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Article 
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Abstract: In healthy humans, taste sensitivity varies widely, influencing food selection and nutritional status. 

Chemosensory reductions have been associated with numerous pathological disorders or pharmacological 

interventions. Reliable psychophysical methods are crucial resources to analyze the taste function during 

routine clinical assessment. However, in the daily clinical routine, they are often considered to be too time-

consuming. We used the Supervised Learning (SL) regression method to analyze with high precision the 

overall taste status of healthy controls (HC) and patients with chemosensory loss and to characterize the 

combination of responses that best can predict the overall taste status of two groups. Random Forest regressor 

allowed us to achieve our objective. The analysis of the order of importance and impact of each parameter on 

the prediction of overall taste status in the two groups showed that salty (low concentration) and sour (high 

concentration) stimuli specifically characterized healthy subjects, while bitter (high concentration) and 

astringent (high concentration) stimuli identified patients with chemosensory loss. The identification of these 

distinctions appears to be of interest to the health system since they may allow the use of specific stimuli during 

routine clinical assessments of taste function reducing the commitment in terms of time and costs.  

Keywords: general taste status; taste loss; supervised learning regression; random forest regressor 

 

1. Introduction 

Taste sensitivity is known to have a great physiological variability among the healthy human 

population. This diversity drives food acceptance and selection and affects nutritional status. At the 

same time, numerous disorders and pharmacological interventions may cause taste dysfunction, 

described as the pathological decrease of sensitivity (hypogeusia), or the rare complete taste loss 

(ageusia). Depending on definitions, hypogeusia can be found in 5% of the population within the age 

range of 5-89 years [1]. The number of individuals with taste disorders increases with age [2–6], 

reaching up to 15% among the US population over 57 years [7].  

Taste loss diminishes not only the ability to detect noxious or unhealthy substances, but a loss 

of taste reduces the joy of consuming tasty foods and, consequently, the pleasures of social eating. 

Thus, depressive symptoms are commonly detected in patients with chemosensory disorders [8,9] 

with a frequency of such symptoms in patients suffering from gustatory disorders ranging from 25 

to 36% [10,11]. These symptoms become even more frequent in patients with ageusia or qualitative 

disorders [8]. 

In healthy adults, another factor associated with a decline in gustatory sensitivity is an increasing 

body mass index (BMI) [12], supporting the idea that taste disorders facilitate the consumption of 

high-caloric foods. Specifically, the threshold for salty was higher [13,14], and the identification for 

salty, umami, and bitter was lower [15] in subjects with high BMI. However, results concerning sweet 
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taste are contradictory: some found a direct correlation between higher glucose sensitivity and the 

predisposition for developing obesity and diabetes [16,17], while in some other cases, no differences 

in sweet sensitivity between healthy and obese subjects were observed [18,19]. Importantly, an 

increased ability to identify sweet taste was found after bariatric surgery in parallel with a significant 

reduction of weight [20].  

Sensitivity to the bitterness of 6-n-propylthyouracil (PROP) and phenylthiocarbamide (PTC) also 

predicts the perception of the other taste qualities [21–23], chemical irritants [24], and astringent foods 

[25–27] and, for these reasons, it is considered a marker for inter-individual differences in general 

taste sensitivity. Several studies reported that individuals with a strong bitter perception of 

PROP/PTC bitterness have a higher sensitivity (super-tasters) to other taste stimuli compared to 

individuals with the non-sensitive (non-tasters) phenotype [28–30]. PROP sensitivity was also 

positively correlated with health status [31–34], but negatively correlated with BMI [35,36]. 

Additionally, Essick and coauthors showed that super-tasters had higher spatial resolution acuity in 

the tongue than non-tasters using an elegant identification test with 3D-printed letters of the alphabet 

[37]. 

Reliable methods for assessing taste perception in patients are crucial resources to define the 

degree of impairment in patients expressing an altered perception. Most of these methods, although 

easy to administer, are lengthy procedures in which patients have to maintain focus, and require a 

significant commitment from the health personnel. Hence, the Seven-iTT was recently proposed for 

routine clinical assessment of gustatory and somatosensory functions including astringency and 

spiciness [38]. Mastinu and coauthors showed that sweet was the most correctly identified taste 

sensation, followed by salty, bitter and sour and that patients with taste impairments had lower 

identification scores for astringency (dryness sensation) and spiciness (burning sensation). These 

correlations addressed the tight connection between gustatory and somatosensory perceptions at a 

peripheral level [39,40] that might fail after skull base surgery [41,42]. On the other hand, these results 

suggest that taste perception, and even more so dysfunction, is complex and governed by numerous 

factors. 

In the present study, we analyzed with high precision the taste function of healthy controls (HC) 

and patients with chemosensory loss, using a supervised learning (SL) approach that provides real-

time decision-making. We applied the SL regression method with different algorithms. The 

algorithms were targeted to obtain the most precise prediction on the taste function of subjects of the 

two groups. To this aim, we assessed the intensity ratings for a low and a high concentration of each 

of the six stimuli representative of sweet, sour, salty, bitter, astringent and spicy. The mean value 

calculated for each subject was termed as “overall taste status” and was used as the target of the 

algorithms. As inputs for the algorithms, we used a structured set of data consisting of the sensory, 

clinical, and anthropometric parameters that had been determined in the subjects of our previous 

study [38]. We aimed at establishing which combination of parameters best predicts the taste function 

of healthy controls or taste dysfunction of patients with chemosensory loss.  

2. Materials and Methods 

2.1. Subjects 

One-hundred fifty-three individuals aged 18 to 81 years (38.3 ±14.3 years; 103 females) have been 

recruited at the Department of Otorhinolaryngology of the TU Dresden from February 2021 to 

January 2022. Of these, 51 were patients of the Smell and Taste Clinic who self-reported a 

chemosensory dysfunction. The remaining study sample comprised 102 healthy controls as a 

reference group. For the purpose of this cross-sectional study, patients were enrolled regardless the 

etiology of the taste dysfunction, or their smoking habits. Exclusion criteria were: pregnancy, allergy 

to substances used in the present study, unmedicated hypo/hyperthyreosis, uncontrolled diabetes 

mellitus, renal dysfunction, and significant cardiovascular issues. Informed written consent was 

obtained from all participants prior to their inclusion in the study. The research protocol was 
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approved by the Ethics Review Board at the University Clinic of the Technische Universität Dresden, 

application number BO-EK-25012021. 

2.2. Experimental Procedure 

The experimental procedure took place in a single session from February 2021 to January 2022. 

Subjects were requested to abstain from drinking (except water), eating, and using chewing gum or 

oral care products for at least 1 h prior to testing. Their taste sensitivity of the four primary qualities 

(sweet, sour, salty, bitter) and sensations of astringency and spiciness were assessed as described 

below. Before the session, participants’ health status was ascertained with a detailed medical history. 

Weight (kg) and height (m) were recorded in order to calculate the subjects’ BMI (kg/m2). 
Additionally, all participants were screened for depression using the 5-item World Health 

Organization Well-Being Index (WHO-5) [43,44]. The questionnaire consists of five positively 

phrased items concerning being in good spirits, feeling relaxed, having energy, waking up fresh and 

rested, and being interested in things. Each of the five items is rated on a 6-point Likert scale from 0 

to 5. The theoretical raw score ranges from 0 to 25. A high score in the WHO-5 indicates a high level 

of well-being, while a score below 13 indicates poor well-being [43,44]. They were also asked to 

indicate their liking for eating spicy food. 

Authors had no access to information that could identify individual participants during or after 

data collection. 

2.3. Sensory measurements 

All taste measurements were performed using the same “taste strips” that are used in the 

validated “Taste Strip Test” (TST, Burghart Company, Wedel, Germany) [45,46]. Taste strips used in 

the assessments consisted of filter papers impregnated with two concentrations of stimuli 

representative of four basic taste qualities (sweet, sour, salty, bitter) and of sensations of astringency 

and spiciness. Taste qualities were presented in a semi-randomized order, with trigeminal stimuli at 

last because of their lingering sensations. Before every new testing, participants were asked to rinse 

their mouth with tap water. The evaluation did not include umami sensation due to the low 

familiarity in the European population [47]. 

The following two concentrations (one low and one high) for each stimulus were used:  0.4 and 

0.05 g/mL sucrose; 0.3 and 0.05 g/mL citric acid; 0.25 and 0.016 g/mL sodium chloride; 0.006 and 

0.0004 g/mL quinine hydrochloride; 0.1 and 0.2 g/mL tannin; 2.47x10-5 and 2.47x10-4 g/mL capsaicin. 

After placing each filter paper on the tongue, each subject had to evaluate the perceived intensity for 

each stimulus using a visual analog scale from 0 to 5 (0 = no taste at all, 5 = extremely strong taste). 

The ratings of the perceived taste intensity for the two concentrations of each stimulus were called: 

sweet_low_int and sweet_high_int, sour_low_int and sour_high_int, salty_low_int and 

salty_high_int, bitter_low_int and bitter_high_int, astring_low_int and astring_high_int, hot_low_int 

and hot_high_int. The overall taste status, which is the target of regressor model, was calculated in 

each subject as the mean value of intensity ratings for the low and the high concentration of the six 

stimuli (score_lowhigh_capsadstr_int1). Subjects also had to identify the taste quality he/she of each 

stimulus by choosing from a list of six possible answers (sweet, sour, salty, bitter, astringency and 

hot) in a forced choice procedure [45]. Each correct answer was rated 1, the number of correctly 

identified tastes was summed up in the total taste score (score_lowhigh_capsadstr1) whose 

maximum values was 12. The scores of the correct answer for the two concentrations of each stimulus 

were called as follows: salty_low_taste_correct; salty_high_taste_correct; sweet_low_taste_correct; 

sweet_high_taste_correct; sour_low_taste_correct; sour_high_taste_correct; bitter_low_taste_correct; 

bitter_high_taste_correct; hot_low_taste_correct; hot_high_taste_correct; astring_low_taste_correct; 

astring_high_taste_correct.  

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 July 2023                   doi:10.20944/preprints202307.0194.v1

https://doi.org/10.20944/preprints202307.0194.v1


 4 

 

2.4. Supervised Learning 

The automatic prediction of the overall taste status of healthy controls and patients with 

chemosensory loss was carried out from January 2022 to October 2022 by SL algorithms exploiting 

the subjects’ parameters that were presented in the data model as predictive variables (features). We 

used the SL regressors because they are specific to predict continuous outcomes such as the overall 

taste status of subjects [48]. The SL regressors learned and created automatic regressor models that 

evaluated the differences among subjects and returned, with high precision, a prediction of the value 

of the overall taste status in healthy controls or patients with chemosensory loss subjects. The 

following algorithms were used: Logistic Regression, Random Forest regressor, and CatBoost 

regressor. During training, the different algorithms learn the hidden patterns in the structured 

dataset, then they take new unforeseen inputs (test dataset) to predict the value of the target (the 

overall taste status). To archive our aim (to analyze the overall taste status of healthy controls and 

patients with chemosensory loss and individuate specific stimulus or their combination that best can 

predict the overall taste status of two groups) was necessary to apply the regressor model separately 

to the dataset of healthy controls and patients with chemosensory loss. Therefore, we performed two 

SL regressor experiments: experiment 1 included healthy controls (n = 102) and experiment 2 

included patients with chemosensory loss (n = 51).  

The interpretation of the results of the Random Forest regressor model have been performed by 

using Shapley Additive exPlanations (SHAP)[49] which is a game-theoretic method that allows to 

link the importance of each feature with its effect. SHAP returns a specific plot for each Random 

Forest regressor experiment representing the impact of each feature in that experiment.  

The following data processing operations, which are a crucial phase in the performance of an SL 

project, were applied: 

1. The definition of correlations between numerical parameters and those between each numerical 

feature and the target, which were a fundamental step to understand the data structure, were 

also considered to include a feature in the data set (Figure 1). 

2. Choice of features that are used by the algorithm as predictive variables of the target:  the set of 

parameters most suitable for our case study was selected as features by expert researchers in 

taste physiology and an ML engineer, based on their domain knowledge, from a database of the 

sensory, clinical, and demographic parameters [50]. In addition, since two features strongly 

correlated with each other have almost the same effect on the dependent variable, one of them 

has been dropped to reduce the noise that can impact algorithm performance [51]. Specifically, 

the sum of the scores of the correct answer for the two concentrations of salty, sweet, sour, bitter, 

hot and astringency, the sum of the scores of the correct answers for the two concentrations of 

salty, sweet, sour and bitter, and the intensity ratings for the two concentrations of salty, sweet, 

sour and bitter strongly correlated with each other. The first summated variable that include 

evaluations of all stimuli was selected, the latter two were excluded. 

3. Handling of missing values: every line of the subject that represents lacking information in some 

column was eliminated. 

4. Elimination of duplicate values. In fifty-eight subjects of the group of controls all sensory 

measurements were repeated twice. The column relative to these measures repeated, and those 

of the overall taste status and total taste score calculated in these subjects (twenty-nine columns 

in total) have been eliminated from the data set.   

5. Converting the dataset's content into a language that an algorithm can understand: this included 

the One Hot Encoding which encodes categorical data into numerical data and the normalization 

of the numerical data which consisted in transforming a real range of numerical values in a range 

between 0 to 1. 
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Figure 1. Linear correlation analysis between the numerical features of the dataset and those between 

numerical features and the target. The bar color on the right side on the Y axis represents the value of 

linear correlation between features. P values are indicated inside each square and derived from 

Pearson’s coefficient analysis 

After data processing operations that included the remotion of all non-significant and correlated 

features, we increased the parameters of numbers of estimators, maximum of depth of the SL 

regressors. Moreover, we used 3-fold Cross-Validation, which mixes and splits data into two groups 

(training data, 66.66% and test data, 33.33%) for three times using different subsets of data each time. 

The evaluation of the performance of the algorithms was found by metrics, such as Mean 

Absolute Percentage Error (MAPE) and Mean Squared Error (MSE) that assesses the differences 

between the observed and predicted values. In particular, MAPE represents the error percentage of 

predicted values, while MSE represents the average of the summation of the squared difference 

between the actual output value and the predicted output value. The overall behavior of our 

regressors was evaluated by the automatic optimization of their hyperparameters by Grid Search 

Algorithm successively.  

2.5. Statistical Analysis 

Fisher’s Exact Test was used to analyze differences, between healthy controls and patients with 

chemosensory loss, with regard to the frequency of correct answers for the two concentrations of each 

stimulus, gender, and like to eat spicy. T test was used to compare differences, between healthy 

controls and patients with chemosensory loss, in age, BMI, depression, taste intensity ratings for each 

stimulus and total taste score. Statistical analyses were conducted using STATISTICA for WINDOWS 

(version 7; StatSoft Inc, Tulsa, OK, USA). P values < 0.05 were considered significant. P values of T 
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test were adjusted by Bonferroni correction (adjusted P = P / number of groups being compared) (P 

values < 0.0031 were considered significant). 

3. Results 

Value means ± SD or frequencies of the sensory, clinical, and anthropometric parameters 

determined in healthy controls and patients with chemosensory loss are shown in Table 1. T-test 

adjusted by Bonferroni correction showed that the ratings of the taste intensity in response to the low 

concentrations of each stimulus and the high concentration of sweet, sour and astringency, as well as 

the total taste score, of healthy controls, were higher than that of patients with chemosensory loss (p 

≤ 0.0006). Depression level was higher in patients with chemosensory loss than in healthy controls (p 

< 0.0001). The number of correct answers for the low concentrations of salty, bitter, hot, and 

astringency and the high concentration of sweet, sour, and astringency and the number of subjects 

who like to eat spicy was higher in healthy controls than in patients with chemosensory loss (χ2 ≥ 

4.79; p ≤ 0.041; Fisher’s test). No differences in the ratings of the taste intensity in response to the high 

concentrations of salty, bitter and hot, age, BMI, gender, or in the number of correct answers for low 

concentrations of sweet and sour, and high concentrations of salty, bitter and hot were found between 

the two groups (p > 0.05). 

Table 1. Sensory, clinical, and anthropometric parameters of healthy controls and patients with 

chemosensory loss. 

Features Healthy 

Controls  

(n = 102) 

Patients with  

chemosensory 

loss (n = 51) 

p-value 

Numerical type    

astring_low_int 2.24 ± 1.32 0.84 ± 1.10* < 0.0001 

bitter_low_int 2.40 ± 1.49 1.06 ± 1.26* < 0.0001 

hot_low_int                    2.04 ± 1.30 0.84 ± 1.24* < 0.0001 

salty_low_int                  3.03 ± 1.07 1.92 ± 1.18* < 0.0001 

astring_high_int 3.53 ± 1.09 2.43 ± 1.43* < 0.0001 

score_lowhigh_capsadstr1 9.37 ± 1.92 7.18 ± 2.47* < 0.0001 

sour_high_int 3.90 ± 0.85 3.27 ± 1.05* 0.0001 

sweet_low_int 1.99 ± 1.18 1.22 ± 1.14* 0.0002 

sweet_high_int 3.58 ± 0.89 2.90 ± 1.38* 0.0003 

sour low int 1.37 ± 1.22 0.68 ± 0.97* 0.0006 

bitter_high_int 3.15 ± 1.43 2.57 ± 1.43 0.018 

hot_high_int 3.54 ± 1.16 3.04 ± 1.33 0.018 

salty_high_int 3.79 ± 0.89 3.45 ± 1.27 0.054 

depression 17.15 ± 3.62 14.14 ± 5.18* < 0.0001 

BMI (kg/m2) 23.66 ± 4.02 25.61 ± 5.55 0.014 

Age (y) 36.70 ± 14.43 40.45 ± 12.62  0.116 

Categorial type    

astring_low_taste_correct/non (n) 78/24 15/36# < 0.0001 

astring_high_taste_correct/non (n) 86/16 24/27# <0.0001 

hot_low_taste_correct/non (n) 77/25 18/33# <0.0001 

salty_low_taste_correct/non (n) 87/15 33/18# 0.0039  

sour_high_taste_correct/non (n) 93/9 36/15# 0.0014  

bitter_low_taste_correct/non (n) 63/39 22/29# 0.0221 

sweet_high_taste_correct/non (n) 100/2 46/5# 0.0415  

sour_low_taste_correct/non (n) 32/70 10/41 0.0877 

sweet_low_taste_correct/non (n) 72/30 32/19 0.2122 

hot_high_taste_correct/non (n) 97/5 46/5 0.2061 

bitter_high_taste_correct/non (n)   77/25 39/12 0.531 
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salty_high_taste_correct/non (n) 90/12 45/6 0.596  

Like_to_eat_spicy/non (n) 66/36 23/28# 0.016 

sex_f1_m2 (women/men; n) 65/37 36/15 0.255 

Values are means ± SD, or number correct answers, or number of subjects. Body Mass Index, BMI; significant 

differences in mean values between healthy controls and patients with chemosensory loss are indicated by * (p 

≤ 0.0006; T test adjusted by Bonferroni correction), while differences in frequency distribution are indicated by 

# (p < 0.041; Fisher's method). 

The metrics of evaluation of the performance of the algorithms, MAPE and MSE, which measure 

the accuracy of a forecast system, showed that the random forest regressor was the best algorithm to 

predict the values of the overall taste status with high precision. The scatterplots showing 

experimental values vs predicted values of the overall taste status obtained with the random forest 

regressor in healthy controls and patients with chemosensory loss are shown in Figure 2. The values 

of MSE, which evaluates how estimated values are close to experimental values, were 0.019 and 0.014 

in the two groups. Besides, the MAPE values, which represent the error percentage of predicted 

values, were 4.55%, and 8.40% in healthy controls and patients with chemosensory loss, respectively.  

 

Figure 2. Scatterplots of experimental values vs predicted values of the overall status obtained with 

the random forest regressor in healthy controls (n = 102) (A) and in patients with chemosensory loss 

(n =51) (B). 

The Random Forest regressor allowed us to determine the order of importance and the 

contribution of the sensory, clinical, and anthropometric features on the prediction of overall taste 

status in the two groups, and the interpretation by SHAP algorithm allowed us to obtain an overview 

of their impact on the prediction.  

Specifically, the rating of the perceived taste intensity for the low concentration of salt was the 

most important feature for the learning of model in healthy controls and its contribution on the 

prediction of the overall taste status, estimated as the average impact on the model, was 0.079 (Figure 

3A). This feature was followed in order of importance from the second to the tenth by: the intensity 

rating for the high concentration of sour, for the low concentration of bitter, for the high concentration 
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of sweet, for the high concentration of bitter, for the low concentration of hot, for the high 

concentration of salty, for the low concentration of astringency, the total taste score and the intensity 

rating for the low concentration of sweet. It is interesting to note that depression status was a 

significant feature (sixteen in importance order). These features had an average impact on the 

model lower than 0.057. The link between features’ importance and features’ effect on the overall 

status of the healthy controls is shown in the SHAP summary plot (Figure 3B). The plot highlights 

that high estimated values (pink) of the rating of the perceived taste intensity for the low 

concentration of salt and for the high concentration of sour had a strong and positive impact to make 

a prediction of high values of overall taste status and low estimated values (blue) of these features 

strongly pushed the model prediction towards low values of the overall taste status. The mean of the 

positive impacts of these two features were 0.052 and 0.040, while that of the negative impacts were 

-0.155 and -0.106. High estimated values (pink) of the successive eight features had a positive impact 

(≤ 0.057) to make a prediction of high values of overall taste status, medium values (violet) impacted 

the model to make a prediction of medium values of the overall taste status and low estimated values 

(blue) of these features pushed the model prediction towards low values of the overall taste status 

(negative impact ≤ -0.069). 

 

Figure 3. Importance and impact of the sensory, clinical, and anthropometric features on the overall 

taste status prediction determined with Random Forest regressor in healthy controls. Importance of 

features in the learning of model to understand the overall taste status (A). The Y axis represents the 

order of the features’ importance, while the average impact on the model output is represented in the 

X axis. The SHAP summary plot in the healthy controls (B). The left-hand side of the Y-axis represents 

the descending order of importance; the X-axis represents the SHAP value i.e. the impact on the 

output model. The color represents the feature value: high values have a pink color, while low values 

have a blue one. Numbers indicated for each line represent the mean of the positive impact values 

and the negative impact of each feature. 

The features’ importance in facilitating the learning of the Random Forest regressor to predict 

the overall taste status, and an overview of how the most important features impact it to make a 

prediction in patients with chemosensory loss are shown in Figure 4. In this case, the rating of the 

perceived taste intensity for the high concentration of bitter and for the high concentration of 

astringency were the first two most important features for the model to predict the overall taste status 
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of this group, giving a similar contribution on the model prediction of the overall taste status, the 

average impacts were 0.105 and 0.100 (Figure 4A). These were followed in order of importance from 

the third to the tenth by: the total taste status, the intensity rating for the low concentration of salty, 

for the high concentration of sweet, for the low concentration of bitter, for the low concentration of 

sweet, for the high concentrations of sour, for the high concentration of salty and for the low 

concentration of sour. These features had an average impact on the model lower than 0.077. SHAP 

summary plot highlights that high estimated values (pink) of the rating of the perceived taste 

intensity for the high concentration of bitter and for the high concentration of astringency had a 

strong and positive impact to make a prediction of high values of overall taste status and low 

estimated values (blue) of these features strongly pushed the model prediction towards low values 

of the overall taste status (Figure 4B). The mean of the positive impacts of these two features were 

0.085 and 0.096, while that of the negative impacts were -0.134 and -0.105. High estimated values 

(pink) of the successive eight features had a positive impact (≤ 0.098) to make a prediction of high 

values of overall taste status, medium (violet) and low values (blue) estimated values of these features 

impacted the model to make a prediction of medium and low values of the overall taste status 

(negative impact ≤ -0.105). 

 

Figure 4. Importance and impact of the sensory, clinical, and anthropometric features on the overall 

taste status prediction determined with Random Forest regressor in patients with chemosensory loss. 

Importance of features in the training model to understand the overall taste status (A). The Y axis 

represents the order of the features’ importance, while the average impact on the model output is 

represented in the X axis. The SHAP summary plot in patients with chemosensory loss (B). The left-

hand side of the Y-axis represents the descending order of importance; the X-axis represents the SHAP 

value i.e. the impact on the output model. The color represents the feature value: high values have a 

pink color, while low values have a blue one. Numbers indicated for each line represent the mean of 

the positive impact values and the negative impact of each feature. 

The error percentage of predicted values of the overall taste status (MAPE values) calculated in 

the datasets of the two groups by using as inputs for the algorithm only the most important feature 

for the two groups (the intensity rating for the low concentration of salt in healthy subjects and high 

concentration of bitter in patients), was 12.35%, and 17.94% in healthy controls and patients with 

chemosensory loss, respectively. When the second important features were also included in the 
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model (high concentration of sour for healthy subjects and high concentration of astringency for 

patients), the error percentage of predicted values of the overall taste status was 11.05%, and 17.16% 

in healthy controls and patients with chemosensory loss, respectively.  

4. Discussion 

This project used the SL regression method to establish which combination of sensory, clinical, 

and anthropometric parameters best predicts the overall taste status of healthy controls or that of 

patients with chemosensory loss. The subjects included as patients with chemosensory loss have been 

selected based on what they reported. The values of the sensory parameters, which were used as 

predictive variables of the overall taste status, as well as the correlation between them and the target, 

confirm that they showed a lower taste sensitivity compared to the subjects of the group of control. 

The low taste sensitivity of these subjects was linked to their higher depression status according to 

what was already reported [8]. 

The Random Forest regressor was the best model to deeply understand differences among 

subjects and obtain, with high precision, the value of the overall taste status of subjects. Moreover, 

the Random Forest regressor allowed us to establish each parameter’s impact on prediction, 

identifying the combination of the biological parameters that could best predict the overall taste 

status of healthy subjects or that of patients with chemosensory loss. The performance of our 

approach was tested by the metrics of evaluation, MAPE and MSE, which allowed us to verify that 

the estimated values by the Random Forest regressor were strictly close to experimental values with 

an error percentage of 4.55%, and 8.40% in healthy controls and patients with chemosensory loss, 

respectively. 

The Random Forest regressor allowed us also to achieve the order of importance of each feature 

on the prediction of the overall taste status of subjects of the two groups. The regressor identified the 

rating of the perceived taste intensity for the low concentration of salt to be the most important 

parameter in healthy subjects, while the rating of the perceived taste intensity for the high 

concentration of bitter was the most significant in patients with chemosensory loss. Moreover, the 

interpretation of the linking between parameters’ importance and parameter’ effect showed that high 

estimated values of the perceived intensity for the low concentration of salt had a strong and positive 

impact to predict high values of overall taste status in healthy subjects. On the other hand, high 

estimated values of the rating of the perceived taste intensity for the high concentration of bitter had 

a strong and positive impact to predict high values of overall taste status in patients with 

chemosensory loss. Low values of these two parameters strongly pushed the model prediction 

towards low values of the overall taste status in both groups. The fact that the most important 

parameter to predict the overall taste status in healthy controls was the rating of the perceived 

intensity for the low concentration of salt is not surprising, as we can see from experimental values 

shown in Table 1, the low concentration of salt evoked the highest response compared to the low 

concentrations of other stimuli and a high percentage of subjects (85.3%) recognized it correctly. The 

rating of the perceived taste intensity for the high concentration of bitter, which was the most 

important feature in patients with chemosensory loss, was correctly recognized by 76.5 % of patients. 

The bitter taste was an important stimulus also in healthy controls, third in importance order at low 

concentration, it was correctly recognized by 61.8% of subjects. The difference in the importance of 

bitter taste that we found in the two groups may be explained by possible genetic differences between 

the two groups. In our pilot study we found that, differently from healthy controls, in patients with 

taste disorders, a taster haplotype in the gene coding for bitter TAS2R38 receptor is not sufficient to 

exhibit high responses, suggesting that the genetic constitution may represent a risk factor for the 

development of taste disorders [52]. Besides, based on the results that suggested the TAS2R38 

pathway as an immune response target [33,53], patients with the non-taster haplotype, who show 

lower responsiveness, could have a higher susceptibility to oropharyngeal infections, which may 

contribute to their chemosensory loss.  

The second most important parameter in learning the model in healthy controls was the 

perceived intensity rating for high concentration of sour, it was the stimulus that evoked the highest 
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response and 91.2 % of subjects correctly recognized it. High estimated values had a positive impact 

to predict high values of overall taste status, while low estimated values strongly pushed the model 

prediction towards low values of the overall taste status. Less important was the importance and 

impact that sour had on the prediction of the overall taste status in patients with chemosensory loss, 

in which was the eighth feature in importance order suggesting that the impact of sour on taste 

function may be more important in subjects that have not pathologies that determine chemosensory 

loss.  

The second most important parameter in learning the model in the patients with chemosensory 

loss was the perceived intensity rating of the for high concentration of astringency, which strongly 

impacted the prediction of the overall status of this group in a way equivalent to what was done by 

the most important feature, the high concentration of bitter (the values of their contribution on the 

model prediction were 0.105 and 0.100). Less important was the contribution and impact that 

astringency (eighth in important order at low concentration and eleventh at high concentration) had 

on the prediction of the overall taste status in healthy subjects, in which low estimated values pushed 

the model prediction towards low values of the target. These results allow us to speculate that the 

impact of astringency on taste function could be more important in subjects with low sensitivity. This 

result deserves to be further investigated in future studies.  

It is interesting to note that the performance of our model applied in the datasets of the healthy 

controls and that of patients by using as inputs for the algorithm only the most important features 

for the two groups, allowed us to verify that the estimated values were strictly close to experimental 

values with an error percentage of 12.35% and 17.95%. By including in the model also the second 

important features as the predictive variables, the error percentage of predicted values of the overall 

taste status decreased of 1.3% and 0.79%, in healthy controls and patients, respectively. 

5. Conclusions 

In conclusion, our results indicated that the Random Forest regressor is a reliable strategy to 

analyze taste function, by exploiting a structured dataset consisting of sensory, clinical, and 

anthropometric parameters previously determined in the participants [38], as inputs for the 

algorithm. Furthermore, the proposed approach, which provides real-time decision-making, allowed 

us to identify with high precision different stimuli and their combination that best can predict the 

overall taste status in the two groups. The low concentration of salt and high concentration of sour 

were specific for healthy subjects, while the high concentration of bitter and high concentration of 

astringency stimuli were the most indicative ones for pathological taste disorders. These four stimuli 

strongly impacted the model prediction mostly in the subjects where evoked low responses (the 

impact values were two-fold increase with respect to those of the other stimuli), suggesting that a 

low response to these stimuli characterizes taste dysfunction. 

Identifying these combinations of stimuli as the most critical to efficiently assess gustatory 

function of healthy subjects and patients with chemosensory loss could simplify testing especially 

during routine clinical examinations (e.g., annual physical exams), and therefore reduce the health 

system commitment in terms of time and costs. 
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