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Abstract: In this paper, a novel strategy is adopted in a degradation model to affect the implied

lifetime distribution. The multiplicative degradation model is utilized as a postulate in the model.

It will be established that the implied lifetime distribution forms a classical mixture model. In this

mixture model, time-to-failure is lying with some probabilities between two first passage times of

the degradation process to reach two specified levels. Stochastic comparisons in the model under a

change in the probabilities are studied. Several examples are provided to highlight the applicability

of the results in the cases when typical degradation models are candidate
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1. Introduction

Reliability modelling and analysis of complex systems have been always an important topic

in engineering sciences. Degradation-based modelling of failure time , as a fundamental process,

has been a consistent method for analyzing the lifetime of complex systems in quite many practical

situations (see, e.g., Nikulin et al. (2010), Pham (2011) Pellettier et al. (2017) and Chen et al. (2017) for a

monograph on this topic). The items that are deteriorating with time having an observable process of

the degradation can be entertained by a stochastic degradation model. To attain and produce high

reliability systems as requested by the majority of consumers it is necessary to detect weaker systems.

The association of failure time and the degradation process may not be deterministic and further

investigation for the purpose of obtaining the distribution of levels of degradation and their impact on

the failure time is warranted.

The stochastic process-deriven degradation model according to Albabtain et al. (2020) is

considered to model the lifetime of a system. It is assumed that the stochastic process fluctuates

around monotone sample paths. In the traditional definition it is assumed that the failure of an item

corresponds with the time when degradation exceeds the predetermined threshold level Df. Suppose

that the degradation process is {W(t), t ≥ 0}, W(0) = 0 with a monotonically increasing sample path

as is frequently encountered in practice. The time-to-failure is denoted by T. Then T is the first passage

time to the threshold Df i.e., T = inf{t : W(t) > Df}. The corresponding distribution function of the

failures is denoted by FT and the implied survival function is denoted by F̄T = 1 − FT . We also denote

by FW(t) and fW(t) the distribution and density functions of W(t), respectively. We have

F̄T(t) = P(T > t) = P(W(t) ≤ Df) = FW(t)(Df). (1)

If {W(t), t ≥ 0}, W(0) = 0 possesses a monotonically decreasing sample path then the

time-to-failure T is the first passage time to the threshold Uf i.e., T = inf{t : W(t) ≤ Uf}. We

obtain

F̄T(t) = P(T > t) = P(W(t) > Uf) = F̄W(t)(Uf). (2)
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Degradation models vary markedly across the fields of reliability modeling. In this section, the

dynamic degradation-based model for analysis of failure time data which has been recently introduced

by Albabtain et al. (2020) is reviewed. The methodology behind their model is applied in situations

where a unit exhibits stochastic behaviour along the time during which the degradation is taking place

and there is no certain value for the degradation amount upon which the unit is failed. The pliable

aspect of the dynamic degradation-based failure time model is revealed when the failure of the unit

under the degradation process is assumed to follow a stochastic rule in contrast to the traditional

definition that the failure of the unit is considered to be deterministic once the degradation amount

reaches a pre-determined threshold.

Suppose that the amount of degradation at time t is denoted by W(t) with pdf fW(t)(·) and cdf

FW(t)(·). It is considered as a postulate for increasing (decreasing) degradation paths that W(t1) ≤st

(≥st)W(t2) for all t1 ≤ t2. In the pervious literature, it was assumed that for a given threshold value

D f a system under degradation fails as soon as W(t) > D f . This defines a stopping rule for T to be

determined so that T ≡ inf{t ≥ 0 | W(t) > D f }. This definition of the failure time was developed

by Albabtain et al. (2020) so that an existing stochastic rule about the effect of degradation over time

illustrates the process of the failure of the item. The failure time T under this modified setting has the

sf

F̄T(t) =
∫ ∞

0
S(w; t) fW(t)(w) dw = E(S(W(t); t)), (3)

where S(w; t) is limit of a conditional probability given, at the level of degradation w, by

S(w; t) = lim
δ→0+

P(T > t | W(t) ∈ (w, w + δ]).

To fulfill the degradation model, for an increasing (resp. decreasing) degradation path the

bivariate function S must satisfy the following conditions:

(i) For all w ≥ 0 and for all t ≥ 0, S(w; t) ∈ [0, 1].
(ii) For any fixed w ≥ 0, S(w; t) is decreasing in t ≥ 0.

(iii) For any fixed t ≥ 0, S(w; t) is decreasing (resp. increasing) in w ≥ 0.

The conditions (i)-(iii) guarantee that F̄T in (2.1) stands as a valid survival function. The model

(2.1) is a dynamic failure-time model because the construction of the model is modified depending on

how the survival rate of the item under degradation at a certain point of time may be influenced by

the amount of the degradation. This influence is entertained by the formation of the function S.

The selection of S depends firstly on the knowledge of engineer or operator who controls the

performance of the system. For example, when system degrades with time hardly (severe) then

S(w; t) = exp{−γ(w)t} may be a proper choice. For a less severe degradation process, S(w; t) =
1

(1+t)γ(w) may be more appropriate. However, if there is no information how the system degrades with

time then everything depends on failure time data (observations on T) and a model selection strategy

can be accomplished, i.e., make some choices candidate and select the best one of them using some

possible model selection criterions such as AIC, BIC, ... measures.

It is assumed that data on W(t) are not achievable for all t ≥ 0 as usually the stochastic process

{W(t), t ≥ 0} is partially observed referred to well-known sources of degradation models. To move

forward along the line of reputable statistical survival models a common feature for S(·; t) can be

adopted so that S(w; t) = S
γ(w)
0 (t) which is the characteristic of the proportional hazard rate model

whenever S(w; t) is a survival function in t for any w ≥ 0, in which γ > 0. The function γ may depend

on some parameters. The baseline probability (survival rate)

S0(t) = lim
δ→0+

P(T > t | W(t) ∈ (0, δ])
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measures the probability of survival of the system at the time t at which the amount of degradation is

zero. In the sequel, we may need to suppose that S0(t) is itself a survival function in t ≥ 0. For λ0 > 0,

the exponential distribution may always be a good choice so that S0(t) = exp(−λ0t) describes a

no-ageing behaviour of the system under degradation. The Lomax distribution with survival function

given by S0(t) =
1

1+λ0t is also another choice for the baseline survival rate.

2. Stepwise survival rate at interval degradation levels

In proceeding literature the correspondence between the randomness in degradation and

randomness in the implied lifetime distribution has been assumed to be strong and direct so that

failure occurs when the test item’s degradation level reaches at a pre-determined threshold value

(D f ). In such a case the resulting lifetime distribution follows from (3) if S(w; t) = 1 for w < D f and

S(w; t) = 0 for w > D f . However, the equation (2.1) stands valid as an sf of time to failure of an item

under degradation when 0 < S(w; t) < 1 in some time t and degradation w. The model (3) add the

possibility to undertake situations where the deterioration of an item is not only due to the degradation.

In real problems, as the time is elapsed and even the amount of degradation is not altered, the item

under degradation is being ageing likewise. Therefore, the lifetime of a device subject to degradation

may decrease as the degree of degradation increases. Therefore, the device is frailer at relatively high

degradation levels so that a given threshold for the degree of degradation can easily be considered a

deterministic rule for device failure. However, intervals of degradation levels can be set to develop a

more dynamic time-to-failure degradation model.

Let us consider a degradation process with increasing degradation path and assume that s1 ≥

s2 ≥ . . . ≥ sk where si ∈ [0, 1] for i = 1, 2, . . . , k are survival rates of a unit subject to degradation when

W(t) = w, respectively, as the value w takes, lies in

(Df(0),Df(1)], (Df(1),Df(2)], · · · , (Df(i−1),Df(i)], · · · , (Df(k−1),Df(k)]

where Df(i−1) ≤ Df(i) for every i = 1, 2, . . . , k such that Df(0) = −∞ and Df(k+1) = +∞. Note that

k = k throughout the paper. The degradation points that are adjacent to each other may induce a same

amount of probability of failure, in the way that the survival rate at degradation level W(t) = w takes

the form

S(w; t) =
k

∑
i=1

si I[w ∈ Ji], (4)

where I[A] is the indicator function of the set A and Ji = (Df(i−1),Df(i)]. It is assumed that si, i =

1, 2, . . . , k do not depend on w.

For instance in a multiplicative degradation model with increasing mean degradation path,

we accept it as postulate that the probability for failure is not altered for degradation amounts in

predetermined intervals, and as the degradation exceeds the last point (the greatest value) on each

interval, the probability for failure is increased. For example, for high reliability products which 100

percent of them survive before the degradation level reaches Df(1), and as degradation reaches Df(1),

10 percent of products fail, and the remaining 90 percent survives before the degradation level reaches

Df(2), and all of them fail as soon as the degradation level reaches Df(2), time-to-failure is modeled

upon choosing s(w; t) = I[w ∈ J1] + 0.9I[w ∈ J2].

By using (3) and taking s0 = 1 and sk+1 = 0 we get

F̄T(t) =
k

∑
i=1

siP[W(t) ∈ Ji]

=
k

∑
i=1

si(FW(t)(Df(i))− FW(t)(Df(i−1))). (5)
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Note that if si = 1 for every i = 1, . . . , k and Df(k) = Df where Df is the threshold for degradation in the

standard model, then F̄T(t) = ∑
k
i=1 P[W(t) ∈ Ji] = FW(t)(Df), i.e., (5) reduces to (1). The degradation

process of a life unit does not always refer to products with high reliability, where gradual failure is

foreseen. It also refers to situations where sudden failures are possible, with the probability of such

failures increasing as the degree of degradation increases. The model (5) may contribute effectively

in such situations. Let us suppose that Ti := inf{t ≥ 0 : W(t) > Df(i)}, i = 0, 1, . . . , k + 1 is the first

passage time of the stochastic process {W(t), t ≥ 0} to the value of Df(i). By convention, T0 = 0 and

Tk+1 = +∞. If we denote by T the time-to-failure of the device degrading over time, then

pi = si − si+1 = P(Ti ≤ T < Ti+1). (6)

It is necessary that (5) and (8) have to be valid survival functions for time-to-failure T. For example,

FW(+∞)(Df(i)) = 0, for all i = 0, 1, . . . k and further, when FW(0)(Df(i)) = 1, for every i = 0, 1, . . . k then

(5) defines a valid SF.

We can also consider a degradation process with decreasing degradation path and assume that

sk+1 ≥ sk ≥ . . . ≥ s1 where si ∈ [0, 1] for i = 1, 2, . . . , k + 1 are survival rates of a unit subject to

degradation when W(t) = w, respectively, as the value w lies in

(Uf(k),Uf(k+1)], (Uf(k−1),Uf(k)], · · · , (Uf(i−1),Uf(i)], · · · , (Uf(0),Uf(1)]

where Uf(i−1) ≤ Uf(i) for every i = 1, 2, . . . , k + 1 such that Uf(0) = −∞ and Uf(k+1) = +∞. The

survival rate at degradation level W(t) = w is

S(w; t) =
k+1

∑
i=1

si I[w ∈ J⋆i ], (7)

where J⋆i = (Uf(i−1),Uf(i)]. By appealing to (3) when sk+1 = 1 and s0 = 0 we can get

F̄T(t) =
k+1

∑
i=1

siP[W(t) ∈ J⋆i ]

=
k+1

∑
i=1

si(F̄W(t)(Uf(i−1))− F̄W(t)(Uf(i))). (8)

In this case if s1 = 0 and si = 1 for every i = 2, . . . , k + 1 and Uf(1) = Uf where Uf is the threshold for

degradation in the standard model, then F̄T(t) = ∑
k+1
i=2 P[W(t) ∈ J⋆i ] = F̄W(t)(Uf), i.e., (5) reduces to

(2). Let us assume that T⋆

i := inf{t ≥ 0 : W(t) ≤ Uf(k+1−i)}, i = 0, 1, . . . , k + 1 is the first passage time

of the stochastic process {W(t), t ≥ 0} to the value of Uf(i). By convention, T⋆

0 = 0 and T⋆

k+1 = +∞.

The time-to-failure of the device is the random variable T, and

πi = si+1 − si = P(T⋆

k−i ≤ T < T⋆

k−i+1). (9)

The following lemma is essential in deriving future results. It shows that the SF of T, in the

degradation model with increasing degradation path, is a convex transformation of FW(t)(Df(i)), i =

0, 1, . . . , k as pi ≥ 0 and ∑
k
i=0 pi = 1. Further, the SF of T, in the degradation model with decreasing

degradation path, is a convex transformation of F̄W(t)(Uf(i)), i = 0, 1, . . . , k as πi ≥ 0 and ∑
k
i=0 πi = 1.

Lemma 1. Let W(t), the degradation process,

(i) stochastically increases with t. Then, F̄T(t) = ∑
k
i=0 piFW(t)(Df(i)).

(ii) stochastically decreases with t. Then, F̄T(t) = ∑
k
i=0 πi F̄W(t)(Uf(i)).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 July 2023                   doi:10.20944/preprints202307.0208.v1

https://doi.org/10.20944/preprints202307.0208.v1


5 of 17

Proof. We first prove (i). From (5), we can write

F̄T(t) =
k

∑
i=1

(

siFW(t)(Df(i))− siFW(t)(Df(i−1))
)

=
k

∑
i=1

siFW(t)(Df(i))− si−1FW(t)(Df(i−1)) + si−1FW(t)(Df(i−1))− siFW(t)(Df(i−1))

=
k

∑
i=1

siFW(t)(Df(i))−
k

∑
i=1

si−1FW(t)(Df(i−1)) +
k

∑
i=1

(si−1 − si)FW(t)(Df(i−1))

= skFW(t)(Df(k))− s0FW(t)(Df(0)) +
k−1

∑
i=0

(si − si+1)FW(t)(Df(i))

= (sk − sk+1)FW(t)(Df(k)) +
k−1

∑
i=0

(si − si+1)FW(t)(Df(i))

=
k

∑
i=0

piFW(t)(Df(i)),

where s0 = 1, sk+1 = 0, FW(t)(Df(0)) = FW(t)(−∞) = 0 and pi = si − si+1. The proof of (i) is complete.

Now, let us prove (ii). In spirit of (8), one obtains

F̄T(t) =
k+1

∑
i=1

(

si F̄W(t)(Uf(i−1))− si F̄W(t)(Uf(i))
)

=
k+1

∑
i=1

si F̄W(t)(Uf(i−1))− si−1 F̄W(t)(Uf(i−1)) + si−1 F̄W(t)(Uf(i−1))− si F̄W(t)(Uf(i))

=
k+1

∑
i=1

si−1 F̄W(t)(Uf(i−1))−
k+1

∑
i=1

si F̄W(t)(Uf(i)) +
k+1

∑
i=1

(si − si−1)F̄W(t)(Uf(i−1))

= s0 F̄W(t)(Uf(0))− sk+1 F̄W(t)(Uf(k+1)) +
k+1

∑
i=1

(si − si−1)F̄W(t)(Uf(i−1))

=
k

∑
i=0

πi F̄W(t)(Uf(i)),

where s0 = 0, F̄W(t)(Uf(0)) = F̄W(t)(−∞) = 1, F̄W(t)(Uf(k+1)) = F̄W(t)(+∞) = 0 and πi = si+1 − si.

In the context of standard families of degradation models studied by Bae et al. (2007) we develop

the failure-time model (3) under the multiplicative degradation model.

The general multiplicative degradation model is stated as

W(t) = η(t)X, (10)

where η is the mean degradation path and X is random variation around η(t) having PDF fX , CDF FX

and SF F̄X . If the mean degradation path is considered as a monotonically increasing function, then we
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develop F̄T under the multiplicative degradation model (10) Note that FW(t)(w) = FX

(

w
η(t)

)

, thus, it is

deduced from Lemma 1(i) that

F̄T(t) = E(S(Xη(t); t))

= E

[

k

∑
i=1

si I(Xη(t) ∈ (Df(i−1),Df(i)])

]

=
k

∑
i=0

piFX

(

Df(i)

η(t)

)

. (11)

The PDF of T, time-to-failure under degradation model 10 when η(t) is increasing in t ≥ 0

(η′(t) ≥ 0, for all t ≥ 0), having SF (11) is obtained as follows:

fT(t) =
η′(t)

η2(t)

k

∑
i=0

piDf(i) fX

(

Df(i)

η(t)

)

. (12)

The failure rate associated with the SF given in (11) is then derived as

rT(t) =
η′(t)∑

k
i=0 piDf(i) fX(

Df(i)

η(t)
)

η2(t)∑
k
i=0 piFX(

Df(i)

η(t)
)

. (13)

If the mean degradation path η(t) is a monotonically decreasing function, then the time-to-failure

is denoted by T1 with SF F̄T1
. This SF can be obtained in the setting of the multiplicative degradation

model (10). We see that F̄W(t)(w) = F̄X

(

w
η(t)

)

. Therefore, using Lemma 1(ii) we get

F̄T1
(t) = E

[

k+1

∑
i=1

si I(Xη(t) ∈ (Uf(i−1),Uf(i)])

]

=
k

∑
i=0

πi F̄X

(

Uf(i)

η(t)

)

. (14)

The PDF of T1, time-to-failure under degradation model 10 when η(t) is decreasing in t ≥ 0

(η′(t) ≤ 0, for all t ≥ 0), having SF (14) is revealed to be:

fT1
(t) =

−η′(t)

η2(t)

k

∑
i=0

πiUf(i) fX

(

Uf(i)

η(t)

)

. (15)

The failure rate of T with the SF given in (14) is

rT1
(t) =

−η′(t)∑
k
i=0 πiUf(i) fX(

Uf(i)

η(t)
)

η2(t)∑
k
i=0 πi F̄X(

Uf(i)

η(t)
)

. (16)

3. Stochastic ordering results

In this section we study some stochastic ordering properties of time-to-failure distributions of

two devices under multiplicative degradation model. It is acknowledged in industrial sciences that

products may have different qualities, some of which are more reliable whereas the others fails earlier.

The extent each subject under degradation resists not to fail can be evaluated by pi’s and πi’s in the

models (5) and (8), respectively (see, e.g., Lemma 1).

Let P = (p0, . . . , pk) and P⋆ = (p⋆0 , . . . , p⋆n) denote two probability vectors assigning to a couple

of devices working under a multiplicative degradation model with increasing mean degradation path.
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We suppose that P and P⋆ are associated with with random lifetimes T and T⋆, respectively, such

that pi = P(Ti ≤ T < Ti+1) and also p⋆i = P(Ti ≤ T⋆
< Ti+1) where Ti := inf{t ≥ 0 | W(t) > Df(i)}

for i = 0, 1, . . . , k + 1. In a similar manner, let Π = (π0, . . . , πk) and Π⋆ = (π⋆

0 , . . . , π⋆

k ) denote other

probability vectors related to a pair of devices working under a multiplicative degradation model with

decreasing mean degradation path. It is assumed that Π and Π⋆ are associated with with random

lifetimes T1 and T⋆

1 , respectively, such that πi = P(T⋆

i ≤ T1 < T⋆

i+1) and also π⋆

i = P(T⋆

i ≤ T⋆

1 < T⋆

i+1)

where T⋆

i := inf{t ≥ 0|W(t) ≤ Uf(k−i+1)} for i = 0, 1, . . . , k + 1. Suppose that W(t) = η(t)X is

the underlying degradation model. We impose a partial order condition among P and P⋆ or/and

conditions on distribution of X (random variation around η(t)) such that some stochastic orders

between T and T⋆ are procured. Further, we find some conditions on Π and Π⋆ and other conditions

on distribution of X such that several stochastic orders between T1 and T⋆

1 are fulfilled.

There are some concepts in applied probability that we need to introduce them before developing

our stochastic comparison results. The following definition is due to Karlin (1968).

Definition 2. The function w, as a transformation on (x, y), is said to be totally positive of order 2, TP2,

[reverse regular of order 2, RR2] in (x, y) ∈ A×B, if w(x, y) ≥ 0 and

∣

∣

∣

∣

∣

w(x1, y1) w(x1, y2)

w(x2, y1) w(x2, y2)

∣

∣

∣

∣

∣

≥ [≤]0,

for all x1 ≤ x2 ∈ A and for all y1 ≤ y2 ∈ B where A and B are two subsets of R.

It is plain to verify that the TP2 [RR2] property of w, as a transformation on (i, k), is equivalent to
w(i,k2)
w(i,k1)

being non-decreasing [non-increasing] in i whenever k1 ≤ k2 by considering the conventions
a
0 = +∞ when a > 0 and a

0 = 0 if a = 0.

The following lemma from Karlin (1968) known as general composition theorem (or basic

composition formula) will be frequently used across the paper.

Lemma 3. (i) (discrete case): Let g be TP2 in (j, i) ∈ {1, 2} ×Ak and also let w be TP2 (respectively, RR2) in

(i, t) ∈ Ak ×B, where Ak = {0, 1, . . . , k}. Then, the function w⋆, given by

w⋆(j, t) :=
k

∑
i=0

g(j, i)w(i, t), is TP2 (respectively, RR2) in (j, t) ∈ {1, 2} ×B.

(i) (continuous case): Let g(j, y) is TP2 in (j, y) ∈ {1, 2} ×Y and let w(y, x) is TP2 (respectively, RR2)

in (y, x) ∈ Y×B, where Y and B are two subsets of [0,+∞). Then,

w⋆(j, x) :=
∫ +∞

0
g(j, y)w(y, x) dy is TP2 (respectively, RR2) in (j, x) ∈ {1, 2} ×B.

The following definition proposes some class of functions.

Definition 4. Suppose that w, as a transformation of non-negative values, is a non-negative function. Then, w

is said to have

(i) one-sided scaled-ratio increasing (decreasing), OSSRI (OSSRD), property if
w(tx)
w(x)

is increasing (decreasing)

in x ≥ 0 for every t ≥ 1.

(ii) two-sided scaled-ratio increasing (decreasing), TSSRI (TSSRD), property if
w(t2x)−w(t1x)
w(s2x)−w(s1x)

is increasing

(decreasing) in x ≥ 0 for every ti ≥ si ≥ 0, i = 1, 2 with t1 ≤ t2 and s1 ≤ s2.

From Definition 4, it is apparent that if t1 = s1 = 0 and also w(0) = 0, then from assertion (ii) the

ratio
w(t2x)
w(s2x)

is increasing (decreasing) in x for every t2 > s2 ≥ 0. Equivalently, this realizes that
w(tx)
w(x)

is increasing (decreasing) in x for all t ≥ 1. Therefore, every w with w(0) = 0 having TSSRI (TSSRD)

property will also fulfill the OSSRI (OSSRD) property.
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Remark 5. The properties in Definition 4(i) can be applied to produce reliability classes of lifetime distributions.

It can be observed that X has increasing proportional likelihood ratio (IPLR) property if, and only if, fX has the

OSSRD property and also X has decreasing proportional likelihood ratio (DPLR) property if, and only if, fX has

the OSSRI property (see, Romero and Díaz (2001) for definitions of IPLR and DPLR). It can also be seen that X

has increasing proportional hazard rate (IPHR) property if, and only if, F̄X has the OSSRD property and, in

parallel, X has decreasing proportional hazard rate (DPHR) property if, and only if, F̄X has the OSSRI property

(see, Belzunce et al. (2002) for IPHR and DPHR properties). It can also be verified that X has decreasing

proportional reversed failure rate (DPRFR) property if, and only if, FX has the OSSRD property and, further,

X has increasing proportional failure rate (IPRFR) property if, and only if, FX has the OSSRI property (see,

Oliveira and Torrado (2014) for DPRFR and IPRFR classes).

In applied probability, stochastic orders among random variables have been a useful approach

for comparison of reliability of systems (see, e.g., Müller and Stoyan (2002), Osaki (2002), Shaked and

Shanthikumar (2007) and Belzunce et al. (2015)). Stochastic orderings are considered a basic tool for

making decisions under uncertainty (see, for instances, Mosler (1991) and Li and Li (2013)).

Let us assume that T and T⋆ are random variables with absolutely continuous CDFs FT and

FT⋆ , SFs F̄T and F̄T⋆ and PDFs fT and fT⋆ , respectively. We suppose that T and T⋆ have hazard rate

functions hT and hT⋆ , reversed hazard rate functions h̃T and h̃T⋆ , respectively. Then:

Definition 6. We say that T is smaller than or equal with T⋆ in the

(i) likelihood ratio order (denoted as T ≤lr T⋆) if
fT⋆ (t)
fT(t)

is increasing in t ≥ 0.

(ii) hazard rate order (denoted as T ≤hr T⋆) if
F̄T⋆ (t)
F̄T(t)

is increasing in t ≥ 0 or equivalently, hT(t) ≥ hT⋆(t),

for all t ≥ 0.

(iii) reversed hazard rate order (denoted as T ≤rhr T⋆ ) if
FT⋆ (t)
FT(t)

is increasing in t ≥ 0 or equivalently,

h̃T(t) ≤ h̃T⋆(t), for all t > 0.
(iv) usual stochastic order (denoted as T ≤st T⋆) if F̄T(t) ≤ F̄T⋆(t), for all t ≥ 0.

As given in Shaked and Shanthikumar (2007) we have:

T ≤lr T⋆ ⇒ T ≤hr T⋆ ⇒ T ≤st T⋆.

It is, furthermore, well-known that

T ≤lr T⋆ ⇒ T ≤rhr T⋆ ⇒ T ≤st T⋆.

Two compare T and T⋆, according to the usual stochastic order, one sufficient conditions is found

to be the well-known majorization order as given in the next definition. Majorization is a partial order

relation of two probability vectors with same dimension inducing that the elements in one vector

are less spread out or more nearly equal than the elements in another vector. The majorization order

makes an elegant framework to compare two probability vectors (see, e.g., Marshall et al. (1965)).

We take X = (x0, . . . , xk) and Y = (y0, . . . , yk) as two vectors of real numbers such that x(0) ≤

. . . ≤ x(k) and y(0) ≤ . . . ≤ y(k) denote increasing arrangement of values of X and values of Y,

respectively, where x(i) is the ith smallest value among x0, . . . , xk and y(i) is the ith smallest value

among y0, . . . , yk, for i = 1, . . . , k.

Definition 7. It is said that X is majorized by Y, written as X � Y whenever ∑
k
i=0 xi = ∑

k
i=0 yi, and

∑
j
i=0 x(k−i) ≤ ∑

j
i=0 y(k−i), for every j = 0, . . . , k − 1.

In the sequel of the paper, we will assume that T and T⋆ are two random variables denoting

time-to-failure under the dynamic multiplicative degradation model W(t) = Xη(t) where η is an

increasing function with SFs

F̄T(t) =
k

∑
i=0

piFX

(

Df(i)

η(t)

)

and F̄T⋆(t) =
k

∑
i=0

p⋆i FX

(

Df(i)

η(t)

)

.
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The corresponding PDFs are derived as

fT(t) =
η′(t)

η2(t)

k

∑
i=0

piDf(i) fX

(

Df(i)

η(t)

)

and fT⋆(t) =
k

∑
i=0

p⋆i Df(i) fX

(

Df(i)

η(t)

)

.

We will also suppose that T1 and T⋆

1 are two random variables denoting time-to-failure under the

multiplicative degradation model W(t) = Xη(t) where η is a decreasing function with SFs

F̄T1
(t) =

k

∑
i=0

πi F̄X

(

Uf(i)

η(t)

)

and F̄T⋆

1
(t) =

k

∑
i=0

π⋆

i F̄X

(

Uf(i)

η(t)

)

.

The associated PDFs are obtained as

fT1
(t) =

−η′(t)

η2(t)

k

∑
i=0

πiUf(i) fX

(

Uf(i)

η(t)

)

and fT⋆

1
(t) =

−η′(t)

η2(t)

k

∑
i=0

π⋆

i Uf(i) fX

(

Uf(i)

η(t)

)

.

We utilize the following technical lemma.

Lemma 8. (i) Let w0, w1, . . . , wk be a set of real numbers satisfying ∑
k
i=0 wi = 0. If h(i) is non-decreasing

in i = 0, 1, . . . , k, then

Wj =
k

∑
i=j

wi ≥ 0, for all j = 1, 2, . . . , k implies that
k

∑
i=0

h(i)wi ≥ 0.

(ii) Let w0, w1, . . . , wk be real numbers. If h(i) ≥ 0 is non-increasing for i = 0, 1, . . . , k, then

Wj =
j

∑
i=0

wi ≥ 0, for all j = 0, 1, . . . , k implies that
k

∑
i=0

h(i)wi ≥ 0.

The next result discusses sufficient conditions for stochastic comparison of T and T⋆ and also

stochastic ordering of T1 and T⋆

1 according to the usual stochastic order.

Theorem 9. (i) Let P = (p0, . . . , pk) and P⋆ = (p⋆0 , . . . , p⋆k ) be two probability vectors satisfying p0 ≤

. . . ≤ pk and p⋆0 ≤ . . . ≤ p⋆k such that P � P⋆. Then, T ≤st T⋆.
(ii) Let Π = (π0, . . . , πk) and Π⋆ = (π⋆

0 , . . . , π⋆

k ) be two probability vectors with π0 ≥ . . . ≥ πk and

π⋆

1 ≥ . . . ≥ π⋆

k such that Π⋆ � Π. Then, T1 ≤st T⋆

1 .

Proof. Firstly, we prove assertion (i). Note that for any t ≥ 0,

FX

(

Df(0)

η(t)

)

≤ FX

(

Df(1)

η(t)

)

≤ · · · ≤ FX

(

Df(k)

η(t)

)

. (17)

By appealing to Eq. (11) and since pi ≤ pj, for every i < j and also from (17), FX

(

Df(i)

η(t)

)

≤ FX

(

Df(j)

η(t)

)

for every i < j, as i, j = 0, 1, . . . , k we thus by rearranging1 the elements in sigma in Eq. (11) conclude

that

F̄T(t) =
k

∑
i=0

piFX

(

Df(i)

η(t)

)

=
k

∑
i=0

p(k−i)FX

(

Df(k−i)

η(t)

)

.

Similarly,

F̄T⋆(t) =
k

∑
i=0

p⋆i FX

(

Df(i)

η(t)

)

=
k

∑
i=0

p⋆(k−i)FX

(

Df(k−i)

η(t)

)

.

1 It is straightforward that if a0 ≤ a1 ≤ · · · ≤ ak and also b0 ≤ b1 ≤ · · · ≤ bk , then ∑
k
i=0 aibi = ∑

k
i=0 ak−ibk−i = ∑

k
i=0 a(k−i)bk−i

in which a(0) ≤ a(1) ≤ · · · ≤ a(k) denote the ordered values of a0, a1, . . . , ak .
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Let us take h(i) = FX

(

Df(k−i)

η(t)

)

which, by (17), is a non-increasing function in i = 0, 1, . . . , k. Since

P � P⋆, thus ∑
j
i=0(p⋆(k−i) − p(k−i)) ≥ 0, for all j = 0, 1, . . . , k. Therefore, from Lemma 8(ii),

F̄T⋆(t)− F̄T(t) =
k

∑
i=0

(p⋆(k−i) − p(k−i))FX

(

Df(k−i)

η(t)

)

is non-negative, which means that T ≤st T⋆. We now prove assertion (ii). For each fixed t ≥ 0, we

have:

F̄X

(

Uf(0)

η(t)

)

≥ F̄X

(

Uf(1)

η(t)

)

≥ · · · ≥ F̄X

(

Uf(k)

η(t)

)

. (18)

By applying Eq. (14) and since πi ≥ πj, for every i < j and also from (18), F̄X

(

Uf(i)

η(t)

)

≥ F̄X

(

Df(j)

η(t)

)

for

every i < j, when i, j = 0, 1, . . . , k we thus by rearranging2 the elements of sigma in Eq. (14) can get

F̄T1
(t) =

k

∑
i=0

πi F̄X

(

Uf(i)

η(t)

)

=
k

∑
i=0

π(k−i) F̄X

(

Uf(k−i)

η(t)

)

.

In parallel,

F̄T⋆

1
(t) =

k

∑
i=0

π⋆

i F̄X

(

Uf(i)

η(t)

)

=
k

∑
i=0

π⋆

(k−i) F̄X

(

Uf(k−i)

η(t)

)

.

We set h(i) = F̄X

(

Uf(k−i)

η(t)

)

which by (18), is a non-decreasing function in i = 0, 1, . . . , k. Since

Π⋆ � Π, thus ∑
k
i=j(π

⋆

(k−i) − π(k−i)) ≥ 0, for all j = 1, . . . , k and ∑
k
i=0(π

⋆

(k−i) − π(k−i)) = 0. Hence, an

application of Lemma 8(i) yields

F̄T⋆

1
(t)− F̄T1

(t) =
k

∑
i=0

(π⋆

(k−i) − π(k−i))F̄X

(

Uf(k−i)

η(t)

)

is non-negative, which means that T1 ≤st T⋆

1 . The proof is complete.

Remark 10. The result of Theorem 9 indicates that the usual stochastic order between T and T⋆ and also that of

T1 and T⋆

1 do not depend on the distribution of random variation X. The conditions imposed to get T ≤st T⋆ in

Theorem 9(i) consist of an order relation among pi’s (i.e., p0 ≤ . . . ≤ pk) and the same order relation among

p⋆i ’s (i.e., p⋆0 ≤ . . . ≤ p⋆k ) and a condition of majorization order of P and P⋆. The probability vector (P⋆) which

majorizes the other probability vector (P) will lead to a more reliable product under multiplicative degradation

model with increasing η(t). The order relations p0 ≤ . . . ≤ pk and p⋆0 ≤ . . . ≤ p⋆k are valid assumptions in

practical works. This is because in a multiplicative degradation model with increasing η(t), as the time t is

elapsed, the degradation amount W(t) is increased and, therefore, the probability for failure is correspondingly

grown. Note that the first elements of P and P⋆ are associated with smaller amounts of W(t). The conditions

found to obtain T ≤st T⋆ in Theorem 9(ii) are, firstly, an order relation of πi’s (i.e., π0 ≥ . . . ≥ πk) and

an analogues order relation of π⋆

i ’s (i.e., π⋆

0 ≥ . . . ≥ π⋆

k ) and, secondly, the majorization order of Π⋆ and

Π. The probability vector (Π) which majorizes the other probability vector (Π⋆) will lead to a less reliable

product under multiplicative degradation model with decreasing η(t). The order constraints π0 ≥ . . . ≥ πk and

π⋆

0 ≥ . . . ≥ π⋆

k are also valid assumptions in practical situations. This is because in a multiplicative degradation

model with decreasing η(t), as the time t is elapsed, the factor W(t) for degradation is decreased and, therefore,

the probability for failure of the product is correspondingly going up. Notice that the first elements of Π and Π⋆

are associated with smaller amounts W(t) take.

2 It is plain to see if a0 ≥ a1 ≥ · · · ≥ ak and also b0 ≥ b1 ≤ · · · ≥ bk , then ∑
k
i=0 aibi = ∑

k
i=0 ak−ibk−i = ∑

k
i=0 a(k−i)bk−i .
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The following theorems present some conditions to make the order ≤lr between time-to-failure

random variables in the dynamic multiplicative degradation model with increasing mean degradation

path η(t) (Theorem 11(i)) and the dynamic multiplicative degradation model with decreasing mean

degradation path η(t) (Theorem 11(ii)).

Theorem 11. (i) Let P = (p0, . . . , pk) and P⋆ = (p⋆0 , . . . , p⋆k ) be two probability vectors so that
p⋆i
pi

is

non-decreasing in i = 0, 1, . . . , k. If fX is OSSRD (OSSRI), then T ≤lr (≥lr)T
⋆.

(ii) Let Π = (π0, . . . , πk) and Π⋆ = (π⋆

0 , . . . , π⋆

k ) be two probability vectors so that
π⋆

i
πi

is non-decreasing in

i = 0, 1, . . . , k. If fX is OSSRI (OSSRD), then T1 ≤lr (≥lr)T
⋆

1 .

Proof. To prove (i) it suffices to demonstrate that

fT⋆(t)

fT(t)
=

∑
k
i=0 p⋆i Df(i) fX

(

Df(i)

η(t)

)

∑
k
i=0 piDf(i) fX

(

Df(i)

η(t)

)

is non-decreasing (non-increasing) in t > 0. Set g(j, i) = pi, for j = 1 and g(j, i) = p⋆i , for j = 2 and

also w(i, t) = Df(i) fX

(

Df(i)

η(t)

)

. Therefore, T ≤lr (≥lr)T
⋆ if, and only if, w⋆(j, t) := ∑

k
i=0 g(j, i)w(i, t) is

TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞). Note that, by assumption,
p⋆i
pi

is non-decreasing in i = 0, 1, . . . , k,

hence, g(j, i) is TP2 in (j, i) ∈ {1, 2} × {0, 1, . . . , k} and also since fX is OSSRD (OSSRI) and η(t) is

non-decreasing in t ≥ 0, thus, for every i1 < i2 ∈ {0, 1, . . . , k}

w(i2, t)

w(i1, t)
=

Df(i2) fX

(

Df(i2)

η(t)

)

Df(i1) fX

(

Df(i1)

η(t)

)

is non-decreasing (non-increasing) in t ≥ 0. This means w(i, t) is TP2 (RR2) in (i, t) ∈ {0, 1, . . . , k} ×

{1, 2}. By Lemma 3(i), w⋆(j, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞), and this completes the proof of

(i). To prove (ii) one needs to show that

fT⋆

1
(t)

fT1
(t)

=
∑

k
i=0 π⋆

i Uf(i) fX

(

Uf(i)

η(t)

)

∑
k
i=0 πiUf(i) fX

(

Uf(i)

η(t)

)

is non-decreasing (non-increasing) in t > 0. We take g⋆(j, i) = πi, for j = 1 and g⋆(j, i) = π⋆

i ,

for j = 2 and also set w1(i, t) = Uf(i) fX

(

Uf(i)

η(t)

)

. Thus, T1 ≤lr (≥lr)T
⋆

1 if, and only if, w2(j, t) :=

∑
k
i=0 g⋆(j, i)w1(i, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞). From assumption,

π⋆

i
πi

is non-decreasing in

i = 0, 1, . . . , k, hence, g⋆(j, i) is TP2 in (j, i) ∈ {1, 2} × {0, 1, . . . , k} and also since fX is OSSRI (OSSRD)

and η(t) is non-increasing in t ≥ 0, thus, for every i1 < i2 ∈ {0, 1, . . . , k}

w1(i2, t)

w1(i1, t)
=

Uf(i2) fX

(

Uf(i2)

η(t)

)

Uf(i1) fX

(

Uf(i1)

η(t)

)

is non-decreasing (non-increasing) in t ≥ 0. This means w1(i, t) is TP2 (RR2) in (i, t) ∈ {0, 1, . . . , k} ×

{1, 2}. By Lemma 3(i), w2(j, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞), which validates the proof of

(ii).

The following theorem presents conditions to make the order ≤hr between time-to-failure random

variables in the dynamic multiplicative degradation model with increasing mean degradation path

η(t).

Theorem 12. Let P = (p0, . . . , pk) and P⋆ = (p⋆0 , . . . , p⋆k ) be two probability vectors such that
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(i)
p⋆i
pi

is non-decreasing in i = 0, 1, . . . , k. If FX is OSSRD (OSSRI), then we have T ≤hr (≥hr)T
⋆.

(ii)
s⋆i
si

is non-decreasing in i = 1, 2, . . . , k. If FX is TSSRD (TSSRI), then we have T ≤hr (≥hr)T
⋆.

Proof. For assertion (i) to be proved it is enough to show that

F̄T⋆(t)

F̄T(t)
=

∑
k
i=0 p⋆i FX

(

Df(i)

η(t)

)

∑
k
i=0 piFX

(

Df(i)

η(t)

)

is non-decreasing (non-increasing) in t ≥ 0. Let us take g(j, i) = pi, for j = 1 and g(j, i) = p⋆i , for j = 2

and also w(i, t) = FX

(

Df(i)

η(t)

)

. Thus, T ≤hr (≥hr)T
⋆ if, and only if, w⋆(j, t) := ∑

k
i=0 g(j, i)w(i, t) is TP2

(RR2) in (j, t) ∈ {1, 2} × [0,+∞). By assumption,
p⋆i
pi

is non-decreasing in i hence, g(j, i) is TP2 in (j, i)

and further, since FX is OSSRD (OSSRI) and η(t) is non-decreasing in t ≥ 0, thus, for every i1 < i2, in

domain of i,

w(i2, t)

w(i1, t)
=

FX

(

Df(i2)

η(t)

)

FX

(

Df(i1)

η(t)

)

is non-decreasing (non-increasing) in t ≥ 0. This is equivalent to saying that w(i, t) is TP2 (RR2) in

(i, t). By Lemma 3(i), w⋆(j, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞), and this ends the proof of (i). For

the proof of assertion (ii) one needs to prove that

F̄T⋆(t)

F̄T(t)
=

∑
k
i=1 s⋆i

(

FX

(

Df(i)

η(t)

)

− FX

(

Df(i−1)

η(t)

))

∑
k
i=1 si

(

FX

(

Df(i)

η(t)

)

− FX

(

Df(i−1)

η(t)

))

is non-decreasing (non-increasing) in t ≥ 0. We can set g(j, i) = si, for j = 1 and g(j, i) = s⋆i , for

j = 2 and also take w(i, t) = FX

(

Df(i)

η(t)

)

− FX

(

Df(i−1)

η(t)

)

which is non-negative since Df(i) ≥ Df(i−1).

By these notations T ≤hr (≥hr)T
⋆ if, and only if, w⋆(j, t) := ∑

k
i=1 g(j, i)w(i, t) is TP2 (RR2) in (j, t) ∈

{1, 2} × [0,+∞). From assumption,
s⋆i
si

is non-decreasing in i hence, g(j, i) is TP2 in (j, i) and moreover,

since FX is TSSRD (TSSRI) and η(t) is non-decreasing in t ≥ 0, thus, for every i1 < i2,

w(i2, t)

w(i1, t)
=

FX

(

Df(i2)

η(t)

)

− FX

(

Df(i2−1)

η(t)

)

FX

(

Df(i1)

η(t)

)

− FX

(

Df(i1−1)

η(t)

)

is non-decreasing (non-increasing) in t ≥ 0. This is equivalent to w(i, t) being TP2 (RR2) in (i, t). On

applying Lemma 3(i), w⋆(j, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞), and this gives the required

result in assertion (ii).

In the context of Theorem 12, if
p⋆i
pi

is non-decreasing in i = 0, 1, . . . , k, then
s⋆i
si

is also non-decreasing

in i = 1, 2, . . . , k. We can use Lemma 3(i) to prove it. Let us take g(j, i) = p⋆i , for j = 2 and g(j, i) = pi

for j = 1 when i = 0, 1, . . . , k. Set w(i, t) = I[i ≥ t] where t = 1, 2, . . . , k and i = 0, 1, . . . , k. Since
p⋆i
pi

is non-decreasing in i = 0, 1, . . . , k, thus g(j, i) is TP2 in (j, i) and also it is straightforward to show

that w(i, t) = I[i ≥ t] is TP2 in (i, t). Hence, w⋆(j, i) = ∑
k
i=0 g(j, i)w(i, t) is TP2 in (j, t), i.e.,

s⋆i
si

is

non-decreasing in i = 1, 2, . . . , k. Therefore, the condition on probabilities in Theorem 12(ii) is weaker

than the condition imposed on probabilities in Theorem 12(i). It is also plain to show that if FX is

TSSRD (TSSRI) then FX is OSSRD (OSSRI). Therefore, the condition on random effect distribution in

Theorem 12(ii) is stronger than the condition on random effect distribution in Theorem 12(i).

The theorem below presents conditions to make the order ≤hr between time-to-failure random

variables in the dynamic multiplicative degradation model with decreasing mean degradation path

η(t). The proof being similar to the proof of Theorem 12 has been omitted.
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Theorem 13. Let Π = (π0, . . . , πk) and Π⋆ = (π⋆

0 , . . . , π⋆

k ) be two probability vectors such that

(i)
π⋆

i
πi

is non-decreasing in i = 0, 1, . . . , k. If F̄X is OSSRI (OSSRD), then we have T1 ≤hr (≥hr)T
⋆

1 .

(ii)
s⋆i
si

is non-decreasing in i = 1, 2, . . . , k + 1. If FX is TSSRI (TSSRD), then we have T1 ≤hr (≥hr)T
⋆

1 .

The next result presents conditions under which the order ≤rhr is fulfilled by time-to-failure

random variables in the dynamic multiplicative degradation model with increasing mean degradation

path η(t).

Theorem 14. Let P = (p0, . . . , pk) and P⋆ = (p⋆0 , . . . , p⋆k ) be two probability vectors such that

(i)
p⋆i
pi

is non-decreasing in i = 0, 1, . . . , k. If F̄X is OSSRD (OSSRI), then T ≤rhr (≥rhr)T
⋆.

(ii)
1−s⋆i
1−si

is non-decreasing in i = 1, 2, . . . , k + 1. If FX is TSSRD (TSSRI), then T ≤rhr (≥rhr)T
⋆.

Proof. The assertion (i) is established if one shows that

FT⋆(t)

FT(t)
=

∑
k
i=0 p⋆i F̄X

(

Df(i)

η(t)

)

∑
k
i=0 pi F̄X

(

Df(i)

η(t)

)

is non-decreasing (non-increasing) in t > 0. Let g(j, i) = pi, for j = 1 and g(j, i) = p⋆i , for j = 2 and

also w(i, t) = F̄X

(

Df(i)

η(t)

)

. As a result, T ≤rhr (≥rhr)T
⋆ if, and only if, w⋆(j, t) := ∑

k
i=0 g(j, i)w(i, t) is

TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞). By assumption,
p⋆i
pi

is non-decreasing in i hence, g(j, i) is TP2 in

(j, i) and further, since F̄X is OSSRD (OSSRI) and η(t) is non-decreasing in t ≥ 0, thus, for every i1 < i2,

w(i2, t)

w(i1, t)
=

F̄X

(

Df(i2)

η(t)

)

F̄X

(

Df(i1)

η(t)

)

is non-decreasing (non-increasing) in t ≥ 0, which means w(i, t) is TP2 (RR2) in (i, t). Using Lemma

3(i), w⋆(j, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞), and this provides the proof of (i). For assertion (ii)

we need to demonstrate that

FT⋆(t)

FT(t)
=

∑
k+1
i=1 (1 − s⋆i )

(

FX

(

Df(i)

η(t)

)

− FX

(

Df(i−1)

η(t)

))

∑
k+1
i=1 (1 − si)

(

FX

(

Df(i)

η(t)

)

− FX

(

Df(i−1)

η(t)

))

is non-decreasing (non-increasing) in t > 0. Let us define g(j, i) = 1 − si, for j = 1 and g(j, i) = 1 − s⋆i ,

for j = 2 and also define w(i, t) = FX

(

Df(i)

η(t)

)

− FX

(

Df(i−1)

η(t)

)

. Now, T ≤rhr (≥rhr)T
⋆ if, and only

if, w⋆(j, t) := ∑
k
i=1 g(j, i)w(i, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞). By assumption,

1−s⋆i
1−si

is

non-decreasing in i hence, g(j, i) is TP2 in (j, i) and in addition, since F̄X is TSSRD (TSSRI) and η(t)

is non-decreasing in t ≥ 0, thus, w(i, t) is TP2 (RR2) in (i, t). By Lemma 3(i), w⋆(j, t) is TP2 (RR2) in

(j, t) ∈ {1, 2} × [0,+∞), and this proves assertion (ii).

In the setting of Theorem 14, if
p⋆i
pi

is non-decreasing in i = 0, 1, . . . , k, then
1−s⋆i
1−si

is non-decreasing

in i = 1, 2, . . . , k + 1. Lemma 3(i) can be used to prove it. Let us set g(j, i) = p⋆i , for j = 2 and g(j, i) = pi

for j = 1 when i = 0, 1, . . . , k. Set w(i, t) = I[i ≤ t − 1] where t = 1, 2, . . . , k + 1 and i = 0, 1, . . . , k. Since
p⋆i
pi

is non-decreasing in i = 0, 1, . . . , k, thus g(j, i) is TP2 in (j, i) and also w(i, t) = I[i ≤ t] is TP2 in

(i, t). Thus, w⋆(j, i) := ∑
k
i=0 g(j, i)w(i, t) is TP2 in (j, t), i.e.,

1−s⋆i
1−si

is non-decreasing in i = 1, 2, . . . , k + 1.

Hence, the condition on probabilities in Theorem 14(ii) is weaker than the condition on probabilities in

Theorem 14(i). Furthermore, if FX is TSSRD (TSSRI) then F̄X is OSSRD (OSSRI). This means that the
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condition on random effect distribution in Theorem 14(ii) is stronger than the condition on random

effect distribution in Theorem 14(i).

The theorem given next presents conditions to make the order ≤rhr between time-to-failure

random variables in the dynamic multiplicative degradation model with decreasing mean degradation

path η(t). The proof being similar to the proof of Theorem 14 has been omitted.

Theorem 15. Let Π = (π0, . . . , πk) and Π⋆ = (π⋆

0 , . . . , π⋆

k ) be two probability vectors such that

(i)
π⋆

i
πi

is non-decreasing in i = 0, 1, . . . , k. If FX is OSSRI (OSSRD), then we have T1 ≤rhr (≥rhr)T
⋆

1 .

(ii)
1−s⋆i
1−si

is non-decreasing in i = 1, 2, . . . , k + 1. If FX is TSSRI (TSSRD), then we have T1 ≤rhr (≥rhr)T
⋆

1 .

4. Examples

In this section, we examine and scrutinize the conditions on random effect distribution to fulfill

the ordering properties in Section 3 with some typical random effect distribution functions according

to the ones listed in Bae et al. (2007). These functions, as remarked in Bae et al. (2007), are proper

functions arisen in most practical situations. We prove that the standard applicative distributions for

random variation X lie in the framework of theorems in Section 3.

Before stating the examples we state the following lemma.

Lemma 16. Let fX , FX and F̄X be the PDF, CDF and SF of random variation X around η(t). Then,

(i) If FX is TSSRD (TSSRI), then FX is OSSRD (OSSRI).
(ii) FX is TSSRD (TSSRI), if and only if, F̄X is TSSRD (TSSRI).

(iii) If fX is OSSRD (OSSRI), then FX and F̄X are TSSRD (TSSRI).

Proof. The proof of (i) is obvious (see the lines after Definition 4). To prove (ii), it is enough to observe

that for all ti ≥ si ≥ 0, i = 1, 2 and t2 ≥ t1 and s2 ≥ s1, it holds that:

FX(t2x)− FX(t1x)

FX(s2x)− FX(s1x)
=

F̄X(t2x)− FX(t1x)

F̄X(s2x)− F̄X(s1x)
.

To prove assertion (iii), it suffices to establish that if fX is OSSRD (OSSRI), then FX is TSSRD (TSSRI)

because this is equivalent to F̄X being TSSRD (TSSRI) from assertion (ii). We have

FX(t2x)− FX(t1x)

FX(s2x)− FX(s1x)
=

∫ t2x
t1x fX(u)du

∫ s2x
s1x fX(u)du

=

∫ t2
t1

fX(xy)dy
∫ s2

s1
fX(xy)dy

.

The ratio
FX(t2x)−FX(t1x)
FX(s2x)−FX(s1x)

is non-increasing (non-decreasing) in x ≥ 0 for all ti ≥ si ≥ 0, i = 1, 2 and t2 ≥

t1 and s2 ≥ s1, if and only if, w⋆(j, x) :=
∫ +∞

0 g(j, y)w(y, x) dy is RR2 (TP2) in (j, x) ∈ {1, 2} × [0,+∞),

where g(j, y) = I[s1 < y ≤ s2] for j = 1 and g(j, y) = I[t1 < y ≤ t2] for j = 2 and w(y, x) = fX(xy). It

is not hard to prove that g(j, y) is TP2 in (j, y) and also since fX is OSSRD (OSSRI) thus w(y, x) is RR2

(TP2) in (y, x). Hence, by Lemma 3(ii) the required result follows.

The following examples show that the results of Theorems 11, 12, 13, 14 and Theorem 15 can be

applied for several standard typical distributions for random variation X.

Example 17. (X is Weibull-distributed). Suppose that X has SF F̄X(x) = exp(−(λx)α) where λ > 0 and

α > 0. The PDF of X is fX(x) = αλαxα−1 exp(−(λx)α). Thus,

fX(tx)

fX(x)
= tα−1 exp((λx)α(1 − tα))

which is decreasing in x ≥ 0, for all t > 1, thus, fX is OSSRD and as a result of Lemma 16(iii), FX is TSSRD

and F̄X is TSSRD.
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Example 18. (X is gamma-distributed). Assume that X has PDF fX(x) =
λγxγ−1 exp(−λx)

Γ(γ)
where γ > 0 and

λ > 0. We obtain
fX(tx)

fX(x)
= tγ−1 exp((λx)(1 − t))

which is decreasing in x ≥ 0, for every t > 1, i.e. fX is OSSRD and by Lemma 16(iii), FX is TSSRD and F̄X is

also TSSRD.

Example 19. (X is log-logistically distributed). Let us take X as a random variable with PDF fX(x) =
βeαxβ−1

(1+eαxβ)2 , for β > 0. We can derive

fX(tx)

fX(x)
= tβ−1

(

1 + eαxβ

1 + eα(tx)β

)2

which is decreasing in x ≥ 0, for every t > 1, and this means fX is OSSRD which by Lemma 16(iii) implies

that FX is TSSRD and F̄X is also TSSRD.

The following example makes an application of Theorem 9.

Example 20. Suppose W(t) is a degradation process with increasing mean degradation path. Let us assume

that T denotes the time-to-failure of a device and that T⋆ denotes the time-to-failure after a burn-in strategy

is adopted. In this strategy the items which fail before their degradation reaches Df(1), are omitted. If T1 :=

inf{t ≥ 0 | W(t) > Df(1)} then

p⋆0 = P(0 ≤ T⋆
< T1) = 0, p⋆1 = P(T1 ≤ T⋆

< +∞) = 1

and also we assume that

p0 = P(0 ≤ T < T1) > 0, p1 = P(T1 ≤ T < +∞) < 1.

Since, P � P⋆, with P = (p0, p1) and P⋆ = (0, 1), thus, according to Theorem 9(i), T ≤st T⋆. Note that
p⋆0
p0

<
p⋆1
p1

, therefore, if X is OSSRD then by Theorem 11(i), T ≤lr T⋆.

5. Concluding remarks

In this paper we have achieved two goals. The first one was developing a novel time-to-failure

model to fit to the lifetime of devices under a typical degradation process namely the multiplicative

degradation model W(t) = Xη(t). The basic idea was that the probabilities of failure of the device is

constant in consecutive intervals when degradation amounts are increased (decreased). It was shown

that the time-to-failure according to the model follows a well-known classical mixture model (Lemma

1). The second goal was to get some stochastic ordering properties under variation of probabilities in

two different settings and to obtain conditions under which the device which has a stochastic greater

lifetime is identified. The degradation intervals were assumed to be fixed in the two cases, the mean

degradation function η(t) was also fixed and the random variation X around η(t) was assumed to

follow a common distribution function in the two settings. The usual stochastic order holds true if

a majorization property between probability vectors is satisfied, by which one concludes that when

the probabilities is more spread out in one case in comparison with the other cases, the reliability of

the device under degradation is, correspondingly, decreased. For the stronger stochastic orderings

such as the likelihood ratio order, the hazard rate order and the reversed hazard rate order, it was

clarified that further conditions on the distribution function of X are needed in addition to the ones

that are necessary to be imposed to classify the probability vectors arisen from the two settings. We

demonstrated by some examples that the conditions on distribution function of X are fulfilled for some

typical applicative standard distributions.
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In the future of this work, we may consider other settings or frameworks to detect devices

under degradation which have more reliability. For instance, the lower and the upper bounds of

the degradation intervals may be selected to be (random or non-random) variables, the distribution

function of X as well as the mean degradation amount around it may vary. Aging properties of the

new time-to-failure model can also be investigated which is useful in model selection geostrategies.
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