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Abstract: Gold- and MnO2- nanozymes are well-known for their enzyme-like activity.  In this regard, initially, 

gold- and MnO2- nanozymes were synthesized by simple and green methods. Afterward, the kinetic studies 

were performed using the Michaelis–Menten model for both gold- and MnO2- nanozymes. The kinetic 

parameters including Km and Vmax were calculated via the construction of the linear plot of Lineweaver–Burk 

for both nanozymes. The results showed a Vmax and Km of 185 nM sec-1 and 47 nM sec-1 for the gold- and MnO2- 

nanozymes, in order. The ratio of Vmax(gold)/Vmax(MnO2) was found to be about 4.0 which pointed that the 

catalytic efficiency of gold-nanozymes is 4.0-fold higher than the catalytic efficiency of MnO2- nanozymes. The 

Km value was found to be 0.72 mM and 1.6 mM for the as-prepared gold- and MnO2- nanozymes, respectively, 

and the Km of MnO2-nanozymes is 2.2-fold higher than that of gold nanozymes. Since the Km shows the affinity 

of substrate for binding to nanozyme active nodes (lower Km=higher affinity), it is consultable that the substrate 

affinity toward MnO2-nanozymes is 2.2-fold lower than that of the gold-nanozymes.  Considering the above 

results, the as-prepared gold nanozymes are very stronger peroxidase-like mimics than the metal oxide MnO2-

nanozymes.  
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1. Introduction 

Although the enzymes exhibit very high specificity and selectivity toward their substrates along 

with high catalytic performance, they suffer several disadvantages such as low stability (narrow pH 

and thermal range); difficult recovery, and no reusability, as reported [1]. To overcome these 

drawbacks, the enzyme immobilization process has been developed to enhance the enzyme stability 

against environmental changes and make them reusable [2]. As already we mentioned enzyme 

immobilization permits the possible increase in stability, however, the specific and relative activities 

of the most immobilized enzymes are found to be lower than the free enzymes which can be 

explained by the effect of immobilization on enzymes' conformational transition after their 

immobilization [3,4]. Besides, enzyme immobilization, the fast advancement of the field of material 

science and nanochemistry leads to develop novel nanoscale materials such as MOFs (e.g., NEQC-

340) [5] and carbon dots [15], ZSM-5@ Al-MCM nanocatalysts [7], gold nanoparticles [26], and silver 

nanoparticles [8]. Among these nanoparticles, a wide variety of the introduced nanomaterials reveal 

excellent enzyme-like activity [6] for example Fe2O3/Au hybrid nanozyme [9], silver nanoparticles 

[10,11], Pt nanozyme [12], Fe/Cu single-atom nanozymes [13], NEQC-340 [14],  unmodified silver 

nanoparticles [20], MnO2 nanoparticles [19], BiOI-NFs [16], gold nanoclusters [17,18], and SiO2-Fe3O4 

nanoparticles [21] which had been used for analytical sensing and biosensing [22], water treatment 

[23], food analysis [24], and organic dye degradation [21].  Recently, the excellent peroxidase-like 

activity of gold nanozymes attracted good attention for application as alternatives to natural 

peroxidase [17,18]. Besides, the metal oxide, manganese dioxide (MnO2) reveals high oxidase- and 

peroxidase-like activity.  The significance of MnO2 nanoparticles compared to gold nanozymes is 

their dual oxidase- and peroxidase-like activity while the gold nanozymes show only peroxidase-like 

activity. However, it is well-known that the applicability of the nanozmyes instead of the native 

enzymes in biocatalysis is strongly dependent on their catalytic performances which can be 

determined by kinetic studies. Hence, in this study, a comparative study on the kinetics performances 
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of gold- and MnO2- nanozymes was performed. In this regard, initially, gold- and MnO2- nanozymes 

were synthesized by simple and green methods. Afterward, the kinetic studies were performed using 

the Michaelis–Menten model for both gold- and MnO2- nanozymes. The kinetic parameters including 

Km and Vmax were calculated via the construction of the linear plot of Lineweaver–Burk for both 

nanozymes. 

2. Experimental 

2.1. Synthesis of MnO2-nanozymes 

150.0 mg KMnO4 was dissolved in 15.0 mL of deionized water, followed by the addition of 150.0 

μL of 30% hydrogen peroxide and 75.0 μL of 80% hydrazinium hydroxide under 5 min stirring. 

Afterward, nanozymes were collected, washed, and dried at room temperature. 

2.2. Synthesis of gold-nanozymes 

To do synthesis the BSA-protected nanozymes, 10.0 mM HAuCl4.4H2O (5.0 mL) was introduced 

to 50 mg mL-1 bovine serum albumin (5.0 mL), followed by stirring at 37 °C and adding 1.0 M NaOH 

to adjust pH. The solution was incubated at 37 °C for 12 hours to complete the synthesis process. 

2.3. Steady-state kinetics studies 

The kinetic parameters of the as-prepared nanozymes were calculated based on Michaelis–

Menten equation and the Lineweaver–Burk method as a function of the concentration of 3,3'-

diaminobenzidine (DAB; nanozyme substrate). The nanozyme activity (nM sec-1) was measured by 

probing the absorbance of the resulting colored product at 460 nm considering a molecular extinction 

coefficient ɛ=5500 molar cm-1. 

3. Results and discussion 

Kinetic studies were carried out to estimate the kinetic parameters (i.e., Km and Vmax) of the as-

prepared MnO2 nanozyme as pseudo-peroxidase nanoenzyme toward n-electron irreversible 

oxidation of 3,3’-diaminobezedine. It is well known that the Vmax value reflects the intrinsic properties 

of the enzyme/nanozyme and is defined as the highest possible rate of the nanozyme-catalyzed 

reaction (i.e., catalytic efficiency) when all enzyme molecules or all nanozyme particles are saturated 

with the substrate. The higher value of Vmax is assigned to the higher catalytic efficiency of the 

enzyme/nanozyme. In contrast, the affinity of the substrate of an enzyme/nanozyme to interact with 

its active site is represented by the Km value, the lower values indicate a higher affinity of the substrate 

for binding to the enzyme/nanozyme. 

3.1. Steady-state saturation plots of the Michaelis-Menten model 

The estimation of the kinetic parameters of MnO2 nanozymes was performed by measuring the 

initial velocity of the nanozyme-mediated reaction as a function of the DAB concentration. The 

Michaelis-Menten saturation curve for the as-mentioned MnO2-nanozymes was shown in Figure 1. 

As seen in Figure 1, the MnO2-nanozymes mediated reaction rate was increased by increasing the 

DAB concentration and then reached a saturation state after a certain substrate concentration.  
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Figure 1. Michaelis–Menten plot for MnO2-nanozymes mediated reaction. 

Besides, to evaluate the kinetics performances of the as-prepared gold-nanozymes, the 

Michaelis–Menten plot was constructed by plotting the velocity of the nanozymatic reaction as a 

function of DAB concertation. The results are shown in Figure 2. As seen in Figure 2, the rate of gold-

nanozyme-mediated oxidation reaction was increased by increasing the substrate concertation and 

then leveling off. In comparison to the MnO2-nanozymes, the gold-nanozymes can oxidize lower 

concentrations of DAB at a very higher reaction rate which pointed to their higher peroxidase-like 

activity compared to the MnO2-nanozymes 

 

Figure 2. Michaelis–Menten plot for gold-nanozymes mediated reaction. 

3.2. Quantification of kinetic parameters utilizing Lineweaver-Burk linear model 

Due to the inaccuracy of the results of non-linear saturation curves, to explore more precise on 

the kinetic performances of the as-prepared nanozymes, their kinetic parameters were quantified 

utilizing Lineweaver-Burk linear model. The Lineweaver-Burk linear plot for MnO2-nanozymes 

mediated reaction is represented in Figure 3. Based on this plot, a Km of 1.6 mM and a Vmax of 47 nM 

s-1 were provided for MnO2-nanozymes mediated reaction.  
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Figure 3. Lineweaver-Burk linear plot for MnO2-nanozymes mediated reaction. 

Besides, to explore more precise on the kinetic performances of gold-nanozymes toward DAB 

oxidation, the Lineweaver–Burk plot was also constructed for gold-nanozymes mediated reaction for 

accurate estimation of Km and Vmax of the gold enzymes-mediated oxidation reaction. The results are 

shown in Figure 4, exhibiting a Vmax of 185 nM s-1 and a Km of 0.72 mM for gold-nanozymes mediated 

reaction. The ratio of Vmax(gold)/Vmax(MnO2) was found to be about 4.0 which pointed that the 

catalytic efficiency of gold-nanozymes is 4.0-fold higher than the catalytic efficiency of MnO2- 

nanozymes. The Km value was found to be 0.72 mM and 1.6 mM for the as-prepared gold- and MnO2- 

nanozymes, respectively, and the Km of MnO2-nanozymes is 2.2-fold higher than that of gold 

nanozymes. Since, the Km shows the affinity of substrate for binding to nanozyme active nodes 

(lower Km=higher affinity), it is consultable that the substrate affinity toward MnO2-nanozymes is 2.2-

fold lower than that of the gold-nanozymes. 

 

Figure 4. Lineweaver-Burk linear plot for gold-nanozymes mediated reaction. 

4. Conclusions 

In this study, a comparative study on the kinetics performances of gold- and MnO2- nanozymes. 

The kinetic studies were performed using the Michaelis–Menten model for both gold- and MnO2- 

nanozymes. The kinetic parameters including Km and Vmax were calculated via the construction of the 

linear plot of Lineweaver–Burk for both nanozymes. The results showed a Vmax and Km of 185 nM sec-
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1 and 47 nM sec-1 for the gold- and MnO2- nanozymes, in order. The ratio of Vmax(gold)/Vmax(MnO2) 

was found to be about 4.0 which pointed that the catalytic efficiency of gold-nanozymes is 4.0-fold 

higher than the catalytic efficiency of MnO2- nanozymes. The Km value was found to be 0.72 mM and 

1.6 mM for the as-prepared gold- and MnO2- nanozymes, respectively, and the Km of MnO2-

nanozymes is 2.2-fold higher than that of gold nanozymes. Since the Km shows the affinity of 

substrate for binding to nanozyme active nodes (lower Km=higher affinity), it is consultable that the 

substrate affinity toward MnO2-nanozymes is 2.2-fold lower than that of the gold-nanozymes.  

Considering the above results, the as-prepared gold nanozymes are very stronger peroxidase-like 

mimics than the metal oxide MnO2-nanozymes. 
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