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Abstract: The classic, chronic Philadelphia chromosome-negative (Ph-) myeloproliferative neoplasms (MPN)
comprises mainly essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF) that
represent a group of stem cell disorders associated with clonal proliferation of one or more hematopoietic cell
lineages with organomegaly and constitutional symptoms. Several studies have shown that the presence of
dysregulated immune system and chronic inflammation play important roles in the pathogenesis of these
diseases. Lately, the treatment of cancer including hematological malignancy has progressed on the agents
aiming for the immune system, cytokine environment, immunotherapy agents, and targeted immune therapy.
Immune checkpoints are the molecules that regulate T cell function in the tumor microenvironment (TME).
The first line of primary immune checkpoints are programmed cell death-1 (PD-1)/programmed cell death
ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-4). Immune checkpoint inhibitor therapy
(ICIT) exerts its anti-tumor actions by blocking the inhibitory pathways in T cells and has reformed cancer
treatment. Despite the impressive clinical success of ICIT, tumor internal resistance poses a challenge for
oncologists leading to a low response rate in solid tumors and hematological malignancies. A phase II trial on
Nivolumab for patients with post-Essential thrombocythemia myelofibrosis, Primary Myelofibrosis, or post-
Polycythemia myelofibrosis was performed (ClinicalTrials.gov Identifier: NCT02421354). This trial tested the
efficacy of a PD-1 blockade agent, namely Nivolumab, but was terminated prematurely due to adverse events
and lack of efficacy. A multicenter, phase 2, single-arm open-label study was conducted including
pembrolizumab in patients with primary thrombocythemia, post-essential thrombocythemia or post-
polycythemia vera myelofibrosis that were ineligible for or were previously treated with Ruxolitinib. The study
showed that Pembrolizumab treatment did not have many adverse events, but there were no pertinent clinical
responses hence it was terminated after the first stage was completed. To avail the benefits from
immunotherapy, the paradigm has shifted to new immune checkpoints in the TME such as lymphocyte
activation gene-3 (LAG-3), T cell immunoglobulin and mucin domain 3 (TIM-3), T cell immunoglobulin and
ITIM domain (TIGIT), V-domain immunoglobulin-containing suppressor of T-cell activation (VISTA), and
human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA?2) forming the basis of
next-generation ICIT. Our article aims at emphasizing and discovering the role of next-generation ICIT in MPN
involving monoclonal antibodies as targeted immunotherapy, or vaccines against selected MPN epitopes that
could further highlight the tumor-related immune responses. Therapeutic approaches based on
immunotherapy are expanding and hopefully will expand the treatment regimens in patients with MPN. Our
laboratory had reported that MDSC were increased in MPN , now we in preliminary studies , we showed that
over-expressed VISTA in MDSC, and in progenitor and immune cells which may form the basis for clinical
trials using next-generation ICI in the treatment of MPN.
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Introduction

The MPN is defined by the clonal proliferation of one or more hematopoietic cell lineages [1].
As per International Consensus Calssification [2] (ICC) and World Health Organization (WHO), 5th
edition [3] classic MPN comprises mainly myelofibrosis (MF), essential thrombocythemia (ET), and
polycythemia vera (PV) [4]. Lately, the focus of the treatment of MPN is based on the agents targeting
the immune system, cytokine environment, and immunotherapy agents. The pathogenesis of MPN
is not very clear but studies have shown that TNF-a promotes the growth of JAK2V617F-positive
MPN cells as compared to controls contributing to clonal formation of mutant copies during MPN
progression [5]. Various driver mutations as studied by genetic sequencing and clonal protein
expression showed that tyrosine kinase Janus Kinase 2 -JAK2V617F mutation was found in 95% of
patients with PV and 50%- 60% of patients with ET and MF [6,7]. These mutations stimulate Janus
Kinase and Signal Transducer and Activator of Transcription proteins (JAK-STAT) signaling path of
thrombopoietin receptor and erythropoietin receptor [8]. Concurrently profound immune
dysregulation and defective immune surveillance also have an important role in the pathogenesis of
MPN [9]. The dysregulated genes related to the immune system and inflammation that are implicated
in MPN are interferon-inducible gene [10], regulatory T cells (Tregs characterized as CD4 + CD25+
FOXP3+) [11], human leukocyte antigen (HLA) class I and II molecules, natural killer cells, (32-
microglobulin, HLA I antigens (such as LMP7, LMP2, TAP1/2, tapasin) [10,12] and antioxidative
stress genes (ATM, TP53, CYBA, NRF2, PTGS1, SIRT2) [13,14]. In addition, increased recruitment of
suppressive cells, such as myeloid-derived suppressor cells (MDSC), leads to the escape of tumor
cells from immune surveillance thus playing an important part in the etiopathogenesis of MPN [15].
The key events involved in the development of the neoplastic process are oncogenic transformation
and immune escape allowing for uncontrolled proliferation and avoidance of apoptosis. Immune
checkpoint inhibitory therapy (ICIT) is based on blocking the T cells inhibitory pathways thus
promoting anti-tumor immune responses. Oncogenic JAK2 activation results in high expression of
programmed death-ligand 1 (PD-L1) on the surface of megakaryocytes, monocytes, platelets, and
MDSC which is mediated via the JAK2-STAT3 and JAK2-STATS5 axes [16]. Myeloid malignancies are
found to have overexpressed PD-1 pathways and that has gained immense attention recently as
pathbreaking therapeutic targets for immunotherapy. One such trial was: ClinicalTrials.gov
Identifier: NCT02421354 where the safety and efficacy of nivolumab (PD-1 inhibitor) was tested in
eight adult patients with myelofibrosis [17]. However, the study was discontinued due to failure to
meet the efficacy endpoint. In 2020, at the annual meeting of American Society of Hematology (ASH),
an open label, phase 2, multi-center, single-arm study of pembrolizumab was presented showing its
use in patients with primary, post-essential thrombocythemia or post-polycythemia vera MF
(NCT03065400) [18]. Nine cases were included, but none showed a clinical response.

The use of ICI in hematological malignancies brings a daunting challenge with a low response
rate thus letting the oncologist/molecular physicians change their attention to focus deeply on the
TME for novel therapeutic targets. To benefit more patients from immunotherapy, the paradigm has
shifted to target alternative new immune checkpoints in the TME such as LAG-3, TIM-3, TIGIT,
VISTA, and HHLA?2 forming the basis of next-generation ICIT [19] as shown in Figure 1. Our review
article aims at emphasizing and discovering the role of next-generation ICIT in MPN involving
monoclonal antibodies as targeted immunotherapy or novel inhibitory checkpoints that would
further broaden the horizon of tumor-specific immune responses and treatment.
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Figure 1. Immune checkpoints in a tumor microenvironment (TME). APCs present tumor antigens to
naive T cells inducing T cell activation. Through the MHC and TCR signaling pathway a first signal
for T-cell activation is provided whereas co-inhibitory immune checkpoints suppress T-cell activation
in TME. Immune checkpoints are expressed on T-cells, ligands are present on APCs, tumor cells, and
stromal cells like CAFs and MDSCs. Abbreviations: APCs - antigen presenting cells; MHC — major
histocompatibility complex; TCR — T-cell receptor; TME — tumor microenvironment; MDSCs —
myeloid-derived suppressor cells; PD-1 — programmed death 1; PD-L2 — programmed cell death
ligand-2; VISTA - V-domain immunoglobulincontaining suppressor T-cell activation, HHLA2 —
human endogenous retrovirus-H long terminal repeatassociated protein 2; TIM-3 - T-cell
immunoglobulin and mucin domain 3; Gal-9 — Galedctin-9; CAFs — cancer associated fibroblasts;
LAG-3 - lymphocyte activated gene-3; CTLA-4 — cytotoxic T-lymphocyte antigen-.

LAG-3 targeted therapy and its role in hematological malignancies

LAG-3 (CD223) is a CD4-associated activation-induced cell surface inhibitory receptor that binds
to major histocompatibility complex (MHC) class Il molecules and negatively regulates T-cell effector
functions [20]. Cells expressing LAG-3 are T cells, a few activated B cells, plasmacytoid dendritic cells
(DCs), and neurons [21]. LAG-3 ligands are MHC class-II, galectin-3, and fibrinogen-like protein 1
(FGL1) with MHC-II being the main ligand [22]. LAG-3 attaches to MHC class II with higher affinity
than CD4 inducing protein phosphorylation of phospholipase Cgamma?2 (PLCgamma2) and p72syk
as well as activation of phosphatidyl inositol 3-kinase/Akt, p42/44 extracellular protein kinase, and
P38 mitogen-activated protein kinase pathways [23]. Galectin-3 is expressed on activated T cells and
tumor cells that are needed for CD8/T-cell and plasmacytoid DC suppression [22]. FGL1 is highly
produced by human cancer cells and binding of LAG-3 with FGL1 contributes to resistance /poor
response to anti-PD-1/anti PD-L1 immunotherapies [24,25]. This mechanism forms the basis of
therapies involving simultaneous blockade of PD-1 and LAG-3 responsible for several T-cell
antitumor activities [26-28].

Currently, sixteen LAG-3 targeted immunotherapies are being tested at approximately 97
clinical trials by Bristol-Myers Squibb (BMS-986016), Regeneron Pharmaceuticals (REGN3767 and
89Zr-DFO-REGN3767), Merck (MK-4280), Novartis (LAG525), Tesaro (GSK) (TSR-033), Symphogen
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(Sym022), GlaxoSmith (GSK2831781), Incyte Biosciences International Sarl (INCAGN02385), Prima
BioMed/Immutep (IMP321), MacroGenics (MGDO013), F-Star (FS118), Hoffmann-La Roche
(RO7247669), Shanghai EpimAb Biotherapeutics (EMB-02), Xencor (XmAb841) and Innovent
Biologics (IBI323) [29]. LAG-3 targeted therapies are divided into three categories namely monoclonal
antibodies, LAG-3 -immunoglobulin fusion proteins, and anti-LAG-3 bispecific drugs [29]. Most
trials are phase I/II with two of them reaching phase III including BMS-986016 (NCT05002569) [30]
and MK-4280 drugs (NCT05064059) [31]. Table 1 demonstrates the use of LAG-3 agents in
hematological malignancies in the current clinical trials.
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Table 1. Summarizes all the clinical trials of LAG-3 therapy being used in hematological or related malignancies.

NCT number Sponsors / collaorators

NCT04566978 Memorial Sloan Kettering Cancer Center

NCTO3310619  Celgene

NCT02061761 Bristol-Myers Squibb

NCT03598608 Merck Sharp & Dohme LLC
NCT04913922 Ludwig-Maximilians - University of Munich
NCT03365791 Novartis Pharmaceuticals

Tite Drugname

892r-DFO-REGN3767in PET Scansin People With Diffuse Large 8 Cell Lymphoma (DLBCL)  Drug; 892r-DFO-REGN3767 | Diagnostic Test: PET/CT

Biological: JCAR17|Drug: Durvalumab| Drug: CC-
y 122|Drug: lbrutinib| Drug: CC-220| Drug:
Relatiimab] Drug: Nivolumab| Drug: CC-99282

ASafety and Efficacy Trial of JCARO17 Combinations in Subjects With /Ref
B-cell Malignancies (PLATFORM)

APhase 1/2a Dose Escalation and Cohort Expansion Study of the Safety, Tolerability, and
Efficacy of Anti-LAG-3 Monoclonal Antibody (Relatiimab, BMS-986016) Administered Alone
and in Combination With Anti-PD-1 Monoclonal Antibody (Nivolumab, BMS-936558) in

Relapsed or Refractory 8-Cell Malignancies Biological: BMS-986016| Biological: BMS-936558

APhase 1/Phase 2 Clinical Study to Evaluate the Safety and Efficacy of a Combination of
MK-4280 and Pembrolizumab (MK-3475) in Participants With logi

Biologcal: |Biological:

An Open-Label Phase Il Study of Relatiimab (BMS-986016) With Nivolumab (BMS-936558)

in Combination With S-Azacytidine for the Treatment of Patients With Refractory /

Relapsed Acute Myeloid Leukemia and Newly Diagnosed Oider Acute Myeloid Leukemia  Drug: Azacitidine Injection| Drug: Nivolumab| Drug:
Patients Relatiimab

Modular Phase 2 Study to Link Combination Immune-therapy to Patients With Advanced
Solid and Hematologic Malignancies. Module 9: PDR001 Plus LAGS2S for Patients With
Advanced Soli j y

Biological: POR001; Biological: LAGS2S

Phase Tumor / disease Status

Early Phase 1 Large B-cell Lymphoma|DLBCL  Recruiting

Lymphoma, Non-
Hodgkin|Lymphoma, Large B-Cell,
Diffuse|Lymphoma, Follicular

Phase 1|Phase 2 Completed

Phase 1|Phase 2 Hematologic Neoplasms Completed

Hodgkin Disease | Lymphoma, Non-

Phase 1|Phase 2 Hodgkin|Lymphoma, B-Cell Recruiting

Phase2 Acute Myeloid Leukemia
Small cell lung cancer,
Gastric/esophageal
adenocarcinoma, Castration
resistant prostate
adenocarcinoma (CRPC), Soft
tissue sarcoma, Ovarian
adenocarcinoma, Advanced well-
differentiated neuroendocrine
tumors, Diffuse large B cell

Phase2 lymphoma (DLBCL).

Recruiting

Completed

Outcome measures

Biodistribution of 89Zr-DFO-REGN3767 | Optimal 892r-DFO-
REGN3767 mass dose for tumor targeting| Optimal time for
imaging and tumor uptake post 892r-DFO-REGN3767
administration| Tumor lesion uptake of 892r-DFO-REGN3767
and correlate with LAG-3 expression by IHC
Dose-limiting toxicity (OLT) rates| Complete Response
Rate|Adverse Events (AEs)| Progression-free survival
(PFS)|Overall survival (0S)| Overall response rate
(ORR)| Duration of response (DOR)|Event-free survival
(EFs)|Ph kinetic (PK- Cmax|? kinetic (PK}-

| inetic (PK)- AUC|Health-related quality of
life (HRQoL)| Quality of Life C30 questionnaire (EORTC-QLQ-
30)|European Quality of Life-5 Dimensions health state
classifier to 5 Levels (EQ-5D-5L)

Safety measured by the rate of Adverse events (AEs), Serious
Adverse events (SAEs), death and laboratory abnormalities
[ Time Frame: Up to approximately 2.3 years |

Ts);

Objectiveresponserate (ORR)

0 CBR)at
in Multiple Solid Tumorsand Lymphoma

AGE25 by Tumor Type

[Citype

LAG3

LAG3

Study Designs

Alocation:
Randomized|Intervention
Model: Sequential
Assignment| Masking: None
(Open Label) | Primary
Purpose: Diagnostic

Allocation:
Randomized|Intervention
Model: Parallel
Assignment| Masking: None
(Open Label) | Primary
Purpose: Treatment
Alocation: Non-
Randomized|Intervention
Model: Single Group
Assignment| Masking: None
(Open Label)| Primary
Purpose: Treatment
Allocation: Non-
Randomized|Intervention
Model: Parallel
Assignment| Masking: None
(Open Label)| Primary
Purpose: Treatment
Alocation:
N/A|Intervention Model:
Single Group

Assignment| Masking: None
(Open Label) | Primary
Purpose: Treatment

Alocation:
N/A|Intervention Model:
Single Group

Assignment| Masking: None
(Open Label)| Primary
Purpose: Treatment
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1. Use of 89Zr-DFO-REGN3767 in PET Scans in people with diffuse large B Cell lymphoma
(DLBCL) was the pilot study (NCT04566978) [32] undertaken at Memorial Sloan Kettering
Hospital in 2022 with the main purpose of the study is looking at the way the body absorbs,
distributes, and gets rid of 89Zr-DFO-REGN3767 [33]. 89Zr-DFO-REGN3767 is comprised of the
anti-LAG-3 antibody, REGN3767 labeled with the positron-emitter zirconium-89 (89Zr) through
the chelator-linker DFO and REGN3767 is an investigational monoclonal antibody that targets
LAG-3 receptors. This study is a diagnostic research study determining the optimal time for
imaging and tumor uptake post 89Zr-DFO-REGN3767 administration. However, it can help
evaluate tumor uptake of 89Zr-DFO-REGN3767 and correlate with expression of LAG-3 by
immunohistochemistry (IHC) in tumors that will be subsequently compared with other
biomarkers of TME characterized in biopsies, such as IHC score (LAG-3 and/or other immune
cell markers).

2. Asafety and efficacy trial of JCAR017 (lisocabtagene maraleucel, also known as liso-cel) (a CD19-
targeted chimeric antigen receptor CART-cell therapy) combinations in subjects with relapsed /
refractory B-cell malignancies (PLATFORM) (NCT03310619) [34] was done. Relatlimab, BMS-
986016 is an anti-LAG-3 fully human monoclonal IgG4-k antibody that binds human LAG-3 with
high affinity and inhibits its binding to MHC-II [35]. This trial was a global, open-label, multi-
arm, parallel multi-cohort, multi-center, Phase 1/2 study to determine the safety, tolerability,
pharmacokinetics, efficacy, and patient-reported quality of life of JCAR017 in combination with
various agents including relatlimab, durvalumab, avadomide, iberdomide, ibrutinib, and
nivolumab. The trial was completed, and the studied tumors were diffuse large B-cell lymphoma
(DLBCL), non-Hodgkin lymphoma (NHL), and Follicular lymphoma (FL). The objective of the
study during Phase 1 was to open different paths to test JCAR017 in combination with other
agents in adult patients with R/R aggressive B-cell NHL. Different doses and schedules of
JCARO017 were used in several arms and the combination agents were tested in several cohorts
per arm. Phase 2 of the study involved the expansion of any dose level and schedule for any arm
maintaining safety. All patients from Phase 1 and Phase 2 will then be followed for 24 months
for adverse effects, survival, relapse, viral vector safety, and long term toxicity as per guidelines.

3. A similar trial was also designed with relatlimab by Bristol-Myers Squibb, NCT02061761 [36]
administered alone or in combination with nivolumab to subjects with relapsed or refractory B-
cell malignancies (relapsed or refractory Hodgkin lymphoma (HL) and relapsed or refractory
DLBCL and to study its safety, tolerability, dose-limiting toxicities and maximum tolerated dose.
The trial completed and studied hematological malignancies including chronic lymphocytic
leukemia (CLL), HL, NHL, and Multiple Myeloma (MM). A detailed description of dose-related
adverse events was studied and was +displayed in the result section of the trial.

4. Favezelimab (MK-4280) is another LAG-3 antibody that is studied in combination with
pembrolizumab (MK-3475) in the clinical trial NCT03598608 [37] that was started in July 2018 to
study and evaluate the safety and efficacy of these agents in hematologic malignancies. ). It
included classical HL, DLBCL, and indolent HL. No results have been posted till the writing of
this article. This study will also evaluate the safety and efficacy of pembrolizumab or
favezelimab administered as monotherapy in participants with classical HL using a 1:1
randomized study design.

5. Relapsed or refractory acute myeloid leukemia (AML) and newly diagnosed older AML are
included in the ClinicalTrials.gov Identifier: NCT04913922 [38] to study the combination of
relatlimab with nivolumab and 5-azacytidine. No results have been posted yet.

All the above trials included LAG-3 as an ICI agent in the above-mentioned hematological
malignancies, however, no trials have been done in the field of MPN. We unfold the mechanism of
action of LAG-3 to provide a better understanding of its potential use in the future as depicted in
Figure 2.
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Figure 2. Structural similarities between LAG-3 and CD4. The LAG-3 gene is predicted to be highly
structurally homologous to CD4 with four extracellular immunoglobulin superfamily (IgSF)-like
domains (D1-D4). LAG-3 binds to MHC class II with high affinity. LAG-3 cytoplasmic domain
appears to have three well-defined motifs namely serine-based motif which could act as a PKC
substrate, repetitive “EP” motif consisting of a series of glutamic acid-proline dipeptide repeats and
relatively unique “KIEELE” motif, highlighted by an essential lysine residue. LAG3 has two
additional ligands namely LSECtin expressed on melanoma cells and Galectin-3 expressed on stromal
cells and CD8+T cells in TME. Abbreviations: TCR -Toll like recepto.

Mechanism of action of LAG-3

LAG-3 was discovered in 1990, by Triebel and colleagues, as a new 498-amino acid type I
transmembrane protein present on activated natural killer (NK) and T cell lines [39]. The LAG-3 gene
is found close to CD4 on chromosome 12 in humans (chromosome 6 in mice) displaying structural
homology to CD4 with extracellular immunoglobulin superfamily (IgSF)-like domains namely D1-
D4 [40]. The structural motifs are conserved between LAG-3 and CD4, translating to the same
extracellular folding patterns as a result of which LAG-3 can bind with greater affinity to MHC class
II than CD4 [41]. LAG-3 was speculated to be spatially related to the T-cell receptor TCR: CD3
complex present in microdomains of lipid raft promoting clustering of signaling molecules and the
development of the immunological synapse however the exact mechanism is still unclear [42]. The
cytoplasmic tail for the tyrosine kinase p56l<k, lacks a binding site for LAG-3, which is normally used
by CD4 to promote downstream signal transduction of the T cell receptor (TCR) [41]. Conversely, the
LAG-3 cytoplasmic domain has three well-defined motifs namely serine-based motif acting as a PKC
substrate, repetitive “EP” motif comprising of a series of glutamic acid-proline dipeptide repeats, and
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relatively unique “KIEELE” motif, highlighted by an essential lysine residue [43,44]. LAG-3
cytoplasmic tailless mutants neither mediate the inhibitory effects of LAG-3 nor compete with CD4,
emphasizing the importance of the function of this domain needed for the transmission of an
inhibitory signal [20]. Expression of MHC class II molecules by human melanoma cells is correlated
with poor prognosis thus, LAG-3 ligation with MHC-II class, which is seen on melanoma-infiltrating
T cells, may facilitate their clonal exhaustion [45]. In vitro, the demonstration showed that such an
interaction may help tumor cells to adopt an escape mechanism giving them protection against
apoptosis, with a recent study showing that MHC class II-expressing melanoma cells causes
infiltration of tumor-specific CD4* T cells, mediated by interaction with LAG-3, which in turn
negatively regulates CD8* T cell responses [46,47.] Galectin-3 is a ligand, that is expressed by several
cells within the TME but not the tumor itself, facilitating interaction with LAG-3 (present on tumor-
specific CD8* T cells) that may regulate anti-tumor immune activities [48]. Liver sinusoidal
endothelial cell lectin (LSECL) is present in the liver as well as identified in melanoma tumor cells
where it stimulates growth by inhibiting anti-tumor T-cell dependent responses [49]. The interaction
between LSECL in melanoma cells and LAG-3 inhibited IFNy production, mediated by effector T
cells (antigen-specific), altering the TME [49]. Continuous T cell activation in an inflammatory state,
specifically in a tumor, results in persistent co-expression of LAG-3 on T cells along with additional
inhibitory receptors (IR) such as PD1, TIGIT, TIM3, CD160, 2B4 leading to T cell dysfunction [50].
Several hematopoietic cell types, including CD11clw B220* PDCA-1* plasmacytoid dendritic cells
(pDCs) constitutively express LAG-3 [51] however it is not expressed on any myeloid or lymphoid
DC subset. In vitro, MHC class II-expressing melanoma cells could stimulate LAG-3 positive pDCs to
mature and produce IL-6 which was later confirmed in vivo as well with LAG-3 positive pDCs
showing increased IL-6 production and an activated phenotype similar to melanoma cells [52]. Bo
Huang et al showed that increased IL-6 promotes the release of CCL2 by monocytes in vitro, which
then may recruit MDSCs thus forming the hypothesis that LAG-3 positive pDCs may indirectly
mediate MDSC-related immunosuppression by engaging MHC class II* melanoma cells [53]. LAG-3
functions are regulated by cell surface cleavage mainly ADAMI10 and ADAM17 disintegrin
/metalloproteases, although in mice soluble LAG-3 seems to have no biological function [54].

V-domain immunoglobulin suppressor of T cell activation (VISTA) targeted therapy and its role
in hematological malignancies

VISTA (also known as B7-H5, PD-1H, DD1g, c100rf54, VSIR, SISP1, Gi24, and Dies1) is primarily
expressed in myeloid cells mainly microglia, and neutrophils followed by macrophages, monocytes,
and dendritic cells [55,56]. Additionally, it is highly expressed on new CD4+ and Foxp3+ regulatory
T cells [57]. VISTA is a type I transmembrane protein consisting of a single N-terminal
immunoglobulin V-domain that has the greatest homology with PD-L1 [58]. The exact function and
role of VISTA in regulating the immune system are still complex and not very clear. It works both as
a ligand expressed on antigen-presenting cells and as a receptor on T cells [59]. To date, various
studies have described the inhibitory effect of VISTA on the immune system and the ability of VISTA-
deficiency or anti-VISTA treatment to upregulate immune responses [60]. Due to its predominant
expression on macrophages, VISTA is implicated as a potential immunotherapeutic target in
melanoma [61]. Studies claim that melanoma survival correlates with PD-L1/VISTA expressions
[62,63]. Furthermore, tumor cell expression of VISTA, which is regulated by factor forkhead box D3
(FOXD3), encourages tumorigenesis and promotes PD-L1 expression on tumor-infiltrating
macrophages in vivo along with increased intra-tumoral T regulatory cells [62]. VISTA is expressed
on MDSCs in the peripheral circulation, with a strong positive association between MDSC expression
of VISTA and T cell expression of PD-1 in acute myeloid leukemia (AML) patients, although there is
no evidence of direct regulation [64,65]. MDSCs are myeloid cells that are defined into subsets namely
monocytic MDSCs (CD157) and granulocytic MDSCs (CD15%) [66]. Patients with AML displayed
increased expression of VISTA on MDSCs highlighting the role of VISTA in MDSC-mediated CD8 T
cell response [64]. There is conflicting evidence with some studies supporting that VISTA is an
immune checkpoint marker expressed on tumor-infiltrating T lymphocytes and myeloid cells,
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causing suppression of T cell activation, proliferation, and cytokine production [67,68] whereas other
studies have shown that VISTA is overexpressed in tumor cells and may functions as a co-stimulatory
molecule [69,70].

Currently, clinical trials of VISTA-targeted cancer immunotherapy are in progress namely
ClinicalTrials.gov Identifier: NCT02671955 [71] and ClinicalTrials.gov Identifier: NCT02812875 [72].
JNJ-61610588 (CI-8993) [71] is a human monoclonal antibody against VISTA with negative checkpoint
regulatory and antitumor activities that is being studied in advanced cancer patients. No study
results have yet been posted. Meanwhile, a study of CA-170 [72], an inhibitory molecule that
selectively aims for PD-L1 and VISTA, is still currently being conducted in advanced solid tumors or
lymphomas, although the trial is not recruiting any more subjects and the last update was posted on
May 6, 2019. There are pre-clinical trials of VISTA mentioned in hematological cancer and solid
tumors involving IGN-381 (mAbs by Ingenica Biotherapeutics) and HMBD-002 (mABs by
Hummingbird Bioscience) [73]. HMBD-002 exerted significant inhibitory effects on tumor
progression and its combination with anti-PD-L1 was found to be more effective in tumors that
showed abundant MDSC infiltration [74]. Table 2 summarizes the potential clinical trials of VISTA in
hematological malignancies.
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NCT number

NCT02812875
Preclinical stage
Preclinical stage

Sponsors / collaorators

Curis, Inc.
IGN-331 (mAb}; Igenica Biotherapeutics
HMBD-002; Hummingbird Bioscience

doi:10.20944/preprints202307.0136.v1

Table 2. Summarizes the potential clinical trials of VISTA in hematological malignancies.

Title Drugname

APhase 1, Open-Label, Dose Escalation and Dose Expansion Trial Evaluating the Safety,
Pharmacokinetics, Pharmacodynamics, and Clinical Effects of Orally Administered CA-170

in Patients With Advanced Tumors and Lymphomas Drug: CA-170
Hematological cancer and solid tumors

Hematological cancer and solid tumors

Phase 1

Tumor / disease

Advanced Solid Tumors or
Lymphomas

Status QOutcome measures ICl type
The number of patients with a dose-limiting toxicity (OLT)in
the first treatment cycle; Maximum tolerated dose (MTD) of
CA-170; Recommended Phase 2 Dose (RP2D) of CA-170
Completed VISTA
VISTA
VISTA

Study Designs

Alocation:
N/A|Intervention Model:
Singl Group

Assignment| Masking: None
(Open Label)| Primary
Purpose: Treatment
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Tumor and Immune System Interaction Database (TISIDB) [69,75] analyzed the potential
relevance of VISTA in cancer immunity across 30 different cancer types and the outcomes were: 1)
Almost all types of TILs, with tumor-suppressing or tumor-promoting functions across 30 types of
cancers, correlated positively with VISTA expression, including activated CD8 T cells, NK cells,
MDSC, and Tregs cells 2) VISTA expression levels correlated positively with almost all significant
immunomodulators including immune inhibitors, immunostimulators, or MHCs, including but not
limited to, the critical immune checkpoints such as PD-L1, PD-1, CD80, and CD86. 3) Additionally,
VISTA expression correlated positively with almost all well-known chemokines and their receptors,
including but not limited to CXCL1, CXCL8, CXCL10, and CXCR3. VISTA can function as a receptor
as well as a ligand interacting with distinct partners modulating immune response. VISTA modulator
is a promising target, and its mechanism is worthy of further investigation specifically in
hematological cancers including MPN. Targeting VISTA may promote releasing suppression by
myeloid cells leading to improve T cell-focused therapies like anti-PD1 and anti-CTLA4 especially
when monotherapy resistance of other ICIT appears.

Role of T cell immunoglobulin and mucin domain 3 (TIM-3) as next-generation ICI in
hematological malignancies

TIM-3 is a type I transmembrane protein that was discovered on CD4+ type 1 helper T cells (TH1
cells) and CD8+ cytotoxic T cells (CTLs) [76]. Subsequently, other T-cell subtypes also expressed TIM-
3 along with other immune cells including DCs, NK cells, macrophages, monocytes, mast cells, and
some malignant cells [77-80]. TIM-3 is pertinently expressed on DCs and macrophages in both
humans and mice, specifically in humans where it suppresses IL-12 expression [81,82]. TIM-3 inhibits
DCs cell activation and maturation by blocking NF-«B signaling via a Btk-c-Src signaling-dependent
mechanism, interfering with the ability of cytoplasmic toll-like receptors (TLRs) to sense
immunogenicity and thereby suppressing anti-tumor immunity [83]. There are four known ligands
for TIM-3 namely galectin-9 [84] - which induces apoptosis in TH1 cells, High-mobility group protein
B1 (HMGBI) [85] — also called “alarmin”, released from damaged cells and activates phagocytes,
phosphatidylserine (PtdSer) [86]- “eat-me” signal induction molecule and carcinoembryonic antigen
cell adhesion molecule 1 (CEACAM-1) [87] — known for both cis and trans interactions with TIM-3.
Studies claim that interactions between TIM-3 with its ligands (galectin-9 and Ceacam-1) lead to
phosphorylation of tyrosine residues namely Yass and Y2, stimulating the release of HLA-B
associated transcript 3 (Bat3) from the tail, thereby enhancing T cell inhibitory function by allowing
binding of SH2 domain-containing Src kinases and subsequent regulation of TCR signaling [88,89].
Studies have reported that a higher expression of TIM-3 poses a higher risk for myelodysplastic
syndrome (MDS) transformation to leukemia as increased levels of TIM-3 and Gal-9 are reported on
bone marrow cells and MDSCs from MDS patients [90,91]. This highlights the role of the TIM-3/Gal-
9 axis in the blast proliferation, induction of immune escape, and T cell exhaustion supporting disease
progression [92]. Bruck et al reported TIM-3 overexpression on exhausted CD4+ and CD8+ T cells in
untreated chronic myeloid leukemia (CML) patients and observed a correlation between PD-1
positive TIM-3 CD8+ T cells along with a poor response to Tyrosine kinase inhibitors (TKIs) [93].
Dysfunctional immunity plays a major role in malignancy formation, but many more clinical studies
are required to investigate the role of TIM-3 in MPN pathogenesis and establish its role in the
formation, therapy resistance, relapse, and immune scoring of this malignancy. Several clinical trials
involving co-blockade of TIM-3 and PD-1, have demonstrated promising preliminary results against
solid tumors namely HBV-related hepatocellular carcinoma [94-96]. TIM-3 is highly expressed in
peripheral blood and bone marrow exhausted T cells in various hematological malignancies,
including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and multiple
myeloma (MM) however, few reports have demonstrated its clinical significance as monotherapy
with TIM-3 inhibitors alone [97-99].

Further studies are required to evaluate the efficacy of TIM-3 inhibitors in different types and
stages of leukemias and MPNs with emphasis on TME. Currently, the TIM-3 inhibitors used in
clinical trials include MBG453 (also known as sabatolimab), TSR-022 (Tesaro), BMS-986258,
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LY3321367, SYMO023, BGB-A425, and SHR-1702 [100,101]. Currently, sabatolimab (high-affinity IgG4
mADb) is the only anti-TIM-3 mAb being investigated in MDS and AML with preliminary safety and
efficacy data. ClinicalTrials.gov Identifier: NCT03066648 is an active phase I trial of TIM-3 involving
the study of PDR001 and/or MBG453 in combination with decitabine or azacitidine in patients with
AML or high-risk MDS [102]. It includes AML, MDS, chronic myelomonocytic leukemia, and bone
marrow diseases. No result was posted till the writing of this article, but preliminary results reported
that the combination of sabatolimab plus HMA (either decitabine or azacitidine) was associated with
mostly grade 1 or 2 adverse events and showed preliminary evidence of antitumor activity with a
durable response. As per preliminary follow-up, overall response rates (ORRs) in patients with HR-
MDS with sabatolimab plus decitabine and sabatolimab plus azacitidine were 61.1% and 57.1%,
respectively, with complete response (CR) rates of 33.3% and 7.1% [100]. TIM-3 is relatively higher
expressed on leukemic stem cells than non-tumor stem cells, often with other surface antigens such
as CD33, CD123, and CLL, thus targeting TIM3 might be a novel approach in cancer treatment in
future [103]. Targeting TIM-3 along with other checkpoint inhibitors or combining TIM-3 inhibition
with new immunotherapeutic modalities that activate cancer-specific T-cell stimulatory molecules
have immense potential for developing therapies with durable clinical benefits.

Role of T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory domain (TIGIT)
as a target for next-generation ICI in hematological malignancies

TIGIT belongs to a family of PVR-like proteins, discovered in 2009, composed of one
extracellular immunoglobulin variable domain (a type I transmembrane domain) and a short
intracellular domain with one immunoreceptor tyrosine-based inhibitory motif (ITIM) and one
immunoglobulin tyrosine tail (ITT)-like motif [104,105]. TIGIT (also called Washington University
cell adhesion molecule, WUCAM) along with DN AX accessory molecule-1 (DNAM-1) and CD96 are
expressed on NK cells and T cells and share CD155 [polio virus receptors (PVR), nectin and nectin-
like (NECL) NECL-5] as a ligand [106,107]. The immunoglobulin variable domain is homologous
with other members of the PVR-like family, including DNAM-1, CD96, CD111, CD155, CD112,
CD113, and PVRL4 [104]. In both humans and mice, CD155 serves as a ligand of TIGIT, and
comparatively, it binds with lower affinity with CD112 and CD113 [105,108]. CD155 is mainly
expressed on DCs, B cells, T cells, macrophages, kidneys, nervous system, and intestines [109], CD112
has a wide expression in bone marrow, pancreas, kidney, and lung [110], and CD113 is limited to
non-hematopoietic tissues, including placenta, kidneys, testis, liver, and lung [111]. The mechanism
of action of TIGIT involves an extrinsic pathway, as a ligand for CD155 [104] or a cell-intrinsic
pathway by interfering with DNAM-1 co-stimulation [112,113] or by directly delivering inhibitory
signals to the effector cell [105]. The interaction of TIGIT with CD155 sends signals to human
monocyte-derived DCs leading to increased secretion of IL-10 and decreased secretion of IL-12 thus
promoting tolerogenic DCs that down-regulate T cell responses [106]. For the cell-intrinsic
mechanism of action, it was postulated that the high affinity of TIGIT for CD155 out-numbers
DNAM-1 for the binding of CD155 leading to T-cell inhibition. This was first observed that TIGIT
knock-down in CD4* T cells increased their expression of T-bet and IFN-y, and this could be
overcome by DNAM-1 blockade [112,113]. Several malignancies, including melanoma, breast cancer,
non-small-cell lung carcinoma (NSCLC), colon adenocarcinoma, gastric cancer, multiple myeloma
(MM), and AML have shown increased expression of TIGIT thus paving the path for anti-TIGIT
therapies [114-118].

In mouse pre-clinical models and cancer patients, TIGIT expression on tumor-infiltrating CD8*
T cells often correlates with increased expression of other inhibitory receptors such as PD-1, LAG-3,
TIM-3, and with decreased expression of DNAM-1 [115,119-121]. Similarly, a high TIGIT/DNAM-1
ratio on tumor-infiltrating Tregs was shown to correlate with poor clinical outcomes following ICB
targeting PD-1 and/or CTLA-4 [122]. In the pre-clinical mice TIGIT negative mice bearing colon
cancer (MC38 model), co-blockade of TIGIT and PD-1 was associated with enhanced effector cell
functions of both CD4* and CD8* T cells compared to either therapy alone; and TIGIT/PD-1 co-
blockade produced a 100% cure rate [123].
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As explained earlier tumor cells create a microenvironment by either promoting secretion of
immunosuppressive cytokines such as IL-10 and transforming growth factor (TGF)-, or by
recruiting regulatory cells including Tregs, MDSCs, and type 2 macrophages or by affecting immune
cell metabolism [124,125]. However, most of these pathways comprise receptor-ligand pairs, and
their interaction leading to suppression of the effector functions of T cells and NK cells and thereby
impairing anti-tumor immunity [126]. However, despite the enormous success and popularity of
ICIT, there is still a substantial number of patients who either do not respond to currently available
immunotherapies or develop treatment-related toxicities termed ‘immune-related adverse events’
(irAEs), which sometimes led to fatalities [127,128]. Thus, there is great interest in discovering new
immune checkpoints that can be targeted with safety without affecting the anti-tumor efficacy across
various malignancies. TIGIT is a negative regulator of cytotoxic T cells and has emerged as a
particularly attractive target for cancer therapy with possibly fewer irAEs than anti-PD-1 or anti-
CTLA-4 mAbs [129,130].

Presently, six human clinical trials of anti-TIGIT-mAb of IgG1 isotype are undergoing including
etigilimab (OMP-313M32), in phase I/II, either as monotherapy or combinations with PD-1/PD-L1
blockade, for the treatment of solid cancers [131-136].

TIGIT is highly expressed on tumor-infiltrating lymphocytes (TIL) in several hematological
malignancies including follicular lymphoma, CLL, classic HL, AML, and relapsed MM, helping in
tumor progression and poor outcome [137]. Research studies have shown the immense potential of
anti-TIGIT therapy as reported by Catakovic's in vitro experiment showing reduce CLL viability by
TIGIT blockade [138]. Anti-TIGIT treatment prevented T cell exhaustion and prolonged survival in
MM mice [139]. Current clinical trials based on therapeutic strategies targeting TIGIT have
encouraging efficacy in hematological malignancies [140-148]. Table 3 shows current clinical trials of
anti-TIGIT antibodies in hematological malignancies.
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Table 3. Shows current clinical trials of anti-TIGIT antibodies in hematological malignancies.

NCT number Sposors | colaorators Tee Ongname Phase Tomor | dsease States Outcome measures Kitype Study Designs
Adocation: Noo-
randomaed| intervertion

Resgsedreacto R) Vode Sge o
e, Eicacy and dtfse lge el hoghoma Kssgpment Maskg Neve
Wbt DLBCL) orfollodar hemphoma Percetage of Particpants with Adverse Events; Best {Open Label)|Primary

NCTOS3IST13  Hoffmann-La Roche: Tragolumab; Atezokaumab; Tock Phase 1 and 2 R Active, notrecniting  Objective Response Rate [ORR) et Purpose: Treatment
Alocation: Noo-
randomized| intesvention

Percentage of Paticipants With Adverse Events; Objective Modet Parallel
), ndasa Sege Relapsed or Refractory Multe: Resporse Rate [ORR] for /R MW ORR for R NHL; Assigrment| Masking: None
Cl Myeloma, Relapsed or Refractory Terminated fsow Percentage of Particpants With AntDrug Antbodies (ADAS) {Open Label)|Primary

NCTOMMS028  Genentech, Inc. NonHodgiin Lymphoma AtexPhase | recruitment] 1o Tragokmab | Aerolumab et Purpose: Treatment
Alocation: Noo-
randomzed| intesvestion

Relapsed Diffuse Large 8ol Number of participats with adverse events (Afs]. Modet Parallel
APrase 132 Sy InestiatngteSoey, Tokrabity, Prarmacoknetcs,and Preminary Lymghoma RecommendedPrase 1 dose R920] of ocperimad when Assipment Maskrg Nore
adminstered in combination with tisieizumab of rtamab; {Open Label)|Primary

NCTOS26N05¢  BeiGene Ociperfimaby’ Phase1and2 Recruking ORR; CRR; DOR; TTR; PFS; 05; Host immunogenecty ner Purpose: Treatment
Alocation:
Randomized|intenvention

Reaped DffseLage el Modet Sequetal
Elotaumab, pomalidomide, dexamethasone; Art-LAG- Lymphoma; Mutile Myeoma Assigoment| Masiing Nore:
L NGUG3 3, AtHUAG-3 + Pomalidmide + Deramethasone; At ‘Overal Response Rate;Frequency, type and grade of Adverse. {Open Label|Primary

NCTO4150985 TIGH (BVS-38607) TIGI; Arti-TIGIT + Pomalidmide + Deamethasone  Phase 1 and2 Recruting Events and Serious Adverse Events et Purpose: Treatment
Mocaton: NA|tenenton
e S

APhase2, TS84 (MK 7684 Number of Participarts with a Dose-Limiting Touicity (LT); assgment|Masking None
Number of Partcpants Who Experienced an Adverse Event {OpenLabe)|Primary
NCTSODSH2 Mk harp & Dohme LLC Reapsed o Refactory Kematoogal algances Prase2 Recritig AEK 0RR,DOR DCR e Popose Treatment
Alocation: Noo
Adanced cancer ovarancances; ‘The safety and toerabity of COMSO2 monotherapy, To randomaed| intesvestion
g cancer; plasma cel identfy the maximum tolerated dose (MTD) andfor Modek:Sequential
> recommended Phase 2 dose (RP20}, To characterie the Rssigment|Masiing Nore:
COMDOA hoth at the ROFE Trit combratonof Vicosatelte stabe cooectal shamacokinetc [P pofieof COSO2 a5 morotherapy i (Open L) Primary
NCTOG3SA46  Compugen Ltd Pembrolzumab Phasel carcinoma; MSS-CRC Recrating. ‘subjects with advanced malignancies; nar Purpose: Treatment
NSCLC; Gastric carcinoma;
Gastroesophageal Jurction
Carcinoma; classic HL; OLBCL;
pepherl Tcel Lynghorns; Mocaton: No-
(Cutaneous Melanoma; Head and randomized| intesvention
Neck Squamous Cel Carcinoma; Number of participarts with adverse events (Afs] Number of Modet Sequental
Sadercrerem o sartcputs wth aboatoy atromaioes by gade Nmber Assipment|Maskrng Nove
cances, bige negative breast of partcipants witha dose-mitiegtoicy (DLT) at eachdose: {Open Label|Primary
NCTOS4107  Seagenlnc. TGT (SGN- SEATET Phasel cancer; cenvical cancer Recratng. el ner Purpose: Treatment
Advanced Soid Tumor, NSCLC; pake s
WIVENHLDLBCL, Gstric cancer;
[eI—— ity b
A Percentageof particpants with Advere Everts;Percetage of {Open Labe)|Primary
NCTO4TT2888 Inc. AB308; Zmberelimad Phasel Recratng. particpants who experence 2 Dose Limitng Toxcity et Purpose: Treatment
Number o participants with any adverse events (AEs) and
‘serious adverse events (SAEs], Number of partiipants with
dose lmiting toricity [DUT); Recommended Phase 2 dose Adocation: Noo-
w (RP2D) of E0S834448 alone o in combinations with randomed| intervertion
Berdomde wihor wthout enamethasons 0 atcRts Wodet Sequetal
wthreaseerctry it myelons; Nmbeof Hespment|askig Noce
Without particpants withoveral resporse (partal o beter) s {Open Labe)|Prinary
NCTOS283432  Teos BelgumSA. Dexamethasone, E0S834448; berdomide; Deramethasone Phase1and2 Recruting determined by INWG critera ner Purpose: Treatment

The current and future role of ICI in the management of MPN

The management of MPNs is constantly evolving and highly individualized. Optimal
management of MPN patients is based on considering specific disease types, complex decision-
making, individualized prognosis, age, comorbidities, and the risks and benefits of available
treatment. Patients with PV and ET use aspirin for thrombotic risk reduction as well as hydroxyurea
(HU) or interferon-based therapy for cytoreduction [149,150]. As per the revised IPSET score,
cytoreductive therapy is reserved for patients with high-risk factors including age > 60 years,
previous thrombosis, and JAK2 mutation [151]. HU is associated with significant side effects and
subsequently, 24% of patients with PV or ET develop resistance to primary therapy necessitating the
need for second-line therapy [152]. Interferon is frequently used as a frontline or second-line therapy
including a novel, mono-pegylated formulation called Ropeginterferon alfa-2b, the first and only
approved treatment for PV independent of previous hydroxyurea exposure [150,153]. With the
advances in molecular science, there is the discovery of the JAK2 V617F mutation and its role in JAK-
STAT pathway dysregulation, which led to the development of the JAK inhibitor ruxolitinib, which
currently represents the cornerstone of medical therapy in MF and hydroxyurea-refractory/intolerant
PV [150]. Furthermore, the JAK1/2 inhibitor ruxolitinib is approved in intermediate to high-risk MF,
as well as advanced PV after HU intolerance or failure [154]. JAK inhibitors are known to alleviate
symptoms, improve performance status and disease-associated cachexia further adding the survival
benefit of these drugs [155]. Long-term follow-up studies showed improved bone marrow
morphology (up to 50% of patients might achieve some regression in marrow fibrosis after 60
months) [156] however complete molecular remissions are rare (3 and 6 patients in RESPONSE-I and
COMFORTHI trials, respectively) [157,158]. The major limitations of the use of these agents are that
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they have debatable disease-modifying activities, there is the likelihood of losing response over time,
development of treatment resistance, chronic anemia, and thrombocytopenia stemming from JAK2
inhibition frequently limiting their safety profile and dosing [159].

Ongoing research efforts are dedicated to improving the efficacy and safety profile of established
treatment modalities as well as discovering novel therapeutic approaches, many of which target the
immune system. Lately, the focus of the treatment of MPN is based on the agents targeting the
immune system, cytokine environment, and immunomodulatory agents with targeted therapy. At
the American Society of Hematology (ASH) annual meeting in 2020 Mascarenhas et al [18] presented
an open-label, multi-center, phase 2, single-arm study of pembrolizumab in patients with primary,
post-essential thrombocythemia or post-polycythemia vera myelofibrosis (MF) (NCT03065400). Nine
case studies were done, but none had a clinical response. Wang et al published an article
demonstrating that PD-1 and PD-L1 expressions were increased in MPN disease in immune cells,
including CD4, CD8, monocyte, and CD34+ cells [160]. The potential stimulators of PD-L1 expression
are interferon-gamma (IFN-Y), IL-10, VEGF, and hypoxia leading to activation of PD-L1 transcription
[161,162]. Treg cells can stimulate B7-H1 expression in MDSCs thus enhancing each other’s immune
suppression functions [163]. The role of MDSCs in the tumor microenvironment is getting defined
day by day and they are implicated in inducing therapeutic resistance to ICI therapy [164,165].
Further studies summarized that in patients with advanced melanoma, non-small cell lung cancer,
and breast cancer, there is an accumulation of MDSC that led to resistance to immunotherapy proven
by the positive correlation between the MDSC percentage and neutrophil/lymphocyte rate (NLR) (a
prognostic marker in both ipilimumab and nivolumab therapy) [166-169]. ICI targeting PD-1
stimulated circulating Treg levels but did not change Granulocyte-MDSC (G-MDSC) and Myeloid-
MDSC (M-MDSC) levels. However, the partial response group had a higher baseline level of M-
MDSCs, which showed a significant decrease after the first cycle of anti-PD-1 treatment [170].
Therefore, MDSC accumulation plays a significant role within the tumor microenvironment and is
implicated in the failure of ICI.

There have been limited studies on the use of ICI in the treatment of MPN as described earlier
in the article with three NCI-sponsored clinical trials related to combined immune- therapy
(NCT03065400, NCT02421354, and NCT02871323) in 2021 [18,19,171].

We have collected preliminary data in our laboratory showing the expressions of VISTA, TIM-
3, and LAG-3 on the progenitor, immune, and MDSC cells in MPN patients. We found that VISTA is
the predominant next ICI receptor or ligand found in MPN patients. Other next-generation
checkpoints including TIM-3, TIGIT, and LAG-3 were not different in expressions between controls
and MPN patients as shown in Figures 3—6. We had previously found MDSC over-expressed in cells
including CD34+, CD14+, CD4*, and CD8", and now our preliminary data suggest that VISTA (one of
the next generation ICI) as compared to others like TIM-3, LAG-3, TIGIT could be the predominant
ICI target in MPN.

Future directions and perspectives

There is now immense interest in integrating immunotherapy into the standard of care for
various tumor types specifically hematological cancers, in large part due to the considerable progress
made in discovering new immune checkpoint targets as part of next-generation ICIT. First, although
combination immunotherapy has shown a ray of hope by yielding significant therapeutic
improvement, there is substantial debate over the optimal types and dosage of these modalities.
Second, IR blockade can produce remarkable tumor shrinkage and remission in only a proportion of
patients, and it is critically important to understand why. While several known factors, such as IR
ligand expression, the brevity, and the immunogenicity of neoantigen expression, could contribute,
there may be many other factors that remain unknown. Determining these factors and identifying
biomarkers that can predict responsiveness to each immunological modality will be critical. Third,
while the novel immunotherapies tested in clinical trials represent a significant step forward, it
remains important to continue the search for new targets that might be critical components of future
combinatorial approaches. This is especially important in the future to promote new modalities with
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higher efficacy but reduced adverse events. It is also important to continue to identify new potential
immunotherapeutic targets and mechanisms that can lay the foundation of new targeted approaches.

Our preliminary results showed that VISTA than others including TIM-3, LAG-3, and TIGIT,
were the predominant next-generation ICI expressed on CD3*, CD14 *, and CD 34 * cells as measured
by the percentage of positive 2nd G- ICI cells (Figure 3) and MFI (Figure 4). Also, we demonstrated
that VISTA also wares the predominant 2nd G-ICI on both the G-MDSC and M-MDSC as measured
by the percentage of positive cells (Figure 5) and MFI (Figure 6) respectively. This would lead to
further clinical trials specifically involving VISTA with a possible combination anti-Vista and anti-
PD-1 in MPN disease. This may lead to reviving the ICI therapy in MPN which ICI was found to be
a negative trial in using anti-PD-1 only in the treatment of MPN.

A
30 15
— . —_—
% 201 2 10] .
: 3 .
o ‘S L[]
2 10 $ i . 2 5 .
o =
E’ 03 f:“ 04
TR NG ?
D S
o o l\ ‘\ t- 'h
S & °"o° & & (,0" o" P o° 00" Fs
P=NS, comparison betwen CTR Vs MPN P=NS, CTR Vs MPN
*k ns
C D * Tk ns
- 1000 —
wn ] ) [ ]
B 3 8 r]
o O 60
6 4 o .
~e =2 401 [
< 2 < .
1 = 207
£ o 2|
i
-2 -20 i
NS & SN QN QN
< Q‘: sj}_ &_ﬁo‘f&“ éj;\s* 55 SEER '%8
S S S o TS FES <.-°\o &o&o&
P=NS, CTR Vs MPN p000s  *P<000S

Figure 3. 2nd generation of ICI expressions (% of cells) on the different cell populations were done on
MPN patients and controls. The results showed that there were no difference on the LAG-3, TIGIT,
and TIM-3 on the different cell population between MPN and controls, but there was a significance
of the VISTA expression (between MPN and controls) ( mean + SE) on the CD3 (20.4 + 5.94 Vs 0.91 +
0.44, P<0.05) CD14 (38.86 +6.12 Vs 0.79 + 0.43, P =0.003) , CD 34 (2.30 + 1.26 Vs 2.30 + 1.28 , P < 0.05),
other ICI marker of LAG3 and TIM3 were of no significant difference.
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Figure 4. 2nd generation of ICI expression (MFI) on different cell populations on MPN patients and
controls. The results showed there were no differences of the LAG-3, TIGIT, and TIM-3 on the
different cell population between MPN and controls, but there was a significance of the VISTA
expression (between MPN and controls) ( mean + SE) on the CD3 ( 3257 + 673.4 Vs 457,0 + 59.0 , P<
0.05) CD14 (5399 +994.3 Vs 879.3 + 325.2, P =0.003) , CD 34 (2300 + 1262 Vs 24.0 + 10.4, P <0.05).
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Figure 5. Expression of 2nd generation of ICI (% of positive cells) on the G- MDSC, and M-MDSC in
patients with MPN and controls. The results showed there was no difference of the LAG-3, TIGIT,
and TIM-3 on G- MDSC or M-MDSC between MPN and controls, but there was a significance of the
VISTA expression (between MPN and controls) ( mean + SE) on the G-MDSC (23.9 + 6.8 Vs 0.00 + 0.0
, P<0.003) , and M-MDSC ( 31.5 + 6.6 Vs 1.47 + 1.47, P =0.003) respectively .
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Figure 6. Expression of 2nd generation of ICI (MFI ) on the G- MDSC, and M-MDSC in patients with
MPN and controls. The results showed there were no difference of the LAG-3, TIGIT, and TIM-3 on
GMDSC or M-MDSC between MPN and controls, but there was a significance of the VISTA
expression (between MPN and controls) ( mean + SE) on the G-MDSC (3085 + 763.6 Vs 179.7 + 64.6 ,
P=0.008) , and M-MDSC (4241 + 617.7 Vs 159.7 + 31.29, P =0.0004) respectively.
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