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Abstract: In this paper, a novel strategy is adopted in a degradation model to affect the implied
lifetime distribution. The multiplicative degradation model is utilized as a postulate in the model.
It will be established that the implied lifetime distribution forms a classical mixture model. In this
mixture model, time-to-failure is lying with some probabilities between two first passage times of
the degradation process to reach two specified levels. Stochastic comparisons in the model under a
change in the probabilities are studied. Several examples are provided to highlight the applicability
of the results in the cases when typical degradation models are candidate
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1. Introduction

Reliability modelling and analysis of complex systems have been always an important topic
in engineering sciences. Degradation-based modelling of failure time , as a fundamental process,
has been a consistent method for analyzing the lifetime of complex systems in quite many practical
situations (see, e.g., Nikulin et al. (2010), Pham (2011) Pellettier et al. (2017) and Chen et al. (2017) for a
monograph on this topic). The items that are deteriorating with time having an observable process of
the degradation can be entertained by a stochastic degradation model. To attain and produce high
reliability systems as requested by the majority of consumers it is necessary to detect weaker systems.
The association of failure time and the degradation process may not be deterministic and further
investigation for the purpose of obtaining the distribution of levels of degradation and their impact on
the failure time is warranted.

The stochastic process-deriven degradation model according to Albabtain et al. (2020) is
considered to model the lifetime of a system. It is assumed that the stochastic process fluctuates
around monotone sample paths. In the traditional definition it is assumed that the failure of an item
corresponds with the time when degradation exceeds the predetermined threshold level ;. Suppose
that the degradation process is {W(t),t > 0}, W(0) = 0 with a monotonically increasing sample path
as is frequently encountered in practice. The time-to-failure is denoted by T. Then T is the first passage
time to the threshold ®ji.e., T = inf{t : W(t) > D;}. The corresponding distribution function of the
failures is denoted by Fr and the implied survival function is denoted by Fr = 1 — Fr. We also denote
by Fy ) and fyyy) the distribution and density functions of W(t), respectively. We have

Fr(t) = P(T > t) = P(W(t) < D) = Fyr)(Dy)- @

If {W(t),t > 0},W(0) = 0 possesses a monotonically decreasing sample path then the
time-to-failure T is the first passage time to the threshold i; ie, T = inf{t : W(t) < U;}. We
obtain

Fr(t) = P(T > t) = P(W(t) > ;) = Fyyp) (£)- ()
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Degradation models vary markedly across the fields of reliability modeling. In this section, the
dynamic degradation-based model for analysis of failure time data which has been recently introduced
by Albabtain et al. (2020) is reviewed. The methodology behind their model is applied in situations
where a unit exhibits stochastic behaviour along the time during which the degradation is taking place
and there is no certain value for the degradation amount upon which the unit is failed. The pliable
aspect of the dynamic degradation-based failure time model is revealed when the failure of the unit
under the degradation process is assumed to follow a stochastic rule in contrast to the traditional
definition that the failure of the unit is considered to be deterministic once the degradation amount
reaches a pre-determined threshold.

Suppose that the amount of degradation at time # is denoted by W (t) with pdf fyy () and cdf
Fyy () (+)- It is considered as a postulate for increasing (decreasing) degradation paths that W(t;) <s
(>st)W(tp) for all t; < tp. In the pervious literature, it was assumed that for a given threshold value
Dy a system under degradation fails as soon as W(t) > Dy. This defines a stopping rule for T to be
determined so that T = inf{t > 0 | W(t) > Dy}. This definition of the failure time was developed
by Albabtain et al. (2020) so that an existing stochastic rule about the effect of degradation over time
illustrates the process of the failure of the item. The failure time T under this modified setting has the
sf

Fr(t) = [ S(wit)fivo (w) dw = ESW(D):1), ©

where S(w; t) is limit of a conditional probability given, at the level of degradation w, by

S(w;t) = lim P(T >t | W(t) € (w,w+J]).

- 0—0+
To fulfill the degradation model, for an increasing (resp. decreasing) degradation path the
bivariate function S must satisfy the following conditions:

(i) Forallw > 0 and forall t > 0, S(w; t) € [0,1].
(ii) For any fixed w > 0, S(w; t) is decreasing in t > 0.
(iii) For any fixed t > 0, S(w; t) is decreasing (resp. increasing) in w > 0.

The conditions (i)-(iii) guarantee that Fr in (2.1) stands as a valid survival function. The model
(2.1) is a dynamic failure-time model because the construction of the model is modified depending on
how the survival rate of the item under degradation at a certain point of time may be influenced by
the amount of the degradation. This influence is entertained by the formation of the function S.

The selection of S depends firstly on the knowledge of engineer or operator who controls the
performance of the system. For example, when system degrades with time hardly (severe) then
S(w;t) = exp{—7(w)t} may be a proper choice. For a less severe degradation process, S(w;t) =
m may be more appropriate. However, if there is no information how the system degrades with
time then everything depends on failure time data (observations on T) and a model selection strategy
can be accomplished, i.e., make some choices candidate and select the best one of them using some
possible model selection criterions such as AIC, BIC, ... measures.

It is assumed that data on W(t) are not achievable for all + > 0 as usually the stochastic process
{W(t),t > 0} is partially observed referred to well-known sources of degradation models. To move
forward along the line of reputable statistical survival models a common feature for S(-;¢) can be
adopted so that S(w; t) = Sg(w) (t) which is the characteristic of the proportional hazard rate model
whenever S(w; t) is a survival function in ¢ for any w > 0, in which 7 > 0. The function y may depend
on some parameters. The baseline probability (survival rate)

So(t) = 513& P(T >t |W(t) € (0,4])

d0i:10.20944/preprints202307.0208.v1
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measures the probability of survival of the system at the time ¢ at which the amount of degradation is
zero. In the sequel, we may need to suppose that Sy(t) is itself a survival function in ¢t > 0. For Ay > 0,
the exponential distribution may always be a good choice so that So(t) = exp(—Agt) describes a
no-ageing behaviour of the system under degradation. The Lomax distribution with survival function
given by So(t) = 17 A ; is also another choice for the baseline survival rate.

2. Stepwise survival rate at interval degradation levels

In proceeding literature the correspondence between the randomness in degradation and
randomness in the implied lifetime distribution has been assumed to be strong and direct so that
failure occurs when the test item’s degradation level reaches at a pre-determined threshold value
(Dy). In such a case the resulting lifetime distribution follows from (3) if S(w;t) =1forw < D rand
S(w;t) = 0 for w > Dy. However, the equation (2.1) stands valid as an sf of time to failure of an item
under degradation when 0 < S(w;t) < 1in some time ¢ and degradation w. The model (3) add the
possibility to undertake situations where the deterioration of an item is not only due to the degradation.
In real problems, as the time is elapsed and even the amount of degradation is not altered, the item
under degradation is being ageing likewise. Therefore, the lifetime of a device subject to degradation
may decrease as the degree of degradation increases. Therefore, the device is frailer at relatively high
degradation levels so that a given threshold for the degree of degradation can easily be considered a
deterministic rule for device failure. However, intervals of degradation levels can be set to develop a
more dynamic time-to-failure degradation model.

Let us consider a degradation process with increasing degradation path and assume that s; >
Sp > ...> sy wheres; € [0,1] fori =1,2,...,k are survival rates of a unit subject to degradation when
W(t) = w, respectively, as the value w takes, lies in

Ds(0) D5)l D50 Ds)) -+ Pji—n) s+ D=1y, Doy

where Dj;_,) < Dj(;) forevery i = 1,2,..., k such that D5,y = —o0 and Dj (4, ,) = +o0. Note that
¢ = k throughout the paper. The degradation points that are adjacent to each other may induce a same
amount of probability of failure, in the way that the survival rate at degradation level W(t) = w takes

the form
k

S(w;t) =Y sil[w € J, 4)
i=1
where I[A] is the indicator function of the set A and J; = (Dj(;i_,), Dj(;)]- It is assumed that s;,i =
1,2,...,k donot depend on w.

For instance in a multiplicative degradation model with increasing mean degradation path,
we accept it as postulate that the probability for failure is not altered for degradation amounts in
predetermined intervals, and as the degradation exceeds the last point (the greatest value) on each
interval, the probability for failure is increased. For example, for high reliability products which 100
percent of them survive before the degradation level reaches CDf( 1)/ and as degradation reaches Qf( 1)/
10 percent of products fail, and the remaining 90 percent survives before the degradation level reaches
Dj(,), and all of them fail as soon as the degradation level reaches Dj,), time-to-failure is modeled
upon choosing s(w; t) = I[w € J;] + 091w € J5].

By using (3) and taking so = 1 and s;4; = 0 we get

Zsz ) € Ji]

I
™I

Il
A

si(Fw() (Djai)) — Fw(e) (D5(i-1)))- @)
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Note thatifs; = 1foreveryi=1,...,kand CDf(E) = D; where Dj is the threshold for degradation in the
standard model, then Fr(t) = YX_, P[W(t) € J;] = Fy (1) (D), ie., (5) reduces to (1). The degradation
process of a life unit does not always refer to products with high reliability, where gradual failure is
foreseen. It also refers to situations where sudden failures are possible, with the probability of such
failures increasing as the degree of degradation increases. The model (5) may contribute effectively
in such situations. Let us suppose that T; := inf{t > 0: W(t) > Dj;)}, i = 0,1,...,k + 11is the first
passage time of the stochastic process {W(t),t > 0} to the value of Dy;). By convention, Tp = 0 and
Ti41 = +oo. If we denote by T the time-to-failure of the device degrading over time, then

pi=s; —siz1=P(T; < T < Tjyq). (6)

It is necessary that (5) and (8) have to be valid survival functions for time-to-failure T. For example,
Fy(400)(Dgi)) = 0, foralli = 0,1,... k and further, when Fyy () (D5(;)) = 1, forevery i =0,1,...k then
(5) defines a valid SF.

We can also consider a degradation process with decreasing degradation path and assume that
Sk41 > Sk > ... > sy wheres; € [0,1] fori = 1,2,...,k+ 1 are survival rates of a unit subject to
degradation when W(t) = w, respectively, as the value w lies in

(e Lol Sse—a) S5l Moy Wil -0 Eo) Uy

where Yiimn) < Yy for every i = 1,2,...,k 4+ 1 such that Uso) = —o0 and U(gyq) = Foo. The
survival rate at degradation level W(t) = w is
k+1
w;t) =Y sillw e J7], ?)

i=1

where J* = (Us;_,), Us(;)]. By appealing to (3) when s, 1 = 1 and sp = 0 we can get

k+1
) =) siP[W(t) € Jf]
i=1
k+1 B
- Z ﬂf (i— 1)) —Fw (uf(i)))~ 8)

In this case if s; = 0and s; = 1foreveryi =2,...,k+1and Llf( 1) = Uy where ilf is the threshold for
degradation in the standard model, then Fr(t) = Y501 P[W(t) € J¥] = Fyy() (85), ie., (5) reduces to
(2). Let us assume that T := inf{t > 0: W(t) < s, _y)}, i =0,1,...,k+ 1is the first passage time
of the stochastic process {W(t),t > 0} to the value of {l;(;). By convention, Ty = 0 and T ; = +co.
The time-to-failure of the device is the random variable T, and

Tl = Sjt1 — S = P( I:—i <T< le—i—&-l)' 9)

The following lemma is essential in deriving future results. It shows that the SF of T, in the
degradation model with increasing degradation path, is a convex transformation of Fyy ;) (Dyi), 1 =
0,1,...,kas p; > 0and Zi:() p; = 1. Further, the SF of T, in the degradation model with decreasmg
degradation path, is a convex transformation of FW(t) (Yi4)),i=0,1,...,kas r; > 0 and Zl o7 =1

Lemma 1. Let W(t), the degradation process,
(i) stochastically increases with t. Then, Fr(t) = ZI 0 PiFw) (D51 )-
(ii) stochastically decreases with t. Then, Fr(t) = YX_, 76 Fyy () (Ys))-

d0i:10.20944/preprints202307.0208.v1
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Proof. We first prove (i). From (5), we can write

;']HI
I
.M?‘

Il
—

(SiFW(t) (Ds(1)) — siFw(p) (;Df(ifl)))

I
™~

I
—

siFw(r) (D)) — si-1Fw(r) (Dsi-1)) + si-1Fw(r) (Dsi-1)) — SiFw(r) (D))

I
™~

k k
siFwe D50) = Y sic1Fwn (Dsi-1)) + Y. (5im1 = 80) Py (Vi)
i=1 i1

i=1
k—1
= skFw (1) (Dj(e)) = s0Fw() Dj(0)) + X (8i = si+1) Fwr) (D))
i=0
k—1
= (sk — k1) Fw(n @je)) + Y (51 = siv1) Fw(r) (Dj3))
i=0

k
=Y piFwe (D50),
i=0

where s) = 1,s¢11 = 0, Fyy (1) (Dj(0)) = Fw(r)(—o0) = 0and p; = s; — s; ;1. The proof of (i) is complete.
Now, let us prove (ii). In spirit of (8), one obtains

i k1, i
Fr(t) =) (SiFW(t) (i) — siFwqr) (ﬂf(i))>
i=1
1 i i i
=Y siFw) (H5i-1)) = sicaFwen (W6-1)) +sic1Fweey (Ss1)) = siFwr (Y500))
i=1

k+1 k+1 k+1

= Y sicaFwy (M5i-1) — 2 siFwn W) + 2 (51— sim1) Fwny (Y1)

i=1 i=1 i=1

i i ki1 i
= 50Fw () (Wy0)) = Skr1 Fwey (Mcera)) + Y (81 = sim1) Fwgry (i)
i=1
k -

=Y iFwy (L)

i=0

where so =0, F_W(t) (uf(o)) = F_W(t)(—OO) =1, FW(t) (uf(é+1)) = Fw(t)(—i—oo) = 0and i = Sj+1 — S;- O

In the context of standard families of degradation models studied by Bae et al. (2007) we develop
the failure-time model (3) under the multiplicative degradation model.
The general multiplicative degradation model is stated as

W(t) = (D)X, (10)

where 7 is the mean degradation path and X is random variation around #(t) having PDF fx, CDF Fx
and SF Fy. If the mean degradation path is considered as a monotonically increasing function, then we
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develop Fr under the multiplicative degradation model (10) Note that Fyy ;) (w) = Fx (%), thus, it is
deduced from Lemma 1(i) that

Fr(t) = E(S(Xn(1);1))
k
—E l;sll € (D5i1-1) Dj1)))
. (1)
- L (5). .

The PDF of T, time-to-failure under degradation model 10 when #(t) is increasing in t > 0
(7' (t) >0, for all t > 0), having SF (11) is obtained as follows:

7'() ¥ (Qf(o)
t) = Di(; . (12)
The failure rate associated with the SF given in (11) is then derived as

() = 7' () Lo piDi fx( t ). 13
n2(t) TE onFx( i)

If the mean degradation path #(t) is a monotonically decreasing function, then the time-to-failure
is denoted by T; with SF FTl- This SF can be obtained in the setting of the multiplicative degradation

model (10). We see that Fyy ) (w) = Fx ( G )) Therefore, using Lemma 1(ii) we get

k+1
Fr,(t) [Zs (X (t) € (Y1) L))

k
F f(i)
— Y nF ( ). (14
5
The PDF of Tj, time-to-failure under degradation model 10 when 7(t) is decreasing in t > 0
(7' (t) <0, forall t > 0), having SF (14) is revealed to be:

le( - Z(t) Z uf fX( (1)> (15)

The failure rate of T with the SF given in (14) is

(16)

rr(t) =

3. Stochastic ordering results

In this section we study some stochastic ordering properties of time-to-failure distributions of
two devices under multiplicative degradation model. It is acknowledged in industrial sciences that
products may have different qualities, some of which are more reliable whereas the others fails earlier.
The extent each subject under degradation resists not to fail can be evaluated by p;’s and 7;’s in the
models (5) and (8), respectively (see, e.g., Lemma 1).

Let P = (po,...,px) and P* = (pj, ..., p;) denote two probability vectors assigning to a couple
of devices working under a multiplicative degradation model with increasing mean degradation path.


https://doi.org/10.20944/preprints202307.0208.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 July 2023 d0i:10.20944/preprints202307.0208.v1

7 of 17

We suppose that P and P* are associated with with random lifetimes T and T*, respectively, such
that p; = P(T; < T < T;;1) and also p; = P(T; < T* < T;;1) where T; := inf{t > 0 | W(t) > D)}
fori =0,1,...,k+ 1. In a similar manner, let IT = (71, ..., ) and IT* = (71§, . .., 1f) denote other
probability vectors related to a pair of devices working under a multiplicative degradation model with
decreasing mean degradation path. It is assumed that IT and IT* are associated with with random
lifetimes T1 and T7, respectively, such that 7r; = P(T; < Ty < T/ ;) and also 7r; = P(T; < T} < T}, ;)
where T/ := inf{t > O0[W(t) < $lyp_i;,)} fori = 0,1,...,k+ 1. Suppose that W(t) = 5(t)X is
the underlying degradation model. We impose a partial order condition among P and P* or/and
conditions on distribution of X (random variation around #(#)) such that some stochastic orders
between T and T* are procured. Further, we find some conditions on IT and IT* and other conditions
on distribution of X such that several stochastic orders between T; and T are fulfilled.

There are some concepts in applied probability that we need to introduce them before developing
our stochastic comparison results. The following definition is due to Karlin (1968).

Definition 2. The function w, as a transformation on (x,y), is said to be totally positive of order 2, TD,,
[reverse reqular of order 2, RRy] in (x,y) € A x B, ifw(x,y) > 0and

w(x1,y1) w(x1,y2)
w(x2,y1) w(xz,y2) = L=l

forall x1 < xp € Aand forall y; < yo € B where A and B are two subsets of R.

It is plain to verify that the TP, [RR,] property of w, as a transformation on (i, k), is equivalent to
% being non-decreasing [non-increasing] in i whenever k1 < ky by considering the conventions
G = tcowhena >0and §j=0ifa=0.

The following lemma from Karlin (1968) known as general composition theorem (or basic

composition formula) will be frequently used across the paper.

Lemma 3. (i) (discrete case): Let g be TP, in (j,i) € {1,2} x Ay and also let w be TP, (respectively, RRy) in
(i,t) € Ay x B, where A = {0,1,...,k}. Then, the function w*, given by

Z <(j, 1) is TP, (respectively, RR,) in (j, t) € {1,2} x B.

(i) (continuous case): Let g(j,y) is TPy in (j,y) € {1,2} x Q and let w(y, x) is TP, (respectively, RRy)
in (y,x) € Y x B, where Y and B are two subsets of [0, +00). Then,

—+o00
w*(j,x) = /0 g, y)w(y, x) dy is TP, (respectively, RR,) in (j,x) € {1,2} x B.

The following definition proposes some class of functions.

Definition 4. Suppose that w, as a transformation of non-negative values, is a non-negative function. Then, w
is said to have

(i) one-sided scaled-ratio increasing (decreasing), OSSRI (OSSRD), property i
in x > 0 for every t > 1.

w(tzx —w(tx)

(ii) two-sided scaled-ratio increasing (decreasing), TSSRI (TSSRD), property zf W(520)—0(5,7) is increasing

(decreasing) in x > 0 for every t; > s; > 0,i = 1,2 with t; < tp and s1 < sp.

From Definition 4, it is apparent that if t; = s; = 0 and also w(0) = 0, then from assertion (ii) the
w(tyx) - w(tx)
w(spx)

is increasing (decreasing) in x for all f > 1. Therefore, every w with w(0) = 0 having TSSRI (TSSRD)
property will also fulfill the OSSRI (OSSRD) property.

ratio

is increasing (decreasing) in x for every t, > s, > 0. Equivalently, this realizes that
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Remark 5. The properties in Definition 4(i) can be applied to produce reliability classes of lifetime distributions.
It can be observed that X has increasing proportional likelihood ratio (IPLR) property if, and only if, fx has the
OSSRD property and also X has decreasing proportional likelihood ratio (DPLR) property if, and only if, fx has
the OSSRI property (see, Romero and Diaz (2001) for definitions of IPLR and DPLR). It can also be seen that X
has increasing proportional hazard rate (IPHR) property if, and only if, Fx has the OSSRD property and, in
parallel, X has decreasing proportional hazard rate (DPHR) property if, and only if, Fx has the OSSRI property
(see, Belzunce et al. (2002) for IPHR and DPHR properties). It can also be verified that X has decreasing
proportional reversed failure rate (DPRFR) property if, and only if, Fx has the OSSRD property and, further,
X has increasing proportional failure rate (IPRFR) property if, and only if, Fx has the OSSRI property (see,
Oliveira and Torrado (2014) for DPRFR and IPRFR classes).

In applied probability, stochastic orders among random variables have been a useful approach
for comparison of reliability of systems (see, e.g., Miiller and Stoyan (2002), Osaki (2002), Shaked and
Shanthikumar (2007) and Belzunce et al. (2015)). Stochastic orderings are considered a basic tool for
making decisions under uncertainty (see, for instances, Mosler (1991) and Li and Li (2013)).

Let us assume that T and T* are random variables with absolutely continuous CDFs Fr and
Fr«, SFs Fr and Fr« and PDFs fr and fr+, respectively. We suppose that T and T* have hazard rate
functions ht and hp+, reversed hazard rate functions A and fir+, respectively. Then:

Definition 6. We say that T is smaller than or equal with T* in the
(i) likelihood ratio order (denoted as T <;, T*) iffT*(t) is increasing in t > 0.

(£)
(ii) hazard rate order (denoted as T <p, T*) if I}T;(tt) is increasing in t > 0 or equivalently, hr(t) > hr«(t),
forallt > 0.

(iii) reversed hazard rate order (denoted as T <., T* ) if Ui (tt)) is increasing in t > 0 or equivalently,

- . Fr(
hr(t) < hy«(t), forall t > 0.
(iv) usual stochastic order (denoted as T <g T*) if Fr(t) < Fr«(t), forall t > 0.

As given in Shaked and Shanthikumar (2007) we have:

T<,T"=T<, T"=T<4T".
It is, furthermore, well-known that
T <}, T" =T <ihr T™"=T <st T".

Two compare T and T*, according to the usual stochastic order, one sufficient conditions is found
to be the well-known majorization order as given in the next definition. Majorization is a partial order
relation of two probability vectors with same dimension inducing that the elements in one vector
are less spread out or more nearly equal than the elements in another vector. The majorization order
makes an elegant framework to compare two probability vectors (see, e.g., Marshall et al. (1965)).

We take X = (xg,...,x¢) and Y = (yo, ..., yx) as two vectors of real numbers such that xX0) <

- < xgy and yg) < ... < y() denote increasing arrangement of values of X and values of Y,
respectively, where x;) is the ith smallest value among xo, ..., xx and y;) is the ith smallest value
among Yo, ...,y fori=1,...,k.

Definition 7. It is said that X is majorized by Y, written as X < Y whenever Zi'(:o X, = Zi'c:o yi, and
Z?:o X(k—i) < ZLO Y(k—i) foreveryj=0,...,k—1.
In the sequel of the paper, we will assume that T and T* are two random variables denoting

time-to-failure under the dynamic multiplicative degradation model W(t) = X#(t) where 7 is an
increasing function with SFs

d0i:10.20944/preprints202307.0208.v1
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The corresponding PDFs are derived as

() & Ds(i) .
fr(t) = 0 Eopz@f(i)fx (’7(t)> and fr+(t) Z%@f fx( 0 >

We will also suppose that T and T} are two random variables denoting time-to-failure under the
multiplicative degradation model W(t) = X#/(t) where 7 is a decreasing function with SFs

Fr, (1) anFX< ‘))> and Fr (¢ ZH*F <17 )>

The associated PDFs are obtained as

—1/(t) ORYN () &, s (i)
fr®) u>szfk<m> dfri ()= "y LT o fx (50))

We utilize the following technical lemma.

Lemma8. (i) Let wy,wy, ..., wy be a set of real numbers satisfying Z _owi = 0. If h(i) is non-decreasing
ini=20,1,...,k, then

k
w; >0, forall j =1,2,...,k implies that Y h(i)w; > 0.
j i=0

M»

W =

i
(ii) Let wo,wy, ..., wy be real numbers. If h(i) > 0 is non-increasing fori = 0,1,...,k, then

j k
W;=Y w; >0, forall j =0,1,...,k implies that y _ h(i)w; > 0.
i=0 i=0

The next result discusses sufficient conditions for stochastic comparison of T and T* and also
stochastic ordering of Ty and T} according to the usual stochastic order.

Theorem 9. (i) Let P = (po, ..., px) and P* = (pg, ..., p;) be two probability vectors satisfying py <
< prand py < ... < py such that P X P*. Then, T <g T*.
(i) Let IT = (mo,...,m) and IT* = (75, ..., 75 be two probability vectors with tg > ... > m and

7y > ... > 7t such that 1T X TL Then, Ty <g T7.

Proof. Firstly, we prove assertion (i). Note that for any ¢t > 0,
D D D
f(O)) <F ( fu)) <...<F ( f(?)) 17)
: ( i) =\ ) - T ()

By appealing to Eq. (11) and since p; < p;, for every i < jand also from (17), Fx (i’;(f;'))) < Fx (%)

foreveryi < j,asi,j =0,1,...,k we thus by rearranging! the elements in sigma in Eq. (11) conclude

that ) @f(é_i)
= Xone () = Lot ()

= o (30 - E o ()

i=0

Similarly,

1 Ttis straightforward thatif ag < a; < .-+ < apand also by < by < --- < by, then ZLO a;b; = ZLO ag_ibe_; = ZLO A(k—iybr—i
in which ag) <apgy < < ag) denote the ordered values of ag, ay, . . ., 4.
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Let us take h(i) = Fx (%;%”) which, by (17), is a non-increasing function ini = 0,1,..., k. Since
P < P*, thus Eﬁzo(p’(*kfi) — P(k—i)) >0,forallj=0,1,..., k. Therefore, from Lemma 8(ii),

k Dere_i
B Fr) = S e )P (10

n(

is non-negative, which means that T <y T*. We now prove assertion (ii). For each fixed t > 0, we

B () =B ) = =i () 9

By applying Eq. (14) and since 71; > 71;, for every i < j and also from (18), Fx > Fx for
y applying £q. i yi<j ( ) (t)

have:

everyi < j,wheni,j=0,1,...,k we thus by rearranging? the elements of sigma in Eq. (14) can get

e = Kt (i) = o ()

i=0

Lo k [T
fm) IR P ( f(f—l)>
1) = & B 5
We set h(i) = Fx (ﬂ};((e;)a)) which by (18), is a non-decreasing functionini = 0,1, ..., k. Since
IT* <11, thus Zi‘{:]‘(”* — T—i)) = 0, forallj=1,... kand Zﬁ-‘zo(nf i~ Tk _iy) = 0. Hence, an

(k=i)
application of Lemma 8(i) yields

In parallel,

t) = ini*ﬁx (

k Loy
= P f(e—i)
Fry (t) — Fry (t — iy ) Fx ( )
i 1 ; (k—i) n(t)
is non-negative, which means that Ty < T;". The proof is complete. [

Remark 10. The result of Theorem 9 indicates that the usual stochastic order between T and T* and also that of
Ty and Ty do not depend on the distribution of random variation X. The conditions imposed to get T <s T* in
Theorem 9(i) consist of an order relation among p;’s (i.e., po < ... < py) and the same order relation among
prs(ie, py<...< p;) and a condition of majorization order of P and P*. The probability vector (P*) which
majorizes the other probability vector (P) will lead to a more reliable product under multiplicative degradation
model with increasing 1(t). The order relations py < ... < prand p§ < ... < pj are valid assumptions in
practical works. This is because in a multiplicative degradation model with increasing 1(t), as the time t is
elapsed, the degradation amount W (t) is increased and, therefore, the probability for failure is correspondingly
grown. Note that the first elements of P and P* are associated with smaller amounts of W(t). The conditions
found to obtain T <g T* in Theorem 9(ii) are, firstly, an order relation of m;’s (i.e., 1y > ... > 1) and
an analogues order relation of 7}'’s (i.e., 1y > ... > ;) and, secondly, the majorization order of IT* and
I1. The probability vector (I1) which majorizes the other probability vector (11*) will lead to a less reliable
product under multiplicative degradation model with decreasing 1 (t). The order constraints 1ty > ... > 713 and
7Ty > ... > 71 are also valid assumptions in practical situations. This is because in a multiplicative degradation
model with decreasing 1 (t), as the time t is elapsed, the factor W (t) for degradation is decreased and, therefore,
the probability for failure of the product is correspondingly going up. Notice that the first elements of 11 and IT*
are associated with smaller amounts W (t) take.

2 Ttis plain toseeifag > a; > --- > ayand alsobg > by < - > by, then ZLO a;b; = ELO ag_ibp_; = Z;‘:O u(k,,v)bk_i.
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The following theorems present some conditions to make the order <;, between time-to-failure
random variables in the dynamic multiplicative degradation model with increasing mean degradation
path 7(t) (Theorem 11(i)) and the dynamic multiplicative degradation model with decreasing mean
degradation path #(t) (Theorem 11(ii)).

Theorem 11. (i) Let P = (po,...,px) and P* = (pg, ..., p;) be two probability vectors so that ’;% is
non-decreasing ini = 0,1,...,k. If fx is OSSRD (OSSRI), then T <, (>;,)T*. X

(ii) Let 11 = (mo, ..., ) and IT* = (715, ..., ) be two probability vectors so that 7;[—’ is non-decreasing in
i=0,1,...,k If fx is OSSRI (OSSRD), then Ty <, (>1,)T5. ’

Proof. To prove (i) it suffices to demonstrate that

o) Zorsofx ()

frt) vk onQf(l)fX( 3>

l:)q

is non-decreasing (non—increasing) int > 0. Set g(j,i) = p;, for j = 1 and g(j, i) = p}, for j = 2 and
also w(i, t) = Dy (i) fx ( 6] ) Therefore, T <j, (>},)T* if, and only if, w*(j, t) := YX_, ¢(j,i)w(i, t) is

TP, (RRp) in (j, t) € {1, 2} x [0, +0c0). Note that, by assumption, l;l is non-decreasing ini =0,1,.. .,k
hence, g(j,i) is TP, in (j,i) € {1,2} x {0,1,...,k} and also since fx is OSSRD (OSSRI) and 17( )
non-decreasing in t > 0, thus, for every iy < i, € {0,1,...,k}

o5,
w(ipt)  Dii)fx ( "Gl )

w(l1, t) Qf(il)fx ( Wf((;)

is non-decreasing (non-increasing) in t > 0. This means w(i, t) is TP, (RRp) in (i,t) € {0,1,...,k} %
{1,2}. By Lemma 3(i), w*(j, t) is TP, (RRy) in (j, t) € {1,2} x [0, +o0), and this completes the proof of
(i). To prove (ii) one needs to show that

Ui
fri(®) o 77 5 1)fX< f(t)))
fr (1) o 7ithyi) fx ( rz(t))

is non-decreasing (non-increasing) in t > 0. We take g*(j,i) = m;, for j = 1 and g*(j, i) = n},
for j = 2 and also set w1 (i, t) = $h;) fx (%) Thus, Ty <j (=5,) Ty if, and only if, wo(j, t) :=
YK g%, i)wi (i, t) is TP, (RRy) in (j, t) € {1,2} x [0, +00). From assumption, s non-decreasing in

i=0,1,...,k hence, g*(j,i) is TPy in (j,i) € {1,2} x {0,1,...,k} and also since fX is OSSRI (OSSRD)
and 7 (t) is non-increasing in t > 0, thus, for every i; < ip € {O, 1,...,k}

wi(int)  Sofx (G

w (i1, 1) uf(il)fX( ﬂé%)))

is non-decreasing (non-increasing) in t > 0. This means wy (i, t) is TP> (RRp) in (i,t) € {0,1,...,k} x
{1,2}. By Lemma 3(i), w2 (j, t) is TP, (RRp) in (j,t) € {1,2} x [0, +00), which validates the proof of
(i). O

The following theorem presents conditions to make the order <j,, between time-to-failure random
variables in the dynamic multiplicative degradation model with increasing mean degradation path

7(t).
Theorem 12. Let P = (po, ..., px) and P* = (pg, ..., pi) be two probability vectors such that

d0i:10.20944/preprints202307.0208.v1
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(1) ’:’1 is non-decreasing ini = 0,1,. .., k. If Fx is OSSRD (OSSRI), then we have T <y, (>5,)T*.

(ii) 1 is non-decreasing ini = 1,2, ..., k. If Fx is TSSRD (TSSRI), then we have T <, (>p,)T*.

Proof. For assertion (i) to be proved it is enough to show that
@ 1

FT*(t) Zl Opz ( (f))

T rone(8)

is non-decreasing (non- increasing) int > 0. Let us take g(j, i) = p;, for j = 1and g(j, i) = p}, forj =2
and also w(i, t) = Fx ( ) Thus, T <p, (>5,,)T* if, and only if, w*(j, t) := Zl 08, H)w(i, t)is TP,

n(t)
(RRp)in (j, t) € {1,2} x [0,4+00). By assumption, ’;1 is non-decreasing in i hence, g(j, i) is TP, in (j, 1)
and further, since Fx is OSSRD (OSSRI) and 7(t) is non-decreasing in t > 0, thus, for every i; < ip, in
domain of i,

wiin ) B (56)
w(iy, t) Fy (%)

is non-decreasing (non-increasing) in t > 0. This is equivalent to saying that w(i, t) is TP, (RRp) in
(i,t). By Lemma 3(i), w*(j, t) is TP, (RRp) in (j, t) € {1,2} x [0, +c0), and this ends the proof of (i). For
the proof of assertion (ii) one needs to prove that

Fro(t) _ it F(ee () - B (52))
B oy s (B (F) - B (B552))

is non-decreasing (non-increasing) in t > 0. We can set g(j,i) = s;, for j = 1 and g(j,i) = s, for

j = 2 and also take w(i, t) = Fx ( o) ) Fx ( (t) ) which is non-negative since D) > Dj(i_,)-
By these notations T <y, (>,)T* if, and only if, w*(j, t) := Y5_, ¢(j,i)w(i, t) is TP, (RRy) in (j,t) €

{1,2} x [0, +o0). From assumption, sl is non-decreasing in i hence, g(j,7) is TP, in (j, i) and moreover,
since Fx is TSSRD (TSSRI) and #(t) is non-decreasing in t > 0, thus, for every i < iy,

wiin, 1) B () = Bx (22)

wlit) - FX( 4 ) FX( n(;)>

is non-decreasing (non-increasing) in t > 0. This is equivalent to w(i, t) being TP, (RRy) in (i,t). On
applying Lemma 3(i), w*(j, t) is TP» (RRp) in (j,t) € {1,2} x [0, +0c0), and this gives the required
result in assertion (ii). O

In the context of Theorem 12, if p’ isnon-decreasingini = 0,1, ...k, then is also non-decreasing
ini=1,2,...,k. We can use Lemma 3(1) to prove it. Let us take g(], ) = pf, for] =2and g(j,i) = pi
forj =1wheni=0,1,...,k. Setw(i,t) = I[i > t] wheret =1,2,...,kandi =0,1,...,k. Since ];’
is non-decreasing ini = 0,1,...,k, thus g(j, i) is TP, in (j,i) and also it is straightforward to show
that w(i,t) = I[i > ] is TP, in (i,#). Hence, w*(j,i) = Y* (g(j,i)w(i,t) is TP, in (j,t), i.e., &L is
non-decreasing ini = 1,2, ..., k. Therefore, the condition on probabilities in Theorem 12(ii) is weaiker
than the condition imposed on probabilities in Theorem 12(i). It is also plain to show that if Fx is
TSSRD (TSSRI) then Fx is OSSRD (OSSRI). Therefore, the condition on random effect distribution in
Theorem 12(ii) is stronger than the condition on random effect distribution in Theorem 12(i).

The theorem below presents conditions to make the order <j, between time-to-failure random
variables in the dynamic multiplicative degradation model with decreasing mean degradation path
1(t). The proof being similar to the proof of Theorem 12 has been omitted.
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Theorem 13. Let IT = (r, ..., i) and IT* = (75, . .., ) be two probability vectors such that
(i) Z—{ is non-decreasing ini = 0,1,. .., k. If Fx is OSSRI (OSSRD), then we have Ty <j, (zh,)Tf.
(ii) Ss—’l is non-decreasing ini = 1,2,...,k + 1. If Fx is TSSRI (TSSRD), then we have Ty <p, (>p,)T5.

The next result presents conditions under which the order <., is fulfilled by time-to-failure
random variables in the dynamic multiplicative degradation model with increasing mean degradation

path #(t).
Theorem 14. Let P = (p, ..., px) and P* = (pg, ..., py) be two probability vectors such that

(i) ’;{ is non-decreasing ini = 0,1,...,k. If Fx is OSSRD (OSSRI), then T <., (>,1,,) T*.
(ii) 1 ’ is non-decreasing ini =1,2,...,k+ 1. If Fx is TSSRD (TSSRI), then T <,p,, (Z4,)T*.

Proof. The assertion (i) is established if one shows that

k * Qf('

Fre(t) _ i _opiFx (i)
@ 1

Fr(t) gk onFX(W(fE)))

is non-decreasing (non-increasing) in t > 0. Let g(j,7) = p;, for j = 1 and g(j, i) = p, for j = 2 and
also w(i, t) = Fx (Q ) Asaresult, T <, (>,)T* if, and only if, w*(j,t) := Y5, g(j,))w(i t) is

0]
TP, (RRp) in (j, t) € {1,2} x [0, +00). By assumption, % is non-decreasing in i hence, g(j, i) is TP, in
(j,i) and further, since Fx is OSSRD (OSSRI) and 7 (t) is non-decreasing in t > 0, thus, for every iy < ip,

wint) B ()
it (S)

is non-decreasing (non- increasing) in t > 0, which means w(i, t) is TP, (RRy) in (i, t). Using Lemma
3@1), w*(j, t) is TP (RRp) in (j, t) € {1,2} x [0, +o0), and this provides the proof of (i). For assertion (ii)
we need to demonstrate that

P _ D 0 (B () - B (S
)T

FT(t) Zk+1(1*51 ( ( (t; (i)fl 1 ))

is non-decreasing (non-increasing) in t > 0. Let us define g(j,i) =1 —s;, for j = 1and g(j,i) =1 —s7,

for j = 2 and also define w(i,t) = Fx (i;(f) ) — Fx (97;(‘ )1 ) Now, T <, (Zm,)T* if, and only

if, w*(j,t) == Y5, ¢(j,i)w(i t) is TP, (RRy) in (j,t) € {1,2} x [0, +00). By assumption, 11 SSI is
non-decreasing in i hence, g(j, i) is TP, in (j,i) and in addition, since Fx is TSSRD (TSSRI) and 17( )
is non-decreasing in t > 0, thus, w(i, t) is TP, (RRy) in (i, t). By Lemma 3(i), w*(j, ) is TP, (RR) in
(j,t) € {1,2} x [0,400), and this proves assertion (ii). [

@Q

In the setting of Theorem 14, if r;; is non-decreasing ini = 0,1,...,k, then ’ is non-decreasing
ini=1,2,...,k+ 1. Lemma 3(i) can be used to prove it. Let us setg(], ) =7, for] =2and g(j,i) = p;
forj = 1whenz =0,1,...,k Setw(i,t) =I[i <t—1] wheret =1,2,...,k+1andi =0,1,..., k. Since
%{ is non-decreasing ini = 0,1,...,k, thus g(j,i) is TP, in (j,7) and also w(i, t) = I[i < t] is TP, in

(i,1). Thus, w*(j,i) := Y5y g(j,i)w(i, t) is TPy in (j, t), i.e., 11:55 is non-decreasing ini =1,2,...,k+1.
Hence, the condition on probabilities in Theorem 14(ii) is weaker than the condition on probabilities in
Theorem 14(i). Furthermore, if Fx is TSSRD (TSSRI) then Fx is OSSRD (OSSRI). This means that the
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condition on random effect distribution in Theorem 14(ii) is stronger than the condition on random
effect distribution in Theorem 14(i).

The theorem given next presents conditions to make the order <,;, between time-to-failure
random variables in the dynamic multiplicative degradation model with decreasing mean degradation
path 7(t). The proof being similar to the proof of Theorem 14 has been omitted.

Theorem 15. Let IT = (y, ..., my) and IT* = (715, .., ) be two probability vectors such that

(1) ’ is non-decreasing in i = 0,1,...,k. If Fx is OSSRI (OSSRD), then we have Ty <, (=) T
(i1) 11 Sl is non-decreasing ini = 1,2,...,k 4 1. If Fx is TSSRI (TSSRD), then we have Ty <, (=) T5.

4. Examples

In this section, we examine and scrutinize the conditions on random effect distribution to fulfill
the ordering properties in Section 3 with some typical random effect distribution functions according
to the ones listed in Bae et al. (2007). These functions, as remarked in Bae et al. (2007), are proper
functions arisen in most practical situations. We prove that the standard applicative distributions for
random variation X lie in the framework of theorems in Section 3.

Before stating the examples we state the following lemma.

Lemma 16. Let fx, Fx and Fx be the PDF, CDF and SF of random variation X around 1(t). Then,

(i) If Fx is TSSRD (TSSRI), then Fx is OSSRD (OSSRI).
(ii) Fx is TSSRD (TSSRI), if and only if, Fx is TSSRD (TSSRI).
(iti) If fx is OSSRD (OSSRI), then Fx and Fx are TSSRD (TSSRI).

Proof. The proof of (i) is obvious (see the lines after Definition 4). To prove (ii), it is enough to observe
thatforallt; >s; > 0,i =1,2and t, > t; and sp > sq, it holds that:

Fx(trx) — Fx(t1x) _ Fx(t2x) — Fx(t1x)

Fx(s2x) — Fx(s1x)  Fx(sox) — Fx(s1x)

To prove assertion (iii), it suffices to establish that if fx is OSSRD (OSSRI), then Fx is TSSRD (TSSRI)
because this is equivalent to Fx being TSSRD (TSSRI) from assertion (ii). We have

Fx(tzx) — Fx(tlx) tlx fX(u) - ttlz fX(xy)dy

Fx (S2x) — Fx(Slx) fszx u)du fsslz fX(xy)dy

The ratio % is non—increasing (non—decreasing) inx >0forallt; >s; >0,i=1,2and tp >

t; and sp > sq, if and only if, w*(j, x fo w(y,x) dyis RRy (TP)in (j,x) € {1,2} x [0, 4+0),
where g(j,y) = I[s1 <y < sp] for] = 1 and g(],y) =Ih <y<tlforj=2andw(y,x) = fx(xy). It
is not hard to prove that g(j,y) is TP, in (j,y) and also since fx is OSSRD (OSSRI) thus w(y, x) is RR;
(TP,) in (y, x). Hence, by Lemma 3(ii) the required result follows. [J

The following examples show that the results of Theorems 11, 12, 13, 14 and Theorem 15 can be
applied for several standard typical distributions for random variation X.

Example 17. (X is Weibull-distributed). Suppose that X has SF Fx(x) = exp(—(Ax)*) where A > 0 and
a > 0. The PDF of X is fx(x) = aA*x* Lexp(—(Ax)*). Thus,

fX(tx> — Ly )%(1 —
fX(x) =t € P(()\ ) (1 t ))

which is decreasing in x > 0, for all t > 1, thus, fx is OSSRD and as a result of Lemma 16(iii), Fx is TSSRD
and Fx is TSSRD.
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A7 lexp(—Ax)

Example 18. (X is gamma-distributed). Assume that X has PDF fx(x) = where v > 0 and

. I(y)

A > 0. We obtain Fe(6)

x (£x 1

=t"""exp((Ax)(1—1t))

fx(x) P
which is decreasing in x > 0, for every t > 1, i.e. fx is OSSRD and by Lemma 16(iii), Fx is TSSRD and Fy is
also TSSRD.
Example 19. (X is log-logistically distributed). Let us take X as a random variable with PDF fx(x) =
%, for B > 0. We can derive

fx(tx) _ tﬂl( 1+ e%xP )2

fx(x) 14 ex(tx)P

which is decreasing in x > 0, for every t > 1, and this means fx is OSSRD which by Lemma 16(iii) implies
that Fx is TSSRD and Fx is also TSSRD.

The following example makes an application of Theorem 9.

Example 20. Suppose W (t) is a degradation process with increasing mean degradation path. Let us assume
that T denotes the time-to-failure of a device and that T* denotes the time-to-failure after a burn-in strategy
is adopted. In this strategy the items which fail before their degradation reaches Dy ,), are omitted. If Ty :=
il‘lf{t >0 | W(f) > Qf(l)} then

pp=PO<T"<T))=0,p; =P(T1 <T"< +o00) =1
and also we assume that
po=PO0<T<T)>0,pp=P(T1 <T < +00) < 1.

Since, P < P*, with P = (py, p1) and P* = (0,1), thus, according to Theorem 9(i), T <g T*. Note that
% < %, therefore, if X is OSSRD then by Theorem 11(i), T <, T*.

5. Concluding remarks

In this paper we have achieved two goals. The first one was developing a novel time-to-failure
model to fit to the lifetime of devices under a typical degradation process namely the multiplicative
degradation model W(t) = X#(t). The basic idea was that the probabilities of failure of the device is
constant in consecutive intervals when degradation amounts are increased (decreased). It was shown
that the time-to-failure according to the model follows a well-known classical mixture model (Lemma
1). The second goal was to get some stochastic ordering properties under variation of probabilities in
two different settings and to obtain conditions under which the device which has a stochastic greater
lifetime is identified. The degradation intervals were assumed to be fixed in the two cases, the mean
degradation function 7(t) was also fixed and the random variation X around 7 (t) was assumed to
follow a common distribution function in the two settings. The usual stochastic order holds true if
a majorization property between probability vectors is satisfied, by which one concludes that when
the probabilities is more spread out in one case in comparison with the other cases, the reliability of
the device under degradation is, correspondingly, decreased. For the stronger stochastic orderings
such as the likelihood ratio order, the hazard rate order and the reversed hazard rate order, it was
clarified that further conditions on the distribution function of X are needed in addition to the ones
that are necessary to be imposed to classify the probability vectors arisen from the two settings. We
demonstrated by some examples that the conditions on distribution function of X are fulfilled for some
typical applicative standard distributions.
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In the future of this work, we may consider other settings or frameworks to detect devices
under degradation which have more reliability. For instance, the lower and the upper bounds of
the degradation intervals may be selected to be (random or non-random) variables, the distribution
function of X as well as the mean degradation amount around it may vary. Aging properties of the
new time-to-failure model can also be investigated which is useful in model selection geostrategies.
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