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Abstract: In healthy humans, taste sensitivity varies widely, influencing food selection and nutritional status.
Chemosensory reductions have been associated with numerous pathological disorders or pharmacological
interventions. Reliable psychophysical methods are crucial resources to analyze the taste function during
routine clinical assessment. However, in the daily clinical routine, they are often considered to be too time-
consuming. We used the Supervised Learning (SL) regression method to analyze with high precision the
overall taste status of healthy controls (HC) and patients with chemosensory loss and to characterize the
combination of responses that best can predict the overall taste status of two groups. Random Forest regressor
allowed us to achieve our objective. The analysis of the order of importance and impact of each parameter on
the prediction of overall taste status in the two groups showed that salty (low concentration) and sour (high
concentration) stimuli specifically characterized healthy subjects, while bitter (high concentration) and
astringent (high concentration) stimuli identified patients with chemosensory loss. The identification of these
distinctions appears to be of interest to the health system since they may allow the use of specific stimuli during
routine clinical assessments of taste function reducing the commitment in terms of time and costs.

Keywords: general taste status; taste loss; supervised learning regression; random forest regressor

1. Introduction

Taste sensitivity is known to have a great physiological variability among the healthy human
population. This diversity drives food acceptance and selection and affects nutritional status. At the
same time, numerous disorders and pharmacological interventions may cause taste dysfunction,
described as the pathological decrease of sensitivity (hypogeusia), or the rare complete taste loss
(ageusia). Depending on definitions, hypogeusia can be found in 5% of the population within the age
range of 5-89 years [1]. The number of individuals with taste disorders increases with age [2-6],
reaching up to 15% among the US population over 57 years [7].

Taste loss diminishes not only the ability to detect noxious or unhealthy substances, but a loss
of taste reduces the joy of consuming tasty foods and, consequently, the pleasures of social eating.
Thus, depressive symptoms are commonly detected in patients with chemosensory disorders [8,9]
with a frequency of such symptoms in patients suffering from gustatory disorders ranging from 25
to 36% [10,11]. These symptoms become even more frequent in patients with ageusia or qualitative
disorders [8].

In healthy adults, another factor associated with a decline in gustatory sensitivity is an increasing
body mass index (BMI) [12], supporting the idea that taste disorders facilitate the consumption of
high-caloric foods. Specifically, the threshold for salty was higher [13,14], and the identification for
salty, umami, and bitter was lower [15] in subjects with high BMI. However, results concerning sweet
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taste are contradictory: some found a direct correlation between higher glucose sensitivity and the
predisposition for developing obesity and diabetes [16,17], while in some other cases, no differences
in sweet sensitivity between healthy and obese subjects were observed [18,19]. Importantly, an
increased ability to identify sweet taste was found after bariatric surgery in parallel with a significant
reduction of weight [20].

Sensitivity to the bitterness of 6-n-propylthyouracil (PROP) and phenylthiocarbamide (PTC) also
predicts the perception of the other taste qualities [21-23], chemical irritants [24], and astringent foods
[25-27] and, for these reasons, it is considered a marker for inter-individual differences in general
taste sensitivity. Several studies reported that individuals with a strong bitter perception of
PROP/PTC bitterness have a higher sensitivity (super-tasters) to other taste stimuli compared to
individuals with the non-sensitive (non-tasters) phenotype [28-30]. PROP sensitivity was also
positively correlated with health status [31-34], but negatively correlated with BMI [35,36].
Additionally, Essick and coauthors showed that super-tasters had higher spatial resolution acuity in
the tongue than non-tasters using an elegant identification test with 3D-printed letters of the alphabet
[37].

Reliable methods for assessing taste perception in patients are crucial resources to define the
degree of impairment in patients expressing an altered perception. Most of these methods, although
easy to administer, are lengthy procedures in which patients have to maintain focus, and require a
significant commitment from the health personnel. Hence, the Seven-iTT was recently proposed for
routine clinical assessment of gustatory and somatosensory functions including astringency and
spiciness [38]. Mastinu and coauthors showed that sweet was the most correctly identified taste
sensation, followed by salty, bitter and sour and that patients with taste impairments had lower
identification scores for astringency (dryness sensation) and spiciness (burning sensation). These
correlations addressed the tight connection between gustatory and somatosensory perceptions at a
peripheral level [39,40] that might fail after skull base surgery [41,42]. On the other hand, these results
suggest that taste perception, and even more so dysfunction, is complex and governed by numerous
factors.

In the present study, we analyzed with high precision the taste function of healthy controls (HC)
and patients with chemosensory loss, using a supervised learning (SL) approach that provides real-
time decision-making. We applied the SL regression method with different algorithms. The
algorithms were targeted to obtain the most precise prediction on the taste function of subjects of the
two groups. To this aim, we assessed the intensity ratings for a low and a high concentration of each
of the six stimuli representative of sweet, sour, salty, bitter, astringent and spicy. The mean value
calculated for each subject was termed as “overall taste status” and was used as the target of the
algorithms. As inputs for the algorithms, we used a structured set of data consisting of the sensory,
clinical, and anthropometric parameters that had been determined in the subjects of our previous
study [38]. We aimed at establishing which combination of parameters best predicts the taste function
of healthy controls or taste dysfunction of patients with chemosensory loss.

2. Materials and Methods

2.1. Subjects

One-hundred fifty-three individuals aged 18 to 81 years (38.3 +14.3 years; 103 females) have been
recruited at the Department of Otorhinolaryngology of the TU Dresden from February 2021 to
January 2022. Of these, 51 were patients of the Smell and Taste Clinic who self-reported a
chemosensory dysfunction. The remaining study sample comprised 102 healthy controls as a
reference group. For the purpose of this cross-sectional study, patients were enrolled regardless the
etiology of the taste dysfunction, or their smoking habits. Exclusion criteria were: pregnancy, allergy
to substances used in the present study, unmedicated hypo/hyperthyreosis, uncontrolled diabetes
mellitus, renal dysfunction, and significant cardiovascular issues. Informed written consent was
obtained from all participants prior to their inclusion in the study. The research protocol was
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approved by the Ethics Review Board at the University Clinic of the Technische Universitidt Dresden,
application number BO-EK-25012021.

2.2. Experimental Procedure

The experimental procedure took place in a single session from February 2021 to January 2022.
Subjects were requested to abstain from drinking (except water), eating, and using chewing gum or
oral care products for at least 1 h prior to testing. Their taste sensitivity of the four primary qualities
(sweet, sour, salty, bitter) and sensations of astringency and spiciness were assessed as described
below. Before the session, participants’ health status was ascertained with a detailed medical history.
Weight (kg) and height (m) were recorded in order to calculate the subjects’ BMI (kg/m?).
Additionally, all participants were screened for depression using the 5-item World Health
Organization Well-Being Index (WHO-5) [43,44]. The questionnaire consists of five positively
phrased items concerning being in good spirits, feeling relaxed, having energy, waking up fresh and
rested, and being interested in things. Each of the five items is rated on a 6-point Likert scale from 0
to 5. The theoretical raw score ranges from 0 to 25. A high score in the WHO-5 indicates a high level
of well-being, while a score below 13 indicates poor well-being [43,44]. They were also asked to
indicate their liking for eating spicy food.

Authors had no access to information that could identify individual participants during or after
data collection.

2.3. Sensory measurements

All taste measurements were performed using the same “taste strips” that are used in the
validated “Taste Strip Test” (TST, Burghart Company, Wedel, Germany) [45,46]. Taste strips used in
the assessments consisted of filter papers impregnated with two concentrations of stimuli
representative of four basic taste qualities (sweet, sour, salty, bitter) and of sensations of astringency
and spiciness. Taste qualities were presented in a semi-randomized order, with trigeminal stimuli at
last because of their lingering sensations. Before every new testing, participants were asked to rinse
their mouth with tap water. The evaluation did not include umami sensation due to the low
familiarity in the European population [47].

The following two concentrations (one low and one high) for each stimulus were used: 0.4 and
0.05 g/mL sucrose; 0.3 and 0.05 g/mL citric acid; 0.25 and 0.016 g/mL sodium chloride; 0.006 and
0.0004 g/mL quinine hydrochloride; 0.1 and 0.2 g/mL tannin; 2.47x10% and 2.47x10+ g/mL capsaicin.
After placing each filter paper on the tongue, each subject had to evaluate the perceived intensity for
each stimulus using a visual analog scale from 0 to 5 (0 = no taste at all, 5 = extremely strong taste).
The ratings of the perceived taste intensity for the two concentrations of each stimulus were called:
sweet_low_int and sweet_high int, sour_low_int and sour_high int, salty_low_int and
salty_high_int, bitter_low_int and bitter_high_int, astring_low_int and astring_high_int, hot_low_int
and hot_high_int. The overall taste status, which is the target of regressor model, was calculated in
each subject as the mean value of intensity ratings for the low and the high concentration of the six
stimuli (score_lowhigh_capsadstr_int1). Subjects also had to identify the taste quality he/she of each
stimulus by choosing from a list of six possible answers (sweet, sour, salty, bitter, astringency and
hot) in a forced choice procedure [45]. Each correct answer was rated 1, the number of correctly
identified tastes was summed up in the total taste score (score_lowhigh_capsadstrl) whose
maximum values was 12. The scores of the correct answer for the two concentrations of each stimulus
were called as follows: salty_low_taste_correct; salty_high_taste_correct; sweet_low_taste_correct;
sweet_high_taste_correct; sour_low_taste_correct; sour_high_taste_correct; bitter_low_taste_correct;
bitter_high_taste_correct; hot_low_taste_correct; hot_high_taste_correct; astring_low_taste_correct;
astring_high_taste_correct.


https://doi.org/10.20944/preprints202307.0194.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 July 2023 d0i:10.20944/preprints202307.0194.v1

2.4. Supervised Learning

The automatic prediction of the overall taste status of healthy controls and patients with
chemosensory loss was carried out from January 2022 to October 2022 by SL algorithms exploiting
the subjects’ parameters that were presented in the data model as predictive variables (features). We
used the SL regressors because they are specific to predict continuous outcomes such as the overall
taste status of subjects [48]. The SL regressors learned and created automatic regressor models that
evaluated the differences among subjects and returned, with high precision, a prediction of the value
of the overall taste status in healthy controls or patients with chemosensory loss subjects. The
following algorithms were used: Logistic Regression, Random Forest regressor, and CatBoost
regressor. During training, the different algorithms learn the hidden patterns in the structured
dataset, then they take new unforeseen inputs (test dataset) to predict the value of the target (the
overall taste status). To archive our aim (to analyze the overall taste status of healthy controls and
patients with chemosensory loss and individuate specific stimulus or their combination that best can
predict the overall taste status of two groups) was necessary to apply the regressor model separately
to the dataset of healthy controls and patients with chemosensory loss. Therefore, we performed two
SL regressor experiments: experiment 1 included healthy controls (n = 102) and experiment 2
included patients with chemosensory loss (1 = 51).

The interpretation of the results of the Random Forest regressor model have been performed by
using Shapley Additive exPlanations (SHAP)[49] which is a game-theoretic method that allows to
link the importance of each feature with its effect. SHAP returns a specific plot for each Random
Forest regressor experiment representing the impact of each feature in that experiment.

The following data processing operations, which are a crucial phase in the performance of an SL
project, were applied:

1. The definition of correlations between numerical parameters and those between each numerical
feature and the target, which were a fundamental step to understand the data structure, were
also considered to include a feature in the data set (Figure 1).

2. Choice of features that are used by the algorithm as predictive variables of the target: the set of
parameters most suitable for our case study was selected as features by expert researchers in
taste physiology and an ML engineer, based on their domain knowledge, from a database of the
sensory, clinical, and demographic parameters [50]. In addition, since two features strongly
correlated with each other have almost the same effect on the dependent variable, one of them
has been dropped to reduce the noise that can impact algorithm performance [51]. Specifically,
the sum of the scores of the correct answer for the two concentrations of salty, sweet, sour, bitter,
hot and astringency, the sum of the scores of the correct answers for the two concentrations of
salty, sweet, sour and bitter, and the intensity ratings for the two concentrations of salty, sweet,
sour and bitter strongly correlated with each other. The first summated variable that include
evaluations of all stimuli was selected, the latter two were excluded.

3. Handling of missing values: every line of the subject that represents lacking information in some
column was eliminated.

4. Elimination of duplicate values. In fifty-eight subjects of the group of controls all sensory
measurements were repeated twice. The column relative to these measures repeated, and those
of the overall taste status and total taste score calculated in these subjects (twenty-nine columns
in total) have been eliminated from the data set.

5. Converting the dataset's content into a language that an algorithm can understand: this included
the One Hot Encoding which encodes categorical data into numerical data and the normalization
of the numerical data which consisted in transforming a real range of numerical values in a range
between 0 to 1.
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Figure 1. Linear correlation analysis between the numerical features of the dataset and those between
numerical features and the target. The bar color on the right side on the Y axis represents the value of
linear correlation between features. P values are indicated inside each square and derived from
Pearson’s coefficient analysis

After data processing operations that included the remotion of all non-significant and correlated
features, we increased the parameters of numbers of estimators, maximum of depth of the SL
regressors. Moreover, we used 3-fold Cross-Validation, which mixes and splits data into two groups
(training data, 66.66% and test data, 33.33%) for three times using different subsets of data each time.

The evaluation of the performance of the algorithms was found by metrics, such as Mean
Absolute Percentage Error (MAPE) and Mean Squared Error (MSE) that assesses the differences
between the observed and predicted values. In particular, MAPE represents the error percentage of
predicted values, while MSE represents the average of the summation of the squared difference
between the actual output value and the predicted output value. The overall behavior of our
regressors was evaluated by the automatic optimization of their hyperparameters by Grid Search
Algorithm successively.

2.5. Statistical Analysis

Fisher’s Exact Test was used to analyze differences, between healthy controls and patients with
chemosensory loss, with regard to the frequency of correct answers for the two concentrations of each
stimulus, gender, and like to eat spicy. T test was used to compare differences, between healthy
controls and patients with chemosensory loss, in age, BMI, depression, taste intensity ratings for each
stimulus and total taste score. Statistical analyses were conducted using STATISTICA for WINDOWS
(version 7; StatSoft Inc, Tulsa, OK, USA). P values < 0.05 were considered significant. P values of T


https://doi.org/10.20944/preprints202307.0194.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 July 2023

6

test were adjusted by Bonferroni correction (adjusted P = P / number of groups being compared) (P
values < 0.0031 were considered significant).

3. Results

Value means + SD or frequencies of the sensory, clinical, and anthropometric parameters
determined in healthy controls and patients with chemosensory loss are shown in Table 1. T-test
adjusted by Bonferroni correction showed that the ratings of the taste intensity in response to the low
concentrations of each stimulus and the high concentration of sweet, sour and astringency, as well as
the total taste score, of healthy controls, were higher than that of patients with chemosensory loss (p
<0.0006). Depression level was higher in patients with chemosensory loss than in healthy controls (p
< 0.0001). The number of correct answers for the low concentrations of salty, bitter, hot, and
astringency and the high concentration of sweet, sour, and astringency and the number of subjects
who like to eat spicy was higher in healthy controls than in patients with chemosensory loss (x2 2
4.79; p £0.041; Fisher’s test). No differences in the ratings of the taste intensity in response to the high
concentrations of salty, bitter and hot, age, BMI, gender, or in the number of correct answers for low
concentrations of sweet and sour, and high concentrations of salty, bitter and hot were found between
the two groups (p > 0.05).

Table 1. Sensory, clinical, and anthropometric parameters of healthy controls and patients with
chemosensory loss.

d0i:10.20944/preprints202307.0194.v1

Features Healthy Patients with  p-value
Controls chemosensory
(n=102) loss (n=51)

Numerical type

astring_low_int 2.24+1.32 0.84 +1.10* <0.0001
bitter_low_int 2.40+1.49 1.06 +1.26* <0.0001
hot_low_int 2.04 +1.30 0.84 +1.24* <0.0001
salty_low_int 3.03 £1.07 1.92 +1.18* <0.0001
astring_high_int 3.53+1.09 243 +1.43* <0.0001
score_lowhigh_capsadstrl 9.37£1.92 7.18 +2.47* <0.0001
sour_high_int 3.90+0.85 3.27 + 1.05* 0.0001
sweet_low_int 1.99 £1.18 1.22 +1.14* 0.0002
sweet_high _int 3.58 +0.89 2.90 + 1.38* 0.0003
sour low int 1.37 +1.22 0.68 +0.97* 0.0006
bitter_high_int 3.15+1.43 257 +1.43 0.018
hot_high_int 354+1.16 3.04+1.33 0.018
salty_high_int 3.79+0.89 3.45+1.27 0.054
depression 17.15+ 3.62 14.14 £ 5.18* <0.0001
BMI (kg/m2) 23.66 + 4.02 25.61 +5.55 0.014
Age (y) 36.70 + 14.43 40.45 +12.62 0.116
Categorial type

astring_low_taste_correct/non (n) 78/24 15/364# <0.0001
astring_high_taste_correct/non (n) 86/16 24/27# <0.0001
hot_low_taste_correct/non (n) 77/25 18/33# <0.0001
salty_low_taste_correct/non (n) 87/15 33/18# 0.0039
sour_high_taste_correct/non (n) 93/9 36/15# 0.0014
bitter_low_taste_correct/non (n) 63/39 22/294 0.0221
sweet_high_taste_correct/non (n) 100/2 46/54 0.0415
sour_low_taste_correct/non (n) 32/70 10/41 0.0877
sweet_low_taste_correct/non (n) 72/30 32/19 0.2122
hot_high_taste_correct/non (n) 97/5 46/5 0.2061
bitter_high_taste_correct/non (n) 77/25 39/12 0.531


https://doi.org/10.20944/preprints202307.0194.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 July 2023 d0i:10.20944/preprints202307.0194.v1

7
salty_high_taste_correct/non (n) 90/12 45/6 0.596
Like_to_eat_spicy/non (n) 66/36 23/284# 0.016
sex_f1_m2 (women/men; n) 65/37 36/15 0.255

Values are means + SD, or number correct answers, or number of subjects. Body Mass Index, BMI; significant
differences in mean values between healthy controls and patients with chemosensory loss are indicated by * (p
<0.0006; T test adjusted by Bonferroni correction), while differences in frequency distribution are indicated by

# (p <0.041; Fisher's method).

The metrics of evaluation of the performance of the algorithms, MAPE and MSE, which measure
the accuracy of a forecast system, showed that the random forest regressor was the best algorithm to
predict the values of the overall taste status with high precision. The scatterplots showing
experimental values vs predicted values of the overall taste status obtained with the random forest
regressor in healthy controls and patients with chemosensory loss are shown in Figure 2. The values
of MSE, which evaluates how estimated values are close to experimental values, were 0.019 and 0.014
in the two groups. Besides, the MAPE values, which represent the error percentage of predicted
values, were 4.55%, and 8.40% in healthy controls and patients with chemosensory loss, respectively.
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Figure 2. Scatterplots of experimental values vs predicted values of the overall status obtained with

the random forest regressor in healthy controls (1 = 102) (A) and in patients with chemosensory loss

(n=51) (B).

The Random Forest regressor allowed us to determine the order of importance and the
contribution of the sensory, clinical, and anthropometric features on the prediction of overall taste
status in the two groups, and the interpretation by SHAP algorithm allowed us to obtain an overview
of their impact on the prediction.

Specifically, the rating of the perceived taste intensity for the low concentration of salt was the
most important feature for the learning of model in healthy controls and its contribution on the
prediction of the overall taste status, estimated as the average impact on the model, was 0.079 (Figure
3A). This feature was followed in order of importance from the second to the tenth by: the intensity
rating for the high concentration of sour, for the low concentration of bitter, for the high concentration
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of sweet, for the high concentration of bitter, for the low concentration of hot, for the high
concentration of salty, for the low concentration of astringency, the total taste score and the intensity
rating for the low concentration of sweet. It is interesting to note that depression status was a
significant feature (sixteen in importance order). These features had an average impact on the
model lower than 0.057. The link between features’ importance and features’ effect on the overall
status of the healthy controls is shown in the SHAP summary plot (Figure 3B). The plot highlights
that high estimated values (pink) of the rating of the perceived taste intensity for the low
concentration of salt and for the high concentration of sour had a strong and positive impact to make
a prediction of high values of overall taste status and low estimated values (blue) of these features
strongly pushed the model prediction towards low values of the overall taste status. The mean of the
positive impacts of these two features were 0.052 and 0.040, while that of the negative impacts were
-0.155 and -0.106. High estimated values (pink) of the successive eight features had a positive impact
(£0.057) to make a prediction of high values of overall taste status, medium values (violet) impacted
the model to make a prediction of medium values of the overall taste status and low estimated values
(blue) of these features pushed the model prediction towards low values of the overall taste status
(negative impact < -0.069).

Experiment 1. Target: overall taste status of healthy controls
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Figure 3. Importance and impact of the sensory, clinical, and anthropometric features on the overall
taste status prediction determined with Random Forest regressor in healthy controls. Importance of
features in the learning of model to understand the overall taste status (A). The Y axis represents the
order of the features” importance, while the average impact on the model output is represented in the
X axis. The SHAP summary plot in the healthy controls (B). The left-hand side of the Y-axis represents
the descending order of importance; the X-axis represents the SHAP value i.e. the impact on the
output model. The color represents the feature value: high values have a pink color, while low values
have a blue one. Numbers indicated for each line represent the mean of the positive impact values
and the negative impact of each feature.

The features’ importance in facilitating the learning of the Random Forest regressor to predict
the overall taste status, and an overview of how the most important features impact it to make a
prediction in patients with chemosensory loss are shown in Figure 4. In this case, the rating of the
perceived taste intensity for the high concentration of bitter and for the high concentration of
astringency were the first two most important features for the model to predict the overall taste status
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of this group, giving a similar contribution on the model prediction of the overall taste status, the
average impacts were 0.105 and 0.100 (Figure 4A). These were followed in order of importance from
the third to the tenth by: the total taste status, the intensity rating for the low concentration of salty,
for the high concentration of sweet, for the low concentration of bitter, for the low concentration of
sweet, for the high concentrations of sour, for the high concentration of salty and for the low
concentration of sour. These features had an average impact on the model lower than 0.077. SHAP
summary plot highlights that high estimated values (pink) of the rating of the perceived taste
intensity for the high concentration of bitter and for the high concentration of astringency had a
strong and positive impact to make a prediction of high values of overall taste status and low
estimated values (blue) of these features strongly pushed the model prediction towards low values
of the overall taste status (Figure 4B). The mean of the positive impacts of these two features were
0.085 and 0.096, while that of the negative impacts were -0.134 and -0.105. High estimated values
(pink) of the successive eight features had a positive impact (< 0.098) to make a prediction of high
values of overall taste status, medium (violet) and low values (blue) estimated values of these features
impacted the model to make a prediction of medium and low values of the overall taste status
(negative impact < -0.105).

Experiment 2. Target: overall taste status of patients with chemosensory loss
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Figure 4. Importance and impact of the sensory, clinical, and anthropometric features on the overall
taste status prediction determined with Random Forest regressor in patients with chemosensory loss.
Importance of features in the training model to understand the overall taste status (A). The Y axis
represents the order of the features” importance, while the average impact on the model output is
represented in the X axis. The SHAP summary plot in patients with chemosensory loss (B). The left-
hand side of the Y-axis represents the descending order of importance; the X-axis represents the SHAP
value i.e. the impact on the output model. The color represents the feature value: high values have a
pink color, while low values have a blue one. Numbers indicated for each line represent the mean of
the positive impact values and the negative impact of each feature.

The error percentage of predicted values of the overall taste status (MAPE values) calculated in
the datasets of the two groups by using as inputs for the algorithm only the most important feature
for the two groups (the intensity rating for the low concentration of salt in healthy subjects and high
concentration of bitter in patients), was 12.35%, and 17.94% in healthy controls and patients with
chemosensory loss, respectively. When the second important features were also included in the


https://doi.org/10.20944/preprints202307.0194.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 July 2023 d0i:10.20944/preprints202307.0194.v1

10

model (high concentration of sour for healthy subjects and high concentration of astringency for
patients), the error percentage of predicted values of the overall taste status was 11.05%, and 17.16%
in healthy controls and patients with chemosensory loss, respectively.

4. Discussion

This project used the SL regression method to establish which combination of sensory, clinical,
and anthropometric parameters best predicts the overall taste status of healthy controls or that of
patients with chemosensory loss. The subjects included as patients with chemosensory loss have been
selected based on what they reported. The values of the sensory parameters, which were used as
predictive variables of the overall taste status, as well as the correlation between them and the target,
confirm that they showed a lower taste sensitivity compared to the subjects of the group of control.
The low taste sensitivity of these subjects was linked to their higher depression status according to
what was already reported [8].

The Random Forest regressor was the best model to deeply understand differences among
subjects and obtain, with high precision, the value of the overall taste status of subjects. Moreover,
the Random Forest regressor allowed us to establish each parameter’s impact on prediction,
identifying the combination of the biological parameters that could best predict the overall taste
status of healthy subjects or that of patients with chemosensory loss. The performance of our
approach was tested by the metrics of evaluation, MAPE and MSE, which allowed us to verify that
the estimated values by the Random Forest regressor were strictly close to experimental values with
an error percentage of 4.55%, and 8.40% in healthy controls and patients with chemosensory loss,
respectively.

The Random Forest regressor allowed us also to achieve the order of importance of each feature
on the prediction of the overall taste status of subjects of the two groups. The regressor identified the
rating of the perceived taste intensity for the low concentration of salt to be the most important
parameter in healthy subjects, while the rating of the perceived taste intensity for the high
concentration of bitter was the most significant in patients with chemosensory loss. Moreover, the
interpretation of the linking between parameters’ importance and parameter’ effect showed that high
estimated values of the perceived intensity for the low concentration of salt had a strong and positive
impact to predict high values of overall taste status in healthy subjects. On the other hand, high
estimated values of the rating of the perceived taste intensity for the high concentration of bitter had
a strong and positive impact to predict high values of overall taste status in patients with
chemosensory loss. Low values of these two parameters strongly pushed the model prediction
towards low values of the overall taste status in both groups. The fact that the most important
parameter to predict the overall taste status in healthy controls was the rating of the perceived
intensity for the low concentration of salt is not surprising, as we can see from experimental values
shown in Table 1, the low concentration of salt evoked the highest response compared to the low
concentrations of other stimuli and a high percentage of subjects (85.3%) recognized it correctly. The
rating of the perceived taste intensity for the high concentration of bitter, which was the most
important feature in patients with chemosensory loss, was correctly recognized by 76.5 % of patients.
The bitter taste was an important stimulus also in healthy controls, third in importance order at low
concentration, it was correctly recognized by 61.8% of subjects. The difference in the importance of
bitter taste that we found in the two groups may be explained by possible genetic differences between
the two groups. In our pilot study we found that, differently from healthy controls, in patients with
taste disorders, a taster haplotype in the gene coding for bitter TAS2R38 receptor is not sufficient to
exhibit high responses, suggesting that the genetic constitution may represent a risk factor for the
development of taste disorders [52]. Besides, based on the results that suggested the TAS2R38
pathway as an immune response target [33,53], patients with the non-taster haplotype, who show
lower responsiveness, could have a higher susceptibility to oropharyngeal infections, which may
contribute to their chemosensory loss.

The second most important parameter in learning the model in healthy controls was the
perceived intensity rating for high concentration of sour, it was the stimulus that evoked the highest
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response and 91.2 % of subjects correctly recognized it. High estimated values had a positive impact
to predict high values of overall taste status, while low estimated values strongly pushed the model
prediction towards low values of the overall taste status. Less important was the importance and
impact that sour had on the prediction of the overall taste status in patients with chemosensory loss,
in which was the eighth feature in importance order suggesting that the impact of sour on taste
function may be more important in subjects that have not pathologies that determine chemosensory
loss.

The second most important parameter in learning the model in the patients with chemosensory
loss was the perceived intensity rating of the for high concentration of astringency, which strongly
impacted the prediction of the overall status of this group in a way equivalent to what was done by
the most important feature, the high concentration of bitter (the values of their contribution on the
model prediction were 0.105 and 0.100). Less important was the contribution and impact that
astringency (eighth in important order at low concentration and eleventh at high concentration) had
on the prediction of the overall taste status in healthy subjects, in which low estimated values pushed
the model prediction towards low values of the target. These results allow us to speculate that the
impact of astringency on taste function could be more important in subjects with low sensitivity. This
result deserves to be further investigated in future studies.

It is interesting to note that the performance of our model applied in the datasets of the healthy
controls and that of patients by using as inputs for the algorithm only the most important features
for the two groups, allowed us to verify that the estimated values were strictly close to experimental
values with an error percentage of 12.35% and 17.95%. By including in the model also the second
important features as the predictive variables, the error percentage of predicted values of the overall
taste status decreased of 1.3% and 0.79%, in healthy controls and patients, respectively.

5. Conclusions

In conclusion, our results indicated that the Random Forest regressor is a reliable strategy to
analyze taste function, by exploiting a structured dataset consisting of sensory, clinical, and
anthropometric parameters previously determined in the participants [38], as inputs for the
algorithm. Furthermore, the proposed approach, which provides real-time decision-making, allowed
us to identify with high precision different stimuli and their combination that best can predict the
overall taste status in the two groups. The low concentration of salt and high concentration of sour
were specific for healthy subjects, while the high concentration of bitter and high concentration of
astringency stimuli were the most indicative ones for pathological taste disorders. These four stimuli
strongly impacted the model prediction mostly in the subjects where evoked low responses (the
impact values were two-fold increase with respect to those of the other stimuli), suggesting that a
low response to these stimuli characterizes taste dysfunction.

Identifying these combinations of stimuli as the most critical to efficiently assess gustatory
function of healthy subjects and patients with chemosensory loss could simplify testing especially
during routine clinical examinations (e.g., annual physical exams), and therefore reduce the health
system commitment in terms of time and costs.
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