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Abstract: Hypertrophic Cardiomyopathy (HCM) is a common inherited disorder that can lead to heart failure 
and sudden cardiac death, characterized at the histological level by focal areas of myocyte disarray, hypertrophy 
and fibrosis, and few disease-targeted therapies exist. To identify, focal, spatially restricted alterations in 
transcriptional pathways and reveal novel therapeutic targets, we performed a spatial transcriptomic analysis of 
areas of focal myocyte disarray compared to areas of normal tissue, using a commercially available platform 
(GeoMx, nanoString). We analyzed surgical myectomy tissue from four patients with HCM and control 
interventricular septum tissue from two unused organ donor hearts that were free of cardiovascular disease. 
Histological sections were reviewed by an expert pathologist and 72 focal areas with varying degrees of myocyte 
disarray (normal, mild, moderate, severe) were chosen for analysis. Areas of interest were interrogated with the 
Human Cancer Transcriptome Atlas designed to profile 1800 transcripts. Differential expression analysis 
revealed significant changes in gene expression between HCM and Control tissue, and functional enrichment 
analysis indicated these genes were primarily involved in interferon production and mitochondrial energetics. 
Within HCM tissue, differentially expressed genes between areas of mild and moderate disarray were enriched 
for genes related to mitochondrial energetics (moderate disarray) and response to oxygen/cytokine levels (mild 
disarray). The comparison between areas of moderate and severe disarray were enriched for genes related to the 
c-Jun N-terminal kinase (JNK) cascade in severe disarray. Analysis of ligand-receptor pair gene expression 
revealed that HCM tissue exhibited downregulation of platelet-derived growth factor (PDGF), NOTCH, 
junctional adhesion molecule, and CD46 signaling, while showing upregulation of fibronectin, CD99, cadherin, 
and amyloid precursor protein signaling. A deconvolution analysis utilizing the matched single nuclei RNA-
sequencing (snRNA-seq) data to determine cell type composition in areas of interest revealed significant 
differences in fibroblast and vascular cell composition in areas of severe disarray when compared to normal 
areas in HCM samples. Cell composition in normal areas from control tissue was also divergent from normal 
areas in HCM samples, which was consistent with the differential expression results. Overall, our data identify 
novel and potential disease-modifying targets for therapy in HCM. 

Keywords: Hypertrophic Cardiomyopathy; spatial transcriptomics; single nucleus RNA-sequencing; gene 
expression; bioinformatics; cardiovascular disorder; genetic disorder 
 

1. Introduction 
Hypertrophic Cardiomyopathy (HCM) is an inherited disorder affecting between 1 in 500 and 1 

in 200 people. The disease is characterized by unexplained left ventricular hypertrophy that is often 
asymmetric, involves the interventricular septum, and is associated with left ventricular outflow tract 
(LVOT) obstruction, fibrosis, microvascular occlusion, and sudden cardiac death. Histologically it is 
characterized by focal areas of myocyte hypertrophy, myocyte disarray, fibrosis, and medial 
hyperplasia. Anatomically it is characterized by mitral valve abnormalities and left ventricular 
outflow tract obstruction. Physiologically it is characterized by enhanced contractile function, 
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reduced diastolic function and increased risk of sudden cardiac death [1]. Traditionally HCM is 
considered a disease that ensues from sarcomere gene dysfunction, but in most patients, pathogenic 
sarcomere gene mutations cannot be identified. Activation of signaling pathways that promote 
cardiac myocyte hypertrophy and fibrosis of the heart have been implicated in many studies [2], but 
additional mechanisms are likely contributing. Comprehensive studies to understand how sarcomere 
gene mutations can lead to phenotypes not related to sarcomere function or that are seen in cells that 
do not express sarcomere genes are lacking in the field. Since sarcomere gene mutation-negative 
patients have similar phenotypes to sarcomere gene mutation- positive patients, it is likely that there 
are final common pathological pathways independent of sarcomere gene mutations that are involved, 
but these final common pathways are incompletely understood. Recent reports using single nucleus 
RNA-sequencing of human HCM tissue have identified potential alterations in cell-to-cell 
communication involving extracellular matrix proteins, integrin receptors and activation of immune 
cells as potential contributors to the HCM phenotype [3-5]. These studies, however, did not determine 
how these alterations in single cell transcription and intercellular communication are spatially 
organized in the context of known histopathological features of HCM. To identify changes in gene 
expression associated with focal areas of myocyte disarray, we performed a spatial transcriptomic 
analysis of genes expressed in these areas that included identification of differentially expressed 
genes (DEGs), a gene ontology (GO) analysis to assign DEGs to molecular function, a Ligand-
Receptor (L-R) gene expression analysis to infer cell-cell communication, and a deconvolution 
analysis to determine the cell type composition in these areas. Here we report that areas of focal 
myocyte disarray show altered expression of genes involved in interferon production, mitochondrial 
energetics, the response to oxygen/cytokine levels, and the JNK cascade that may also reflect changes 
in cellular composition. Furthermore, these areas also show dysregulation of PDGF and cadherin 
signaling that may be relevant to the pathogenesis of HCM. 

2. Results 
2.1. Identification of Focal Areas of Myocyte Disarray and Designation of Regions of Interest 

HCM and control patient sections were stained with morphology markers desmin, fibroblast 
activator protein, CD45 and nuclear DNA using Syto83 as described in methods. Representative 
images from HCM sample 2799 and control sample 2879 are shown in Figure 1. Representative 
Regions of Interest (ROIs), also called Areas of Interest (AOIs) are indicated and shown at higher 
magnification.  
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Figure 1. Human Heart Tissue Sections Used for Spatial Transcriptomic Analysis. Normal and HCM histological 
sections from the interventricular septum were immunostained for FAP, CD45, Desmin and nuclear DNA as 
described in methods. Representative samples 2799 (Normal) and 2879 (HCM) are shown at lower magnfication, 
along with designated Areas of Interest (AOIs) that were chosen based on degree of myocyte disarray. The first 
6 AOIs for each sample are shown at higher magnification. Myocyte disarray is apparent at higher magnfication 
in the HCM samples. 

2.2. Identification of Differentially Expressed Genes and Associated Pathways in Areas of Disarray 
The bioinformatic analysis pipeline for identification of differentially expressed genes (DEGs) 

between sets of ROIs and associated functional enrichment is shown schematically in Figure 2A. 
DEGs were determined in pairwise comparisons between sets of ROIs classified by degree of myocyte 
disarray and patient HCM status (Figure 3A, Supplemental Table 1). Given the low number of ROIs 
that passed quality control, areas of mild disarray from control patients were excluded from further 
analysis. We chose to focus on three comparisons to assess the progression of HCM: normal disarray 
ROIs between HCM and control patients, moderate to mild disarray ROIs within HCM patients, and 
severe to moderate disarray ROIs within HCM patients. The largest number of DEGs was obtained 
in comparison of normal disarray ROIs between HCM and control patients, suggesting that the 
phenotype itself is associated with large changes in gene expression, while the fewest DEGs were 
found in the comparison between moderate and severe disarray levels in HCM patients (Figure 2A, 
Supplemental Figure 1A). Gene Ontology enrichment analysis revealed an upregulation in genes 
related to mitochondrial energetics and a downregulation of genes involved in interferon production 
in HCM ROIs of varying levels of disarray compared to normal control ROIs (Figure 3B, 
Supplemental Figure 1B). Within HCM patients, moderate disarray ROIs showed a weaker 
upregulation in genes associated with mitochondrial energetics and a downregulation in genes that 
mediate the response to oxygen levels and cytokines when compared with mild disarray ROIs and 
severe disarray ROIs show an upregulation of genes related to the JNK cascade compared to 
moderate disarray ROI (Figure 3B). Interestingly, there was a large overlap between DEGs obtained 
in the comparison of control normal and HCM normal ROIs and other comparisons between control 
normal and HCM with more disarray (Supplemental 1A). This overlap was even more pronounced 
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in the GO categories obtained by performing GO enrichment of the DEGs obtained from these 
comparisons (Supplemental 1B). This suggests that the HCM genotype itself is associated with strong 
gene expression changes. 

 
Figure 2. Study Design and Overall Analysis Pipeline for Spatial Transcriptomic Data from HCM Patient Tissue. 
A. Overall Analysis Pipeline for Spatial Transcriptomic Data. B. Overview of the hierarchy between patients, 
samples, and ROIs. C. Distribution of ROIs that passed quality control between patients and colored by disarray 
level. 
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Figure 3. Identification of Differentially Expressed Genes and Associated Biological Processes in Areas of 
Myocyte Disarray. A. Volcano plots comparing areas of normal myocyte disarray between control and HCM 
patients, and the progression of increasing myocyte disarray from within the HCM phenotype. In each panel, 
upregulated genes correspond to the condition listed second in the plot title. Only differentially expressed genes 
that had an FDR adjusted p-value below 0.05 were considered differentially expressed. B. Gene ontology 
enrichment dot plot of significant annotations per comparison. C. Module expression of significant annotations 
broken down by HCM status and myocyte disarray. 

2.3. Identification of Potentially Altered Cell-Cell Interactions in Areas of Myocyte Disarray 
The bioinformatic analysis pipeline for identification of Ligand-Receptor (L-R) pairs that are 

differentially expressed in areas of myocyte disarray is shown schematically in Figure 2A and further 
explained in Figure 4A. Differentially expressed genes were determined in pairwise comparisons 
between ROIs classified by degree of myocyte disarray and overall patient HCM status, as described 
above. The gene sets from each comparison were separated by whether they were down or 
upregulated.  The gene sets were then compared to the CellChat Interaction Database [6] to identify 
Ligand-Receptor pairs that were both present in either the up or downregulated gene sets, and  
which pathway the Ligand-Receptor pair was associated (Supplemental Table 2). Here we note that, 
like the differential expression results, significant Ligand-Receptor pairs are observed when 
comparing ROIs obtained from HCM patients with varying levels of disarray to ROIs obtained from 
control patients.  Although the GO enrichment analysis of the DEGs between control normal ROIs 
and HCM ROIs with varying levels of disarray did not uncover differences in GO terms, there were 
differences in the CellChat pathways associated with significant ligand-receptor DEG pairs. In HCM 
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patients compared to control patients, normal disarray areas show a downregulation of CD46, 
junctional adhesion molecule, neurotrophin, and NOTCH signaling, while cadherin, CD99, and 
fibronectin signaling are upregulated. Areas of mild disarray in HCM patients are downregulated for 
junctional adhesion molecule and neurotrophin signaling, and upregulated for cadherin, CD99, 
fibronectin, and amyloid precursor protein signaling compared to normal disarray areas in control 
patients. Moderate disarray areas in HCM patients are downregulated for CD46, neurotrophin, and 
platelet-derived growth factor signaling, and upregulated for cadherin signaling compared to normal 
disarray areas in control patients. Severe disarray areas in HCM patients are downregulated for CD46, 
junctional adhesion molecule, neurotrophin, NOTCH, and platelet-derived growth factor signaling, 
and upregulated for cadherin signaling compared to normal disarray areas in control patients. 
Interestingly, CD99 signaling is upregulated in HCM normal/mild ROIs compared to control normal 
ROIs but downregulated in HCM moderate/severe ROIs compared to HCM normal ROIs. Also, JUN 
kinase signaling is upregulated in areas of severe disarray compared to areas of moderate disarray. 
The greatest number of Ligand-Receptor pairs driving these pathways is observed in platelet-derived 
growth factor signaling, followed by NOTCH signaling. All other pathways have one Ligand-
Receptor pair per disarray level comparison.  

 
Figure 4. Identification of Differentially Expressed Ligand-Receptors in Areas of Myocyte Disarray. A. 
Differentially expressed genes between myocyte disarray levels were filtered by an FDR-adjusted p-value of 0.05 
and split into upregulated and downregulated groups. These gene sets were then compared to the CellChat 
database to identify Ligand-Receptor pairs and their associated pathway. B. Heatmap indicating which 
pathways were affected in different disarray level comparisons and colored by the number of Ligand-Receptors 
present in the pathway. 

2.4. Determination of Cell Type Composition in Areas of Myocyte Disarray 
Previously published snRNA-seq datasets from the patients in this study were reanalyzed to 

determine cell-type composition [3-5, 7] . UMAP plots and a dot plot showing cell clusters and cell 
identity assignments separated by disease label are shown in Supplemental Figure 2. To determine 
whether the cell type composition differs in areas of myocyte disarray compared to normal and in 
HCM vs control, we performed a deconvolution analysis (Methods) [8] using genes present in both 
the snRNA-seq data and the spatial data (Supplemental Table 3, Figure 5A). Note that areas of 
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moderate and severe disarray were only present in ROIs obtained from HCM patients. Using the cell 
type diversity statistic described by Karagiannis et al. [9] we assessed the cell type diversity of ROIs 
of varying levels of disarray and HCM status (Figure 5B). Values closer to -1 indicate the sample is of 
one cell type and values closer to 0 indicate the sample is more varied in composition.  The Wilcoxon 
ranked sum test was used to determine differences in the mean cell type diversity statistic value of 
control normal ROIs and HCM ROIs of varying levels of disarray. Interestingly, we note that control 
patient ROIs appear to have less cell type diversity than HCM patient ROIs, with a significant 
difference observed between control normal ROIs and HCM normal ROIs (FDR = 0.017) (Figure 5B). 
To get a more granular picture of cell type composition, the average cell proportion for each observed 
cell type was broken down by HCM status and disarray level (Figure 5C). We note that the proportion 
of cardiomyocytes, dendritic cells, endothelial cells, macrophages, and smooth muscle cells were 
relatively constant across HCM status and disarray levels (Figure 5C). On the other hand, fibroblast 
proportions increased, as the severity of disarray increased (Figure 5C). ROIs from HCM patients 
with normal and mild levels of disarray contained more lymphatic endothelial cells and pericytes 
and had fewer neuronal cells and T-lymphocytes (Figure 5C).  

 
Figure 5. Cell type Composition of Areas of Focal Myocyte Disarray Determined by Deconvolution of SnRNA-
seq Data. A. Deconvolution of ROIs using per-patient averaged matched SnRNA-seq data and broken down by 
HCM status, patient, and disarray level. B. Cell diversity statistic summarizing the diversity of ROIs in different 
HCM status/disarray levels. The Wilcoxon ranked sum test values are shown above the HCM status disarray 
levels to highlight significant differences when compared to the distribution of cell type diversity statistics for 
control normal ROIs (ns = not significant, * = p-value < 0.05, ** = p-value < 0.01). C. Average cell proportions of 
ROIs in different HCM status/disarray levels. 

3. Discussion 
Spatial transcriptomics can be used to map transcriptional paĴerns to specific anatomic locations 

[10-12] and can complement high-resolution, non-spatially resolved single cell transcriptomic 
datasets by facilitating the mapping of diseased cell types to areas of pathological change through 
bioinformatic deconvolution methods [13, 14]. Such approaches have been used to map areas of 
SARS-CoV2 infection and lung injury [15, 16] but to the best of our knowledge have not been used to 
study HCM tissue. Here we report the spatial transcriptomic profiling of areas of focal myocyte 
disarray, lesions pathognomonic for HCM and thought to reflect the intrinsic pathophysiological 
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processes inherent to diseased cells, using a set of probes specific for the cancer cell transcriptome 
(nanoString, SeaĴle, WA). We have found that focal areas of myocyte disarray specifically show 
changes in gene expression associated with interferon production, oxygen sensing, and 
mitochondrial function. These findings suggest alterations in proinflammatory and metabolic 
processes in areas of myocyte disarray, which may ensue from sarcomere dysfunction, often the 
primary disease driving process in HCM. These findings are also consistent with previous studies 
noting altered interferon levels and inflammatory markers in HCM patients [17, 18] and altered 
mitochondrial function in HCM patients [19, 20]. Our study is unique, however, in that it specifically 
implicates these processes in areas of focal myocyte disarray, thus linking these processes to discrete 
histopathological defects.   

Analysis of ligand-receptor alterations provides a window into how intercellular 
communication may be altered in areas of focal myocyte disarray. Downregulation of CD46, 
junctional adhesion molecule, neurotrophin, NOTCH and PDGF signaling in areas of severe myocyte 
disarray, as shown in Fig. 4, may reflect reduced complement inactivation (CD46)[21], reduced 
integrin-mediated leukocyte and platelet adhesion (junctional adhesion molecule)[22], reduced 
neuronal innervation (neurotrophin)[23], loss of cardioprotection (NOTCH)[24] and reduced smooth 
muscle and fibroblast proliferation (PDGF)[25] in these areas. Increased cadherin signaling implies 
increased cell adhesion [26] which may represent a response to increased mechanical force associated 
with HCM. Reduced inactivation of complement and reduced leukocyte and platelet adhesion imply 
alterations in the inflammatory response. Changes in neuronal homeostasis may imply altered 
autonomic innervation and potentiation of arrhythmogenesis. Alterations in smooth muscle 
proliferation may also reflect altered vascularity in these areas, while alterations in fibroblast 
proliferation may reflect alterations in fibrosis. CD99 plays an important role in T cell activation [27] 
and suppression of extracellular matrix-integrin interactions relevant to cell adhesion [28], and its 
upregulation in areas of mild disarray but down regulation in areas of moderate or severe disarray 
may reflect a role for T cell immune function in early, mild lesions that is then dispensable in 
advanced lesions. JUN kinases are activated broadly under conditions of cellular stress and play 
important roles in tumorigenesis, neuron development, apoptosis and insulin resistance [29], and 
thus upregulation in areas of severe disarray likely reflect increased cellular stress. Future studies 
targeting these specific pathways may lead to improved experimental and therapeutic outcomes. 

Deconvolution analysis of snRNA-seq data in conjunction with spatial transcriptomic data 
facilitates determination of specific cell type composition within focal areas of myocyte disarray. As 
expected, the cell composition in areas of moderate or severe disarray and normal areas in HCM 
samples diverged, with areas of disarray showing a higher proportion of fibroblasts, consistent with 
altered fibrotic mechanisms in these areas. Normal areas in HCM tissue showed a higher proportion 
of lymphatic endothelial cells and pericytes and a lower proportion of neuronal cells and T-
lymphocytes, suggesting that these areas are in a different physiological stage compared to areas of 
moderate or severe disarray. These findings raise an interesting question of whether the areas of focal 
myocyte disarray are anatomically distinct by virtue of differences in innervation, capillary density, 
and lymphatics, which may facilitate the differential and distinctive recruitment of immune cell 
populations present in the different areas. In this model, the detection of focal myocyte disarray 
would thus likely be a local consequence of a more global disease process rather than an area of focal 
pathophysiology. Additional higher resolution spatial transcriptomic studies with targeted deletion 
of specific cell populations such as fibroblasts or T-lymphocytes would likely provide further insight.  

Limitations of our study include the small number of patient samples, the use of the Human 
Whole Cancer Transcriptome Atlas reagent set and the limited spatial resolution of the GeoMX 
technology. Spatial transcriptomic analysis, while powerful, is currently limited by expense and low 
throughput. The Cancer Transcriptome Atlas assesses approximately 1800 mRNA targets and is 
designed for profiling of cancerous tumors and the tumor microenvironment, and thus does not 
address the entire transcriptome and may not detect critical transcriptional pathways not included in 
the probe set. At the time this study was done, the Human Whole Transcriptome Atlas was not yet 
available. Future studies using this newer whole transcriptome atlas will likely be informative. 
Finally, the GeoMX technology spatial resolution is limited to ~100-200 cells, and thus cannot truly 
provide single cell resolution. The latest CosMX technology from nanoString now can provide single 
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cell resolution. Future studies using these newer technologies may provide even greater insights into 
the single cell and spatial transcriptomic analysis of human HCM. 

4. Materials and Methods  
4.1. Patient Characteristics and SnRNA-Seq Datasets 

The patients with HCM and control patients without cardiovascular disease and their snRNA-
seq datasets from the cardiac interventricular septum have been described previously [3-5, 7]. 
Deidentified samples from HCM patients 2799, 2834, 2828 and 2843 and control patients 2879 and 
2880 were used in this study. The snRNA-seq datasets are available in the Gene Expression Omnibus 
database under accession numbers GSE161921, GSE174691 and GSE181764.  

4.2. Tissue Processing for Spatial Transcriptomics 
Paraffin embedded tissue was generated for each tissue sample and sectioned for spatial 

transcriptomic analysis by standard methods. Tissue sections were generated within 2 weeks of 
spatial analysis. Tissue sections were processed for spatial transcriptomics analysis according to the 
GeoMx Digital Spatial Profiling protocol [11] as provided by the manufacturer (nanoString, SeaĴle, 
WA). Briefly, samples were stained for morphology using commercially available antibodies to 
desmin (abcam cat. # ab185033) at 1:200 dilution, fibroblast activating protein (abcam cat. # ab238148) 
at 1:50 dilution and CD45 (Cell Science Technologies cat. # 13917BF) at 1:100 dilution. Nuclei were 
counterstained with Syto83 (ThermoFisher). Tissue morphology was visualized for each tissue slide 
using the GeoMx Digital Spatial Profiler and areas of focal myocyte disarray were designated as 
regions of interest (ROIs) by an expert pathologist. ROIs were graded for degree of myocyte disarray 
on a scale of severe, moderate, mild and normal. 12 ROIs were selected from each tissue slide. RNA 
within the ROIs was captured and profiled using the GeoMx Cancer Transcriptome Atlas (nanoString) 
to detect approximately 1,800 RNA targets. Samples were processed in 2 batches of 4 slides, each 
batch consisting of 2 HCM and 2 normal samples. Serially sectioned slides stained with hematoxylin 
and eosin or trichrome were also done to aid in morphological assessment. 

4.3. Identification and Analysis of Differentially Expressed Genes Associated with HCM Areas of Myocyte 
Disarray 

Raw expression data from ROIs underwent quality control and Q3 normalization per 
recommendations from the manufacturer (nanoString). Segment, probe, and gene quality control 
were performed using the R package, GeoMXTools. Expressed genes were filtered for inclusion in at 
least 1% of segments. Samples that passed quality control underwent unsupervised analysis to 
identify potential confounding factors. Linear mixed-effects models were used to test for differential 
expression genes between groups of ROIs with different levels of disarray and HCM status, using a 
composite variable indicating HCM status and disarray level as a fixed effect and seĴing the patient 
identifier as the random effect. Genes with Benjamini-Hochberg adjusted p-values less than 0.05 were 
considered significantly differently expressed between groups of ROIs. Gene Ontology analysis was 
performed using the R package, ClusterProfiler [30, 31].  

4.4. Ligand-Receptor Analysis to Delineate Potential Intercellular Communication Pathways that Promote 
Focal Myocyte Disarray 

Differentially expressed genes were further analyzed for the presence of Ligand-Receptor pairs 
that were differentially expressed in the same way (e.g. either both upregulated or both 
downregulated, called differential combination analysis) using known human ligand-receptor pairs 
present in the CellChat Interaction Database [6]. 

4.5. Deconvolution of Single Nucleus RNA-Sequencing Data to Determine Cell Composition in Areas of 
Focal Myocyte Disarray 

SnRNA-seq datasets from the eight samples were integrated into a single Seurat object [33] using 
Harmony [34]. Optimal clustering resolution was determined using ChooseR [35]. Cell assignments 
were generated using expression of canonical markers and methods described previously [3-5, 7]. 
The snRNA-seq datasets were filtered to only include marker genes present in the GeoMx ROI data 
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and log2 transformed.  GeoMx ROI data were Q3 normalized and log2 transformed before 
undergoing deconvolution.  Spatial Deconvolution Analysis was used to determine the cellular 
composition of areas of focal myocyte disarray using SpatialDecon [8]. Deconvolution was performed 
on a per patient basis, where each patient’s GeoMx ROI data was deconvoluted using the patient’s 
matching snRNA-seq data as a reference. The cell type diversity statistic described by Karagiannis et 
al. [9] was used to assess the cell type diversity of ROIs of varying levels of disarray and HCM status. 
The Wilcoxon ranked sum test was used to determine differences in the mean cell type diversity 
statistic value between control normal ROIs and HCM ROIs of varying levels of disarray. 

5. Conclusions 
Here we report the first spatial transcriptomic analysis of human HCM samples, focusing on 

areas of focal myocyte disarray. These areas of focal myocyte disarray show distinctive changes in 
gene expression related to interferon production and mitochondrial metabolism. Analysis of 
intercellular communication in these areas reveals significant changes in cell adhesion, PDGF, 
NOTCH and cadherin signaling. Analysis of cell content in these areas reveals characteristic 
differences in vascular and lymphatic cells, neurons, fibroblasts, and immune cells. Characterization 
of the complex interplay between cells within HCM lesions will likely lead to the development of 
novel, targeted therapeutics, perhaps those that target interferon signaling or mitochondrial 
metabolism, to improve outcomes in HCM patients. 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/xxx/s1. 
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