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Abstract: Hypertrophic Cardiomyopathy (HCM) is a common inherited disorder that can lead to heart failure
and sudden cardiac death, characterized at the histological level by focal areas of myocyte disarray, hypertrophy
and fibrosis, and few disease-targeted therapies exist. To identify, focal, spatially restricted alterations in
transcriptional pathways and reveal novel therapeutic targets, we performed a spatial transcriptomic analysis of
areas of focal myocyte disarray compared to areas of normal tissue, using a commercially available platform
(GeoMXx, nanoString). We analyzed surgical myectomy tissue from four patients with HCM and control
interventricular septum tissue from two unused organ donor hearts that were free of cardiovascular disease.
Histological sections were reviewed by an expert pathologist and 72 focal areas with varying degrees of myocyte
disarray (normal, mild, moderate, severe) were chosen for analysis. Areas of interest were interrogated with the
Human Cancer Transcriptome Atlas designed to profile 1800 transcripts. Differential expression analysis
revealed significant changes in gene expression between HCM and Control tissue, and functional enrichment
analysis indicated these genes were primarily involved in interferon production and mitochondrial energetics.
Within HCM tissue, differentially expressed genes between areas of mild and moderate disarray were enriched
for genes related to mitochondrial energetics (moderate disarray) and response to oxygen/cytokine levels (mild
disarray). The comparison between areas of moderate and severe disarray were enriched for genes related to the
c-Jun N-terminal kinase (JNK) cascade in severe disarray. Analysis of ligand-receptor pair gene expression
revealed that HCM tissue exhibited downregulation of platelet-derived growth factor (PDGF), NOTCH,
junctional adhesion molecule, and CD46 signaling, while showing upregulation of fibronectin, CD99, cadherin,
and amyloid precursor protein signaling. A deconvolution analysis utilizing the matched single nuclei RNA-
sequencing (snRNA-seq) data to determine cell type composition in areas of interest revealed significant
differences in fibroblast and vascular cell composition in areas of severe disarray when compared to normal
areas in HCM samples. Cell composition in normal areas from control tissue was also divergent from normal
areas in HCM samples, which was consistent with the differential expression results. Overall, our data identify
novel and potential disease-modifying targets for therapy in HCM.

Keywords: Hypertrophic Cardiomyopathy; spatial transcriptomics; single nucleus RNA-sequencing; gene
expression; bioinformatics; cardiovascular disorder; genetic disorder

1. Introduction

Hypertrophic Cardiomyopathy (HCM) is an inherited disorder affecting between 1 in 500 and 1
in 200 people. The disease is characterized by unexplained left ventricular hypertrophy that is often
asymmetric, involves the interventricular septum, and is associated with left ventricular outflow tract
(LVOT) obstruction, fibrosis, microvascular occlusion, and sudden cardiac death. Histologically it is
characterized by focal areas of myocyte hypertrophy, myocyte disarray, fibrosis, and medial
hyperplasia. Anatomically it is characterized by mitral valve abnormalities and left ventricular
outflow tract obstruction. Physiologically it is characterized by enhanced contractile function,
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reduced diastolic function and increased risk of sudden cardiac death [1]. Traditionally HCM is
considered a disease that ensues from sarcomere gene dysfunction, but in most patients, pathogenic
sarcomere gene mutations cannot be identified. Activation of signaling pathways that promote
cardiac myocyte hypertrophy and fibrosis of the heart have been implicated in many studies [2], but
additional mechanisms are likely contributing. Comprehensive studies to understand how sarcomere
gene mutations can lead to phenotypes not related to sarcomere function or that are seen in cells that
do not express sarcomere genes are lacking in the field. Since sarcomere gene mutation-negative
patients have similar phenotypes to sarcomere gene mutation- positive patients, it is likely that there
are final common pathological pathways independent of sarcomere gene mutations that are involved,
but these final common pathways are incompletely understood. Recent reports using single nucleus
RNA-sequencing of human HCM tissue have identified potential alterations in cell-to-cell
communication involving extracellular matrix proteins, integrin receptors and activation of immune
cells as potential contributors to the HCM phenotype [3-5]. These studies, however, did not determine
how these alterations in single cell transcription and intercellular communication are spatially
organized in the context of known histopathological features of HCM. To identify changes in gene
expression associated with focal areas of myocyte disarray, we performed a spatial transcriptomic
analysis of genes expressed in these areas that included identification of differentially expressed
genes (DEGs), a gene ontology (GO) analysis to assign DEGs to molecular function, a Ligand-
Receptor (L-R) gene expression analysis to infer cell-cell communication, and a deconvolution
analysis to determine the cell type composition in these areas. Here we report that areas of focal
myocyte disarray show altered expression of genes involved in interferon production, mitochondrial
energetics, the response to oxygen/cytokine levels, and the JNK cascade that may also reflect changes
in cellular composition. Furthermore, these areas also show dysregulation of PDGF and cadherin
signaling that may be relevant to the pathogenesis of HCM.

2. Results
2.1. Identification of Focal Areas of Myocyte Disarray and Designation of Regions of Interest

HCM and control patient sections were stained with morphology markers desmin, fibroblast
activator protein, CD45 and nuclear DNA using Syto83 as described in methods. Representative
images from HCM sample 2799 and control sample 2879 are shown in Figure 1. Representative
Regions of Interest (ROIs), also called Areas of Interest (AOIs) are indicated and shown at higher
magnification.
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Figure 1. Human Heart Tissue Sections Used for Spatial Transcriptomic Analysis. Normal and HCM histological
sections from the interventricular septum were immunostained for FAP, CD45, Desmin and nuclear DNA as
described in methods. Representative samples 2799 (Normal) and 2879 (HCM) are shown at lower magnfication,
along with designated Areas of Interest (AOIs) that were chosen based on degree of myocyte disarray. The first
6 AOIs for each sample are shown at higher magnification. Myocyte disarray is apparent at higher magnfication
in the HCM samples.

2.2. Identification of Differentially Expressed Genes and Associated Pathways in Areas of Disarray

The bioinformatic analysis pipeline for identification of differentially expressed genes (DEGs)
between sets of ROIs and associated functional enrichment is shown schematically in Figure 2A.
DEGs were determined in pairwise comparisons between sets of ROIs classified by degree of myocyte
disarray and patient HCM status (Figure 3A, Supplemental Table 1). Given the low number of ROIs
that passed quality control, areas of mild disarray from control patients were excluded from further
analysis. We chose to focus on three comparisons to assess the progression of HCM: normal disarray
ROIs between HCM and control patients, moderate to mild disarray ROIs within HCM patients, and
severe to moderate disarray ROIs within HCM patients. The largest number of DEGs was obtained
in comparison of normal disarray ROIs between HCM and control patients, suggesting that the
phenotype itself is associated with large changes in gene expression, while the fewest DEGs were
found in the comparison between moderate and severe disarray levels in HCM patients (Figure 2A,
Supplemental Figure 1A). Gene Ontology enrichment analysis revealed an upregulation in genes
related to mitochondrial energetics and a downregulation of genes involved in interferon production
in HCM ROIs of varying levels of disarray compared to normal control ROIs (Figure 3B,
Supplemental Figure 1B). Within HCM patients, moderate disarray ROIs showed a weaker
upregulation in genes associated with mitochondrial energetics and a downregulation in genes that
mediate the response to oxygen levels and cytokines when compared with mild disarray ROIs and
severe disarray ROIs show an upregulation of genes related to the JNK cascade compared to
moderate disarray ROI (Figure 3B). Interestingly, there was a large overlap between DEGs obtained
in the comparison of control normal and HCM normal ROIs and other comparisons between control
normal and HCM with more disarray (Supplemental 1A). This overlap was even more pronounced
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in the GO categories obtained by performing GO enrichment of the DEGs obtained from these
comparisons (Supplemental 1B). This suggests that the HCM genotype itself is associated with strong
gene expression changes.
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Figure 2. Study Design and Overall Analysis Pipeline for Spatial Transcriptomic Data from HCM Patient Tissue.
A. Overall Analysis Pipeline for Spatial Transcriptomic Data. B. Overview of the hierarchy between patients,
samples, and ROIs. C. Distribution of ROlIs that passed quality control between patients and colored by disarray
level.
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Figure 3. Identification of Differentially Expressed Genes and Associated Biological Processes in Areas of
Myocyte Disarray. A. Volcano plots comparing areas of normal myocyte disarray between control and HCM
patients, and the progression of increasing myocyte disarray from within the HCM phenotype. In each panel,
upregulated genes correspond to the condition listed second in the plot title. Only differentially expressed genes
that had an FDR adjusted p-value below 0.05 were considered differentially expressed. B. Gene ontology
enrichment dot plot of significant annotations per comparison. C. Module expression of significant annotations
broken down by HCM status and myocyte disarray.

2.3. Identification of Potentially Altered Cell-Cell Interactions in Areas of Myocyte Disarray

The bioinformatic analysis pipeline for identification of Ligand-Receptor (L-R) pairs that are
differentially expressed in areas of myocyte disarray is shown schematically in Figure 2A and further
explained in Figure 4A. Differentially expressed genes were determined in pairwise comparisons
between ROIs classified by degree of myocyte disarray and overall patient HCM status, as described
above. The gene sets from each comparison were separated by whether they were down or
upregulated. The gene sets were then compared to the CellChat Interaction Database [6] to identify
Ligand-Receptor pairs that were both present in either the up or downregulated gene sets, and
which pathway the Ligand-Receptor pair was associated (Supplemental Table 2). Here we note that,
like the differential expression results, significant Ligand-Receptor pairs are observed when
comparing ROIs obtained from HCM patients with varying levels of disarray to ROIs obtained from
control patients. Although the GO enrichment analysis of the DEGs between control normal ROIs
and HCM ROIs with varying levels of disarray did not uncover differences in GO terms, there were
differences in the CellChat pathways associated with significant ligand-receptor DEG pairs. In HCM
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patients compared to control patients, normal disarray areas show a downregulation of CD46,
junctional adhesion molecule, neurotrophin, and NOTCH signaling, while cadherin, CD99, and
fibronectin signaling are upregulated. Areas of mild disarray in HCM patients are downregulated for
junctional adhesion molecule and neurotrophin signaling, and upregulated for cadherin, CD99,
fibronectin, and amyloid precursor protein signaling compared to normal disarray areas in control
patients. Moderate disarray areas in HCM patients are downregulated for CD46, neurotrophin, and
platelet-derived growth factor signaling, and upregulated for cadherin signaling compared to normal
disarray areas in control patients. Severe disarray areas in HCM patients are downregulated for CD46,
junctional adhesion molecule, neurotrophin, NOTCH, and platelet-derived growth factor signaling,
and upregulated for cadherin signaling compared to normal disarray areas in control patients.
Interestingly, CD99 signaling is upregulated in HCM normal/mild ROIs compared to control normal
ROIs but downregulated in HCM moderate/severe ROIs compared to HCM normal ROIs. Also, JUN
kinase signaling is upregulated in areas of severe disarray compared to areas of moderate disarray.
The greatest number of Ligand-Receptor pairs driving these pathways is observed in platelet-derived
growth factor signaling, followed by NOTCH signaling. All other pathways have one Ligand-
Receptor pair per disarray level comparison.
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Figure 4. Identification of Differentially Expressed Ligand-Receptors in Areas of Myocyte Disarray. A.
Differentially expressed genes between myocyte disarray levels were filtered by an FDR-adjusted p-value of 0.05
and split into upregulated and downregulated groups. These gene sets were then compared to the CellChat
database to identify Ligand-Receptor pairs and their associated pathway. B. Heatmap indicating which
pathways were affected in different disarray level comparisons and colored by the number of Ligand-Receptors
present in the pathway.

2.4. Determination of Cell Type Composition in Areas of Myocyte Disarray

Previously published snRNA-seq datasets from the patients in this study were reanalyzed to
determine cell-type composition [3-5, 7] . UMAP plots and a dot plot showing cell clusters and cell
identity assignments separated by disease label are shown in Supplemental Figure 2. To determine
whether the cell type composition differs in areas of myocyte disarray compared to normal and in
HCM vs control, we performed a deconvolution analysis (Methods) [8] using genes present in both
the snRNA-seq data and the spatial data (Supplemental Table 3, Figure 5A). Note that areas of
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moderate and severe disarray were only present in ROIs obtained from HCM patients. Using the cell
type diversity statistic described by Karagiannis et al. [9] we assessed the cell type diversity of ROIs
of varying levels of disarray and HCM status (Figure 5B). Values closer to -1 indicate the sample is of
one cell type and values closer to 0 indicate the sample is more varied in composition. The Wilcoxon
ranked sum test was used to determine differences in the mean cell type diversity statistic value of
control normal ROIs and HCM ROIs of varying levels of disarray. Interestingly, we note that control
patient ROIs appear to have less cell type diversity than HCM patient ROIs, with a significant
difference observed between control normal ROIs and HCM normal ROIs (FDR = 0.017) (Figure 5B).
To get a more granular picture of cell type composition, the average cell proportion for each observed
cell type was broken down by HCM status and disarray level (Figure 5C). We note that the proportion
of cardiomyocytes, dendritic cells, endothelial cells, macrophages, and smooth muscle cells were
relatively constant across HCM status and disarray levels (Figure 5C). On the other hand, fibroblast
proportions increased, as the severity of disarray increased (Figure 5C). ROIs from HCM patients
with normal and mild levels of disarray contained more lymphatic endothelial cells and pericytes

and had fewer neuronal cells and T-lymphocytes (Figure 5C).
T
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Figure 5. Cell type Composition of Areas of Focal Myocyte Disarray Determined by Deconvolution of SnRNA-
seq Data. A. Deconvolution of ROIs using per-patient averaged matched SnRNA-seq data and broken down by
HCM status, patient, and disarray level. B. Cell diversity statistic summarizing the diversity of ROIs in different
HCM status/disarray levels. The Wilcoxon ranked sum test values are shown above the HCM status disarray
levels to highlight significant differences when compared to the distribution of cell type diversity statistics for
control normal ROIs (ns = not significant, * = p-value < 0.05, ** = p-value < 0.01). C. Average cell proportions of
ROIs in different HCM status/disarray levels.

3. Discussion

Spatial transcriptomics can be used to map transcriptional patterns to specific anatomic locations
[10-12] and can complement high-resolution, non-spatially resolved single cell transcriptomic
datasets by facilitating the mapping of diseased cell types to areas of pathological change through
bioinformatic deconvolution methods [13, 14]. Such approaches have been used to map areas of
SARS-CoV2 infection and lung injury [15, 16] but to the best of our knowledge have not been used to
study HCM tissue. Here we report the spatial transcriptomic profiling of areas of focal myocyte
disarray, lesions pathognomonic for HCM and thought to reflect the intrinsic pathophysiological
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processes inherent to diseased cells, using a set of probes specific for the cancer cell transcriptome
(nanoString, Seattle, WA). We have found that focal areas of myocyte disarray specifically show
changes in gene expression associated with interferon production, oxygen sensing, and
mitochondrial function. These findings suggest alterations in proinflammatory and metabolic
processes in areas of myocyte disarray, which may ensue from sarcomere dysfunction, often the
primary disease driving process in HCM. These findings are also consistent with previous studies
noting altered interferon levels and inflammatory markers in HCM patients [17, 18] and altered
mitochondrial function in HCM patients [19, 20]. Our study is unique, however, in that it specifically
implicates these processes in areas of focal myocyte disarray, thus linking these processes to discrete
histopathological defects.

Analysis of ligand-receptor alterations provides a window into how intercellular
communication may be altered in areas of focal myocyte disarray. Downregulation of CD46,
junctional adhesion molecule, neurotrophin, NOTCH and PDGF signaling in areas of severe myocyte
disarray, as shown in Fig. 4, may reflect reduced complement inactivation (CD46)[21], reduced
integrin-mediated leukocyte and platelet adhesion (junctional adhesion molecule)[22], reduced
neuronal innervation (neurotrophin)[23], loss of cardioprotection (NOTCH)[24] and reduced smooth
muscle and fibroblast proliferation (PDGF)[25] in these areas. Increased cadherin signaling implies
increased cell adhesion [26] which may represent a response to increased mechanical force associated
with HCM. Reduced inactivation of complement and reduced leukocyte and platelet adhesion imply
alterations in the inflammatory response. Changes in neuronal homeostasis may imply altered
autonomic innervation and potentiation of arrhythmogenesis. Alterations in smooth muscle
proliferation may also reflect altered vascularity in these areas, while alterations in fibroblast
proliferation may reflect alterations in fibrosis. CD99 plays an important role in T cell activation [27]
and suppression of extracellular matrix-integrinf1 interactions relevant to cell adhesion [28], and its
upregulation in areas of mild disarray but down regulation in areas of moderate or severe disarray
may reflect a role for T cell immune function in early, mild lesions that is then dispensable in
advanced lesions. JUN kinases are activated broadly under conditions of cellular stress and play
important roles in tumorigenesis, neuron development, apoptosis and insulin resistance [29], and
thus upregulation in areas of severe disarray likely reflect increased cellular stress. Future studies
targeting these specific pathways may lead to improved experimental and therapeutic outcomes.

Deconvolution analysis of snRNA-seq data in conjunction with spatial transcriptomic data
facilitates determination of specific cell type composition within focal areas of myocyte disarray. As
expected, the cell composition in areas of moderate or severe disarray and normal areas in HCM
samples diverged, with areas of disarray showing a higher proportion of fibroblasts, consistent with
altered fibrotic mechanisms in these areas. Normal areas in HCM tissue showed a higher proportion
of lymphatic endothelial cells and pericytes and a lower proportion of neuronal cells and T-
lymphocytes, suggesting that these areas are in a different physiological stage compared to areas of
moderate or severe disarray. These findings raise an interesting question of whether the areas of focal
myocyte disarray are anatomically distinct by virtue of differences in innervation, capillary density,
and lymphatics, which may facilitate the differential and distinctive recruitment of immune cell
populations present in the different areas. In this model, the detection of focal myocyte disarray
would thus likely be a local consequence of a more global disease process rather than an area of focal
pathophysiology. Additional higher resolution spatial transcriptomic studies with targeted deletion
of specific cell populations such as fibroblasts or T-lymphocytes would likely provide further insight.

Limitations of our study include the small number of patient samples, the use of the Human
Whole Cancer Transcriptome Atlas reagent set and the limited spatial resolution of the GeoMX
technology. Spatial transcriptomic analysis, while powerful, is currently limited by expense and low
throughput. The Cancer Transcriptome Atlas assesses approximately 1800 mRNA targets and is
designed for profiling of cancerous tumors and the tumor microenvironment, and thus does not
address the entire transcriptome and may not detect critical transcriptional pathways not included in
the probe set. At the time this study was done, the Human Whole Transcriptome Atlas was not yet
available. Future studies using this newer whole transcriptome atlas will likely be informative.
Finally, the GeoMX technology spatial resolution is limited to ~100-200 cells, and thus cannot truly
provide single cell resolution. The latest CosMX technology from nanoString now can provide single
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cell resolution. Future studies using these newer technologies may provide even greater insights into
the single cell and spatial transcriptomic analysis of human HCM.

4. Materials and Methods
4.1. Patient Characteristics and SnuRNA-Seq Datasets

The patients with HCM and control patients without cardiovascular disease and their snRNA-
seq datasets from the cardiac interventricular septum have been described previously [3-5, 7].
Deidentified samples from HCM patients 2799, 2834, 2828 and 2843 and control patients 2879 and
2880 were used in this study. The snRNA-seq datasets are available in the Gene Expression Omnibus
database under accession numbers GSE161921, GSE174691 and GSE181764.

4.2. Tissue Processing for Spatial Transcriptomics

Paraffin embedded tissue was generated for each tissue sample and sectioned for spatial
transcriptomic analysis by standard methods. Tissue sections were generated within 2 weeks of
spatial analysis. Tissue sections were processed for spatial transcriptomics analysis according to the
GeoMx Digital Spatial Profiling protocol [11] as provided by the manufacturer (nanoString, Seattle,
WA). Briefly, samples were stained for morphology using commercially available antibodies to
desmin (abcam cat. # ab185033) at 1:200 dilution, fibroblast activating protein (abcam cat. # ab238148)
at 1:50 dilution and CD45 (Cell Science Technologies cat. # 13917BF) at 1:100 dilution. Nuclei were
counterstained with Syto83 (ThermoFisher). Tissue morphology was visualized for each tissue slide
using the GeoMx Digital Spatial Profiler and areas of focal myocyte disarray were designated as
regions of interest (ROIs) by an expert pathologist. ROIs were graded for degree of myocyte disarray
on a scale of severe, moderate, mild and normal. 12 ROIs were selected from each tissue slide. RNA
within the ROIs was captured and profiled using the GeoMx Cancer Transcriptome Atlas (nanoString)
to detect approximately 1,800 RNA targets. Samples were processed in 2 batches of 4 slides, each
batch consisting of 2 HCM and 2 normal samples. Serially sectioned slides stained with hematoxylin
and eosin or trichrome were also done to aid in morphological assessment.

4.3. Identification and Analysis of Differentially Expressed Genes Associated with HCM Areas of Myocyte
Disarray

Raw expression data from ROIs underwent quality control and Q3 normalization per
recommendations from the manufacturer (nanoString). Segment, probe, and gene quality control
were performed using the R package, GeoMXTools. Expressed genes were filtered for inclusion in at
least 1% of segments. Samples that passed quality control underwent unsupervised analysis to
identify potential confounding factors. Linear mixed-effects models were used to test for differential
expression genes between groups of ROIs with different levels of disarray and HCM status, using a
composite variable indicating HCM status and disarray level as a fixed effect and setting the patient
identifier as the random effect. Genes with Benjamini-Hochberg adjusted p-valuesless than 0.05 were
considered significantly differently expressed between groups of ROIs. Gene Ontology analysis was
performed using the R package, ClusterProfiler [30, 31].

4.4. Ligand-Receptor Analysis to Delineate Potential Intercellular Communication Pathways that Promote
Focal Myocyte Disarray

Differentially expressed genes were further analyzed for the presence of Ligand-Receptor pairs
that were differentially expressed in the same way (e.g. either both upregulated or both
downregulated, called differential combination analysis) using known human ligand-receptor pairs
present in the CellChat Interaction Database [6].

4.5. Deconvolution of Single Nucleus RNA-Sequencing Data to Determine Cell Composition in Areas of
Focal Myocyte Disarray

SnRNA-seq datasets from the eight samples were integrated into a single Seurat object [33] using
Harmony [34]. Optimal clustering resolution was determined using ChooseR [35]. Cell assignments
were generated using expression of canonical markers and methods described previously [3-5, 7].
The snRNA-seq datasets were filtered to only include marker genes present in the GeoMx ROI data

d0i:10.20944/preprints202307.0139.v1
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and log2 transformed. GeoMx ROI data were Q3 normalized and log2 transformed before
undergoing deconvolution. Spatial Deconvolution Analysis was used to determine the cellular
composition of areas of focal myocyte disarray using SpatialDecon [8]. Deconvolution was performed
on a per patient basis, where each patient’'s GeoMx ROI data was deconvoluted using the patient’s
matching snRNA-seq data as a reference. The cell type diversity statistic described by Karagiannis et
al. [9] was used to assess the cell type diversity of ROIs of varying levels of disarray and HCM status.
The Wilcoxon ranked sum test was used to determine differences in the mean cell type diversity
statistic value between control normal ROIs and HCM ROlIs of varying levels of disarray.

5. Conclusions

Here we report the first spatial transcriptomic analysis of human HCM samples, focusing on
areas of focal myocyte disarray. These areas of focal myocyte disarray show distinctive changes in
gene expression related to interferon production and mitochondrial metabolism. Analysis of
intercellular communication in these areas reveals significant changes in cell adhesion, PDGF,
NOTCH and cadherin signaling. Analysis of cell content in these areas reveals characteristic
differences in vascular and lymphatic cells, neurons, fibroblasts, and immune cells. Characterization
of the complex interplay between cells within HCM lesions will likely lead to the development of
novel, targeted therapeutics, perhaps those that target interferon signaling or mitochondrial
metabolism, to improve outcomes in HCM patients.
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