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Abstract: Mice are one of the frequently used animal models in science research whose behavioral

characteristics can provide much valuable information in biology, neuroscience, and pharmacology.

Nowadays, artificial intelligence is widely used in mice behavior analysis. Integrated AI systems

such as ChatGPT and VisualGPT are already available, and we discuss the feasibility of MiceGPT

to help researchers identify and classify mouse behavior more easily. We review the applications

of mice behavior analysis, analyze the tasks of deep learning on these applications based on an AI

pyramid, and finally summarize the AI approaches to solve these tasks. Based on these summaries,

we propose three MiceGPT architectures to demonstrate the theoretical feasibility of MiceGPT.

Keywords: mice behavior analysis; mice model; AI; computer vision

1. Introduction

Mice are one of the animal models in the biology and medical fields. It has been used for many

years and has many advantages, including similarity to humans in many physiological functions and

many methods of functional intervention through genetic modification. Researchers conducted various

experiments on mice and observed the experimental phenomena of mice for biological and medical

study, such as gene identification [1], cell classification [2] and protein prediction [3]. Among the in

vivo and in vitro experiments, mice behavior analysis is an essential topic and plays key roles in the

medicine, neuroscience, biology, genetics, and educational psychology field. For example, researchers

study behavioral patterns of mice to investigate the effect of a gene mutation, understand the efficacy

of potential pharmacological therapies, or uncover the neural underpinnings of behavior for further

treatment of mental disorders. Nowadays, mice behavior analysis has become a common approach in

a wide range of biomedical research fields.

In the early stages of research, traditional behavioral analysis approaches allow for quantification

of behavior by tracking the animal’s position in space, such as three-chamber assay [4], open-field

arena [5] and water maze [6]. However, with the development of technologies, traditional approaches

face challenges in emphasizing important details of behavior involving subtle actions [7]. Fine-grained

behavioral feature data cannot be obtained through visual observation or subjective evaluation.

Traditional approaches are time-consuming on high-precision feature computation work, and the

results are also variable [8]. A novel, automated, quantifiable approach for extracting fine-grained

behavioral features is essential. Along with the development of the artificial intelligence (AI) field, AI

can learn from large amounts of data and extract quantitative features automatically. “AI-empowered”

has become a research and application trend today. Researchers also have applied AI to mice behavior

analysis by analyzing the video or video frame data, such as by machine learning methods [9] and by

deep learning methods [10]. AI empowers mice behavior analysis and makes some creative research

possible now.

Recently, with the rapid spread of ChatGPT [11], a more convenient and intelligent AI system

has become a popular trend in the AI field. Compared with traditional AI studies, a GPT-integrated
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system can fulfill various objectives, such as translation, Q&A, dialogue, and text generation. However,

there are no AI systems like MiceGPT for biology-related researchers. The Researchers must choose

appropriate methods from a wide range of AI approaches to accomplish their research. This not only

fails to demonstrate the convenience of AI but also increases their extra study tasks, which reduces

research efficiency. Therefore, biology-related researchers require a system like “MiceGPT”, shown in

Figure 1, in which it contains diverse mice behavior analysis apps combined with lots of state-of-arts

AI models. Researchers can input their query requirements of analysis in the system, and MiceGPT can

automatically classify the queries into specific applications in AI methods, and divide the application

into the AI task, which is trained by different state-of-the-art AI models with mice behavior data, and

finally response the query results to the researchers. So, can a “MiceGPT” be true? Concretely, what

applications of mice behavior analysis can “MiceGPT” support? What tasks can the applications be

divided into? What AI models can empower the tasks? We want to answer these questions in this

paper.

�
Researchers Mice-GPT

Query

Response

App AI Task AI Model Data

App AI Task AI Model Data

App AI Task AI Model Data

App AI Task AI Model Data

Figure 1. MiceGPT Overview.

This paper aims to make a survey to answer the above questions. Based on Figure 1, we summarize

the applications of mice behavior analysis, classify the applications into several well-known tasks of

the AI field, and propose state-of-the-art AI-empowered approaches to solve the tasks. Finally, we

propose our prospect architecture on “MiceGPT” with the content of the survey. We also propose two

improved MiceGPT architectures with state-of-the-art Natural Language Processing (NLP) and AI

generation technologies.

The rest of the paper is as follows: Section2 introduces our motivations for this survey. Section 3

summarizes all the applications on the mice behavior analysis and proposes the relationship between

applications and AI tasks. Section 4 summarizes the suitable AI-empowered task approaches. Section 5

introduces the iteration of MiceGPT’s architecture. Section 6 concludes the paper.

2. Research Questions

This section introduces the main research questions of the survey. We first retrieve the AI-based

papers of mice behavior analysis to ensure that all the studies in this survey are all AI-based. The

paper starts with a general question of "Can MiceGPT be true", which is subsequently divided into

four Research Questions (RQs) based on Figure 1. The paper answers the RQs through literature

surveys and makes summaries. Research questions include:

• RQ1: What applications can AI empowers in the mice behavior analysis studies? (Answered in

Section 3)
• RQ2: How to taxonomize the applications into AI tasks? (Answered in Section 3)
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• RQ3: What AI methods can be used for executing AI tasks? (Answered in Section 4)
• RQ4: How can MiceGPT trains the AI methods, classify the AI tasks, and identify the

applications? (Answered in Section 5)

3. Applications

In this section, we conduct a preliminary search about mice behavior with AI approaches using the

Google Scholar and SCI Expanded library with the keywords “mice behavior AND machine learning

AND deep learning”. In Google Scholar, the keywords are chiefly matched in the body of papers

instead of the abstract, and the search results contain the patents and research reports. They are not

our main focus. In the SCI Expanded library, we search the same keywords in the title, abstract, and

keywords. The search scope is “Article AND Meetings.” The initial number of retrieved documents

amounted to around 85 publications. We selected 26 papers as state-of-the-art works, according to the

following rules:

• Including studies whose data are videos or video frames;
• Including studies that have exact application goals instead of technical goals;
• Excluding studies that focus on machine learning instead of deep learning;

In the end, we obtained 26 related papers and grouped them into four applications. This section

summarizes the state-of-art AI-empowered mice behavior research on applications to summarize and

taxonomize AI-empowered mice behavior analysis applications for the further study of MiceGPT.

3.1. Disease Detection

Changes in daily human behavior (e.g., food intake, sleep, and activity patterns) can often reflect

symptoms of several diseases. Mice disease models [12,13] are a valuable resource in studying the

diseases [14]. However, these studies require long and systematic observations of disease-carrying

mice, which requires much labor work and is subject to human error. Fortunately, AI can be a

powerful tool for diagnosing disease in mice [15–17]. As shown in Figure 2, mice behaviors, such as

scraching and gait, are recorded as video data with high-speed cameras. AI methods, such as semantic

segmentation, pose estimation, and action recognition, diagnose disease in mice through the video

data. AI provides new insights into the pathophysiology and treatment of diseases.

Start Scratchiing Bount Paw Licking End

Scratching Analysis

� �

Treadmill Ladder Rung

Kinematrics Experiment

Video
Recording

Behavior
Annotation

Semantic
Segmentation

Pose
Estimation

Action
Recognition

Data Pre-process Data Analysis

Application

Data
Processing

Figure 2. Disease Example.
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Most of the existing studies on AI-empowered mice disease detection are based on video data,

while a few are based on text data. Yu et al. [18] record the mice behavior from the bottom of a mouse

videotaping box with a camera. Compared to the top or side views, the bottom view can clearly capture

the key body parts involved in scratching behavior. Weber et al. [19] customize a free-walking runway

with two mirrors that allow 3D recording of the mice from the lateral/side and down perspectives.

Aljovic et al. [20] film all videos with a GoPro 8 camera positioned parallel to and at a fixed distance

and angle from the treadmill and ladder. Alexandrov et al. [9] generate a large, content-rich behavioral

data set using a series of HET Htt CAG-repeat-KI mice with a range of CAG repeat lengths, assessed

at different ages.

Weber et al. [19] reveal gait abnormalities and motor deficits in rodents after a focal ischemic stroke

with key point detection and pose estimation based on deep learning. They provide a comprehensive

3D gait analysis of mice. They further refined the widely used ladder rung test using deep learning

and compared its performance to human annotators. The results show that deep learning-based

motion tracking with comprehensive post-analysis provides accurate and sensitive data to describe

the complex recovery of rodents following a stroke.

Yu et al. [18] develop a new system, Scratch-AID (Automatic Itch Detection), based on image

classification and action recognition. The system could automatically identify and quantify mice

scratching behavior with high accuracy. They design a CRNN (Convolutional Recurrent Neural

Network) by combining CNN (Convolutional Neural Network) and RNN (Recurrent Neural Network).

The CNN extracts static features, and the RNN extracts dynamic features. Finally, a classifier combines

the features extracted by both CNN and RNN and generates the prediction output (scratching or

non-scratching). The best-trained network achieves 97.6% recall and 96.9% precision on test videos.

Sakamoto et al. [16] develop an accurate automated prediction method for black mice with image

classification and action recognition. Same with Yu et.al’s research [18], they also used CRNN. The

CRNN outputs a decimal value between zero and one for pre-processed images. They define an image

whose value is more than 0.5 as “scratching”. They set a posterior filter that removes the predictions for

nine or fewer frames, which could easily be wrong, to improve the predictive performance. The results

show that the established CRNN and posterior filter successfully predicted the scratching behavior in

black mice.

Aljovic et al. [20] develop an open-source computational “toolbox” with pose estimation and

image classification functions. The toolbox can be applied to neurological conditions affecting the brain

and spinal cord. The toolbox is based upon pose estimation obtained from DeepLabCut [21]. It can be

used for automated kinematic parameter computation, automated footfall detection, and kinematic

data analysis with random forest classification and principal component analysis. The results show

that the automated comprehensive analysis could delineate the specific parameters of the locomotor

function that are best suited to track injuries of the brain or spinal cord or are sensitive enough to

predict disease onset during the prodromal phase of a multiple sclerosis model.

Alexandrov et al. [9] use a computational method based on SVMs (Support Vector Machines)

to analyze the large-scale phenotypic information generated by the three systems. They select the

phenotypes that best-distinguished mice with CAG repeats of different lengths. The final model,

which incorporates about 200 behavioral features, accurately predicts the CAG-repeat length of a

blinded mouse line. The results demonstrate the potential to predict underlying disease mutations by

measuring subtle variations at the level of behavioral phenotypes.

3.2. External Stimuli Effective Assessment

External stimuli effective assessment is a basic experiment approach for mice. Compared with

the mice without the stimuli, researchers make external stimuli on the specific mice organ to analyze

the stimuli effect by analyzing mice behaviors. The types of external stimuli are various, such as

medicine [22], artificial stimulus [23], and genetic alteration [24]. Due to the high-speed behavior of

mice, traditional approaches cannot exactly obtain the video frames with the complete organ. With
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the development of AI technology, researchers apply the AI-empowered approaches to evaluate the

external stimuli effect on mice automatically, which presents the basic research steps in Figure 3.

Researchers make various external stimuli on the mice, such as drug stimuli, artificial stimuli and gene

knockout to observe the actions of mice. With the AI techniques empowering, the AI models extract

the features from the video timeline, and make classification, detection and tracing tasks by the train

process. Then the researchers can get the expected outputs from the AI models. Studying external

stimuli effect in mice can contribute to exploring disease treatment and neuroscience. They generally

focus on the detection, classification, segmentation, and tracing tasks.

Artificial
Stimuli

Drug
Stimuli

Gene
Knockout

Video Timeline

Observe
Actions

Feature
Extract

AI

Classification

Detection

Tracing

Train Process

Expect
Output

Figure 3. External Stimuli Example.

Current AI-empowered studies on external stimuli effective assessment adopt video data as the

training and testing data. Wotton et al. [25] collect video data of mice behavior in response to a hind

paw formalin injection. Kathote et al. [26] record the bottom view videos of the mice behavior with

acetazolamide and baclofen. Vidal et al. [27] create a video database including the behavioral data

of 8 different white-haired mice collected multiple times at different times. Abdus-Saboor et al. [28]

use high-speed videography to record sub-second, full-body move videos. Marks et al. [29] collect

raw video frames in complex environments directly. Torabi et al. [30] collect neonatal (10-days-old)

rat pup video recordings using standard locomotor-derived kinematic measures. Martins et al. [31]

collected videos of the tail suspension test (TST) in a controlled environment. Wang et al. [32] collect

mice behavior with an overhead camera during video recording.

Wotton et al. [25] aim to make key point detection and licking action recognition of mice and

propose an automated rating system for rapid, yet clinically relevant nociception assays in the

formalin assay. They take advantage of the key point detection by DeepLabCut [21] with a pre-trained

ResNet50 [33], and use the GentleBoost classifier to identify the behavior of licking of each frame. The

results show that the automated system easily scores over 80 videos and reveals strain differences in

both response timing and amplitude.

Vidal et al. [27] focus on automating the prediction of the grimace scale on white-furred mice by

AI-empowered object detection, semantic segmentation, and image classification. They create a video

database including the behavioral data of 8 different white-haired mice collected multiple times, use

YOLO to detect frames that provide a stable frontal face of the mice, and propose a Dilated CNN to

segment the mice eyes region and a Grimace Scale Prediction Network to classify the grimace scale

into dilatation, activation, and dropout. The results show that this process is possible to differentiate

among the pain scale of the mice.

Abdus-Saboor et al. [28] analyze sub-second behavioral features following hind paw stimulation

with both noxious and innocuous stimuli to assess pain sensation in mice by AI-empowered action

recognition. They apply four mechanical stimuli to the plantar surface of a randomly chosen hind paw

of fully acclimated mice, apply machine learning to make classifies withdrawal action behaviors as a

probability of being pain-like, and obtain the probability by regression analysis. The results indicated

that a sensitive pain sensation assessment could be feasibly achieved based on the calibration of the

animal’s own behavior.
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Kathote et al. [26] develop an AI-empowered pose estimation method to quantify Glucose

transporter 1 deficiency syndrome mice behavior to infer potential therapeutic value on cancer. They

make automation of pose estimation by deep neural networks to analyze more subtle changes that the

drugs may potentially cause, use K-means to cluster and select usable frames, and train these frames

for automated tracking of body parts in the recorded videos. The results indicate that this in vivo

approach can estimate preclinical suitability from the perspective of G1D locomotion.

Marks et al. [29] propose a novel deep learning architecture to study brain function, the effects of

pharmacological interventions, and genetic alterations by quantification of behaviors. The architecture

consists of four neural networks. It made instance segmentation to find the mask and bounding box

for each animal by SegNet. Based on the segmentation, the architecture can make key point detection

by PoseNet, object tracing by IdNet, and action recognition by BehaveNet based on different types of

input data. The results show that the architecture successfully recognized multiple behaviors of freely

moving individual mice and socially interacting non-human primates in three dimensions.

Torabi et al. [30] study the effect of maternal nicotine exposure before conception on 10-day-old

rat pup motor behavior and propose a deep neural network by action recognition. They train the

model for classifying the videos into maternal preconception nicotine exposed groups and control

them. The results suggest novel findings that maternal preconception nicotine exposure delays and

alters offspring motor development.

Martins et al. [31] develop a novel computerized approach, based on AI and video analysis of the

experimentation procedure, to standardize the TST by object detection and action classification. They

propose a CNN network to detect the bounding boxes of the rear paws in the videos. Based on this,

they apply some machine learning techniques to classify the movement status of the rodent, such as

SVMs, decision trees, and kNNs (k-nearest neighbors). The results show that the CNN achieved 87.7%

success in the paw identification problem, and the classifier achieved 95% accuracy in classifying the

animal’s mobility states.

Wang et al. [32] seek to develop a hybrid machine learning workflow to understand the brain

more by accurate and effective quantification of animal behavior. They use DeepLabCut to trace

the mice body key points and detect the mice behavior during a video period by random forest and

hidden Markov model models. The results show that the workflow represented a balanced approach

for improving the depth and reliability of machine learning classifiers in chemosensory and other

behavioral contexts.

3.3. Social Behavior Analysis

The study of social behavior in mice [34,35] holds significant importance in the field of medicine.

By gaining a deep understanding of the neurobiological basis of social behavior in mice, people can

unravel the mechanisms underlying social behavioral disorders and provide clues for the diagnosis

and treatment of related diseases [36,37]. Additionally, research has revealed the impact of social stress

and stress on social behavior in mice, highlighting the interaction between stress and social behavior

and offering new strategies for treating stress-related disorders. The study of social behavior in mice

also contributes to exploring the influence of social interaction on health, providing important clues to

understanding the association between social isolation and health issues. Social behavior analysis in

mice generally includes object detection, key point detection, post estimation, action recognition, and

other tasks, as shown in Figure 4. The process mainly consists of two steps: data extraction and data

analysis. In the data extraction step, the researchers estimate the posture of the mice in the video data

and extract the mouse trajectories from the image data. In the data analysis step, they extract the pose

features and classify behaviors. Finally, the results are visualized.
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Figure 4. Social Behavior Example.

Current studies of social behavior in mice are vision-based, which means they study the behaviors

of mice by analyzing the video data of mice activity. Video data are classified as single-view

or multi-view. The studies that rely on analyzing single-view video recordings [38,39] can be

ambiguous when the basic information about the behavior is occluded. Multi-view video can provide

more behavioral information about mice, which is easier to identify their behavioral characteristics.

Therefore, multi-view video recordings for mouse observations are increasingly receiving much

attention [40–43].

Segalin et al. [38] introduce the Mouse Action Recognition System (MARS), an automated pose

estimation and behavior quantification pipeline in pairs of freely interacting mice. MARS achieves

human-level performance in pose estimation and behavior classification. Moreover, it uses computer

vision to track and detect the pose of the mice and the XGBoost [44] algorithm to classify their behavior.

The authors also provide custom Python code to train novel behavior classifiers.

Agbele et al. [39] present a system that uses local binary patterns and cascade AdaBoost [45]

classifier to detect and classify mice behavioral movement in videos with minimal supervision, helping

animal behaviorists in their research by providing a non-invasive and non-intrusive way to study

mice behavior. The developed cascade AdaBoost algorithm was able to detect eight different mice

movements.

Winters et al. [46] present a new automated method for assessing maternal care in laboratory mice

using machine learning algorithms and aim to improve the reliability and reproducibility of the pup

retrieval test performance assessment. The results show that the proposed automated procedure was

able to estimate retrieval success with an accuracy of 86.7%. They bred primiparous c57bl/6JRJ mice

and housed them in groups for time-controlled breeding in standard type II cages. They use the puppy

retrieval test to evaluate puppy-oriented maternal care in laboratory mice. Automatic tracking of dams

and one pup is established in DeepLabCut, and “maternal approach”, “handling” and "digging" for

automatic behavioral classification are established in simple behavior analysis.

Jiang et al. [40] propose a novel multi-view latent-attention and dynamic discriminative model

for identifying social behaviors from various views. The proposed model outperforms other

state-of-the-art technologies and effectively solves the imbalanced data problem. The model jointly

learns view-specific and view-shared sub-structures, where the former captures the unique dynamics

of each view while the latter encodes the interaction between the views. Additionally, a multi-view

latent-attention variational autoencoder model is introduced in learning the acquired features, enabling
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them to learn discriminative features in each view. Also, the graphical model models the correlation

between the neighboring labels, which has shown superior performance in recognizing mouse

behaviors in a long video recording.

Hong et al. [47] present a new integrated hardware and software system for automatically

estimating pose and classifying social behaviors involving close and dynamic interactions between two

mice. The experiment proves that their integrated approach allows for rapid, automated measurement

of social behaviors and allows the ability to develop new, objective behavioral metrics. They design a

hardware setup and software to produce an accurate representation and segmentation of inaccurately

represented segments. Then they develop a computer vision tool that extracts a representation of the

location and body pose (orientation, posture, etc.) of individual animals and use the representation to

train a supervised machine learning algorithm to detect specific social behaviors.

Burgos-Artizzu et al. [42] present a novel method for analyzing social behavior in continuous

videos by segmenting them into action “bouts” using a temporal context model that combines features

from spatio-temporal energy and agent trajectories. The method is tested on a dataset of videos of

interacting pairs of mice, reaching a mean recognition rate of 61.2% compared to the expert’s agreement

rate of about 70%. The authors find that their novel trajectory features, used in a discriminative

framework, are more informative than widely used spatio-temporal features. Furthermore, temporal

context plays an important role in action recognition of continuous videos. The authors compare their

method with other approaches and show that their approach outperforms them regarding recognition

rate.

Tanas et al. [48] discuss using multidimensional analysis to evaluate the behavioral phenotype

of mice with Angelman syndrome and wild-type littermates. The approach was able to predict

the genotype of mice based on their behavioral profile with high accuracy and detect behavioral

improvement as a function of treatment in Angelman syndrome model mice. They define

multidimensional analysis as the multi-step process of (a) reducing the dimensionality of large

behavioral datasets using principal component analysis, (b) clustering data in principal component

space using k-means clustering, and (c) assessing whether behaviorally defined clusters align with

animal genotype.

3.4. Neurobehavioral Assessment

Neurology is a major research direction of biology and medical science. Traditional approaches

measure the representational mice behavior information for the neurologic study, such as dynamic

weight-bearing test [49], metabolic parameters test [50] and grip strength test [51]. However, some

micro features of mice behaviors can promote the research of neurology, which can not be discovered by

manual observation. Therefore, researchers apply AI methods in analyzing certain mice behaviors to

study mice’s nervous systems further. To make the neurobehavioral assessment, researchers commonly

collect the video of mice behavior, then transfer the video data into image frames, and make AI

models for training the images for classification, segmentation, key point detection, and context action

prediction.

In the neurobehavioral assessment, all the studies collect video data and divide videos into image

frames to train AI models. Ren et al. [52], Jiang et al. [53], and Tong et al. [54] collected mice action

behavior videos. Geuther et al. [10] collected the mice sleep behavior videos. Cai et al. [55] recorded

the mice freezing behavior videos. Jhuang et al. [56] provided software and an extensive manually

annotated video database for data training and testing. Lara-Dona et al. [57] collected the mice pupil

behavior videos of both eyes.

Ren et al. [52] find that automated annotation of mice behavior could help study the neuroscience

of long-term memory in mice. Then they treat the annotation task as a per-frame image classification

problem and fine-tune a powerful CNN network pre-trained on ImageNet for recognizing annotate

animal behaviors automatically to save human annotation costs. The results show that the powerful

CNN can provides more accurate annotations than alternate automatic methods.
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Cai et al. [55] study the reward & punishment mechanism of dopamine neurons by mice freezing

behaviors, and eliminate the need for human scoring by pre-trained ResNet. They further train on the

pixel-by-pixel intensity difference between consecutive pairs of frames and classify each frame into a

certain behavior classification. The results show that each classifier achieved optimal training within

50 training epochs and yielded 92–96% accuracy.

Jhuang et. al [56] aime to make the neurobehavioural analysis of mice phenotypes and classify

every frame of a video sequence by semantic segmentation and image classification, even for those

frames that are ambiguous and difficult to categorize. They first made the semantic segmentation to get

the foreground mask by the background subtraction procedure. Then they train and test a multiclass

SVM model on single isolated frames to recognize high-quality unambiguous behavior. The results

show that their model can lead to 93% accuracy, which is significantly higher than the performance of

a representative computer vision system.

Lara-Dona et al. [57] analyze the changes in pupil diameter by semantic segmentation, which

reflects neural activity in the locus coeruleus. They built up the SOLOv2 to segment mice pupils from

each photo frame, and output the range of mice pupils. The results confirm a high accuracy that makes

the system suitable for real-time pupil size tracking.

Geuther et al. [10] treat the nerve signals and the mice behavior videos to analyze mice’s sleep

quality. They segment the mice mask from the video and use the human expert-scored EEG/EMG

data to train a visual classifier, and finally make action recognition, which classified each 10s video

into categories, such as wake, sleep NREM, and sleep REM. The results show that their classifier can

reach the overall accuracy of 0.92 ± 0.05, which can replace the manual classification.

Tong et al. [54] apply both segmentation and key point detection in their study. They aim to

analyze optomotor response to evaluate animals’ visual function and nervous system. They use

binarization to make the semantic segmentation of mouse contour and propose a powerful CNN

network to detect the position of the mouse’s nose and track the orientation of the mouse’s head. The

results show that their CNN network can achieve a recognition rate of 94.89%.

Jiang et al. [53] propose a hybrid deep learning architecture with a novel hidden Markov model

algorithm to describe the temporal characteristics of mice behaviors by action prediction. The

architecture contains an unsupervised layer and a supervised layer. The unsupervised layer relies on

an advanced spatial-temporal segment Fisher vector encoding both visual and contextual features, and

the supervised layer is trained to estimate the state-dependent observation probabilities of the hidden

Markov model. The results show that the accuracy of their architecture can get 96.5% on average.

3.5. AI Tasks Taxonomy

After summarizing the behavior analysis applications in mice, we also summarized the AI tasks

during behavior analysis in mice, as shown in Table 1. The table also summarizes the data types and

characteristics of the study.

To summarize the behavior analysis applications in mice, we first read the collected literature

and classified them according to their research purposes and applications. We found that most of

the studies could be grouped into 4 categories, namely disease detection, external stimuli effective

assessment, social behavior analysis, and neurobehavioral assessment, in which we introduce 4, 8, 6,

and 7 literature, respectively. In addition, in the mice behavior analysis studies, the AI-empowered

mice behavior applications can divide into multiple AI tasks because of different applications and

research methods. We summarized nine tasks in total. We also summarize the characteristics of the

data analyzed in the studies. Almost all of them analyze video data, which are broadly classified as

having single-view and multiple-view, i.e., whether the data were collected from a single camera or

multiple cameras.
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Table 1. AI tasks taxonomy: MV=Multi-view, SV=Single-view; -T=Top-bottom, -B=Bottom-top,

-F=Front-Back, -S=Side-Side.

Application Literature AI Task
Data

Attribute

Neurobehavioral
Assessment

[54] Semantic Segmentation, Key Point Detection SV-T
[52] Image Classification SV-T
[55] Image Classification SV-T
[10] Semantic Segmentation, Action Recognition SV-T
[56] Semantic Segmentation, Image Classification SV-F
[53] Action Prediction SV-F
[57] Semantic Segmentation SV-F

Social Behavior
Analysis

[39] Object Detection, Action Recognition SV-S
[47] Pose Estimation, Action Recognition MV-TFS

[46]
Pose Estimation, Action Recognition
Object Tracing

SV-T

[40] Action Recognition, Key Point Detection MV-TS
[48] Action Recognition MV-TS

[38]
Object Detection, Pose Estimation,
Action recognition

MV-TF

External Stimuli
Effective Assessment

[25] Key Point Detection, Action Recognition MV-B
[26] Pose Estimation SV-B

[27]
Object Detection, Semantic Segmentation,
Image Classification

SV-F

[28] Action Recognition SV-T

[29]
Instance Segmentation, Key Point Detection,
Object Tracing, Action Recognition

SV-T

[30] Action Recognition SV-T
[31] Object Detection, Action Recognition SV-F
[32] Object Tracing, Action Recognition SV-T

Disease
Detection

[18] Semantic Segmentation, Action Recognition SV-B
[16] Semantic Segmentation, Action Recognition SV-T
[19] Key Point Detection, Pose Estimation MV-BS
[20] Key Point Detection, Pose Estimation SV-S

4. AI-empowered Approaches

In this section, we focus on the techniques behind mice behavior analysis in biology fields. We first

build up an AI pyramid according to the AI task’s dependency relationship. Then, we introduce several

general backbones, namely the fundamental architectures of AI models. In the last, we introduce the

AI models in each AI task. Noted that, except some models used to couple with mice video data are

introduced, we also introduce some state-of-art approaches used for human-related recognition.

4.1. AI Pyramid

The architecture of AI tasks is organized as Figure 5. It is a “pyramid” structure including four

layers: top layer, middle layer, fundamental layer, and backbone layer. The topper layers may take

advantage of the techniques of the lower layers.

The backbone layer contains the backbone models and networks. The backbone is the major

network of a model. It helps abstract the features of images or videos and generate the feature map for

the following network structure. Researchers mainly use the pre-trained backbone and fine-tune it for

their study. The common backbones include CNNs, such as ResNet, ResNeXt, DarkNet, MobileNet,

Yolo, HourGlass, and Transformers.
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Figure 5. Task Pyramid.

The fundamental layer contains the basic AI tasks, including image classification, object detection,

semantic segmentation, and instance segmentation. These tasks are atomic and can not be further

divided into other AI tasks and take advantage of backbone networks from the backbone layer. For

example, object detection can select YoloV5 as the backbone network.

The middle layer contains key point detection and poses estimation. Both tasks may need support

from the fundamental layer. For example, the key point detection model may combine the semantic

and instance segmentation as the first step, and apply the object detection as the final step. Also,

the tasks of the middle layer may apply to the backbone networks from the backbone layer, such as

DarkNet and MobileNet.

The top layer tasks may integrate both the middle and fundamental layers’ tasks in the model.

For example, the action prediction can combine the key point detection(Middle layer) and the semantic

segmentation(Fundamental layer) tasks. The task of the top layer can also integrate the backbone

network into its model.

4.2. Backbone

The backbone is the major architecture of the AI models. It helps to extract the modular structure

of image features and transform the images into high-dimensional feature representations. Existing

known backbones for mice behavior analysis can be categorized into two categories: CNN-based and

Transformer-based.

In CNN-based backbones, the backbones contain multiple convolutional layers and pooling layers.

The convolutional layers help extract the features of images. The pooling layers reduce the number of

parameters and improve the robustness of features. Common CNN-based backbones include DarkNet,

ResNet, MobileNet, HourGlass, and YoloV5. The dependency and relationship of these CNN-based

backbones are shown in Figure 6. The CNN-based backbones are all based on convolutions and

poolings. In detail, the MobileNet requires depthwise convolution to achieve lightweight, and others

require residual techniques to improve performance. In the residual techniques, HourGlass, ResNet

family, and DarkNet family can be categorized by the iterative module, skip connection, and the

darknet module and the darknet module can be furtherly dividied into DarkNet and Yolo families.
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Figure 6. CNN-based Backbone Overview.

DarkNet [58] is a lightweight CNN network. The structure of the backbone adopts multiple

convolution layers and downsampling layers. A Batch Normalization layer and a Leaky ReLU

layer follow each convolution layer. In detail, it contains an input layer, 19 convolutional layers, 2

upsampling layers, a fully connected layer, 26 batch normalization layers, 19 leaky ReLU layers, and 5

max pooling layers.

ResNet50 [59] is a typical backbone in the Resnet family, which is a deep residual network. It has

50 layers in total and avoids the problem of disappearing gradients. In detail, it contains an input layer,

a 7*7 convolutional layer, a pooling layer, 16 residual blocks (3 convolutional layers in each block), a

global average pooling layer, a fully connected layer, and a softmax layer.

MobileNet [60] is a lightweight convolutional neural network proposed by Google. It can make

rapid image classification and object detection on mobile devices. It has an input layer, 13 convolutional

layers, 13 depthwise separable convolutional layers, a global average layer, a fully connected layer,

and a softmax layer.

HourGlass [61] is a CNN-based backbone for human pose estimation. It consists of 4 HourGlass

modules. Each module contains an input layer, a convolutional layer (64 filters, 7*7 kernel size, stride

2), some residual blocks (64 filters, 3*3 kernel size), a max pooling layer (2*2 kernel size, stride 2),

an Hourglass (recursive), some residual blocks (128 filters, 3*3 kernel size), an upsampling layer

(2*2 kernel size, nearest-neighbor interpolation), some residual blocks (64 filters, 3*3 kernel size), a

convolutional layer (specific filters, 1*1 kernel size), and an output layer.

YoloV5 [62] is the scaled-YoloV4 in fact. contains a convolutional layer, a feature pyramid

layer, and a detection head. The convolutional layer takes the CSPNet as the backbone, including 9

convolutional layers. The feature pyramid layer applies a spatial pyramid pooling module and fuses

multi-scale feature maps to improve the detection ability of micro targets. The detection head has three

branches for detecting targets of any size. Each branch has a convolutional layer and an output layer.

Recently, the transformer-based backbone has become a popular backbone architecture in

computer vision tasks. However, it hasn’t been used in the mice behavior analysis. Considering

its state-of-art performance and accuracy. It is essential to utilize the transformer-based in the biology

field. Transformer is mainly applied in Sequence-to-Sequence tasks, such as translation and speech

recognition. It contains an input embedding layer, some encoder layers, and some decoder layers (each

includes three sub-layers, Multi-head Self-attention, multi-head attention, and feedforward neural

network). However, in the transformer-based, the encoders are mostly used as a backbone, such as

ViT [63] and Swin [64].
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ViT is proposed by Google Brain in 2020. It aims to apply a transformer to the computer vision

field. ViT contains four layers: patch embedding layer, transformer encoder layer, global average

pooling layer, and the fully connection layer. The patch embedding layer divides the image into pieces

of fixed size and maps them into a vector. The transformer encoder layers help to extract the features

of the vector. The global average pooling layer and the fully connection layer are used for the feature

presentation and the output presentation.

Swin is proposed by Microsoft Research Asia in 2021. It has three parts: Swin transformer block

for extracting the local feature, stage segmentation for dividing the image into multiple sub-figures,

and the cross-stage connection for transmitting the features among different parts.

4.3. Fundamental Layer Tasks

The fundamental layer tasks mainly make basic image analysis. The goal of these tasks is to

extract information about objects or features from images or videos, such as their location, size, shape,

and category.

4.3.1. Image Classification

Image Classification is a fundamental task in the field of computer vision. Its goal is to assign

a label to an input image from a predefined set of categories. The training methods of image

classification can be divided into supervised learning, unsupervised learning, semi-supervised learning,

self-supervised learning, and weakly supervised learning. Supervised learning is the model learning

labeled data, learning a mapping relationship between data and labels. Unsupervised learning is

learning completely unlabeled data from which models learn patterns. Semi-supervised learning is

data that includes both labeled and unlabeled parts. Self-supervised model learning is also learning

unlabeled data. The difference is that these unlabeled data can be labeled by learning.

Ren et al. [52] used the supervised learning training model. They take a pre-trained CNN trained

on ImageNet and fine-tune it for their rodent behavior classification task. They use Ck, Fk, P, D, C

to represent a convolutional layer with k filters (Ck), a fully-connected layer with k neurons (Fk), a

down-sampling max-pooling layer (P) with kernel size 3 and stride 2, a dropout layer (D), and

a soft-max classifier (C). They transfer AlexNet into use by replacing its last 1000-dimensional

classification layer with a 5-dimensional classification layer. The AlexNet network architecture

is: C96(11)-P-C256(5)-P-C384(3)-C384(3)-C256(3)-PF4096-D-F4096-D-C. They also transferred C3D,

which simultaneously learns spatial and temporal features by performing 3D convolutions, and

has been shown to outperform alternate 2D CNNs for video classification tasks. The C3D network

architecture is C64-P-C128-P-C256-C256-P-C512-C512-P-C512C512-P-F4096-D-F4096-D-C.

Cai et al. [55] also use the supervised learning. They develop an analysis pipeline based on a

CNN model to identify freezing behavior in mice. The CNN is initialized on the pre-trained ResNet18

architecture and further trained on ‘difference images,’ the pixel-by-pixel intensity difference between

consecutive pairs of frames. The rationale for inputting different images to the CNN was to capture

frame-by-frame motion. Each difference image is human-labeled as 1 or 0 to signify ‘freeze’ or ‘no

freeze,’ and the network learned to predict labels for new difference images. The CNN allowes accurate

and automated classification of freezing behavior throughout the duration of their experiments with

minimal labor and enables them to determine that the precise temporal relationship between dopamine

neuron activity and freezing behavior depends on the VTA subregion.
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At present, the image classification of mice is basically supervised learning. It is worth noting

that labeling data usually takes a lot of manpower and material resources, and there are a lot of

unlabeled data in real life. Although supervised learning is the most commonly used method in image

classification, other training methods have their applications, particularly when large amounts of

labeled data are unavailable or when labeling is costly. Most of the current popular image classification

methods combine supervised and unsupervised learning. The following introduces the current

advanced image classification algorithms. The summary of image classification is shown in Table 2.

Du et al. [65] propose a novel semi-supervised efficient contrastive learning classification method

for esophageal disease. They use pre-trained ResNet50 as the CNN backbone. First, they propose

an efficient contrastive pair generation module to generate efficient contrastive pairs. Then, an

unsupervised visual feature representation containing the general feature of esophageal gastroscopic

images is learned by unsupervised efficient contrastive learning. Finally, they transfer the feature

representation to the downstream esophageal disease classification task. The experimental results

have demonstrated that the classification accuracy is 92.57%. The proposed method can reduce the

reliance on large labeled datasets and the burden of data annotation.

Xue et al. [66] propose a generative self-supervised pretraining and few-shot land cover

classification method for multimodal remote sensing data. The approach contains two stages:

generative self-supervised pretraining and few-shot land cover classification. In the pretraining

procedure, local multiview observed images are divided into image patches, which are masked

randomly, and unmasked patches are embedded for the encoder to learn high-level feature

representations. After the self-supervised pretraining process, the learned spatial features are

normalized and combined with corresponding spectral information. These are employed as an

input of the lightweight SVM for classification. The transformer structure is employed as the backbone.

Li et al. [67] present a self-supervised learning framework for retinal disease diagnosis that reduces

the annotation efforts by learning the visual features from the unlabeled images. The framework is

based on ResNet18. The workflow of the overall architecture of the self-supervised method involves

randomly sampling images from the training dataset, applying random data augmentation twice to

generate rotated images, assigning rotation labels to each image, and utilizing a feature embedding

network to map the input to a high-level feature vector that is decoupled into two parts: rotation-related

and rotation-invariant features. The experimental results demonstrate that with a large amount of

unlabeled data available, the proposed method could surpass the supervised baseline for pathologic

myopia and is very close to the supervised baseline for age-related macular degeneration, showing the

potential benefit of the method in clinical practice.

Taleb et al. [68] propose using self-supervised learning methods to learn from unlabeled data for

dental caries classification. The backbone of the methods is CNNs. They train with three self-supervised

algorithms on a large corpus of unlabeled dental images, which contain 38K bitewing radiographs.

They then apply the learned neural network representations on tooth-level dental caries classification,

using labels extracted from electronic health records. The experimental results demonstrate improved

caries classification performance and label efficiency.
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Table 2. Summary of Studies on Image Classification.

Architecture Type Category Dataset Performance

[52] AlexNet,C3D Mice Supervised
learning

Private The model not only provides
more accurate annotations than
alternate automatic methods, but
also provides reliable annotations
that can replace human annotations
for neuroscience experiments.

[55] ResNet18 Mice Supervised
learning

Private The CNN allows accurate and
automated classification of freezing
behavior throughout the duration of
our experiments with minimal labor

[65] ResNet50 Stomach Semi-supervised
learning

Private,Kvasir [69] The classification accuracy is
92.57%, which is better than
that of the other state-of-the-art
semi-supervised methods and is
also higher than the classification
method based on transfer learning
by 2.28%.

[66] Transformer Remote
sensing

Self-supervised
learning

Private The generative self-supervised
model achieves superior
performance in terms of
feature learning and land cover
classification, especially in the small
sample classification case.

[67] ResNet18 Retina Self-supervised
learning

Ichallenge-AMD
dataset [70],
Ichallenge-PM
dataset [71]

The method outperforms other
self-supervised feature learning
methods (around 4.2% area under
the curve and can surpass the
supervised baseline for pathologic
myopia

[68] ResNet18 Dental
caries

Self-supervised
learning

Private Using as few as 18 annotations can
produce 45% sensitivity, which
is comparable to human-level
diagnostic performance

4.3.2. Object Detection

Object detection aims to solve the problem of identifying and positioning the set goal. Its solutions

can be classified into two categories: one-stage and two-stage. The two-stage method splits the object

detection task into a location task and a classification task. A series of candidate boxes as samples

are generated through the region propose networks (RPN) first, and then classification regression is

carried out through the network. The one-stage method directly regresses the distribution probability

and position coordinates of the target instead of the RPN. It obtains the location information and target

categories over the backbone network. The major processes of the two methods are shown in Figure 7.

Existing mice behavior analysis studies apply one-stage and two-stage methods. For the one-stage

method, Vidal et al. [27] applied YoloV3 trained on the Open Images datasets to detect the mouse

faces. Their modified YOLO model is trained for 100 epochs on the corpus. For the first 50 epochs, the

entire model is frozen except for the output layer. Then, they unfreeze all the parameters in the model,

training the model for another 50 epochs.
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Figure 7. Object detection: One-stage and Two-stage Methods.

For the two-stage method, Martins et al. [31] apply Inspection ResNetV2 with Faster R-CNN to

detect the rear paws of mice. They apply Faster R-CNN to locate the rear paws by RPN networks and

obtain the region of interest (ROIs). Then, the extracted ROIs are integrated with the feature map, and

classification and box regression are carried out by the Inspection ResNetV2. Besides, Segalin et al. [38]

also applied Inspection ResNetV2 with ImageNet pre-trained weights to detect the mice location. In

their study, the network model computes a short list of up to K possible object detectors proposal

(bounding boxes) and associate confidence scores denoting the likelihood of that box containing a

target object, in this case, the black or white mice. During training, their network model seeks to

optimize the location and maximize confidence scores of predicted bounding boxes that best match the

ground truth, while minimizing confidence scores of those that do not match the ground truth. The

bounding box location was encoded as the coordinates of the box’s upper-left and lower-right corners,

normalized with respect to the image dimensions. Finally, the network output is the confidence score

scaled between 0 (lowest) and 1 (highest).

With the development of deep learning, state-of-the-art object detection techniques can be further

divided into anchor-based and anchor-free methods. The anchor is used for label allocation. In

the anchor-based method, boxes of different sizes and aspect ratios are preset either manually or

by clustering methods, which can cover the whole image. It can be applied in both one-stage and

two-stage methods. The anchor-free method can be divided into two sub-methods. The first one

determines the object’s center and the predictions for the four borders (called center-based). The

second one locates to multiple predefined or self-learning key points and then constrains the spatial

range of the object (called key point-based). The state-of-the-art studies on object detection apply the

anchor-based and anchor-free mode, which are summarized in Table 3.

Hu et al. [72] propose a one-stage anchor-free network for improving the detection accuracy of the

one-stage method. The whole network takes a point cloud input and voxelized it. They apply AFDet

as the backbone, which has two stages, and each stage has a convolutional layer and three blocks. To

fully explore the potential of the single-stage framework, they apply the self-calibrated convolutions

for each block. Besides, they devise an intersection over union (IoU) aware confidence score prediction

as the anchor-free head of the network. The head belongs to the key point-based anchor-free method.

The authors devise a keypoint prediction sub-head as auxiliary supervision in the detection head. They

add another heatmap that predicts 4 corners and the center of every object in bird’s eye view during

training.
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Table 3. Summary of Studies on Object Detection.

Architecture Type Category Dataset Performance

[27] YoloV3 Mice One-stage Open Images
dataset

A mean intersection
over union (IoU)
score of 0.87

[31] Inspection ResNetV2 with Faster
R-CNN

Mice Two-stage Private Approximately 95%
accuracy

[38] Inspection ResNetV2 with ImageNet
pretrained weights

Mice Two-stage Behavior Ensemble
and Neural
Trajectory
Observatory
(BENTO)

Good efficiency on
Precision-Recall
(PR) curves

[72] Point Cloud Voxelization, 3D Feature
Extractor, backbone(AFDet) and the
Anchor-Free Detector

Object detection
from point clouds

One-stage,
anchor-free

Waymo Open
Dataset, nuScenes
Dataset

Accuracy:73.12,
latency:60.06ms

[73] YOLOv5, the feature fusion layer, and
the multiscale detection layer

Industrial defect
detection

Two-stage,
anchor-based

VOC2007,
NEU-DET,
Enriched-NEU-DET

83.3% mean average
precision (mAP)

[74] The location prior network (LPN) and
the size prior network (SPN)

Video object
detection

One-stage ImageNet VID 54.1 AP and 60.1 APl

[75] ResNet backbone, a FPN, an ARM
cascade network with rotated IoU
prediction branch, and the two-stage
sample selective strategy

Rotating object
detection

Two-stage UAV-ROD 96.65 mAP and 98.84
accurancy under the
plane category

Li et al. [73] propose a two-stage anchor-based network to make the first-stage recognition more

effective at locating insignificant small defects with high similarity on the steel surface. The network

structure contains input, backbone, neck, and output parts. The input terminal mainly contains the

preprocessing of the data, including mosaic data augmentation and adaptive image filling. In the neck

network, the feature pyramid structures of feature pyramid network (FPN) and pixel aggregation

network (PAN) were used. The FPN structure conveys strong semantic features from the top feature

maps into the lower feature maps. At the same time, the PAN structure conveys strong localization

features from lower feature maps into higher feature maps. The head output is mainly used to predict

targets of different sizes on feature maps. The backbone is YoloV5 with improved feature extraction

capability of the backbone network for steel defects. They remove the Conv and C3 layer that obtained

1/32 scale feature information in the original YOLOv5, and replace it with a Conv and C3 layer that

extracted feature information at a 1/24 scale. Besides, they embed an efficient channel attention

network mechanism into the backbone network and connect it in parallel to the C3 module.

Sun et al. [74] present a simple yet efficient framework to address the computational bottlenecks

and achieve efficient one-stage VOD. They proposed two modules to achieve an efficient one-stage

video object detector called the location prior network and the size prior network. The location prior

network has two steps. First, the foreground region selection is guided by the detected bounding boxes

from the previous frame. Second, the partial feature aggregation enhances the selected foreground

pixels using attention modules. Besides, the authors apply an attention mechanism in the one-stage

method and solve the bottlenecks, including efficiency and detection heads on low feature levels. The

input of the attention is foreground pixels on the current frame and the reference frames.

Zhou et al. [75] propose an anchor-based two-stage model called TS4Net for rotating object

detection solely. Benefiting from the ARM and TS4, the TS4Net can achieve superior performance

with one preset horizontal anchor. The architecture of TS4Net adopts the vanilla one-stage detector

RetinaNet as the baseline model. In the RetinaNet, two parallel fully convolutional networks are

connected after FPN to perform the classification and regression tasks, respectively. It can also

add an extra IoU prediction head to train jointly with the classification head and regression head,

which improves the detection performance during inference. To select the positive samples from the

horizontal anchors with large IoU values, authors adopted an ARM cascade network including a

two-stage cascade network, which is stacked by four convolutional layers with 3*3 convolution kernels

as classification and regression networks in the first stage. Besides, the authors propose the two-stage
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sample selective strategy. The first stage of ARM refines the horizontal anchors to high-quality rotated

anchors, and then the second stage adjusts the rotating anchor to a more accurate prediction box.

Recently, Zhou et al. [76] propose a state-of-the-art two-stage study on video object detection

field with transformer technique. They propose an end-to-end model based on spatial-temporal

transformer architecture, improving the efficiency of the detection transformer and deformable DETR.

The model started from a ResNet backbone extracting features of multiple frames, Then, a series of

shared spatial transformer encoders produce the feature memories, which are linked and fed into the

temporal deformable transformer encoder, and the spatial transformer decoder decodes the spatial

object queries. Next, the model used a temporal query encoder to model the relations of different

queries and aggregate these queries supporting the object query of the current frame. Both the temporal

object query and the temporal feature memories are fed into the temporal deformable transformer

decoder to learn the temporal contexts across different frames. The input is video frames, and the

output is the shared weights.

4.3.3. Semantic Segmentation

Semantic segmentation is a computer vision task that assigns each pixel in an image to a specific

semantic category. In mice behavior analysis studies, by applying semantic segmentation to mice

behavior video data, it can be used for behavior recognition and tracking, spatial localization and

trajectory analysis, environmental interaction, behavioral context association, disease model, and drug

effect evaluation. The application of semantic segmentation in mice behavior analysis research can

achieve fine classification and quantification of behavior, provide more comprehensive and accurate

behavioral characterization, and promote a deeper understanding of mouse behavior patterns and

biological mechanisms.

Vidal et al. [27] propose a machine-learning approach to automate the prediction of the grimace

scale on white-furred mice, which is used to understand the suffering of a mouse in the presence

of interventions. The approach involves face detection, landmark region extraction, and expression

recognition. For eye region extraction and grimace pain prediction, a novel structure based on a dilated

convolutional network is proposed. Dilated convolutional neural networks [77] were proposed as

effective tools to perform semantic segmentation.

Wu et al. [78] propose a boosting semantic segmentation framework that performs state-of-the-art

segmenting of somata and vessels in the mouse brain. The proposed framework consists of a CNN

for multilabel semantic segmentation, a fusion module combining the annotated labels and the

corresponding predictions from the CNN, and a boosting algorithm to update the sample weights

sequentially. It improves the quality of the annotated labels for deep learning-based segmentation

tasks.

Geuther et al. [10] propose a machine learning-based visual classification of sleep in mice, which

provides a path to high-throughput studies of sleep. The authors collect synchronized high-resolution

video and EEG/EMG data in 16 male C57BL/6J mice, extract features from the video that are time and

frequency-based, and use the human expert-scored EEG/EMG data to train a visual classifier. When

processing the video data, they apply a segmentation neural network architecture [79] to produce mice

masks.

Existing semantic segmentation methods are divided into four categories according to different

network architectures: CNN-based architectures, transformer-based architectures, multi-layer

perception-based (MLP-based) architectures, and others.

In the CNN-based architecture, the deep network has a strong representation ability of semantic

information, and the shallow network contains rich spatial detail information. Zhang et al. [80]

proposed an EncNet model, which designed a context encoding module to capture global semantic

information and calculated the scaling factor of the feature graph based on the coding information to

highlight the information categories that need to be emphasized. Some of the most important works

include the DeepLap family proposed by Chen et al. [81] and the densely connected atrous spatial
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pyramid pooling (DenseASPP) proposed by Yang et al. [82]. They all use dilated convolution to replace

the original down-sampling method and expand the receptive field to obtain more context information

without increasing the number of parameters and calculations.

Transformer is a deep neural network based on self-attention. In the recent two years, transformer

structure and its variants have been successfully applied to segmentation. Zheng et al. [83]

first performed semantic segmentation based on the transformer and constructed a segmentation

transformer network to extract global semantic information. Inspired by the segmentation transformer

network, trudel et al. [84] design a pure transformer model, named Segmenter, to apply to semantic

segmentation tasks. The model leverages pre-trained models for image classification and fine-tunes

them on moderate-sized datasets available for semantic segmentation. Segmenter outperforms the

state-of-the-art on both ADE20K and Pascal Context datasets and is competitive on Cityscapes.

MLP-based architecture is simple in design since it abandons convolution and self-attention.

The performance in many visual tasks is comparable to the CNN-based and Transformer-based

architectures. Yu et al. [85] propose a novel pure MLP architecture, spatial-shift MLP (S2-MLP), which

only contains channel-mixing MLP. The proposed S2-MLP attains higher recognition accuracy than

MLP-mixer when training on the ImageNet-1K dataset.

Table 4. Summary of Studies on Semantic Segmentation.

Reference Architecture Type Category Dataset Performance

[27] YoloV3 Mice CNN-based Open Images
dataset

Achieves a performance of 97.2%
in terms of accuracy

[78] DCNN based on U-Net Mice CNN-based MOST dataset Improves the network
performance by about 3–10%

[10] - Mice - Private Achieves an overall accuracy of
0.92 ± 0.05 (mean ± SD)

[80] Context Encoding Network
based on ResNet

Semantic
segmentation
framework

CNN-based CIFAR-10 dataset Achieves an error rate of 3.45%

[81] DCNN (VGG-16 or
ResNet-101)

Semantic image
segmentation model

CNN-based PASCAL VOC 2012,
PASCAL-Context,
PASCALPerson-Part,
and Cityscapes
dataset

Reaching 79.7 percent mIOU

[82] DenseASPP, consists of
a base network followed
by a cascade of atrous
convolution layers

Semantic image
segmentation
in autonomous
driving

CNN-based Cityscapes dataset Achieve state-of-the-art
performance

[83] Transformer Segmentation
model

Transformer-based ADE20K, Pascal
Context, and
Cityscapes dataset

Achieves new state of the art on
ADE20K (50.28% mIoU), Pascal
Context (55.83% mIoU) and
competitive results on Cityscapes

[84] Vision Transformer Segmentation
model

Transformer-based ADE20K, Pascal
Context, and
Cityscapes dataset

Outperforms the state of the
art on both ADE20K and
Pascal Context datasets and is
competitive on Cityscapes

[85] Spatial-shift MLP
(S2-MLP), containing
only channel-mixing MLPs

Segmentation
model

MLP-based ImageNet-1K
dataset

Attains considerably higher
recognition accuracy than
MLP-mixer on ImageNet-1K
dataset.

4.3.4. Instance Segmentation

Instance segmentation is a computer vision technique that involves identifying and delineating

individual objects within an image. Unlike semantic segmentation, which assigns a single label to

each pixel in an image, instance segmentation identifies different objects within an image and assigns

each object a unique label. The methods of instance segmentation can be divided into three categories:

top-down, bottom-up, and one-stage. In mice behavior studies, instance segmentation can be used to

track mouse movement trajectories and postures, allowing for the analysis of activity patterns and

behavioral characteristics. Instance segmentation provides researchers with accurate and efficient

data analysis tools to promote the development and progress of mouse research, whose studies are

summarized in Table 5.
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Marks et al. [29] use top-down methods. They propose SIPEC:SegNet, which is based on

the Mask R-CNN architecture, to segment instances of animals. SIPEC:SegNet is optimized for

analyzing multiple animals. They further apply transfer learning onto the weights of the Mask R-CNN

ResNet-backbone pre-trained on the Microsoft Common Objects in Context (COCO) dataset. Moreover,

they apply image augmentation to increase network robustness against invariances (for example,

rotational invariance) and therefore increase generalizability. The experimental results demonstrate

that SIPEC:SegNet achieved a mean average precision of 1.0 ± 0 (mean ± s.e.m.). For single-mouse

videos, the model achieves 95% of its mean peak performance (MAP of 0.95 ± 0.05) using as few as

a total of three labeled frames for training. SIPEC:SegNet could robustly segment animals despite

occlusions, multiple scales, and rapid movement, and enable tracking of animal identities within a

session.

Although instance segmentation can play a significant role in mice behavior recognition, there are

not many studies on mice behavior that utilize instance segmentation. The following introduces some

popular instance segmentation methods of the above three method categories, which can provide a

reference for the subsequent research on mice behavior.

Shen et al. [86] propose a parallel detection and segmentation, a framework to learn instance

segmentation with only image-level labels. The framework draws inspiration from both top-down

and bottom-up instance segmentation approaches. The detection module is the same as the typical

design of any weakly supervised object detection. In contrast, the segmentation module leverages

self-supervised learning to model class-agnostic foreground extraction, followed by self-training

to refine class-specific segmentation. The paper further proposes an instance-activation correlation

module to improve the coherence between detection and segmentation branches. The experimental

results demonstrate that the proposed method outperforms baselines and achieves state-of-the-art

results on PASCAL VOC and COCO.

Korfhage et al. [87] present a CNN architecture based on Mask R-CNN for cell detection and

segmentation (top-down) that incorporates previously learned nucleus features. A novel fusion of

feature pyramids for nucleus detection and segmentation with feature pyramids for cell detection and

segmentation is used to improve performance on a microscopic image dataset created by the authors

and provided for public use, containing both nucleus and cell signals. The proposed feature pyramid

fusion architecture clearly outperforms a state-of-the-art Mask R-CNN approach for cell detection

and segmentation with relative mean average precision improvements of up to 23.88% and 23.17%,

respectively. No post-processing was carried out in the experiments when compared to other methods

to ensure a fair comparison.

Zhou et al. [88] propose a bottom-up regime to learn category-level human semantic segmentation

and multi-person pose estimation in a joint and end-to-end manner. They adopt ResNet-101 [33] as the

backbone. The proposed method exploits structural information over different human granularities

and eases the difficulty of person partitioning. A dense-to-sparse projection field is learned and

progressively improved over the network feature pyramid for robustness. By formulating joint

association as maximum-weight bipartite matching, a differentiable solution is developed to exploit

projected gradient descent and Dykstra’s cyclic projection algorithm. This makes the method

end-to-end trainable and allows back-propagating the grouping error to supervise multi-granularity

human representation learning directly. Experiments on three instance-aware human parsing datasets

show that the proposed model outperforms other bottom-up alternatives with much more efficient

inference.

Wang et al. [89] propose a framework called segmenting objects by locations (SOLO), which is

based on ResNet-50. SOLO is a one-stage, end-to-end instance segmentation method that can perform

detection and segmentation simultaneously with high efficiency and accuracy. The main idea of the

SOLO is to transform the instance segmentation problem into a dense prediction problem. Specifically,

SOLO divides the image into a set of position-sensitive small grids and predicts the object category

and instance segmentation mask in each grid. In this way, each pixel can be assigned to an instance,
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and the object edge can be accurately segmented. The experimental results demonstrated that the

proposed SOLO framework achieves state-of-the-art results for the instance segmentation task in terms

of both speed and accuracy while being considerably simpler than the existing methods.

Li et al. [90] propose PaFPN-SOLO, a SOLO-based image instance segmentation algorithm. They

enhanced the ResNet backbone by incorporating a Non-local operation, effectively preserving more

feature information from the image during the extraction process. In addition, they employ a method

known as bottom-up path augmentation. This method was designed to extract more precise positional

information from the lower feature layers. This dual improvement not only boosted the network

model’s ability to localize the feature structure but also reduced the distance over which information

needed to propagate between feature layers. When the modified algorithm was tested on two datasets,

COCO2017 and Cityscapes, it produced significantly improved segmentation results. The average

segmentation accuracy on these datasets reached 56% and 47.3% respectively, marking an increase of

4.4% and 7.4% over the performance of the original SOLO network.

Table 5. Summary of Studies on Instance Segmentation.

Reference Architecture Type Category Dataset Performance

[29] Mask R-CNN Mice Top-down
method

Private SIPEC successfully recognizes multiple behaviours
of freely moving individual mice as well as
socially interacting non-human primates in three
dimensions

[86] PDSL
framework

- Top-down
method

PASCAL VOC 2012 [91],
MS COCO [92]

PDSL framework outperforms baselines and
achieves state-of-the-art results on PASCAL VOC
and MS COCO.

[87] Mask R-CNN Cell Top-down
method

Private The proposed architecture clearly outperforms a
state-of-the-art Mask R-CNN approach for cell
detection and segmentation with relative mean
average precision improvements ofup to23.88% and
23.17%, respectively.

[88] ResNet101 Human Bottom-up
method

MHPv2 [93],
DensePose-COCO [94],
PASCAL-Person-Part [95]

Experiments on three instance-aware human
parsing datasets show that the proposed model
outperforms other bottom-up alternatives with
much more efficient inference.

[89] ResNet50 - Top-down
method

LVIS [96] The proposed framework achieves state-of-the-art
results for instance segmentation in terms of both
speed and accuracy, while being considerably
simpler than the existing methods.

[90] ResNet - Bottom-up
method

COCO2017,
Cityscapes [97]

The average segmentation accuracy on COCO2017
and Cityscapes reached 56% and 47.3% respectively,
marking an increase of 4.4% and 7.4% over the
performance of the original SOLO network.

4.4. Middle Layer Tasks

The middle-layer tasks mainly focus on pose estimation in both humans and other animals. They

can be used in motion recognition, human-computer interaction, and motion capture applications. To

make the estimation more accurate, they need higher accuracy and real-time than other tasks, so they

also cost more computing resources than other tasks.

4.4.1. Key Point Detection

Key point detection is a major technology of deep learning. It is a basic task in computer vision.

It is the pre-task of human action recognition and action prediction. In the mice behavior analysis

studies, the key point detection also contains fundamental techniques, such as object detection and

semantic segmentation. The input is an image, and the output is the expected key points. Normally,

key point detection can be categorized into 2D and 3D detection, and all the studies of mice key point

detection apply 2D detection methods.

Tong et al. [54] make key point detection based on the semantic segmentation of the mice contour.

They proposed a CNN architecture to detect the snout point of the mice. The CNN contains four

convolutional layers, an average pooling layer after the convolutional layers, a flattened layer, and
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three fully connected layers. The input of CNN is an area near snouts, and the output is the snout

point position.

Wotton et al. [25], Weber et al. [19], Winters et al. [46], and Aljovic et al. [20] all make key point

detection for body-part detection. Wotton et al. [25] propose a ResNet50-based CNN to learn specific

features and the skipping function to minimize information loss. Weber et al. [19], Aljovic et al. [20],

and Winters et al. [46] make the key point for detecting distinct body parts of mice. They proposed a

ResNet-50 from the DeepLabCut by manually labeling 120 frames selected using k-means clustering

from multiple videos of different mice. The former one detects the body parts, including the head,

right front toe, left front toe, center front, right back toe, left back toe, center back, and tail base. The

middle one detected 14 body parts configuration for the mother and pup together. The latter labels

six body parts (toe, MTP joint, ankle, knee, hip, and iliac crest) in 450 image frames, and trained for

400,000 iterations.

Besides mice, key point detection is mostly applied in humans. Human key point detection can

be categorized into single-person and multi-person detection. The multi-person detection algorithms

can be further divided into Top-Down and Bottom-Up two parts. All the studies are summarized in

Table 6.

Wen et al. [98] make multi-person key point detection based on the pre-trained network and

SHNet. The pre-trained network was used for object detection. SHNet is used for keypoint detection.

It consisted of four stages and the attention mechanism. The first stage consists of four remaining

units, which are the same as ResNet50 and are composed of a bottleneck with a width of 64, followed

by a 3*3 convolution feature graph whose width is reduced to 4. The second, third, and fourth stages

contained 1, 4, and 3 communicative blocks. Besides, the model required paying more attention to

the channel features with the largest amount of information and suppressing unimportant channel

features. The attention mechanism contains information input, calculation of attention distribution,

and calculation of weight average of input information. The input is the vector of each image, and the

output is the weights of each feature.

Gong et al. [99] propose a retrained AlphaPose model to make multi-person key point detection

in the upper human body. The AlphaPose method detects human key points based on the regional

multiplayer pose estimation (RMPE) framework proposed by the AlphaPose method, containing three

components: symmetric spatial transformation network (SSTN), parametric pose non-maximum

suppression (NMS) and pose guided proposals generator (PGPG). The SSTN network consists

of a spatial transformation network (STN), single-person pose estimation (SPPE), and spatial

de-transformer network (SDTN). STN is used to acquire high-quality human proposals and exclude

inaccurate input frames. SPPE is used to estimate the pose of the input human candidates. SDTN

maps the pose estimated by SPPE back to the original image coordinates and adjusts the input frames

to make the detected frames more accurate. The AlphaPose model can detect 17 human upper body

key points.

Zang et al. [100] propose a lightweight multi-stage attention network (LMANet) to detect the

key points of a single person at night. LMANet contains a backbone network and some subnets for

identifying key points that are not obvious or hidden through the characteristics of different receptive

fields and the association between key points. The backbone network is pruned MobileNet. The input

of the backbone is 334*384. The first layer is a 3*3 convolution, and layer 2 to layer 6 are the classic

bottleneck structure. The expected output is 12*12. For the subnets, there are 2 subnets, each of which

contains only 2 bottlenecks. The input is 48*48, and the output is 12*12, which is the spatial attention

module in the revised feature representation. Besides, the second bottleneck and the fourth bottleneck

of the LMANet backbone network have added the channel attention mechanism, which is used to

enhance the local features of each feature map at the spatial level. The attention module can get a

refined output after the two-stage networks, and finally obtain a heatmap of 14 key points of the

human body.
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Hong et al. [101] proposed a PGNet for single-person key-point detection. PGNet consists of three

main components: Pipeline Guidance Strategy (PGS), Cross-Distance-IoU Loss (CIoU), and Cascaded

Fusion Feature Model (CFFM). The backbone network in PGNet is ResNet-50, which is divided into

5 stages using CFFM. The feature-guided network after the image is convolved is used to extract

key-point features, while CFFM is utilized to extract high-level and low-level features from the conv1-5

layers of ResNet-50. The middle three layers of CFFM are specifically used to avoid consuming a large

amount of spatial information during convolution calculations. The feature-guided network combines

traditional data parallelism with model parallelism enhanced with pipelining, which partitions the

layers of the object being trained into multiple stages. After feature extraction, a convolution operation

is used to fuse the features of the two branches, which completes the key points.

Table 6. Summary of Studies on Key Point Detection.

Reference Architecture Type Category Dataset Performance

[54] CNN Mice 2D Private Achieve the recognition rate of 94.89%

[25] ResNet-50 Mice 2D Private Reveal strain differences in both response timing
and amplitude

[19] ResNet-50 Mice 2D Private A 98% accuracy when compared baseline to
animals at 3 dpi

[46] ResNet-50 Mice 2D Private An accuracy of 86.7%

[20] ResNet-50 Mice 2D Private Predict the acute injury status with 90% accuracy
and long-term defcits with 85% accuracy.

[98] SHNet,
MaskedNet

Human multi-person MPII, COCO2017 Achieve high accuracy on all 16 joint points

[99] AlphaPose Human multi-person Private,
Halpe-FullBody136

Detection precision is improved by 5.6%, and the
false detection rate is reduced by 13%

[100] LMANet Human single-person Private, MPII, AI
Challenger

PCKh value is 83.0935

[101] PGNet Human single-person COCO Improve the accuracy of the COCO dataset by 0.2%

4.4.2. Pose Estimation

Quantifying mice behaviors from videos or images remains a challenging problem, where pose

estimation plays an important role in describing mice behaviors. Although deep learning-based

methods have made promising advances in human pose estimation, they cannot be directly applied to

pose estimation of mice due to different physiological natures. Particularly, since the mouse body is

highly deformable, it is a challenge to accurately locate different keypoints on the mouse body. The

mice pose estimation can be divided into 2D and 3D.

Zhou et al. [102] propose a novel Hourglass network-based model, defined as graphical model

based structured context enhancement network (GM-SCENet) where two effective modules, structured

context mixer (SCM) and cascaded multi-level supervision (CMLS) are subsequently implemented.

SCM can adaptively learn and enhance the proposed structured context information of each mouse

part by a novel graphical model that takes into account the motion difference between body parts.

Then, the CMLS module is designed to jointly train the proposed SCM and the Hourglass network

by generating multi-level information, increasing the robustness of the whole network. Using the

multi-level prediction information from SCM and CMLS, they develop an inference method to ensure

the accuracy of the localization results.

Xu et al. [103] propose a symmetry approach and design a CNN for mice pose estimation under

scale variation. The network architecture consists of a UNet structure with residual structure to extract

features, Atrous Spatial Pyramid Pooling (ASPP) module to expand the perceptual field, and deep and

shallow feature fusion to capture the various spatial relationships related to body parts. The model

generates a set of prediction results based on heat map and coordinate offset. The paper also discusses

the use of dilation convolution and loss function design. The authors use their own built mice dataset

and obtained state-of-the-art results.
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Salem et al. [43] propose a systematic approach to accurately estimate the 3D pose of the mice

from single-monocular fisheye-distorted images. The approach employs a novel adaptation of a

structured forest algorithm. The authors benchmark their algorithm against existing methods and

demonstrate the utility of the pose estimates in predicting mice behavior in a continuous video. The

full text information provides a review of literature works with respect to pose representation and

pose estimation/detection method.

In addition to the above mice pose estimation studies, we also present some state-of-the-art

human pose estimation studies, which are expected to be applied to mice pose estimation. The human

pose estimation techniques can be categorized into 2D and 3D pose estimation. In 2D human pose

estimation, joints and body parts are tracked across the surface of an image, whereas 3D human pose

estimation also estimates the depth of the joints and body parts in the image [104].

2D human pose estimation has been a fundamental yet challenging problem in computer vision.

The goal is to localize human anatomical keypoints (e.g., elbow, wrist, etc.) or parts. Sun et al. [105]

propose a High-resolution net (HRNet) for human pose estimation that maintains high-resolution

representations throughout the process. Cheng et al. [106] and Yu et al. [107] both propose novel

methods based on HRNet. The former presents HigherHRNet, which uses high-resolution feature

pyramids to learn scale-aware representations and solve the scale variation challenge in bottom-up

multi-person pose estimation. The feature pyramid in HigherHRNet consists of feature map outputs

from HRNet and upsampled higher-resolution outputs through a transposed convolution. The latter

presents an efficient high-resolution network, Lite-HRNet. The authors start by applying the efficient

shuffle block in ShuffleNet to HRNet, which yields stronger performance over popular lightweight

networks such as MobileNet, ShuffleNet, and Small HRNet. They introduce a lightweight unit,

conditional channel weighting, to replace costly pointwise (1 × 1) convolutions in shuffle blocks.

To date, most of the efforts for 3D pose estimation are focused on monoculars. Iskakov et

al. [108] present two novel solutions for multi-view 3D human pose estimation based on new learnable

triangulation methods that combine 3D information from multiple 2D views. The first solution is a

basic differentiable algebraic triangulation with an addition of confidence weights estimated from

the input images. The second solution is based on a novel method of volumetric aggregation from

intermediate 2D backbone (ResNet-152) feature maps. Both approaches are end-to-end differentiable,

which allows direct optimization of the target metric. He et al. [109] proposes a method called ‘epipolar

transformer’ which enables a 2D detector to leverage 3D-aware features to improve 2D pose estimation.

The method leverages epipolar constraints and feature matching to approximate the features at a

corresponding point in a neighboring view. This helps to resolve depth ambiguity and accurately

estimate the 3D position of joints. They adopt ResNet-50 with image resolution 256×256 proposed

in simple baselines for human pose estimation as our backbone. network. They use the ImageNet

pre-trained model for initialization. Weinzaepfel et al. [110] propose a method called DOPE that detects

and estimates whole-body 3D human poses, including bodies, hands, and faces, in the wild. The

method takes advantage of previously annotated or generated datasets to train independent experts for

each part and distills their knowledge into a single deep network designed for whole-body 2D-3D pose

detection. They follow the Faster RCNN implementation and adopt ResNet50 as the backbone. The

resulting estimations are combined to obtain whole-body pseudo-ground-truth poses. A distillation

loss encourages whole-body predictions to mimic the experts’ outputs. DOPE outperforms the same

whole-body model trained without distillation while staying close to the performance of the experts.
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Table 7. Summary of Studies on Pose Estimation.

Reference Architecture Type Category Dataset Performance

[102] Hourglass
network

Mice 2D Parkinson’s Disease
Mouse Behaviour

The superior performance over the other
state-of-the-art methods in terms of PCK@0.2
score.

[103] ResNet, ASPP Mice 2D Private Overall performance has achieved superior
performance at various thresholds

[43] Structured
forests

Mice 3D Private Precision 86%

[105] HRNet Human 2D COCO, MPII human
pose estimation, and
PoseTrack dataset

Achieves a 92.3 PCKh@0.5 score

[106] HigherHRNet Human 2D COCO dataset Achieves new state-of-the-art result on COCO
test-dev (70.5% AP), surpasses all top-down
methods on CrowdPose test (67.6% AP)

[107] Lite-HRNet Human 2D COCO and MPII
human pose
estimation datasets

Achieves 87.0 PCKh @0.5

[108] ResNet-152 Human 3D Human3.6M and
CMU Panoptic
datasets

Achieve state-of-the-art performance on the
Human3.6M dataset

[109] ResNet-50 Human 3D InterHand and
Human3.6M
datasets

Outperforms state-of-the-art by 4.23mm and
achieves MPJPE 26.9 mm

[110] ResNet-50 Human 3D MPII, MuPoTs-3D,
and RenderedH
datasets

Outperforms the same whole-body model while
staying close to the performance of the experts, less
demanding than the ensemble of experts and can
achieve real-time performance

4.5. Top Layer Tasks

Top layer tasks mostly take multiple steps including the lower layer’s tasks. They are used to

analyze and understand the motion in applications such as surveillance, robotics, and sports analysis.

4.5.1. Object Tracking

Object tracking refers to the process of automatically detecting and tracking a specific object in

a video or image sequence. The input of object tracking algorithm is usually a video sequence, and

the output is the information of the target’s position, size, and motion status in different frames of

the input video, which is used to achieve continuous tracking of the target. In neuroscience research

on mice, object tracking technology can help researchers better understand the mouse’s behavioral

patterns and neural activity through monitoring and analyzing mouse’s behavior. Furthermore, target

tracking technology can be used to evaluate mouse behavior performance in drug treatment or nervous

system disease models.

Marks et al. [29] introduce SIPEC:SegNet, a Mask R-CNN architecture designed to enable tracking

of animal identities within a session. To improve temporal continuity-based tracking, SIPEC:IdNet

is developed with a DenseNet backbone that generates visual features, which are integrated over

time using a gated-recurrent-unit network to reidentify animals when the temporal-continuity-based

tracking fails. This allows SIPEC to identify primates over the course of weeks and outperform both

idtracker.ai’s identification module within and across sessions, as well as PrimNet.

Wang et al. [32] and Winters et al. [46] both use DeepLabCut to track mice behaviors. DeepLabCut

is an open-source software package for markerless pose estimation of animals and humans in video

data using deep learning, which can be used for tracking the pose of mice. The DeepLabCut architecture

is a deep neural network based on ResNet, referred to as a “multi-residual network”. Wang et al. [32]

use DeepLabCut to estimate the positions of mouse body parts. Positional features are calculated

using DeepLabCut outputs and are used to train random forest and hidden markov models with

equal number of states, separately. Winters et al. [46] use DeepLabCut to create a dam-pup tracking

algorithm in the pup retrieval protocol and classified variables such as “maternal approach”, “carrying”

and “digging” using simple behavioral analysis.
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SIPEC: SegNet and DeepLabCut essentially track mice through object detection rather than actual

object tracking models. There are many existing object tracking algorithms for tracking humans and

vehicles, which can be classified into single-branch and multi-branch models. These model can provide

inspiration for object tracking of mice, shown in Table 8.

Single-branch models use a single model or algorithm for object tracking, typically based on a

linear or nonlinear model. Wang et al. [111] propose an online multi-object tracking framework based

on a hierarchical single-branch network, based on Faster R-CNN [112] with a ResNet-50 [33] backbone.

The proposed single-branch network utilizes an improved Hierarchical Online Instance Matching

(iHOIM) loss to explicitly model the inter-relationship between object detection and Re-ID. The iHOIM

loss function unifies the objectives of the two subtasks and encourages better detection performance

and feature learning even in extremely crowded scenes. Moreover, the paper introduce the object

positions, predicted by a motion model, as region proposals for subsequent object detection. The

object trajectories are obtained using a DeepSort framework. Experimental results show that compared

with the two-stage methods on MOT16 and MOT20 datasets, their model achieves a state-of-the-art

performance even in crowded tracking scenes.

Multi-branch models use multiple models or algorithms for object tracking, typically by combining

multiple linear or nonlinear models to track the object. Vaquero et al. [113] develop a complete detection

and tracking system for vehicles in driving scenarios using a dual-branch CNN architecture. The

system utilizes LiDAR data and a deconvolutional neural network to segment vehicles from a front

projection, and then apply Euclidean clustering to extract bounding boxes for tracking over time. The

authors further enhance the system by introducing a dual-view deep-learning pipeline to segment

vehicles from LiDAR information, as well as novel techniques such as adaptive threshold recursive

clustering and a bounding box growing algorithm guided by contextual information. They evaluate

their method extensively on the Kitti benchmark [114] for both detection and tracking tasks, and

demonstrate superior performance compared to existing methods through quantitative analysis. Jiang

et al. [115] propose a multi-branch and multi-scale perception object tracking framework based on

Siamese Convolutional Neural Networks denoted as MultiBSP. To achieve different task goals for each

branch, a tower-structured relation network is created to learn the non-linear relation function between

a template and search area. By using a multi-branch architecture, the system is able to combine and

verify the results from each branch, resulting i n a powerful performance. The experimental results

show that the MultiBSP achieved state-of-the-art performance on six benchmarks.

Table 8. Summary of Studies on Object Tracking.

Reference Architecture Type Category Dataset Performance

[29] Mask R-CNN Mice - Private SIPEC:SegNet robustly segment animals despite
occlusions, multiple scales and rapid movement, and
enable tracking of animal identities within a session.

[32] ResNet Mice - Private DeepLabCut can estimate the positions of mouse body
parts.

[46] ResNet Mice - Private Automated tracking of a dam and one pup was
established in DeepLabCut and was combined with
automated behavioral classification of “maternal
approach”, “carrying” and “digging” in Simple
Behavioral Analysis (SimBA).

[111]

Faster R-CNN,
ResNet-50

Human Single-branch MOT16 [116],
MOT20 [117]

Compared with the two-stage methods on MOT16
and MOT20 datasets, the model achieves a new
state-of-the-art performance even in crowded tracking
scenes.

[113]

DNN Vehicle Multi-branch Kitti [118] The dualbranch classifier consistently outperforms
previous single-branch approaches, improving or
directly competing to other state of the art LiDAR-based
methods.

[115]

ResNet50 - Multi-branch VOT-2018 [119],
VOT-2019 [120],
OTB-100 [121],
UAV123 [122], GOT10k
[123], LASOT [124]

MultiBSP can achieve robust tracking and have
state-of-the-art performance and the effectiveness of
each module and the tracking stability is proved by
qualitative and quantitative analyses.
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4.5.2. Action Recognition

Action recognition in mice plays a crucial role in biomedical research, as it can be employed for

studying disease models, evaluating drug efficacy, investigating the functioning of the nervous system,

exploring behavioral genetics, and assessing environmental toxicity. By observing and analyzing

the behavioral patterns of mice, insights into disease mechanisms, drug effects, neural network

functionality, genetic foundations, and the impact of the environment on organism behavior can be

revealed. We summary the action recognition related research in this seciton, the sumamrizing reuslts

can be refered to Table 9.

Segalin et al. [38] present the Mouse Action Recognition System (MARS), a quartet of software

tools for automated behavior analysis, training and evaluation of novel pose estimator and behavior

classification models, and joint visualization of neural and behavioral data. This software is

accompanied by three datasets aimed at characterizing inter-annotator variability for both pose

and behavior annotation. Together, the software and datasets introduced in this paper provide a robust

computational pipeline for the analysis of social behavior in pairs of interacting mice and establish

essential measures of reliability and sources of variability in human annotations of animal pose and

behavior.

Le et al. [125] propose a framework that uses a 3D Convolutional network (ConvNet) to extract

short-term spatio-temporal features from overlapped short clips. Then those local features are fed

to a Long Short Term Memory network to learn long-term features which are used for classification.

The framwork is denoted as LSTM-3DCNN, and the paper shows how to learn local spatio-temporal

behavioral features using a 3D ConvNet and recognize behaviors in long videos with an LSTM

network.

Kramida et al. [126] presents a mice behavior classification method based on LSTM. The method

employs an end-to-end learning approach where visual features from pre-trained CNN are extracted

from each image frame and is used to train a customized LSTM-based model in weakly-supervised

fashion to recognize different behaviors of the mice in the videos. The classification framework relies

on two deep learning mechanisms: pre-trained VGG features and LSTM. In a preprocessing step, the

independent multimodal background subtraction algorithm is used to segment out the mouse.

We also present some state-of-the-art research in human action recognition. Deep learning-based

human action recognition methods can be simply classified as skeleton-based and video-based

according to whether or not to detect human keypoints first.

For video-based action recognition methods, most of the network structures are based on

Two-stream/Multi-stream 2D CNN [127–129], RNN [130,131], and 3D CNN [132,133]. The two-stream

2D CNN framework generally contains two 2D CNN branches taking different input features extracted

from the RGB videos for Human Action Recognition (HAR), and the final result is usually obtained

through fusion strategies. Zong et al. [127] present Motion Saliency based multi-stream Multiplier

ResNets (MSM-ResNets) method for action recognition. They extended the two-stream CNN in [128]

to a three-stream CNN by adding the motion saliency stream to better capture the salient motion

information. Zhang et al. [129] propose two video super-resolution methods producing high resolution

videos, fed to the spatial and temporal streams to predict the action class. RNN-based models usually

employ 2D CNNs, which serve as feature extractors, followed by an LSTM model for HAR. Majd

et al. [130] proposed a C2 LSTM which incorporates convolution and cross-correlation operators

to learn motion and spatial features while modeling temporal dependencies. He et al. [131] adopt

the Bi-directional LSTM, which consists of two independent LSTMs to learn both the forward and

backward temporal information. The 3D CNN-based methods are very powerful in modeling

discriminative features from both the spatial and temporal dimensions for HAR. 3D CNN model

(C3D) [132] learns the spatio-temporal features from raw videos in an end-to-end learning framework.

Fayyaz et al. [133] address the problem of dynamically adapting the temporal feature resolution within

the 3D CNNs to reduce their computational cost. A Similarity Guided Sampling (SGS) module is
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proposed to enable 3D CNNs to dynamically adapt their computational resources by selecting the

most informative and distinctive temporal features.

For skeleton-based action recognition methods, most of the network structures used in them are

based on RNN [134], CNN [135], and GCN [136]. RNNs and their gated variants (e.g., LSTMs) are

capable of learning the dynamic dependencies in sequential data. Various methods have applied and

adapted RNNs and LSTMs to effectively model the temporal context information within the skeleton

sequences for HAR. Li et al. [134] propose a new type of RNNs called Independently Recurrent Neural

Network (IndRNN) with the recurrent connection formulated as Hadamard product. IndRNN with

regulated recurrent weights effectively addresses the gradient vanishing and exploding problems and

thus long-term dependencies can be learned. CNNs have achieved great success in 2D image analysis

due to their superior capability in learning features in the spatial domain. Zhang et al. [135] propose

a novel view adaptation scheme for skeleton-based human action recognition. They introduce two

view adaptive neural networks, VA-RNN and VA-CNN, which are respectively built based on the

recurrent neural network (RNN) with the Long Short-term Memory (LSTM) and the convolutional

neural network (CNN). Skeleton data is naturally in the form of graphs. Hence, simply representing

skeleton data as a vector sequence processed by RNNs, or 2D/3D maps processed by CNNs, cannot

fully model the complex spatio-temporal configurations and correlations of the body joints. As a

result, many GNN and GCN-based HAR methods have been proposed to treat the skeleton data as

graph structures of edges and nodes. Song et al. [136] propose a multistream GCN model, which

fuses the input branches including joint positions, motion velocities, and bone features at early stage,

and utilized separable convolutional layers and a compound scaling strategy to extremely reduce the

redundant trainable parameters while increasing the capacity of model.

Table 9. Summary of Studies on Action Recognition.

Reference Architecture Type Category Dataset Performance

[38] Hourglass
network

Mice video-based Private Provide a robust computational pipeline for the
analysis of social behavior in pairs of interacting mice

[125] 3D ConvNet,
LSTM network

Mice video-based Private Obtain accuracy on par with human assessment

[126] LSTM Mice video-based Private Producing errors of 3.08%, 14.81%, and 7.4% on the
training, validation, and testing sets respectively

[127] 2D CNN Human video-based UCF101 and
HMDB51 datasets

Outperforms other compared state-of-the-art models

[129] 2D CNN Human video-based UCF101 and
HMDB51 datasets

Improve the recognition performance of LR video from
42.81% to 53.59% on spatial stream and from 56.54% to
61.5% on temporal stream.

[131] RNN Human video-based UCF101 and
HMDB51 datasets

Outperforms the state-of-the-art approaches for action
recognition

[133] 3D CNN Human video-based Kinetics-600,
Kinetics-400,
mini-Kinetics,
Something-Something
V2, UCF101, and
HMDB51 datasets

SGS decreases the computation cost (GFLOPS) between
33% and 53% without compromising accuracy.

[134] RNN Human skeleton-based Penn Treebank
(PTB-c), and NTU
RGB+D datasets

Performs much better than the traditional RNN,
LSTM, and Transformer models on sequential
MNIST classification, language modeling, and action
recognition tasks.

[135] CNN Human skeleton-based NTU RGB+D,
the SYSU
Human-Object
Interaction, the
UWA3D, the
Northwestern-UCLA,
and the SBU Kinect
Interaction datasets

Superior performance over state-of-the-art approaches

[136] GCN Human skeleton-based NTU RGB+D 60 and
120 datasets

Outperforms other SOTA methods
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4.5.3. Action Prediction

In some studies, mice behavior needs long-term or short-term observation. The features of mice

behavior relate to temporal information. Therefore, the action prediction task needs to relate the

context of the former mice behavior to predict the future mice behavior. Nowadays, temporal context

information prediction can be categorized into three parts: short-term temporal context, long-term

temporal context, and temporal semantic context. Existing studies of mice context behavior focus on

the LSTM models. They also combine the lower layers’ techniques, such as semantic segmentation and

key point detection. For example, Kramida et al. [126] present a long-term mice behavior prediction

method based on a LSTM model. Before the LSTM model, Pre-trained VGG and the independent

multimodal background subtraction algorithm help segment the mice from the video. It combines

with the semantic segmentation techniques. Then the LSTM is set up to predict the behavior sequences.

The LSTM contains its own sets of input-unit weight, hidden-layer weight, and bias matrices, a

time-propagating cell unit, input, output, and forget gates. Jiang et al. [53] improv e the LSTM model

of [105], and propose a hidden Markov model to describe the short-term temporal characteristics of

mice behavior. Before hidden Markov model, they make key point detection to detect the interest

points of mice, and transforme the points into spatial-temporal segment Fisher Vector as the input of

segment aggregated network. Then, hidden Markov model is used to infer latent or hidden states

from the observed sequential data, and to account for the dynamics of the observed sequential data

according to the dynamics of the hidden states. It is a discrete-time model where they receive an

observation generated by a hidden state at each time instance. In summary, the action prediction task

aims to connect the data context to extract the feature.

The state-of-the-art studies on temporal context prediction apply the attention mechanism and

transformer framework, increasing the prediction accuracy and efficiency. The studies are summarized

in Table 10. For short-term temporal context, Zang et al. [137] propose a MultiParallel Attention

Network (MPAN) model to learn users’ short-term interests by capturing contextual information and

temporal signals simultaneously in a recommendation system. They propose a interest learning module

and a interest fusion module to accurately capture users’ short-term interests. The interest learning

module consists of three parts: an embedding layer, a short-term interest generator and a long-term

interest generator. The short-term interest generator utilizes a time-aware attention mechanism to learn

short-term interests. The long-term interest generator employs the multi-head attention mechanism

to extract the long-term purpose within the session from different semantic aspects. In the interest

fusion module, a bi-linear similarity function is utilized to compute the recommendation score for

each candidate item. The input is the session prefix, and the output is a one-hot encoding vector. At

last, they utilize MPAN to predict the user’s short-term interest.

For the long-term temporal context, Guo et al. [138] propose a transformer-based spatial-temporal

graph neural network (ASTGNN) for long-term traffic forecasting. ASTGNN follows an

encoder-decoder structure. The encoder and decoder in this model utilize multiple temporal

trend-aware self-attention blocks and spatial dynamic GCN blocks alternatingly. The model is

auto-regressive, meaning that it uses previously generated data as additional input when generating

the next step. To capture the temporal dynamics of traffic data and have global receptive fields, a

novel self-attention mechanism is designed for numerical sequence representation transformation.

This self-attention mechanism is specialized for utilizing local context and maps a query and a set of

key-value pairs to an output. The output is a weighted sum of the values, with the weight for each

value determined by the corresponding key and the query. In the spatial dimension, they develop

a dynamic graph convolution module, employing self-attention to capture the spatial correlations

dynamically. The module employs self-attention and contains both a spatial-temporal encoder and

a decoder. The encoder comprises a stack of identical layers, each containing two basic blocks: a

temporal trend-aware multi-head self-attention block and a spatial dynamic GCN block. The decoder

generates output sequences in an auto-regressive manner.
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For the temporal semantic context, Zhang et al. [139] propose a multi-temporal resolution pyramid

structure model (MTSCANet) to realize temporal action localization efficiently. MTSCANet utilizes

temporal semantic context fusion (TSCF) to fuse three feature sequences with different temporal

resolutions into temporal and semantic contexts, respectively. The local-global attention module

(LGAM) is used to encode the input temporal features in local-global temporal order, while the norm

and location regularization are used to produce the final result. TSCF is employed to extract temporal

semantic features, which are then input to LGAM for local-global timing coding to enhance feature

robustness and enrich feature information. The three feature sequences are merged, processed again

by LGAM and TSCF, and finally output proper vectors.

Table 10. Summary of Studies on Action Prediction.

Reference Architecture Type Category Dataset Performance

[126] RNN with LSTM Mice long-term COCO, MPII PCKh value is 92.3 in MPII and
AP value is 75.5 in COCO

[53] hidden Markov model (HVV) Mice long-term Private, JHuang’s
datasets

Achieve weighted average
accuracy of 96.5% (using
visual and context features)
and 97.9% (incor porated with
IDT and TDD features)

[137] MultiParallel Attention
Network (MPAN)

Recommendation short-term YOOCHOSE and
DIGENTICA

Obtain the best ISLF

[138] Spatial-Temporal Graph
Neural Network (ASTGNN)

Traffic
forecasting

long-term Caltrans
Perfor mance
Measurement
System (PeMS)

Get the best performance in
MAE, RMSE and MAPE.

[139] Multi-temporal resolution
pyramid structure model
(MTSCANet)

Videos temporal
semantic
context

THUMOS14,
ActivityNet-1.3,
HACS

An average mAP of 47.02% on
THUMOS14, an average mAP
of 34.94% on ActivityNet-1.3
and an average mAP of 28.46%
on HACS

5. MiceGPT Design

In the above sections, we introduce the AI-empowered mice analysis applications and the

corresponding state-of-art approaches to enhance the research process in biology fields. However, we

still lack integrated AI systems, such as ChatGPT and VisualGPT [140], to perform the autonomous

mice behavior analysis. In this section, we propose an architecture called MiceGPT and its variations

to fufill the AI-empowered automated mice behavior anlaysis in the biolog realted fields.

5.1. Fundamental Architecture Design

The MiceGPT architecture overview is shown in Figure 8, which consists of five layers, namely, a

query layer, an application layer, a storage layer, an AI model layer, and a data layer.

The data layer provides the interfaces to connect with different data sources. In the architecture,

most of the data types are images and videos. Therefore, the data layer should support the different

encoders and decoders of images and videos, such as jpg, png for images, and h264 videos h265

videos [141]. Furthermore, in practice, the data source might be a media stream, which the data layer

should consider.

The AI model layer is the core component of the GPT framework, encompassing the design,

training, and inference of deep learning models. This layer employs various deep learning models

and architectures, such as Transformer, to process and analyze data, extract features, and perform

model training and prediction. The objective of the AI model layer is to leverage the data provided by

the data layer for model training, enabling the ability to make predictions or generate outputs for the

given task, such as object tracking, pose estimation, object detection etc.
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Figure 8. MiceGPT Architecture Overview.

The storage layer is responsible for managing and storing various data and models within the

GPT framework. This includes data storage, access, and retrieval, as well as storage and management

of model parameters. The storage layer can employ various technologies and tools, such as databases

and distributed file systems, to efficiently handle large-scale data and models.

The application layer consists of functional components built upon the AI model layer, addressing

specific problems. This layer utilizes the capabilities provided by the AI model layer to develop

various applications or services based on specific application requirements, such as disease detection,

social behavior analysis, neuro-behavioral assessment, and so on. The application layer can include

applications such as image recognition, natural language processing, recommendation systems, and

other types of applications.

The query layer serves as the interface layer for user interactions, responsible for receiving user

requests and forwarding them to the respective application layer. This layer processes user inputs,

providing functionalities such as result querying, question answering, and information retrieval, and

presents the results returned by the application layer to the user. The query layer can encompass

various user interfaces, such as command-line interfaces, graphical interfaces, or web services.

Through the collaborative work of the data layer, AI model layer, storage layer, application layer,

and query layer, the GPT framework accomplishes data preparation and processing, training and

inference of deep learning models, storage and management of data and models, as well as interaction

with users and implementation of application functionalities. This layered architecture enhances the

flexibility, scalability, and adaptability of the GPT framework, enabling it to cater to various tasks and

application requirements.

5.2. AI-empowered Query Layer

In MiceGPT, the query layer is designed to fulfill the user’s query request. The query layer

is implemented by the SQL-like language [142]. However, SQL-like language needs a certain

learning process about the database and language itself, which might be difficult for researchers

in biology-related fields. Therefore, in this section, we introduce an AI-empowered query layer to

enhance the usability and interactivity of MiceGPT.

The AI-empowered query layer can be analogized to an intelligent application’s request handler.

When a user submits a request, the AI-empowered query layer goes through parsing and classification
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processes. Ultimately, the query layer assigns the query to an appropriate application. Note that

the input of the AI-empowered query layer is nature languages rather than SQL. Users only need to

describe their requirements and desired results. Then, the query layer would invoke the proper AI

application and configure the data source automatically. The request analysis process resembles the

self-attention and multi-head attention mechanisms like VisualGPT [140], which determine attention

weights based on input data features and relationships to understand better and process the input

information.

Once the request is classified into the corresponding application, the application invokes a

pre-trained AI model to process the request and generate results. The functionality is like the visual

feature modulation of VisualGPT, which incorporates visual features into the generation process. The

AI-empowered query layer, guided by pre-trained natural language models, processes the input data

and produces suitable output.

Finally, the application returns the processed results to the user. This mirrors VisualGPT’s

transmission of fused image-text feature representations to the decoder, resulting in the final output

generation. The entire process, involving the query layer’s request parsing and classification, as well as

the application’s invocation of pre-trained AI model results, enables intelligent applications to generate

appropriate responses based on user requests.

5.3. AI-empowered Application Layer

In MiceGPT, the application layer is designed to fulfill research objectives. In the fundamental

architecture design, the application layer is implemented by software developers and biology field

experts. However, with the increasing research requirements, the application layer may grow

exponentially. Besides, the requirement analysis process is time-consuming because of the gap between

the computer field and the biology-related fields.

The application layer connects with the AI model layer and the storage layer. The analysis

applications can be considered as processes, in which the AI models are called, and data is operated in

the storage layer. Namely, the application ties to using tools provided by the AI model and storage

layers to fulfill the user’s research task. Combining existing AI techniques, such as AutoGPT [143], we

propose an AI-empowered application layer to enhance MiceGPT.

Unlike the application layer in the fundamental architecture design, the AI-empowered

application layer focuses on iterative prompt learning to finish the general tasks rather than specific

processes for each application. The iterative prompt learning process includes the following steps: (1)

The AI-empowered application layer automatically generates prompts based on specific strategies,

initially including the user’s input of name, role, and objectives. (2) The AI-empowered application

layer communities with a generative large language model, such as ChatGPT, to ask the command

prompts for the next step to fulfill the user’s objectives. (3) The commands generated in step 2 are

highly extensible, with each command representing a distinct external capability, such as web scraping,

google search, calling a pre-defined AI model, and communicating with the storage layer. The result

obtained through invoking these commands then becomes a constituent element of the command

prompt. (4) The process returns to step 1 and iterates until the final result is obtained with the state

being “complete”.

With the AI-empowered application layer, MiceGPT is able to finish the user’s research task

ultimately. The difference between the AI-empowered application layer and AutoGPT is that the

application layer is defined to fulfill mice behavior analysis research and it must have the ability to call

for pre-defined AI models and the storage layer.
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6. Conclusions

In this paper, we mainly focus on the AI-empowered mice behavior analysis field. Firstly,

we summarize applications that use AI-empowered mice behavior analysis methods, including

disease detection, external stimuli effective assessment, social behavior analysis, and neurobehavioral

assessment. Then, we analyze the AI techniques behind these applications. Furthermore, we introduce

some related state-of-art deep learning models to inspire the following research. Last, we propose a

MiceGPT architecture that integrates AI techniques and mice behavior analysis applications to provide

easy-to-use tools for biology-related researchers.

While summarizing, we figure out there are still open challenges in AI-empowered mice behavior

analysis research.

Firstly, AI technology is widely applied in the field of behavior analysis research, specifically

in the study of human behavior patterns and psychological states, providing in-depth analysis and

understanding. However, the application of AI technology in mice behavior analysis research is

relatively limited, resulting in certain constraints on the detailed interpretation of mice behavior and

the in-depth analysis of behavior patterns. This disparity limits our comprehensive understanding

of mice behavior and cognition, as well as restricts the application of mice models in areas such as

disease research and drug development.

Secondly, there is a lack of sufficient datasets and benchmarks, and on the other hand, different

applications have diverse requirements for datasets. This shortcoming of datasets and benchmarks

restricts the training and evaluation of AI models, hinders research progress, and comparisons across

different application domains. Therefore, establishing comprehensive and diverse datasets and

benchmarks, tailored to specific application needs, becomes a crucial measure for advancing the

development and application of AI technology on mice behavior analysis.

Thirdly, the lacking of an AI testbed in the mice behavior analysis field is a challenge. Currently,

the common AI platform for mice behavior analysis is DeepLabCut. However, DeepLabCut only

offers the fundamental steps of mice behavior analysis. It supports the AI model layer and part of

the application layer of MiceGPT system. Therefore, integrating AI with mice behavior analysis is a

challenge now.

Lastly, current large language models are widely used in the field of Natural language processing,

and the related technologies and methods of large language models are gradually introduced into

the field of computer vision. However, in biology-related fields and mice behavior recognition field,

there has been no relevant application or research on large language models. In our MiceGPT design,

we introduce the large language models as our query layer to simplify the usage of MiceGPT for

biology-related researchers. Considering the potential of big language models, it is necessary to

increase the research and application of large language models in the field of biology.
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Abbreviations

Abbreviations

The following abbreviations are used in this manuscript:

Abbreviation Full Name

AI Artificial Intelligence

CNN Convolutional Neural Network

RNN Recurrent Neural Network

CRNN Convolutional Recurrent Neural Network

FC Fully Connected

SVMs Support Vector Machines

KNN K-nearest Neighbours

MARS Mouse Action Recognition System

RPN Region Propose Network

ROI Region of Interest

IoU Intersection over Union

RNN Recurrent Neural Networks

GCN Graph Convolution Network
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