves 97.6% recall and 96.9% precision on test videos.

Sakamoto et al. [16] develop an accurate automated prediction method for black mice with image
classification and action recognition. Same with Yu et.al’s research [18], they also used CRNN. The
CRNN outputs a decimal value between zero and one for pre-processed images. They define an image
whose value is more than 0.5 as “scratching”. They set a posterior filter that removes the predictions for
nine or fewer frames, which could easily be wrong, to improve the predictive performance. The results
show that the established CRNN and posterior filter successfully predicted the scratching behavior in
black mice.

Aljovic et al. [20] develop an open-source computational “toolbox” with pose estimation and
image classification functions. The toolbox can be applied to neurological conditions affecting the brain
and spinal cord. The toolbox is based upon pose estimation obtained from DeepLabCut [21]. It can be
used for automated kinematic parameter computation, automated footfall detection, and kinematic
data analysis with random forest classification and principal component analysis. The results show
that the automated comprehensive analysis could delineate the specific parameters of the locomotor
function that are best suited to track injuries of the brain or spinal cord or are sensitive enough to
predict disease onset during the prodromal phase of a multiple sclerosis model.

Alexandrov et al. [9] use a computational method based on SVMs (Support Vector Machines)
to analyze the large-scale phenotypic information generated by the three systems. They select the
phenotypes that best-distinguished mice with CAG repeats of different lengths. The final model,
which incorporates about 200 behavioral features, accurately predicts the CAG-repeat length of a
blinded mouse line. The results demonstrate the potential to predict underlying disease mutations by
measuring subtle variations at the level of behavioral phenotypes.

3.2. External Stimuli Effective Assessment

External stimuli effective assessment is a basic experiment approach for mice. Compared with
the mice without the stimuli, researchers make external stimuli on the specific mice organ to analyze
the stimuli effect by analyzing mice behaviors. The types of external stimuli are various, such as
medicine [22], artificial stimulus [23], and genetic alteration [24]. Due to the high-speed behavior of
mice, traditional approaches cannot exactly obtain the video frames with the complete organ. With
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the development of Al technology, researchers apply the Al-empowered approaches to evaluate the
external stimuli effect on mice automatically, which presents the basic research steps in Figure 3.
Researchers make various external stimuli on the mice, such as drug stimuli, artificial stimuli and gene
knockout to observe the actions of mice. With the Al techniques empowering, the Al models extract
the features from the video timeline, and make classification, detection and tracing tasks by the train
process. Then the researchers can get the expected outputs from the Al models. Studying external
stimuli effect in mice can contribute to exploring disease treatment and neuroscience. They generally
focus on the detection, classification, segmentation, and tracing tasks.

i [ Drug Artificial Gene 3
» | Stimuli Stimuli Knockout | Train Process
[ N . e i
l / [ Classification |
Mbserve . | Feature . Detecti | Expect
ctions . | Extract L —eechon 1 Output
| Tracing !
Video Timeline L Al |

Figure 3. External Stimuli Example.

Current Al-empowered studies on external stimuli effective assessment adopt video data as the
training and testing data. Wotton et al. [25] collect video data of mice behavior in response to a hind
paw formalin injection. Kathote et al. [26] record the bottom view videos of the mice behavior with
acetazolamide and baclofen. Vidal et al. [27] create a video database including the behavioral data
of 8 different white-haired mice collected multiple times at different times. Abdus-Saboor et al. [28]
use high-speed videography to record sub-second, full-body move videos. Marks et al. [29] collect
raw video frames in complex environments directly. Torabi et al. [30] collect neonatal (10-days-old)
rat pup video recordings using standard locomotor-derived kinematic measures. Martins et al. [31]
collected videos of the tail suspension test (TST) in a controlled environment. Wang et al. [32] collect
mice behavior with an overhead camera during video recording.

Wotton et al. [25] aim to make key point detection and licking action recognition of mice and
propose an automated rating system for rapid, yet clinically relevant nociception assays in the
formalin assay. They take advantage of the key point detection by DeepLabCut [21] with a pre-trained
ResNet50 [33], and use the GentleBoost classifier to identify the behavior of licking of each frame. The
results show that the automated system easily scores over 80 videos and reveals strain differences in
both response timing and amplitude.

Vidal et al. [27] focus on automating the prediction of the grimace scale on white-furred mice by
Al-empowered object detection, semantic segmentation, and image classification. They create a video
database including the behavioral data of 8 different white-haired mice collected multiple times, use
YOLO to detect frames that provide a stable frontal face of the mice, and propose a Dilated CNN to
segment the mice eyes region and a Grimace Scale Prediction Network to classify the grimace scale
into dilatation, activation, and dropout. The results show that this process is possible to differentiate
among the pain scale of the mice.

Abdus-Saboor et al. [28] analyze sub-second behavioral features following hind paw stimulation
with both noxious and innocuous stimuli to assess pain sensation in mice by Al-empowered action
recognition. They apply four mechanical stimuli to the plantar surface of a randomly chosen hind paw
of fully acclimated mice, apply machine learning to make classifies withdrawal action behaviors as a
probability of being pain-like, and obtain the probability by regression analysis. The results indicated
that a sensitive pain sensation assessment could be feasibly achieved based on the calibration of the
animal’s own behavior.
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Kathote et al. [26] develop an Al-empowered pose estimation method to quantify Glucose
transporter 1 deficiency syndrome mice behavior to infer potential therapeutic value on cancer. They
make automation of pose estimation by deep neural networks to analyze more subtle changes that the
drugs may potentially cause, use K-means to cluster and select usable frames, and train these frames
for automated tracking of body parts in the recorded videos. The results indicate that this in vivo
approach can estimate preclinical suitability from the perspective of G1D locomotion.

Marks et al. [29] propose a novel deep learning architecture to study brain function, the effects of
pharmacological interventions, and genetic alterations by quantification of behaviors. The architecture
consists of four neural networks. It made instance segmentation to find the mask and bounding box
for each animal by SegNet. Based on the segmentation, the architecture can make key point detection
by PoseNet, object tracing by IdNet, and action recognition by BehaveNet based on different types of
input data. The results show that the architecture successfully recognized multiple behaviors of freely
moving individual mice and socially interacting non-human primates in three dimensions.

Torabi et al. [30] study the effect of maternal nicotine exposure before conception on 10-day-old
rat pup motor behavior and propose a deep neural network by action recognition. They train the
model for classifying the videos into maternal preconception nicotine exposed groups and control
them. The results suggest novel findings that maternal preconception nicotine exposure delays and
alters offspring motor development.

Martins et al. [31] develop a novel computerized approach, based on Al and video analysis of the
experimentation procedure, to standardize the TST by object detection and action classification. They
propose a CNN network to detect the bounding boxes of the rear paws in the videos. Based on this,
they apply some machine learning techniques to classify the movement status of the rodent, such as
SVMs, decision trees, and kNNs (k-nearest neighbors). The results show that the CNN achieved 87.7%
success in the paw identification problem, and the classifier achieved 95% accuracy in classifying the
animal’s mobility states.

Wang et al. [32] seek to develop a hybrid machine learning workflow to understand the brain
more by accurate and effective quantification of animal behavior. They use DeepLabCut to trace
the mice body key points and detect the mice behavior during a video period by random forest and
hidden Markov model models. The results show that the workflow represented a balanced approach
for improving the depth and reliability of machine learning classifiers in chemosensory and other
behavioral contexts.

3.3. Social Behavior Analysis

The study of social behavior in mice [34,35] holds significant importance in the field of medicine.
By gaining a deep understanding of the neurobiological basis of social behavior in mice, people can
unravel the mechanisms underlying social behavioral disorders and provide clues for the diagnosis
and treatment of related diseases [36,37]. Additionally, research has revealed the impact of social stress
and stress on social behavior in mice, highlighting the interaction between stress and social behavior
and offering new strategies for treating stress-related disorders. The study of social behavior in mice
also contributes to exploring the influence of social interaction on health, providing important clues to
understanding the association between social isolation and health issues. Social behavior analysis in
mice generally includes object detection, key point detection, post estimation, action recognition, and
other tasks, as shown in Figure 4. The process mainly consists of two steps: data extraction and data
analysis. In the data extraction step, the researchers estimate the posture of the mice in the video data
and extract the mouse trajectories from the image data. In the data analysis step, they extract the pose
features and classify behaviors. Finally, the results are visualized.
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Figure 4. Social Behavior Example.

Current studies of social behavior in mice are vision-based, which means they study the behaviors
of mice by analyzing the video data of mice activity. Video data are classified as single-view
or multi-view. The studies that rely on analyzing single-view video recordings [38,39] can be
ambiguous when the basic information about the behavior is occluded. Multi-view video can provide
more behavioral information about mice, which is easier to identify their behavioral characteristics.
Therefore, multi-view video recordings for mouse observations are increasingly receiving much
attention [40-43].

Segalin et al. [38] introduce the Mouse Action Recognition System (MARS), an automated pose
estimation and behavior quantification pipeline in pairs of freely interacting mice. MARS achieves
human-level performance in pose estimation and behavior classification. Moreover, it uses computer
vision to track and detect the pose of the mice and the XGBoost [44] algorithm to classify their behavior.
The authors also provide custom Python code to train novel behavior classifiers.

Agbele et al. [39] present a system that uses local binary patterns and cascade AdaBoost [45]
classifier to detect and classify mice behavioral movement in videos with minimal supervision, helping
animal behaviorists in their research by providing a non-invasive and non-intrusive way to study
mice behavior. The developed cascade AdaBoost algorithm was able to detect eight different mice
movements.

Winters et al. [46] present a new automated method for assessing maternal care in laboratory mice
using machine learning algorithms and aim to improve the reliability and reproducibility of the pup
retrieval test performance assessment. The results show that the proposed automated procedure was
able to estimate retrieval success with an accuracy of 86.7%. They bred primiparous c¢57bl/6]JR] mice
and housed them in groups for time-controlled breeding in standard type II cages. They use the puppy
retrieval test to evaluate puppy-oriented maternal care in laboratory mice. Automatic tracking of dams
and one pup is established in DeepLabCut, and “maternal approach”, “handling” and "digging" for
automatic behavioral classification are established in simple behavior analysis.

Jiang et al. [40] propose a novel multi-view latent-attention and dynamic discriminative model
for identifying social behaviors from various views. The proposed model outperforms other
state-of-the-art technologies and effectively solves the imbalanced data problem. The model jointly
learns view-specific and view-shared sub-structures, where the former captures the unique dynamics
of each view while the latter encodes the interaction between the views. Additionally, a multi-view
latent-attention variational autoencoder model is introduced in learning the acquired features, enabling


https://doi.org/10.20944/preprints202307.0271.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 July 2023 doi:10.20944/preprints202307.0271.v1

8 of 41

them to learn discriminative features in each view. Also, the graphical model models the correlation
between the neighboring labels, which has shown superior performance in recognizing mouse
behaviors in a long video recording.

Hong et al. [47] present a new integrated hardware and software system for automatically
estimating pose and classifying social behaviors involving close and dynamic interactions between two
mice. The experiment proves that their integrated approach allows for rapid, automated measurement
of social behaviors and allows the ability to develop new, objective behavioral metrics. They design a
hardware setup and software to produce an accurate representation and segmentation of inaccurately
represented segments. Then they develop a computer vision tool that extracts a representation of the
location and body pose (orientation, posture, etc.) of individual animals and use the representation to
train a supervised machine learning algorithm to detect specific social behaviors.

Burgos-Artizzu et al. [42] present a novel method for analyzing social behavior in continuous
videos by segmenting them into action “bouts” using a temporal context model that combines features
from spatio-temporal energy and agent trajectories. The method is tested on a dataset of videos of
interacting pairs of mice, reaching a mean recognition rate of 61.2% compared to the expert’s agreement
rate of about 70%. The authors find that their novel trajectory features, used in a discriminative
framework, are more informative than widely used spatio-temporal features. Furthermore, temporal
context plays an important role in action recognition of continuous videos. The authors compare their
method with other approaches and show that their approach outperforms them regarding recognition
rate.

Tanas et al. [48] discuss using multidimensional analysis to evaluate the behavioral phenotype
of mice with Angelman syndrome and wild-type littermates. The approach was able to predict
the genotype of mice based on their behavioral profile with high accuracy and detect behavioral
improvement as a function of treatment in Angelman syndrome model mice. They define
multidimensional analysis as the multi-step process of (a) reducing the dimensionality of large
behavioral datasets using principal component analysis, (b) clustering data in principal component
space using k-means clustering, and (c) assessing whether behaviorally defined clusters align with
animal genotype.

3.4. Neurobehavioral Assessment

Neurology is a major research direction of biology and medical science. Traditional approaches
measure the representational mice behavior information for the neurologic study, such as dynamic
weight-bearing test [49], metabolic parameters test [50] and grip strength test [51]. However, some
micro features of mice behaviors can promote the research of neurology, which can not be discovered by
manual observation. Therefore, researchers apply Al methods in analyzing certain mice behaviors to
study mice’s nervous systems further. To make the neurobehavioral assessment, researchers commonly
collect the video of mice behavior, then transfer the video data into image frames, and make Al
models for training the images for classification, segmentation, key point detection, and context action
prediction.

In the neurobehavioral assessment, all the studies collect video data and divide videos into image
frames to train Al models. Ren et al. [52], Jiang et al. [53], and Tong et al. [54] collected mice action
behavior videos. Geuther et al. [10] collected the mice sleep behavior videos. Cai et al. [55] recorded
the mice freezing behavior videos. Jhuang et al. [56] provided software and an extensive manually
annotated video database for data training and testing. Lara-Dona et al. [57] collected the mice pupil
behavior videos of both eyes.

Ren et al. [52] find that automated annotation of mice behavior could help study the neuroscience
of long-term memory in mice. Then they treat the annotation task as a per-frame image classification
problem and fine-tune a powerful CNN network pre-trained on ImageNet for recognizing annotate
animal behaviors automatically to save human annotation costs. The results show that the powerful
CNN can provides more accurate annotations than alternate automatic methods.
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Cai et al. [55] study the reward & punishment mechanism of dopamine neurons by mice freezing
behaviors, and eliminate the need for human scoring by pre-trained ResNet. They further train on the
pixel-by-pixel intensity difference between consecutive pairs of frames and classify each frame into a
certain behavior classification. The results show that each classifier achieved optimal training within
50 training epochs and yielded 92-96% accuracy.

Jhuang et. al [56] aime to make the neurobehavioural analysis of mice phenotypes and classify
every frame of a video sequence by semantic segmentation and image classification, even for those
frames that are ambiguous and difficult to categorize. They first made the semantic segmentation to get
the foreground mask by the background subtraction procedure. Then they train and test a multiclass
SVM model on single isolated frames to recognize high-quality unambiguous behavior. The results
show that their model can lead to 93% accuracy, which is significantly higher than the performance of
a representative computer vision system.

Lara-Dona et al. [57] analyze the changes in pupil diameter by semantic segmentation, which
reflects neural activity in the locus coeruleus. They built up the SOLOV2 to segment mice pupils from
each photo frame, and output the range of mice pupils. The results confirm a high accuracy that makes
the system suitable for real-time pupil size tracking.

Geuther et al. [10] treat the nerve signals and the mice behavior videos to analyze mice’s sleep
quality. They segment the mice mask from the video and use the human expert-scored EEG/EMG
data to train a visual classifier, and finally make action recognition, which classified each 10s video
into categories, such as wake, sleep NREM, and sleep REM. The results show that their classifier can
reach the overall accuracy of 0.92 + 0.05, which can replace the manual classification.

Tong et al. [54] apply both segmentation and key point detection in their study. They aim to
analyze optomotor response to evaluate animals’ visual function and nervous system. They use
binarization to make the semantic segmentation of mouse contour and propose a powerful CNN
network to detect the position of the mouse’s nose and track the orientation of the mouse’s head. The
results show that their CNN network can achieve a recognition rate of 94.89%.

Jiang et al. [53] propose a hybrid deep learning architecture with a novel hidden Markov model
algorithm to describe the temporal characteristics of mice behaviors by action prediction. The
architecture contains an unsupervised layer and a supervised layer. The unsupervised layer relies on
an advanced spatial-temporal segment Fisher vector encoding both visual and contextual features, and
the supervised layer is trained to estimate the state-dependent observation probabilities of the hidden
Markov model. The results show that the accuracy of their architecture can get 96.5% on average.

3.5. Al Tasks Taxonomy

After summarizing the behavior analysis applications in mice, we also summarized the Al tasks
during behavior analysis in mice, as shown in Table 1. The table also summarizes the data types and
characteristics of the study.

To summarize the behavior analysis applications in mice, we first read the collected literature
and classified them according to their research purposes and applications. We found that most of
the studies could be grouped into 4 categories, namely disease detection, external stimuli effective
assessment, social behavior analysis, and neurobehavioral assessment, in which we introduce 4, 8, 6,
and 7 literature, respectively. In addition, in the mice behavior analysis studies, the Al-empowered
mice behavior applications can divide into multiple AI tasks because of different applications and
research methods. We summarized nine tasks in total. We also summarize the characteristics of the
data analyzed in the studies. Almost all of them analyze video data, which are broadly classified as
having single-view and multiple-view, i.e., whether the data were collected from a single camera or
multiple cameras.
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Table 1. AI tasks taxonomy: MV=Multi-view, SV=Single-view; -T=Top-bottom, -B=Bottom-top,
-F=Front-Back, -S=Side-Side.

s . . Data
Application Literature Al Task Attribute
[54] Semantic Segmentation, Key Point Detection SV-T
[52] Image Classification SV-T
Neurobehavioral [55] Image C.lassiﬁcation. . _ SV-T
Assessment [10] Semantic Segmentation, Action Recognition SV-T
[56] Semantic Segmentation, Image Classification SV-F
[53] Action Prediction SV-F
[57] Semantic Segmentation SV-F
[39] Object Detection, Action Recognition SV-S
[47] Pose Estimation, Action Recognition MV-TFS
Social Behavior [46] Pose Estimation, Action Recognition SV-T
Analysis Object Tracing
[40] Action Recognition, Key Point Detection MV-TS
[48] Action Recognition MV-TS
[38] Obj.ect Detectif)l}, Pose Estimation, MV-TF
Action recognition
[25] Key Point Detection, Action Recognition MV-B
[26] Pose Estimation SV-B
[27] Object Detection, Semantic Segmentation, SV-F
External Stimuli Image Classification
Effective Assessment [28] Action Recognition SV-T
[29] Instance Segmentation, Key Point Detection, SV-T
Object Tracing, Action Recognition
[30] Action Recognition SV-T
[31] Object Detection, Action Recognition SV-F
[32] Object Tracing, Action Recognition SV-T
[18] Semantic Segmentation, Action Recognition SV-B
Disease [16] Semantic Segmentation, Action Recognition SV-T
Detection [19] Key Point Detection, Pose Estimation MV-BS
[20] Key Point Detection, Pose Estimation SV-S

4. Al-empowered Approaches

In this section, we focus on the techniques behind mice behavior analysis in biology fields. We first
build up an Al pyramid according to the Al task’s dependency relationship. Then, we introduce several
general backbones, namely the fundamental architectures of Al models. In the last, we introduce the
Al models in each Al task. Noted that, except some models used to couple with mice video data are
introduced, we also introduce some state-of-art approaches used for human-related recognition.

4.1. Al Pyramid

The architecture of Al tasks is organized as Figure 5. Itis a “pyramid” structure including four
layers: top layer, middle layer, fundamental layer, and backbone layer. The topper layers may take
advantage of the techniques of the lower layers.

The backbone layer contains the backbone models and networks. The backbone is the major
network of a model. It helps abstract the features of images or videos and generate the feature map for
the following network structure. Researchers mainly use the pre-trained backbone and fine-tune it for
their study. The common backbones include CNNSs, such as ResNet, ResNeXt, DarkNet, MobileNet,
Yolo, HourGlass, and Transformers.
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Figure 5. Task Pyramid.

The fundamental layer contains the basic Al tasks, including image classification, object detection,
semantic segmentation, and instance segmentation. These tasks are atomic and can not be further
divided into other Al tasks and take advantage of backbone networks from the backbone layer. For
example, object detection can select YoloV5 as the backbone network.

The middle layer contains key point detection and poses estimation. Both tasks may need support
from the fundamental layer. For example, the key point detection model may combine the semantic
and instance segmentation as the first step, and apply the object detection as the final step. Also,
the tasks of the middle layer may apply to the backbone networks from the backbone layer, such as
DarkNet and MobileNet.

The top layer tasks may integrate both the middle and fundamental layers’ tasks in the model.
For example, the action prediction can combine the key point detection(Middle layer) and the semantic
segmentation(Fundamental layer) tasks. The task of the top layer can also integrate the backbone
network into its model.

4.2. Backbone

The backbone is the major architecture of the Al models. It helps to extract the modular structure
of image features and transform the images into high-dimensional feature representations. Existing
known backbones for mice behavior analysis can be categorized into two categories: CNN-based and
Transformer-based.

In CNN-based backbones, the backbones contain multiple convolutional layers and pooling layers.
The convolutional layers help extract the features of images. The pooling layers reduce the number of
parameters and improve the robustness of features. Common CNN-based backbones include DarkNet,
ResNet, MobileNet, HourGlass, and YoloV5. The dependency and relationship of these CNN-based
backbones are shown in Figure 6. The CNN-based backbones are all based on convolutions and
poolings. In detail, the MobileNet requires depthwise convolution to achieve lightweight, and others
require residual techniques to improve performance. In the residual techniques, HourGlass, ResNet
family, and DarkNet family can be categorized by the iterative module, skip connection, and the
darknet module and the darknet module can be furtherly dividied into DarkNet and Yolo families.
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DarkNet [58] is a lightweight CNN network. The structure of the backbone adopts multiple
convolution layers and downsampling layers. A Batch Normalization layer and a Leaky ReLU
layer follow each convolution layer. In detail, it contains an input layer, 19 convolutional layers, 2
upsampling layers, a fully connected layer, 26 batch normalization layers, 19 leaky ReLU layers, and 5
max pooling layers.

ResNet50 [59] is a typical backbone in the Resnet family, which is a deep residual network. It has
50 layers in total and avoids the problem of disappearing gradients. In detail, it contains an input layer,
a 7*7 convolutional layer, a pooling layer, 16 residual blocks (3 convolutional layers in each block), a
global average pooling layer, a fully connected layer, and a softmax layer.

MobileNet [60] is a lightweight convolutional neural network proposed by Google. It can make
rapid image classification and object detection on mobile devices. It has an input layer, 13 convolutional
layers, 13 depthwise separable convolutional layers, a global average layer, a fully connected layer,
and a softmax layer.

HourGlass [61] is a CNN-based backbone for human pose estimation. It consists of 4 HourGlass
modules. Each module contains an input layer, a convolutional layer (64 filters, 7*7 kernel size, stride
2), some residual blocks (64 filters, 3*3 kernel size), a max pooling layer (2*2 kernel size, stride 2),
an Hourglass (recursive), some residual blocks (128 filters, 3*3 kernel size), an upsampling layer
(2*2 kernel size, nearest-neighbor interpolation), some residual blocks (64 filters, 3*3 kernel size), a
convolutional layer (specific filters, 1*1 kernel size), and an output layer.

YoloV5 [62] is the scaled-YoloV4 in fact. contains a convolutional layer, a feature pyramid
layer, and a detection head. The convolutional layer takes the CSPNet as the backbone, including 9
convolutional layers. The feature pyramid layer applies a spatial pyramid pooling module and fuses
multi-scale feature maps to improve the detection ability of micro targets. The detection head has three
branches for detecting targets of any size. Each branch has a convolutional layer and an output layer.

Recently, the transformer-based backbone has become a popular backbone architecture in
computer vision tasks. However, it hasn’t been used in the mice behavior analysis. Considering
its state-of-art performance and accuracy. It is essential to utilize the transformer-based in the biology
field. Transformer is mainly applied in Sequence-to-Sequence tasks, such as translation and speech
recognition. It contains an input embedding layer, some encoder layers, and some decoder layers (each
includes three sub-layers, Multi-head Self-attention, multi-head attention, and feedforward neural
network). However, in the transformer-based, the encoders are mostly used as a backbone, such as
ViT [63] and Swin [64].
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ViT is proposed by Google Brain in 2020. It aims to apply a transformer to the computer vision
field. ViT contains four layers: patch embedding layer, transformer encoder layer, global average
pooling layer, and the fully connection layer. The patch embedding layer divides the image into pieces
of fixed size and maps them into a vector. The transformer encoder layers help to extract the features
of the vector. The global average pooling layer and the fully connection layer are used for the feature
presentation and the output presentation.

Swin is proposed by Microsoft Research Asia in 2021. It has three parts: Swin transformer block
for extracting the local feature, stage segmentation for dividing the image into multiple sub-figures,
and the cross-stage connection for transmitting the features among different parts.

4.3. Fundamental Layer Tasks

The fundamental layer tasks mainly make basic image analysis. The goal of these tasks is to
extract information about objects or features from images or videos, such as their location, size, shape,
and category.

4.3.1. Image Classification

Image Classification is a fundamental task in the field of computer vision. Its goal is to assign
a label to an input image from a predefined set of categories. The training methods of image
classification can be divided into supervised learning, unsupervised learning, semi-supervised learning,
self-supervised learning, and weakly supervised learning. Supervised learning is the model learning
labeled data, learning a mapping relationship between data and labels. Unsupervised learning is
learning completely unlabeled data from which models learn patterns. Semi-supervised learning is
data that includes both labeled and unlabeled parts. Self-supervised model learning is also learning
unlabeled data. The difference is that these unlabeled data can be labeled by learning.

Ren et al. [52] used the supervised learning training model. They take a pre-trained CNN trained
on ImageNet and fine-tune it for their rodent behavior classification task. They use Cy, F, P, D, C
to represent a convolutional layer with k filters (Cy), a fully-connected layer with k neurons (F), a
down-sampling max-pooling layer (P) with kernel size 3 and stride 2, a dropout layer (D), and
a soft-max classifier (C). They transfer AlexNet into use by replacing its last 1000-dimensional
classification layer with a 5-dimensional classification layer. The AlexNet network architecture
is: C96(11)-P-C256(5)-P-C384(3)-C384(3)-C256(3)-PF4096-D-F4096-D-C. They also transferred C3D,
which simultaneously learns spatial and temporal features by performing 3D convolutions, and
has been shown to outperform alternate 2D CNN s for video classification tasks. The C3D network
architecture is C64-P-C128-P-C256-C256-P-C512-C512-P-C512C512-P-F4096-D-F4096-D-C.

Cai et al. [55] also use the supervised learning. They develop an analysis pipeline based on a
CNN model to identify freezing behavior in mice. The CNN is initialized on the pre-trained ResNet18
architecture and further trained on “difference images,” the pixel-by-pixel intensity difference between
consecutive pairs of frames. The rationale for inputting different images to the CNN was to capture
frame-by-frame motion. Each difference image is human-labeled as 1 or 0 to signify ‘freeze’ or ‘no
freeze,” and the network learned to predict labels for new difference images. The CNN allowes accurate
and automated classification of freezing behavior throughout the duration of their experiments with
minimal labor and enables them to determine that the precise temporal relationship between dopamine
neuron activity and freezing behavior depends on the VTA subregion.
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At present, the image classification of mice is basically supervised learning. It is worth noting
that labeling data usually takes a lot of manpower and material resources, and there are a lot of
unlabeled data in real life. Although supervised learning is the most commonly used method in image
classification, other training methods have their applications, particularly when large amounts of
labeled data are unavailable or when labeling is costly. Most of the current popular image classification
methods combine supervised and unsupervised learning. The following introduces the current
advanced image classification algorithms. The summary of image classification is shown in Table 2.

Du et al. [65] propose a novel semi-supervised efficient contrastive learning classification method
for esophageal disease. They use pre-trained ResNet50 as the CNN backbone. First, they propose
an efficient contrastive pair generation module to generate efficient contrastive pairs. Then, an
unsupervised visual feature representation containing the general feature of esophageal gastroscopic
images is learned by unsupervised efficient contrastive learning. Finally, they transfer the feature
representation to the downstream esophageal disease classification task. The experimental results
have demonstrated that the classification accuracy is 92.57%. The proposed method can reduce the
reliance on large labeled datasets and the burden of data annotation.

Xue et al. [66] propose a generative self-supervised pretraining and few-shot land cover
classification method for multimodal remote sensing data. The approach contains two stages:
generative self-supervised pretraining and few-shot land cover classification. In the pretraining
procedure, local multiview observed images are divided into image patches, which are masked
randomly, and unmasked patches are embedded for the encoder to learn high-level feature
representations. After the self-supervised pretraining process, the learned spatial features are
normalized and combined with corresponding spectral information. These are employed as an
input of the lightweight SVM for classification. The transformer structure is employed as the backbone.

Lietal. [67] present a self-supervised learning framework for retinal disease diagnosis that reduces
the annotation efforts by learning the visual features from the unlabeled images. The framework is
based on ResNet18. The workflow of the overall architecture of the self-supervised method involves
randomly sampling images from the training dataset, applying random data augmentation twice to
generate rotated images, assigning rotation labels to each image, and utilizing a feature embedding
network to map the input to a high-level feature vector that is decoupled into two parts: rotation-related
and rotation-invariant features. The experimental results demonstrate that with a large amount of
unlabeled data available, the proposed method could surpass the supervised baseline for pathologic
myopia and is very close to the supervised baseline for age-related macular degeneration, showing the
potential benefit of the method in clinical practice.

Taleb et al. [68] propose using self-supervised learning methods to learn from unlabeled data for
dental caries classification. The backbone of the methods is CNNs. They train with three self-supervised
algorithms on a large corpus of unlabeled dental images, which contain 38K bitewing radiographs.
They then apply the learned neural network representations on tooth-level dental caries classification,
using labels extracted from electronic health records. The experimental results demonstrate improved
caries classification performance and label efficiency.
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Table 2. Summary of Studies on Image Classification.

Architecture

Type

Category Dataset

Performance

[52] AlexNet,C3D

Mice

Supervised  Private

learning

The model not only provides
more accurate annotations than
alternate automatic methods, but
also provides reliable annotations
that can replace human annotations
for neuroscience experiments.

[55] ResNetl18

Mice

Supervised  Private

learning

The CNN allows accurate and
automated classification of freezing
behavior throughout the duration of
our experiments with minimal labor

[65] ResNet50

Stomach

Semi-supervised’rivate Kvasir [69]
learning

The classification accuracy is
92.57%, which is better than
that of the other state-of-the-art
semi-supervised methods and is
also higher than the classification
method based on transfer learning
by 2.28%.

[66] Transformer

Remote
sensing

Self-supervised Private
learning

The generative self-supervised
model achieves superior
performance in terms of
feature learning and land cover
classification, especially in the small
sample classification case.

[67] ResNetl8

Retina

Self-supervised Ichallenge-AMD

learning dataset [70],
Ichallenge-PM
dataset [71]

The method outperforms other
self-supervised feature learning
methods (around 4.2% area under
the curve and can surpass the

supervised baseline for pathologic
myopia

Using as few as 18 annotations can
produce 45% sensitivity, which
is comparable to human-level
diagnostic performance

[68] ResNetl8 Dental

caries

Self-supervised Private
learning

4.3.2. Object Detection

Object detection aims to solve the problem of identifying and positioning the set goal. Its solutions
can be classified into two categories: one-stage and two-stage. The two-stage method splits the object
detection task into a location task and a classification task. A series of candidate boxes as samples
are generated through the region propose networks (RPN) first, and then classification regression is
carried out through the network. The one-stage method directly regresses the distribution probability
and position coordinates of the target instead of the RPN. It obtains the location information and target
categories over the backbone network. The major processes of the two methods are shown in Figure 7.

Existing mice behavior analysis studies apply one-stage and two-stage methods. For the one-stage
method, Vidal et al. [27] applied YoloV3 trained on the Open Images datasets to detect the mouse
faces. Their modified YOLO model is trained for 100 epochs on the corpus. For the first 50 epochs, the
entire model is frozen except for the output layer. Then, they unfreeze all the parameters in the model,
training the model for another 50 epochs.
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Figure 7. Object detection: One-stage and Two-stage Methods.

For the two-stage method, Martins et al. [31] apply Inspection ResNetV2 with Faster R-CNN to
detect the rear paws of mice. They apply Faster R-CNN to locate the rear paws by RPN networks and
obtain the region of interest (ROIs). Then, the extracted ROIs are integrated with the feature map, and
classification and box regression are carried out by the Inspection ResNetV2. Besides, Segalin et al. [38]
also applied Inspection ResNetV2 with ImageNet pre-trained weights to detect the mice location. In
their study, the network model computes a short list of up to K possible object detectors proposal
(bounding boxes) and associate confidence scores denoting the likelihood of that box containing a
target object, in this case, the black or white mice. During training, their network model seeks to
optimize the location and maximize confidence scores of predicted bounding boxes that best match the
ground truth, while minimizing confidence scores of those that do not match the ground truth. The
bounding box location was encoded as the coordinates of the box’s upper-left and lower-right corners,
normalized with respect to the image dimensions. Finally, the network output is the confidence score
scaled between 0 (lowest) and 1 (highest).

With the development of deep learning, state-of-the-art object detection techniques can be further
divided into anchor-based and anchor-free methods. The anchor is used for label allocation. In
the anchor-based method, boxes of different sizes and aspect ratios are preset either manually or
by clustering methods, which can cover the whole image. It can be applied in both one-stage and
two-stage methods. The anchor-free method can be divided into two sub-methods. The first one
determines the object’s center and the predictions for the four borders (called center-based). The
second one locates to multiple predefined or self-learning key points and then constrains the spatial
range of the object (called key point-based). The state-of-the-art studies on object detection apply the
anchor-based and anchor-free mode, which are summarized in Table 3.

Hu et al. [72] propose a one-stage anchor-free network for improving the detection accuracy of the
one-stage method. The whole network takes a point cloud input and voxelized it. They apply AFDet
as the backbone, which has two stages, and each stage has a convolutional layer and three blocks. To
fully explore the potential of the single-stage framework, they apply the self-calibrated convolutions
for each block. Besides, they devise an intersection over union (IoU) aware confidence score prediction
as the anchor-free head of the network. The head belongs to the key point-based anchor-free method.
The authors devise a keypoint prediction sub-head as auxiliary supervision in the detection head. They
add another heatmap that predicts 4 corners and the center of every object in bird’s eye view during
training.
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Architecture Type Category Dataset Performance
[27] YoloV3 Mice One-stage Open Images A mean intersection
dataset over union (IoU)
score of 0.87

[31] Inspection ResNetV2 with Faster Mice Two-stage Private Approximately 95%
R-CNN accuracy

[38] Inspection ResNetV2 with ImageNet Mice Two-stage Behavior Ensemble Good efficiency on
pretrained weights and Neural Precision-Recall

Trajectory (PR) curves
Observatory
(BENTO)

[72] Point Cloud Voxelization, 3D Feature ~Object  detection One-stage, Waymo Open  Accuracy:73.12,
Extractor, backbone(AFDet) and the from point clouds anchor-free Dataset, nuScenes latency:60.06ms
Anchor-Free Detector Dataset

[73] YOLOVS5, the feature fusion layer, and  Industrial defect Two-stage, VOC2007, 83.3% mean average
the multiscale detection layer detection anchor-based NEU-DET, precision (mAP)

Enriched-NEU-DET

[74] The location prior network (LPN) and  Video object One-stage ImageNet VID 54.1 AP and 60.1 APl
the size prior network (SPN) detection

[75] ResNet backbone, a FPN, an ARM  Rotating object Two-stage UAV-ROD 96.65 mAP and 98.84
cascade network with rotated IoU detection accurancy under the

prediction branch, and the two-stage
sample selective strategy

plane category

Li et al. [73] propose a two-stage anchor-based network to make the first-stage recognition more
effective at locating insignificant small defects with high similarity on the steel surface. The network
structure contains input, backbone, neck, and output parts. The input terminal mainly contains the
preprocessing of the data, including mosaic data augmentation and adaptive image filling. In the neck
network, the feature pyramid structures of feature pyramid network (FPN) and pixel aggregation
network (PAN) were used. The FPN structure conveys strong semantic features from the top feature
maps into the lower feature maps. At the same time, the PAN structure conveys strong localization
features from lower feature maps into higher feature maps. The head output is mainly used to predict
targets of different sizes on feature maps. The backbone is YoloV5 with improved feature extraction
capability of the backbone network for steel defects. They remove the Conv and C3 layer that obtained
1/32 scale feature information in the original YOLOV5, and replace it with a Conv and C3 layer that
extracted feature information at a 1/24 scale. Besides, they embed an efficient channel attention
network mechanism into the backbone network and connect it in parallel to the C3 module.

Sun et al. [74] present a simple yet efficient framework to address the computational bottlenecks
and achieve efficient one-stage VOD. They proposed two modules to achieve an efficient one-stage
video object detector called the location prior network and the size prior network. The location prior
network has two steps. First, the foreground region selection is guided by the detected bounding boxes
from the previous frame. Second, the partial feature aggregation enhances the selected foreground
pixels using attention modules. Besides, the authors apply an attention mechanism in the one-stage
method and solve the bottlenecks, including efficiency and detection heads on low feature levels. The
input of the attention is foreground pixels on the current frame and the reference frames.

Zhou et al. [75] propose an anchor-based two-stage model called TS4Net for rotating object
detection solely. Benefiting from the ARM and TS4, the TS4Net can achieve superior performance
with one preset horizontal anchor. The architecture of TS4Net adopts the vanilla one-stage detector
RetinaNet as the baseline model. In the RetinaNet, two parallel fully convolutional networks are
connected after FPN to perform the classification and regression tasks, respectively. It can also
add an extra IoU prediction head to train jointly with the classification head and regression head,
which improves the detection performance during inference. To select the positive samples from the
horizontal anchors with large IoU values, authors adopted an ARM cascade network including a
two-stage cascade network, which is stacked by four convolutional layers with 3*3 convolution kernels
as classification and regression networks in the first stage. Besides, the authors propose the two-stage
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sample selective strategy. The first stage of ARM refines the horizontal anchors to high-quality rotated
anchors, and then the second stage adjusts the rotating anchor to a more accurate prediction box.

Recently, Zhou et al. [76] propose a state-of-the-art two-stage study on video object detection
field with transformer technique. They propose an end-to-end model based on spatial-temporal
transformer architecture, improving the efficiency of the detection transformer and deformable DETR.
The model started from a ResNet backbone extracting features of multiple frames, Then, a series of
shared spatial transformer encoders produce the feature memories, which are linked and fed into the
temporal deformable transformer encoder, and the spatial transformer decoder decodes the spatial
object queries. Next, the model used a temporal query encoder to model the relations of different
queries and aggregate these queries supporting the object query of the current frame. Both the temporal
object query and the temporal feature memories are fed into the temporal deformable transformer
decoder to learn the temporal contexts across different frames. The input is video frames, and the
output is the shared weights.

4.3.3. Semantic Segmentation

Semantic segmentation is a computer vision task that assigns each pixel in an image to a specific
semantic category. In mice behavior analysis studies, by applying semantic segmentation to mice
behavior video data, it can be used for behavior recognition and tracking, spatial localization and
trajectory analysis, environmental interaction, behavioral context association, disease model, and drug
effect evaluation. The application of semantic segmentation in mice behavior analysis research can
achieve fine classification and quantification of behavior, provide more comprehensive and accurate
behavioral characterization, and promote a deeper understanding of mouse behavior patterns and
biological mechanisms.

Vidal et al. [27] propose a machine-learning approach to automate the prediction of the grimace
scale on white-furred mice, which is used to understand the suffering of a mouse in the presence
of interventions. The approach involves face detection, landmark region extraction, and expression
recognition. For eye region extraction and grimace pain prediction, a novel structure based on a dilated
convolutional network is proposed. Dilated convolutional neural networks [77] were proposed as
effective tools to perform semantic segmentation.

Wau et al. [78] propose a boosting semantic segmentation framework that performs state-of-the-art
segmenting of somata and vessels in the mouse brain. The proposed framework consists of a CNN
for multilabel semantic segmentation, a fusion module combining the annotated labels and the
corresponding predictions from the CNN, and a boosting algorithm to update the sample weights
sequentially. It improves the quality of the annotated labels for deep learning-based segmentation
tasks.

Geuther et al. [10] propose a machine learning-based visual classification of sleep in mice, which
provides a path to high-throughput studies of sleep. The authors collect synchronized high-resolution
video and EEG/EMG data in 16 male C57BL /6] mice, extract features from the video that are time and
frequency-based, and use the human expert-scored EEG/EMG data to train a visual classifier. When
processing the video data, they apply a segmentation neural network architecture [79] to produce mice
masks.

Existing semantic segmentation methods are divided into four categories according to different
network architectures: CNN-based architectures, transformer-based architectures, multi-layer
perception-based (MLP-based) architectures, and others.

In the CNN-based architecture, the deep network has a strong representation ability of semantic
information, and the shallow network contains rich spatial detail information. Zhang et al. [80]
proposed an EncNet model, which designed a context encoding module to capture global semantic
information and calculated the scaling factor of the feature graph based on the coding information to
highlight the information categories that need to be emphasized. Some of the most important works
include the DeepLap family proposed by Chen et al. [81] and the densely connected atrous spatial
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pyramid pooling (DenseASPP) proposed by Yang et al. [82]. They all use dilated convolution to replace
the original down-sampling method and expand the receptive field to obtain more context information
without increasing the number of parameters and calculations.

Transformer is a deep neural network based on self-attention. In the recent two years, transformer
Zheng et al. [83]
first performed semantic segmentation based on the transformer and constructed a segmentation

structure and its variants have been successfully applied to segmentation.

transformer network to extract global semantic information. Inspired by the segmentation transformer
network, trudel et al. [84] design a pure transformer model, named Segmenter, to apply to semantic
segmentation tasks. The model leverages pre-trained models for image classification and fine-tunes
them on moderate-sized datasets available for semantic segmentation. Segmenter outperforms the
state-of-the-art on both ADE20K and Pascal Context datasets and is competitive on Cityscapes.

MLP-based architecture is simple in design since it abandons convolution and self-attention.
The performance in many visual tasks is comparable to the CNN-based and Transformer-based
architectures. Yu et al. [85] propose a novel pure MLP architecture, spatial-shift MLP (S2-MLP), which
only contains channel-mixing MLP. The proposed S2-MLP attains higher recognition accuracy than
MLP-mixer when training on the ImageNet-1K dataset.

Table 4. Summary of Studies on Semantic Segmentation.

Reference Architecture Type Category Dataset Performance
[27] YoloV3 Mice CNN-based Open Images Achieves a performance of 97.2%
dataset in terms of accuracy
[78] DCNN based on U-Net Mice CNN-based MOST dataset Improves the network
performance by about 3-10%
[10] - Mice - Private Achieves an overall accuracy of
0.92 + 0.05 (mean + SD)
[80] Context Encoding Network — Semantic CNN-based CIFAR-10 dataset Achieves an error rate of 3.45%
based on ResNet segmentation
framework
[81] DCNN (VGG-16 or Semantic image CNN-based PASCAL VOC 2012, Reaching 79.7 percent mIOU
ResNet-101) segmentation model PASCAL-Context,
PASCALPerson-Part,
and Cityscapes
dataset
[82] DenseASPP, consists of Semantic image CNN-based Cityscapes dataset Achieve state-of-the-art
a base network followed segmentation performance
by a cascade of atrous in autonomous
convolution layers driving
[83] Transformer Segmentation Transformer-based ADE20K, Pascal Achieves new state of the art on
model Context, and ADE20K (50.28% mloU), Pascal
Cityscapes dataset Context (55.83% mloU) and
competitive results on Cityscapes
[84] Vision Transformer Segmentation Transformer-based ADE20K, Pascal Outperforms the state of the
model Context, and art on both ADE20K and
Cityscapes dataset Pascal Context datasets and is
competitive on Cityscapes
[85] Spatial-shift MLP  Segmentation MLP-based ImageNet-1K Attains considerably higher
(S2-MLP), containing  model dataset recognition  accuracy  than
only channel-mixing MLPs MLP-mixer on ImageNet-1K

dataset.

4.3.4. Instance Segmentation

Instance segmentation is a computer vision technique that involves identifying and delineating
individual objects within an image. Unlike semantic segmentation, which assigns a single label to
each pixel in an image, instance segmentation identifies different objects within an image and assigns
each object a unique label. The methods of instance segmentation can be divided into three categories:
top-down, bottom-up, and one-stage. In mice behavior studies, instance segmentation can be used to
track mouse movement trajectories and postures, allowing for the analysis of activity patterns and
behavioral characteristics. Instance segmentation provides researchers with accurate and efficient
data analysis tools to promote the development and progress of mouse research, whose studies are
summarized in Table 5.
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Marks et al. [29] use top-down methods. They propose SIPEC:SegNet, which is based on
the Mask R-CNN architecture, to segment instances of animals. SIPEC:SegNet is optimized for
analyzing multiple animals. They further apply transfer learning onto the weights of the Mask R-CNN
ResNet-backbone pre-trained on the Microsoft Common Objects in Context (COCO) dataset. Moreover,
they apply image augmentation to increase network robustness against invariances (for example,
rotational invariance) and therefore increase generalizability. The experimental results demonstrate
that SIPEC:SegNet achieved a mean average precision of 1.0 + 0 (mean + s.e.m.). For single-mouse
videos, the model achieves 95% of its mean peak performance (MAP of 0.95 + 0.05) using as few as
a total of three labeled frames for training. SIPEC:SegNet could robustly segment animals despite
occlusions, multiple scales, and rapid movement, and enable tracking of animal identities within a
session.

Although instance segmentation can play a significant role in mice behavior recognition, there are
not many studies on mice behavior that utilize instance segmentation. The following introduces some
popular instance segmentation methods of the above three method categories, which can provide a
reference for the subsequent research on mice behavior.

Shen et al. [86] propose a parallel detection and segmentation, a framework to learn instance
segmentation with only image-level labels. The framework draws inspiration from both top-down
and bottom-up instance segmentation approaches. The detection module is the same as the typical
design of any weakly supervised object detection. In contrast, the segmentation module leverages
self-supervised learning to model class-agnostic foreground extraction, followed by self-training
to refine class-specific segmentation. The paper further proposes an instance-activation correlation
module to improve the coherence between detection and segmentation branches. The experimental
results demonstrate that the proposed method outperforms baselines and achieves state-of-the-art
results on PASCAL VOC and COCO.

Korfhage et al. [87] present a CNN architecture based on Mask R-CNN for cell detection and
segmentation (top-down) that incorporates previously learned nucleus features. A novel fusion of
feature pyramids for nucleus detection and segmentation with feature pyramids for cell detection and
segmentation is used to improve performance on a microscopic image dataset created by the authors
and provided for public use, containing both nucleus and cell signals. The proposed feature pyramid
fusion architecture clearly outperforms a state-of-the-art Mask R-CNN approach for cell detection
and segmentation with relative mean average precision improvements of up to 23.88% and 23.17%,
respectively. No post-processing was carried out in the experiments when compared to other methods
to ensure a fair comparison.

Zhou et al. [88] propose a bottom-up regime to learn category-level human semantic segmentation
and multi-person pose estimation in a joint and end-to-end manner. They adopt ResNet-101 [33] as the
backbone. The proposed method exploits structural information over different human granularities
and eases the difficulty of person partitioning. A dense-to-sparse projection field is learned and
progressively improved over the network feature pyramid for robustness. By formulating joint
association as maximum-weight bipartite matching, a differentiable solution is developed to exploit
projected gradient descent and Dykstra’s cyclic projection algorithm. This makes the method
end-to-end trainable and allows back-propagating the grouping error to supervise multi-granularity
human representation learning directly. Experiments on three instance-aware human parsing datasets
show that the proposed model outperforms other bottom-up alternatives with much more efficient
inference.

Wang et al. [89] propose a framework called segmenting objects by locations (SOLO), which is
based on ResNet-50. SOLO is a one-stage, end-to-end instance segmentation method that can perform
detection and segmentation simultaneously with high efficiency and accuracy. The main idea of the
SOLOQ is to transform the instance segmentation problem into a dense prediction problem. Specifically,
SOLO divides the image into a set of position-sensitive small grids and predicts the object category
and instance segmentation mask in each grid. In this way, each pixel can be assigned to an instance,
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and the object edge can be accurately segmented. The experimental results demonstrated that the
proposed SOLO framework achieves state-of-the-art results for the instance segmentation task in terms
of both speed and accuracy while being considerably simpler than the existing methods.

Li et al. [90] propose PaFPN-SOLO, a SOLO-based image instance segmentation algorithm. They
enhanced the ResNet backbone by incorporating a Non-local operation, effectively preserving more
feature information from the image during the extraction process. In addition, they employ a method
known as bottom-up path augmentation. This method was designed to extract more precise positional
information from the lower feature layers. This dual improvement not only boosted the network
model’s ability to localize the feature structure but also reduced the distance over which information
needed to propagate between feature layers. When the modified algorithm was tested on two datasets,
COCO2017 and Cityscapes, it produced significantly improved segmentation results. The average
segmentation accuracy on these datasets reached 56% and 47.3% respectively, marking an increase of
4.4% and 7.4% over the performance of the original SOLO network.

Table 5. Summary of Studies on Instance Segmentation.

Reference Architecture Type Category Dataset Performance
[29] Mask R-CNN  Mice Top-down Private SIPEC successfully recognizes multiple behaviours
method of freely moving individual mice as well as
socially interacting non-human primates in three
dimensions
[86] PDSL - Top-down PASCAL VOC 2012 [91], PDSL framework outperforms baselines and
framework method MS COCO [92] achieves state-of-the-art results on PASCAL VOC
and MS COCO.
[87] Mask R-CNN  Cell Top-down Private The proposed architecture clearly outperforms a
method state-of-the-art Mask R-CNN approach for cell

detection and segmentation with relative mean
average precision improvements ofup t023.88% and
23.17%, respectively.
[88] ResNet101 Human Bottom-up MHPv2 [93], Experiments on three instance-aware human
method DensePose-COCO [94], parsing datasets show that the proposed model
PASCAL-Person-Part [95] outperforms other bottom-up alternatives with
much more efficient inference.
[89] ResNet50 - Top-down LVIS [96] The proposed framework achieves state-of-the-art
method results for instance segmentation in terms of both
speed and accuracy, while being considerably
simpler than the existing methods.
[90] ResNet - Bottom-up COCO2017, The average segmentation accuracy on COC0O2017
method Cityscapes [97] and Cityscapes reached 56% and 47.3% respectively,
marking an increase of 4.4% and 7.4% over the
performance of the original SOLO network.

4.4. Middle Layer Tasks

The middle-layer tasks mainly focus on pose estimation in both humans and other animals. They
can be used in motion recognition, human-computer interaction, and motion capture applications. To
make the estimation more accurate, they need higher accuracy and real-time than other tasks, so they
also cost more computing resources than other tasks.

4.4.1. Key Point Detection

Key point detection is a major technology of deep learning. It is a basic task in computer vision.
It is the pre-task of human action recognition and action prediction. In the mice behavior analysis
studies, the key point detection also contains fundamental techniques, such as object detection and
semantic segmentation. The input is an image, and the output is the expected key points. Normally,
key point detection can be categorized into 2D and 3D detection, and all the studies of mice key point
detection apply 2D detection methods.

Tong et al. [54] make key point detection based on the semantic segmentation of the mice contour.
They proposed a CNN architecture to detect the snout point of the mice. The CNN contains four
convolutional layers, an average pooling layer after the convolutional layers, a flattened layer, and
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three fully connected layers. The input of CNN is an area near snouts, and the output is the snout
point position.

Wotton et al. [25], Weber et al. [19], Winters et al. [46], and Aljovic et al. [20] all make key point
detection for body-part detection. Wotton et al. [25] propose a ResNet50-based CNN to learn specific
features and the skipping function to minimize information loss. Weber et al. [19], Aljovic et al. [20],
and Winters et al. [46] make the key point for detecting distinct body parts of mice. They proposed a
ResNet-50 from the DeepLabCut by manually labeling 120 frames selected using k-means clustering
from multiple videos of different mice. The former one detects the body parts, including the head,
right front toe, left front toe, center front, right back toe, left back toe, center back, and tail base. The
middle one detected 14 body parts configuration for the mother and pup together. The latter labels
six body parts (toe, MTP joint, ankle, knee, hip, and iliac crest) in 450 image frames, and trained for
400,000 iterations.

Besides mice, key point detection is mostly applied in humans. Human key point detection can
be categorized into single-person and multi-person detection. The multi-person detection algorithms
can be further divided into Top-Down and Bottom-Up two parts. All the studies are summarized in
Table 6.

Wen et al. [98] make multi-person key point detection based on the pre-trained network and
SHNet. The pre-trained network was used for object detection. SHNet is used for keypoint detection.
It consisted of four stages and the attention mechanism. The first stage consists of four remaining
units, which are the same as ResNet50 and are composed of a bottleneck with a width of 64, followed
by a 3*3 convolution feature graph whose width is reduced to 4. The second, third, and fourth stages
contained 1, 4, and 3 communicative blocks. Besides, the model required paying more attention to
the channel features with the largest amount of information and suppressing unimportant channel
features. The attention mechanism contains information input, calculation of attention distribution,
and calculation of weight average of input information. The input is the vector of each image, and the
output is the weights of each feature.

Gong et al. [99] propose a retrained AlphaPose model to make multi-person key point detection
in the upper human body. The AlphaPose method detects human key points based on the regional
multiplayer pose estimation (RMPE) framework proposed by the AlphaPose method, containing three
components: symmetric spatial transformation network (SSTN), parametric pose non-maximum
suppression (NMS) and pose guided proposals generator (PGPG). The SSTN network consists
of a spatial transformation network (STN), single-person pose estimation (SPPE), and spatial
de-transformer network (SDTN). STN is used to acquire high-quality human proposals and exclude
inaccurate input frames. SPPE is used to estimate the pose of the input human candidates. SDTN
maps the pose estimated by SPPE back to the original image coordinates and adjusts the input frames
to make the detected frames more accurate. The AlphaPose model can detect 17 human upper body
key points.

Zang et al. [100] propose a lightweight multi-stage attention network (LMANet) to detect the
key points of a single person at night. LMANet contains a backbone network and some subnets for
identifying key points that are not obvious or hidden through the characteristics of different receptive
fields and the association between key points. The backbone network is pruned MobileNet. The input
of the backbone is 334*384. The first layer is a 3*3 convolution, and layer 2 to layer 6 are the classic
bottleneck structure. The expected output is 12*12. For the subnets, there are 2 subnets, each of which
contains only 2 bottlenecks. The input is 48*48, and the output is 12*12, which is the spatial attention
module in the revised feature representation. Besides, the second bottleneck and the fourth bottleneck
of the LM ANet backbone network have added the channel attention mechanism, which is used to
enhance the local features of each feature map at the spatial level. The attention module can get a
refined output after the two-stage networks, and finally obtain a heatmap of 14 key points of the
human body.
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Hong et al. [101] proposed a PGNet for single-person key-point detection. PGNet consists of three
main components: Pipeline Guidance Strategy (PGS), Cross-Distance-loU Loss (CloU), and Cascaded
Fusion Feature Model (CFEM). The backbone network in PGNet is ResNet-50, which is divided into
5 stages using CFFM. The feature-guided network after the image is convolved is used to extract
key-point features, while CFFM is utilized to extract high-level and low-level features from the conv1-5
layers of ResNet-50. The middle three layers of CFFM are specifically used to avoid consuming a large
amount of spatial information during convolution calculations. The feature-guided network combines
traditional data parallelism with model parallelism enhanced with pipelining, which partitions the
layers of the object being trained into multiple stages. After feature extraction, a convolution operation
is used to fuse the features of the two branches, which completes the key points.

Table 6. Summary of Studies on Key Point Detection.

Reference Architecture Type Category Dataset Performance
[54] CNN Mice 2D Private Achieve the recognition rate of 94.89%
[25] ResNet-50 Mice 2D Private Reveal strain differences in both response timing
and amplitude
[19] ResNet-50 Mice 2D Private A 98% accuracy when compared baseline to
animals at 3 dpi
[46] ResNet-50 Mice 2D Private An accuracy of 86.7%
[20] ResNet-50 Mice 2D Private Predict the acute injury status with 90% accuracy
and long-term defcits with 85% accuracy.
[98] SHNet, Human multi-person MPII, COCO2017 Achieve high accuracy on all 16 joint points
MaskedNet
[99] AlphaPose Human multi-person Private, Detection precision is improved by 5.6%, and the
Halpe-FullBody136  false detection rate is reduced by 13%
[100] LMANet Human single-person Private, MPII, AI PCKh value is 83.0935
Challenger
[101] PGNet Human single-person COCO Improve the accuracy of the COCO dataset by 0.2%

4.4.2. Pose Estimation

Quantifying mice behaviors from videos or images remains a challenging problem, where pose
estimation plays an important role in describing mice behaviors. Although deep learning-based
methods have made promising advances in human pose estimation, they cannot be directly applied to
pose estimation of mice due to different physiological natures. Particularly, since the mouse body is
highly deformable, it is a challenge to accurately locate different keypoints on the mouse body. The
mice pose estimation can be divided into 2D and 3D.

Zhou et al. [102] propose a novel Hourglass network-based model, defined as graphical model
based structured context enhancement network (GM-SCENet) where two effective modules, structured
context mixer (SCM) and cascaded multi-level supervision (CMLS) are subsequently implemented.
SCM can adaptively learn and enhance the proposed structured context information of each mouse
part by a novel graphical model that takes into account the motion difference between body parts.
Then, the CMLS module is designed to jointly train the proposed SCM and the Hourglass network
by generating multi-level information, increasing the robustness of the whole network. Using the
multi-level prediction information from SCM and CMLS, they develop an inference method to ensure
the accuracy of the localization results.

Xu et al. [103] propose a symmetry approach and design a CNN for mice pose estimation under
scale variation. The network architecture consists of a UNet structure with residual structure to extract
features, Atrous Spatial Pyramid Pooling (ASPP) module to expand the perceptual field, and deep and
shallow feature fusion to capture the various spatial relationships related to body parts. The model
generates a set of prediction results based on heat map and coordinate offset. The paper also discusses
the use of dilation convolution and loss function design. The authors use their own built mice dataset
and obtained state-of-the-art results.
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Salem et al. [43] propose a systematic approach to accurately estimate the 3D pose of the mice
from single-monocular fisheye-distorted images. The approach employs a novel adaptation of a
structured forest algorithm. The authors benchmark their algorithm against existing methods and
demonstrate the utility of the pose estimates in predicting mice behavior in a continuous video. The
full text information provides a review of literature works with respect to pose representation and
pose estimation/detection method.

In addition to the above mice pose estimation studies, we also present some state-of-the-art
human pose estimation studies, which are expected to be applied to mice pose estimation. The human
pose estimation techniques can be categorized into 2D and 3D pose estimation. In 2D human pose
estimation, joints and body parts are tracked across the surface of an image, whereas 3D human pose
estimation also estimates the depth of the joints and body parts in the image [104].

2D human pose estimation has been a fundamental yet challenging problem in computer vision.
The goal is to localize human anatomical keypoints (e.g., elbow, wrist, etc.) or parts. Sun et al. [105]
propose a High-resolution net (HRNet) for human pose estimation that maintains high-resolution
representations throughout the process. Cheng et al. [106] and Yu et al. [107] both propose novel
methods based on HRNet. The former presents HigherHRNet, which uses high-resolution feature
pyramids to learn scale-aware representations and solve the scale variation challenge in bottom-up
multi-person pose estimation. The feature pyramid in HigherHRNet consists of feature map outputs
from HRNet and upsampled higher-resolution outputs through a transposed convolution. The latter
presents an efficient high-resolution network, Lite-HRNet. The authors start by applying the efficient
shuffle block in ShuffleNet to HRNet, which yields stronger performance over popular lightweight
networks such as MobileNet, ShuffleNet, and Small HRNet. They introduce a lightweight unit,
conditional channel weighting, to replace costly pointwise (1 x 1) convolutions in shuffle blocks.

To date, most of the efforts for 3D pose estimation are focused on monoculars. Iskakov et
al. [108] present two novel solutions for multi-view 3D human pose estimation based on new learnable
triangulation methods that combine 3D information from multiple 2D views. The first solution is a
basic differentiable algebraic triangulation with an addition of confidence weights estimated from
the input images. The second solution is based on a novel method of volumetric aggregation from
intermediate 2D backbone (ResNet-152) feature maps. Both approaches are end-to-end differentiable,
which allows direct optimization of the target metric. He et al. [109] proposes a method called ‘epipolar
transformer” which enables a 2D detector to leverage 3D-aware features to improve 2D pose estimation.
The method leverages epipolar constraints and feature matching to approximate the features at a
corresponding point in a neighboring view. This helps to resolve depth ambiguity and accurately
estimate the 3D position of joints. They adopt ResNet-50 with image resolution 256x256 proposed
in simple baselines for human pose estimation as our backbone. network. They use the ImageNet
pre-trained model for initialization. Weinzaepfel et al. [110] propose a method called DOPE that detects
and estimates whole-body 3D human poses, including bodies, hands, and faces, in the wild. The
method takes advantage of previously annotated or generated datasets to train independent experts for
each part and distills their knowledge into a single deep network designed for whole-body 2D-3D pose
detection. They follow the Faster RCNN implementation and adopt ResNet50 as the backbone. The
resulting estimations are combined to obtain whole-body pseudo-ground-truth poses. A distillation
loss encourages whole-body predictions to mimic the experts” outputs. DOPE outperforms the same
whole-body model trained without distillation while staying close to the performance of the experts.
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Table 7. Summary of Studies on Pose Estimation.
Reference Architecture Type Category Dataset Performance
[102] Hourglass Mice 2D Parkinson’s Disease = The superior performance over the other
network Mouse Behaviour state-of-the-art methods in terms of PCK@0.2
score.
[103] ResNet, ASPP  Mice 2D Private Overall performance has achieved superior
performance at various thresholds
[43] Structured Mice 3D Private Precision 86%
forests
[105] HRNet Human 2D COCO, MPIT human  Achieves a 92.3 PCKh@0.5 score

pose estimation, and
PoseTrack dataset
[106] HigherHRNet =~ Human 2D COCO dataset Achieves new state-of-the-art result on COCO
test-dev (70.5% AP), surpasses all top-down
methods on CrowdPose test (67.6% AP)

[107] Lite-HRNet Human 2D COCO and MPII  Achieves 87.0 PCKh @0.5
human pose
estimation datasets

[108] ResNet-152 Human 3D Human3.6M and Achieve state-of-the-art performance on the
CMU Panoptic Human3.6M dataset
datasets

[109] ResNet-50 Human 3D InterHand and Outperforms state-of-the-art by 4.23mm and
Human3.6M achieves MPJPE 26.9 mm
datasets

[110] ResNet-50 Human 3D MPII, MuPoTs-3D, Outperforms the same whole-body model while
and RenderedH  staying close to the performance of the experts, less
datasets demanding than the ensemble of experts and can

achieve real-time performance

4.5. Top Layer Tasks

Top layer tasks mostly take multiple steps including the lower layer’s tasks. They are used to
analyze and understand the motion in applications such as surveillance, robotics, and sports analysis.

4.5.1. Object Tracking

Object tracking refers to the process of automatically detecting and tracking a specific object in
a video or image sequence. The input of object tracking algorithm is usually a video sequence, and
the output is the information of the target’s position, size, and motion status in different frames of
the input video, which is used to achieve continuous tracking of the target. In neuroscience research
on mice, object tracking technology can help researchers better understand the mouse’s behavioral
patterns and neural activity through monitoring and analyzing mouse’s behavior. Furthermore, target
tracking technology can be used to evaluate mouse behavior performance in drug treatment or nervous
system disease models.

Marks et al. [29] introduce SIPEC:SegNet, a Mask R-CNN architecture designed to enable tracking
of animal identities within a session. To improve temporal continuity-based tracking, SIPEC:IdNet
is developed with a DenseNet backbone that generates visual features, which are integrated over
time using a gated-recurrent-unit network to reidentify animals when the temporal-continuity-based
tracking fails. This allows SIPEC to identify primates over the course of weeks and outperform both
idtracker.ai’s identification module within and across sessions, as well as PrimNet.

Wang et al. [32] and Winters et al. [46] both use DeepLabCut to track mice behaviors. DeepLabCut
is an open-source software package for markerless pose estimation of animals and humans in video
data using deep learning, which can be used for tracking the pose of mice. The DeepLabCut architecture
is a deep neural network based on ResNet, referred to as a “multi-residual network”. Wang et al. [32]
use DeepLabCut to estimate the positions of mouse body parts. Positional features are calculated
using DeepLabCut outputs and are used to train random forest and hidden markov models with
equal number of states, separately. Winters et al. [46] use DeepLabCut to create a dam-pup tracking
algorithm in the pup retrieval protocol and classified variables such as “maternal approach”, “carrying”
and “digging” using simple behavioral analysis.
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SIPEC: SegNet and DeepLabCut essentially track mice through object detection rather than actual
object tracking models. There are many existing object tracking algorithms for tracking humans and
vehicles, which can be classified into single-branch and multi-branch models. These model can provide
inspiration for object tracking of mice, shown in Table 8.

Single-branch models use a single model or algorithm for object tracking, typically based on a
linear or nonlinear model. Wang et al. [111] propose an online multi-object tracking framework based
on a hierarchical single-branch network, based on Faster R-CNN [112] with a ResNet-50 [33] backbone.
The proposed single-branch network utilizes an improved Hierarchical Online Instance Matching
(iHOIM) loss to explicitly model the inter-relationship between object detection and Re-ID. The iHOIM
loss function unifies the objectives of the two subtasks and encourages better detection performance
and feature learning even in extremely crowded scenes. Moreover, the paper introduce the object
positions, predicted by a motion model, as region proposals for subsequent object detection. The
object trajectories are obtained using a DeepSort framework. Experimental results show that compared
with the two-stage methods on MOT16 and MOT20 datasets, their model achieves a state-of-the-art
performance even in crowded tracking scenes.

Multi-branch models use multiple models or algorithms for object tracking, typically by combining
multiple linear or nonlinear models to track the object. Vaquero et al. [113] develop a complete detection
and tracking system for vehicles in driving scenarios using a dual-branch CNN architecture. The
system utilizes LIDAR data and a deconvolutional neural network to segment vehicles from a front
projection, and then apply Euclidean clustering to extract bounding boxes for tracking over time. The
authors further enhance the system by introducing a dual-view deep-learning pipeline to segment
vehicles from LiDAR information, as well as novel techniques such as adaptive threshold recursive
clustering and a bounding box growing algorithm guided by contextual information. They evaluate
their method extensively on the Kitti benchmark [114] for both detection and tracking tasks, and
demonstrate superior performance compared to existing methods through quantitative analysis. Jiang
et al. [115] propose a multi-branch and multi-scale perception object tracking framework based on
Siamese Convolutional Neural Networks denoted as MultiBSP. To achieve different task goals for each
branch, a tower-structured relation network is created to learn the non-linear relation function between
a template and search area. By using a multi-branch architecture, the system is able to combine and
verify the results from each branch, resulting i n a powerful performance. The experimental results
show that the MultiBSP achieved state-of-the-art performance on six benchmarks.

Table 8. Summary of Studies on Object Tracking.

Reference Architecture Type Category Dataset Performance

[29] Mask R-CNN  Mice - Private SIPEC:SegNet robustly segment animals despite
occlusions, multiple scales and rapid movement, and
enable tracking of animal identities within a session.

[32] ResNet Mice - Private DeepLabCut can estimate the positions of mouse body
parts.
[46] ResNet Mice - Private Automated tracking of a dam and one pup was

established in DeepLabCut and was combined with
automated behavioral classification of “maternal
approach”, “carrying” and “digging” in Simple
Behavioral Analysis (SimBA).

Faster R-CNN, Human Single-branch MOT16 [116], Compared with the two-stage methods on MOT16
[111] ResNet-50 MOT20 [117] and MOT20 datasets, the model achieves a new
state-of-the-art performance even in crowded tracking
scenes.

DNN Vehicle  Multi-branch  Kitti [118] The dualbranch classifier consistently outperforms
[113] previous single-branch approaches, improving or
h directly competing to other state of the art LIDAR-based

methods.
ResNet50 - Multi-branch ' VOT-2018 [119], MultiBSP can achieve robust tracking and have
VOT-2019 [120], state-of-the-art performance and the effectiveness of
[115] OTB-100 [121], each module and the tracking stability is proved by

UAV123[122], GOT10k qualitative and quantitative analyses.
[123], LASOT [124]
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4.5.2. Action Recognition

Action recognition in mice plays a crucial role in biomedical research, as it can be employed for
studying disease models, evaluating drug efficacy, investigating the functioning of the nervous system,
exploring behavioral genetics, and assessing environmental toxicity. By observing and analyzing
the behavioral patterns of mice, insights into disease mechanisms, drug effects, neural network
functionality, genetic foundations, and the impact of the environment on organism behavior can be
revealed. We summary the action recognition related research in this seciton, the sumamrizing reuslts
can be refered to Table 9.

Segalin et al. [38] present the Mouse Action Recognition System (MARS), a quartet of software
tools for automated behavior analysis, training and evaluation of novel pose estimator and behavior
classification models, and joint visualization of neural and behavioral data. This software is
accompanied by three datasets aimed at characterizing inter-annotator variability for both pose
and behavior annotation. Together, the software and datasets introduced in this paper provide a robust
computational pipeline for the analysis of social behavior in pairs of interacting mice and establish
essential measures of reliability and sources of variability in human annotations of animal pose and
behavior.

Le et al. [125] propose a framework that uses a 3D Convolutional network (ConvNet) to extract
short-term spatio-temporal features from overlapped short clips. Then those local features are fed
to a Long Short Term Memory network to learn long-term features which are used for classification.
The framwork is denoted as LSTM-3DCNN, and the paper shows how to learn local spatio-temporal
behavioral features using a 3D ConvNet and recognize behaviors in long videos with an LSTM
network.

Kramida et al. [126] presents a mice behavior classification method based on LSTM. The method
employs an end-to-end learning approach where visual features from pre-trained CNN are extracted
from each image frame and is used to train a customized LSTM-based model in weakly-supervised
fashion to recognize different behaviors of the mice in the videos. The classification framework relies
on two deep learning mechanisms: pre-trained VGG features and LSTM. In a preprocessing step, the
independent multimodal background subtraction algorithm is used to segment out the mouse.

We also present some state-of-the-art research in human action recognition. Deep learning-based
human action recognition methods can be simply classified as skeleton-based and video-based
according to whether or not to detect human keypoints first.

For video-based action recognition methods, most of the network structures are based on
Two-stream /Multi-stream 2D CNN [127-129], RNN [130,131], and 3D CNN [132,133]. The two-stream
2D CNN framework generally contains two 2D CNN branches taking different input features extracted
from the RGB videos for Human Action Recognition (HAR), and the final result is usually obtained
through fusion strategies. Zong et al. [127] present Motion Saliency based multi-stream Multiplier
ResNets (MSM-ResNets) method for action recognition. They extended the two-stream CNN in [128]
to a three-stream CNN by adding the motion saliency stream to better capture the salient motion
information. Zhang et al. [129] propose two video super-resolution methods producing high resolution
videos, fed to the spatial and temporal streams to predict the action class. RNN-based models usually
employ 2D CNNs, which serve as feature extractors, followed by an LSTM model for HAR. Majd
et al. [130] proposed a C?> LSTM which incorporates convolution and cross-correlation operators
to learn motion and spatial features while modeling temporal dependencies. He et al. [131] adopt
the Bi-directional LSTM, which consists of two independent LSTMs to learn both the forward and
backward temporal information. The 3D CNN-based methods are very powerful in modeling
discriminative features from both the spatial and temporal dimensions for HAR. 3D CNN model
(C3D) [132] learns the spatio-temporal features from raw videos in an end-to-end learning framework.
Fayyaz et al. [133] address the problem of dynamically adapting the temporal feature resolution within
the 3D CNNs to reduce their computational cost. A Similarity Guided Sampling (SGS) module is
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proposed to enable 3D CNNSs to dynamically adapt their computational resources by selecting the
most informative and distinctive temporal features.

For skeleton-based action recognition methods, most of the network structures used in them are
based on RNN [134], CNN [135], and GCN [136]. RNNs and their gated variants (e.g., LSTMs) are
capable of learning the dynamic dependencies in sequential data. Various methods have applied and
adapted RNNs and LSTMs to effectively model the temporal context information within the skeleton
sequences for HAR. Li et al. [134] propose a new type of RNNs called Independently Recurrent Neural
Network (IndRNN) with the recurrent connection formulated as Hadamard product. IndRNN with
regulated recurrent weights effectively addresses the gradient vanishing and exploding problems and
thus long-term dependencies can be learned. CNNs have achieved great success in 2D image analysis
due to their superior capability in learning features in the spatial domain. Zhang et al. [135] propose
a novel view adaptation scheme for skeleton-based human action recognition. They introduce two
view adaptive neural networks, VA-RNN and VA-CNN, which are respectively built based on the
recurrent neural network (RNN) with the Long Short-term Memory (LSTM) and the convolutional
neural network (CNN). Skeleton data is naturally in the form of graphs. Hence, simply representing
skeleton data as a vector sequence processed by RNNs, or 2D /3D maps processed by CNNs, cannot
fully model the complex spatio-temporal configurations and correlations of the body joints. As a
result, many GNN and GCN-based HAR methods have been proposed to treat the skeleton data as
graph structures of edges and nodes. Song et al. [136] propose a multistream GCN model, which
fuses the input branches including joint positions, motion velocities, and bone features at early stage,
and utilized separable convolutional layers and a compound scaling strategy to extremely reduce the
redundant trainable parameters while increasing the capacity of model.

Table 9. Summary of Studies on Action Recognition.

Reference Architecture Type Category Dataset Performance

[38] Hourglass Mice video-based  Private Provide a robust computational pipeline for the
network analysis of social behavior in pairs of interacting mice

[125] 3D ConvNet, Mice video-based = Private Obtain accuracy on par with human assessment
LSTM network

[126] LSTM Mice video-based  Private Producing errors of 3.08%, 14.81%, and 7.4% on the

training, validation, and testing sets respectively
[127] 2D CNN Human video-based = UCF101 and  Outperforms other compared state-of-the-art models
HMDB51 datasets
[129] 2D CNN Human video-based = UCF101 and Improve the recognition performance of LR video from

HMDB51 datasets 42.81% to 53.59% on spatial stream and from 56.54% to
61.5% on temporal stream.

[131] RNN Human video-based = UCF101 and  Outperforms the state-of-the-art approaches for action
HMDB51 datasets recognition

[133] 3D CNN Human video-based  Kinetics-600, SGS decreases the computation cost (GFLOPS) between
Kinetics-400, 33% and 53% without compromising accuracy.

mini-Kinetics,
Something-Something
V2, UCF101, and
HMDB51 datasets
[134] RNN Human skeleton-based Penn Treebank Performs much better than the traditional RNN,
(PTB-c), and NTU LSTM, and Transformer models on sequential
RGB+D datasets MNIST classification, language modeling, and action
recognition tasks.
[135] CNN Human skeleton-based NTU RGB+D, Superior performance over state-of-the-art approaches
the SYSU
Human-Object
Interaction, the
UWA3D, the
Northwestern-UCLA,
and the SBU Kinect
Interaction datasets
[136] GCN Human  skeleton-based NTU RGB+D 60 and ~ Outperforms other SOTA methods
120 datasets
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4.5.3. Action Prediction

In some studies, mice behavior needs long-term or short-term observation. The features of mice
behavior relate to temporal information. Therefore, the action prediction task needs to relate the
context of the former mice behavior to predict the future mice behavior. Nowadays, temporal context
information prediction can be categorized into three parts: short-term temporal context, long-term
temporal context, and temporal semantic context. Existing studies of mice context behavior focus on
the LSTM models. They also combine the lower layers’ techniques, such as semantic segmentation and
key point detection. For example, Kramida et al. [126] present a long-term mice behavior prediction
method based on a LSTM model. Before the LSTM model, Pre-trained VGG and the independent
multimodal background subtraction algorithm help segment the mice from the video. It combines
with the semantic segmentation techniques. Then the LSTM is set up to predict the behavior sequences.
The LSTM contains its own sets of input-unit weight, hidden-layer weight, and bias matrices, a
time-propagating cell unit, input, output, and forget gates. Jiang et al. [53] improv e the LSTM model
of [105], and propose a hidden Markov model to describe the short-term temporal characteristics of
mice behavior. Before hidden Markov model, they make key point detection to detect the interest
points of mice, and transforme the points into spatial-temporal segment Fisher Vector as the input of
segment aggregated network. Then, hidden Markov model is used to infer latent or hidden states
from the observed sequential data, and to account for the dynamics of the observed sequential data
according to the dynamics of the hidden states. It is a discrete-time model where they receive an
observation generated by a hidden state at each time instance. In summary, the action prediction task
aims to connect the data context to extract the feature.

The state-of-the-art studies on temporal context prediction apply the attention mechanism and
transformer framework, increasing the prediction accuracy and efficiency. The studies are summarized
in Table 10. For short-term temporal context, Zang et al. [137] propose a MultiParallel Attention
Network (MPAN) model to learn users’ short-term interests by capturing contextual information and
temporal signals simultaneously in a recommendation system. They propose a interest learning module
and a interest fusion module to accurately capture users’ short-term interests. The interest learning
module consists of three parts: an embedding layer, a short-term interest generator and a long-term
interest generator. The short-term interest generator utilizes a time-aware attention mechanism to learn
short-term interests. The long-term interest generator employs the multi-head attention mechanism
to extract the long-term purpose within the session from different semantic aspects. In the interest
fusion module, a bi-linear similarity function is utilized to compute the recommendation score for
each candidate item. The input is the session prefix, and the output is a one-hot encoding vector. At
last, they utilize MPAN to predict the user’s short-term interest.

For the long-term temporal context, Guo et al. [138] propose a transformer-based spatial-temporal
graph neural network (ASTGNN) for long-term traffic forecasting. @~ ASTGNN follows an
encoder-decoder structure. The encoder and decoder in this model utilize multiple temporal
trend-aware self-attention blocks and spatial dynamic GCN blocks alternatingly. The model is
auto-regressive, meaning that it uses previously generated data as additional input when generating
the next step. To capture the temporal dynamics of traffic data and have global receptive fields, a
novel self-attention mechanism is designed for numerical sequence representation transformation.
This self-attention mechanism is specialized for utilizing local context and maps a query and a set of
key-value pairs to an output. The output is a weighted sum of the values, with the weight for each
value determined by the corresponding key and the query. In the spatial dimension, they develop
a dynamic graph convolution module, employing self-attention to capture the spatial correlations
dynamically. The module employs self-attention and contains both a spatial-temporal encoder and
a decoder. The encoder comprises a stack of identical layers, each containing two basic blocks: a
temporal trend-aware multi-head self-attention block and a spatial dynamic GCN block. The decoder
generates output sequences in an auto-regressive manner.
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For the temporal semantic context, Zhang et al. [139] propose a multi-temporal resolution pyramid
structure model (MTSCANet) to realize temporal action localization efficiently. MTSCANet utilizes
temporal semantic context fusion (TSCF) to fuse three feature sequences with different temporal
resolutions into temporal and semantic contexts, respectively. The local-global attention module
(LGAM) is used to encode the input temporal features in local-global temporal order, while the norm
and location regularization are used to produce the final result. TSCF is employed to extract temporal
semantic features, which are then input to LGAM for local-global timing coding to enhance feature
robustness and enrich feature information. The three feature sequences are merged, processed again
by LGAM and TSCF, and finally output proper vectors.

Table 10. Summary of Studies on Action Prediction.

Reference Architecture Type Category Dataset Performance
[126] RNN with LSTM Mice long-term COCO, MPII PCKh value is 92.3 in MPII and
AP value is 75.5 in COCO
[53] hidden Markov model (HVV)  Mice long-term Private, JHuang’s Achieve weighted average
datasets accuracy of 96.5% (using

visual and context features)
and 97.9% (incor porated with

IDT and TDD features)

[137] MultiParallel Attention Recommendation short-term YOOCHOSE and Obtain the best ISLF
Network (MPAN) DIGENTICA

[138] Spatial-Temporal Graph  Traffic long-term Caltrans Get the best performance in
Neural Network (ASTGNN) forecasting Perfor mance MAE, RMSE and MAPE.

Measurement
System (PeMS)

[139] Multi-temporal ~ resolution Videos temporal THUMOS14, An average mAP of 47.02% on
pyramid structure model semantic ActivityNet-1.3, THUMOS14, an average mAP
(MTSCANet) context HACS of 34.94% on ActivityNet-1.3

and an average mAP of 28.46%
on HACS

5. MiceGPT Design

In the above sections, we introduce the Al-empowered mice analysis applications and the
corresponding state-of-art approaches to enhance the research process in biology fields. However, we
still lack integrated Al systems, such as ChatGPT and VisualGPT [140], to perform the autonomous
mice behavior analysis. In this section, we propose an architecture called MiceGPT and its variations
to fufill the Al-empowered automated mice behavior anlaysis in the biolog realted fields.

5.1. Fundamental Architecture Design

The MiceGPT architecture overview is shown in Figure 8, which consists of five layers, namely, a
query layer, an application layer, a storage layer, an Al model layer, and a data layer.

The data layer provides the interfaces to connect with different data sources. In the architecture,
most of the data types are images and videos. Therefore, the data layer should support the different
encoders and decoders of images and videos, such as jpg, png for images, and h264 videos h265
videos [141]. Furthermore, in practice, the data source might be a media stream, which the data layer
should consider.

The Al model layer is the core component of the GPT framework, encompassing the design,
training, and inference of deep learning models. This layer employs various deep learning models
and architectures, such as Transformer, to process and analyze data, extract features, and perform
model training and prediction. The objective of the Al model layer is to leverage the data provided by
the data layer for model training, enabling the ability to make predictions or generate outputs for the
given task, such as object tracking, pose estimation, object detection etc.
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Figure 8. MiceGPT Architecture Overview.

The storage layer is responsible for managing and storing various data and models within the
GPT framework. This includes data storage, access, and retrieval, as well as storage and management
of model parameters. The storage layer can employ various technologies and tools, such as databases
and distributed file systems, to efficiently handle large-scale data and models.

The application layer consists of functional components built upon the AI model layer, addressing
specific problems. This layer utilizes the capabilities provided by the Al model layer to develop
various applications or services based on specific application requirements, such as disease detection,
social behavior analysis, neuro-behavioral assessment, and so on. The application layer can include
applications such as image recognition, natural language processing, recommendation systems, and
other types of applications.

The query layer serves as the interface layer for user interactions, responsible for receiving user
requests and forwarding them to the respective application layer. This layer processes user inputs,
providing functionalities such as result querying, question answering, and information retrieval, and
presents the results returned by the application layer to the user. The query layer can encompass
various user interfaces, such as command-line interfaces, graphical interfaces, or web services.

Through the collaborative work of the data layer, Al model layer, storage layer, application layer,
and query layer, the GPT framework accomplishes data preparation and processing, training and
inference of deep learning models, storage and management of data and models, as well as interaction
with users and implementation of application functionalities. This layered architecture enhances the
flexibility, scalability, and adaptability of the GPT framework, enabling it to cater to various tasks and
application requirements.

5.2. Al-empowered Query Layer

In MiceGPT, the query layer is designed to fulfill the user’s query request. The query layer
is implemented by the SQL-like language [142]. However, SQL-like language needs a certain
learning process about the database and language itself, which might be difficult for researchers
in biology-related fields. Therefore, in this section, we introduce an Al-empowered query layer to
enhance the usability and interactivity of MiceGPT.

The Al-empowered query layer can be analogized to an intelligent application’s request handler.
When a user submits a request, the Al-empowered query layer goes through parsing and classification
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processes. Ultimately, the query layer assigns the query to an appropriate application. Note that
the input of the Al-empowered query layer is nature languages rather than SQL. Users only need to
describe their requirements and desired results. Then, the query layer would invoke the proper Al
application and configure the data source automatically. The request analysis process resembles the
self-attention and multi-head attention mechanisms like Visual GPT [140], which determine attention
weights based on input data features and relationships to understand better and process the input
information.

Once the request is classified into the corresponding application, the application invokes a
pre-trained Al model to process the request and generate results. The functionality is like the visual
feature modulation of VisualGPT, which incorporates visual features into the generation process. The
Al-empowered query layer, guided by pre-trained natural language models, processes the input data
and produces suitable output.

Finally, the application returns the processed results to the user. This mirrors VisualGPT’s
transmission of fused image-text feature representations to the decoder, resulting in the final output
generation. The entire process, involving the query layer’s request parsing and classification, as well as
the application’s invocation of pre-trained Al model results, enables intelligent applications to generate
appropriate responses based on user requests.

5.3. Al-empowered Application Layer

In MiceGPT, the application layer is designed to fulfill research objectives. In the fundamental
architecture design, the application layer is implemented by software developers and biology field
experts. However, with the increasing research requirements, the application layer may grow
exponentially. Besides, the requirement analysis process is time-consuming because of the gap between
the computer field and the biology-related fields.

The application layer connects with the AI model layer and the storage layer. The analysis
applications can be considered as processes, in which the AI models are called, and data is operated in
the storage layer. Namely, the application ties to using tools provided by the Al model and storage
layers to fulfill the user’s research task. Combining existing Al techniques, such as AutoGPT [143], we
propose an Al-empowered application layer to enhance MiceGPT.

Unlike the application layer in the fundamental architecture design, the Al-empowered
application layer focuses on iterative prompt learning to finish the general tasks rather than specific
processes for each application. The iterative prompt learning process includes the following steps: (1)
The Al-empowered application layer automatically generates prompts based on specific strategies,
initially including the user’s input of name, role, and objectives. (2) The Al-empowered application
layer communities with a generative large language model, such as ChatGPT, to ask the command
prompts for the next step to fulfill the user’s objectives. (3) The commands generated in step 2 are
highly extensible, with each command representing a distinct external capability, such as web scraping,
google search, calling a pre-defined Al model, and communicating with the storage layer. The result
obtained through invoking these commands then becomes a constituent element of the command
prompt. (4) The process returns to step 1 and iterates until the final result is obtained with the state
being “complete”.

With the Al-empowered application layer, MiceGPT is able to finish the user’s research task
ultimately. The difference between the Al-empowered application layer and AutoGPT is that the
application layer is defined to fulfill mice behavior analysis research and it must have the ability to call
for pre-defined Al models and the storage layer.
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6. Conclusions

In this paper, we mainly focus on the Al-empowered mice behavior analysis field. Firstly,
we summarize applications that use Al-empowered mice behavior analysis methods, including
disease detection, external stimuli effective assessment, social behavior analysis, and neurobehavioral
assessment. Then, we analyze the Al techniques behind these applications. Furthermore, we introduce
some related state-of-art deep learning models to inspire the following research. Last, we propose a
MiceGPT architecture that integrates Al techniques and mice behavior analysis applications to provide
easy-to-use tools for biology-related researchers.

While summarizing, we figure out there are still open challenges in Al-empowered mice behavior
analysis research.

Firstly, Al technology is widely applied in the field of behavior analysis research, specifically
in the study of human behavior patterns and psychological states, providing in-depth analysis and
understanding. However, the application of Al technology in mice behavior analysis research is
relatively limited, resulting in certain constraints on the detailed interpretation of mice behavior and
the in-depth analysis of behavior patterns. This disparity limits our comprehensive understanding
of mice behavior and cognition, as well as restricts the application of mice models in areas such as
disease research and drug development.

Secondly, there is a lack of sufficient datasets and benchmarks, and on the other hand, different
applications have diverse requirements for datasets. This shortcoming of datasets and benchmarks
restricts the training and evaluation of AI models, hinders research progress, and comparisons across
different application domains. Therefore, establishing comprehensive and diverse datasets and
benchmarks, tailored to specific application needs, becomes a crucial measure for advancing the
development and application of Al technology on mice behavior analysis.

Thirdly, the lacking of an Al testbed in the mice behavior analysis field is a challenge. Currently,
the common Al platform for mice behavior analysis is DeepLabCut. However, DeepLabCut only
offers the fundamental steps of mice behavior analysis. It supports the Al model layer and part of
the application layer of MiceGPT system. Therefore, integrating AI with mice behavior analysis is a
challenge now.

Lastly, current large language models are widely used in the field of Natural language processing,
and the related technologies and methods of large language models are gradually introduced into
the field of computer vision. However, in biology-related fields and mice behavior recognition field,
there has been no relevant application or research on large language models. In our MiceGPT design,
we introduce the large language models as our query layer to simplify the usage of MiceGPT for
biology-related researchers. Considering the potential of big language models, it is necessary to
increase the research and application of large language models in the field of biology.
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Abbreviations

Abbreviations
The following abbreviations are used in this manuscript:

Abbreviation  Full Name

Al Artificial Intelligence

CNN Convolutional Neural Network
RNN Recurrent Neural Network

CRNN Convolutional Recurrent Neural Network
FC Fully Connected

SVMs Support Vector Machines

KNN K-nearest Neighbours

MARS Mouse Action Recognition System
RPN Region Propose Network

ROI Region of Interest

IoU Intersection over Union

RNN Recurrent Neural Networks

GCN Graph Convolution Network
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