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Abstract: This report gives a comprehensive summary of two problems about graph convolutional
networks (GCNs): over-smoothing and heterophily challenges, and outlines future directions to explore.

1. Introduction

Many real-world problems can be modeled as graphs. Recently, neural network based approaches
have achieved significant progress for solving large, complex, graph-structured problems [9,12,17,21,24,
34,50]. Inspired by the success of Convolutional Neural Networks (CNNs) [31] in computer vision [33],
graph convolution defined on the graph Fourier domain stands out as the key operator and one of the
most powerful tools for using machine learning to solve graph problems. Although with high expressive
power, GCNis still suffer from several difficulties, e.g. the over-smoothing problem limits deep GCNs
to sufficiently exploit multi-scale information, heterophily problem makes the graph-aware models
underperform the graph-agnostic models. This report summarizes the methods we have proposed to
address those challenges and puts forward some research problems we will investigate.

To fully explain the above problems, in Section 1.1, we will first introduce the notation and
background knowledge of graph networks. In Section 2, we introduce the loss of expressive power of
deep graph neural networks (GNNs) and propose snowball and truncated Krylov architecture to address
it; in Section 3, we analyze heterophily problems for the existing GNNs and propose Adaptive Channel
Mixing (ACM) architecture to address it.

Main Contribution

In Section 2, we first point out that the output of deep GCN with ReLU activation function will suffer
from loss of rank problem under certain conditions and this can cause deep GCN lose expressive power.
We then prove that Tanh is better at preserving the rank of the output and verify this claim with numerical
tests. Then we find a way to deepen GCN in block Krylov form and propose snowball and truncated
Krylov networks which perform better than state-of-the-arts (SOTA) model on semi-supervised node
classification tasks on 3 benchmark datasets. Besides, we point out that finding a specifically tailored
weight initialization scheme for GCNs can be an promising direction to address over-smoothing
efficiently in Section 2.2. In Section 3, we first illustrate the insufficiency of the current homophily metrics
and propose aggregation homophily based on a new similarity matrix. We then show the advantage of
the new homophily metric over the existing ones on synthetic graph. Based on the similarity matrix, we
define diversification distinguishability of a node and demonstrate why high-pass filters can help to
address heterophily problem. To include both low-pass and high-pass in GNNs, we extend filterbank
method and propose ACM and ACMII frameworks that can boost the performance of baseline GNNs on
heterophilous graphs.

1.1. Notation and Background Knowledge

Suppose we have an undirected graph G = (V, §, A), where V is the node set with |'V| = N; & is
the edge set without self-loop; A € RNXN is the symmetric adjacency matrix with A;jj = 1if and only if
¢ij € &, otherwise A;; = 0; D is the diagonal degree matrix, i.e. D;; = }.; Ajj and N; = {j : ¢;; € &} is the
neighborhood set of node i. A graph signal is a vector x € RN defined on V, where x; is defined on the
node i. We also have a feature matrix X € RN*f whose columns are graph signals and each node i has a
corresponding feature vector X; with dimension F, which is the i-th row of X. We denote Z € RNXC a5
label encoding matrix, where Z;. is the one hot encoding of the label of node i and C is the total number
of classes.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The (combinatorial) graph Laplacian is defined as L = D — A, which is a Symmetric Positive
Semi-Definite (SPSD) matrix [7]. Its eigendecomposition gives L = UAU’, where the columns of
U € RN*N are orthonormal eigenvectors, namely the graph Fourier basis, A = diag(Ay,...,AyN) with
A1 < -+ < AN, and these eigenvalues are also called frequencies. The graph Fourier transform of the graph
signal x is defined as xF = U™ lx = UTx = [ulTx, ey uﬁx]T, where ul.Tx is the component of x in the
direction of u;.

Some graph Laplacian variants are commonly used, e.g. the symmetric normalized Laplacian Lsym =
DY/2LD"1/2 — [ - D"1/2AD~1/2 and the random walk normalized Laplacian Ly = DL =1-D1A.
The eigenvalues of L, and Lsym are the same and are in [0,2), and their corresponding eigenvectors
satisfy ul,, = D‘l/zuéym.

The affinity (transition) matrices can be derived from the Laplacians, e.g. Arw =1 —Lyw = D714,
Asym = I = Leym = D7V/2AD71/2. Then A;(Anv) = Ai(Asym) = 1= Ai(Asym) = 1 - Ai(Anv) € (-1,1].
Renormalized affinity and Laplacian matrices are introduced in [24] as Asym =D 1/2AD1/2, ﬁsym =
I- Asym, where A = A+1,D = D + I and it essentially adds a self-loop and is widely used in Graph
Convolutional Network (GCN) as follows:

Y = softmax(Asym ReLU(AsymXWo) W) (1)

where Wy € RP*F1 and W, € RF1XO are parameter matrices. GCN can learn by minimizing the following
cross entropy loss
L = —trace(ZT log Y). )

The random walk renormalized matrix Ay, = D™'A can also be applied to GCN and it has the same
eigenvalues as Asym. The corresponding Laplacian is defined as Iow=1- Arw Specifically, the nature of
random walk matrix makes A, behaves as a mean aggregator (Arwx)i =Y jetnzui) X i/ (Dji + 1) which is
applied in [17] and is important to bridge the gap between spatial- and spectral-based graph convolution
methods.

2. Loss of Expressive Power of Deep Graph Neural Networks

One major problem of the existing GCNss is the low expressive power limited by their shallow
learning mechanisms [61,66]. There are mainly two reasons why an architecture that is scalable in depth
has not been achieved yet. First, this problem is difficult: considering graph convolution as a special
form of Laplacian smoothing [32], networks with multiple convolutional layers will suffer from an
over-smoothing problem that makes the representation of even distant nodes indistinguishable [66].
Second, some people think it is unnecessary: for example, [4] states that it is not necessary for the label
information to totally traverse the entire graph and one can operate on the multi-scale coarsened input
graph and obtain the same flow of information as GCNs with more layers. Acknowledging the difficulty,
we hold on to the objective of deepening GCNs since the desired compositionality! will yield easy
articulation and consistent performance for problems with different scales.

In Section 2.1, we first analyze the limits of deep GCNs brought by over-smoothing and the activation
functions. Then, we show that any graph convolution with a well-defined analytic spectral filter can be
written as a product of a block Krylov matrix and a learnable parameter matrix in a special form. Based
on this, we propose two GCN architectures that leverage multi-scale information in different ways and
are scalable in depth, with stronger expressive powers and abilities to extract richer representations of
graph-structured data. For empirical validation, we test different instances of the proposed architectures
on multiple node classification tasks. The results show that even the simplest instance of the architectures
achieves state-of-the-art performance, and the complex ones achieve surprisingly higher performance.
In Section 2.2, we propose to study an over-smoothing problem and give some ideas.

1 The expressive power of a sound deep Neural Network (NN) architecture should be expected to grow with the increment of

network depth [19,30].
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2.1. A Stronger Multi-Scale Deep GNN with Truncated Krylov Architecture
Suppose we deepen GCN in the same way as [24,32], we have

Y = softmax(Agym ReLU(: - - Asym ReLU(Agym ReLU(AgymXWo) W1) Wy ---) W) = softmax(Y’) (3)

For this architecture, without considering the ReLU activation function, [32] shows that Y’ will converge
to a space spanned by the eigenvectors of Asym with eigenvalue 1. Taking activation function into
consideration, our analyses on (3) can be summarized in the following theorems (see proof in the
appendix of [44]).

Theorem 1. Suppose that G has k connected components. Let X € RN*F be any feature matrix and let W;
be any non-negative parameter matrix with Wil <1 for j =0,1,.... If G has no bipartite components,
then in (3), as n — oo, rank(Y”) < k.

Theorem 2. Suppose the n-dimensional x and y are independently sampled from a continuous
distribution and the activation function Tanh(z) = e‘f;—f;; is applied to [x, y] pointwisely, then

P(rank (Tanh([x,y])) = rank([x,y])) =

Theorem 1 shows that, even considering ReLU, if we simply deepen GCN as (3), the extracted
features will degrade under certain conditions, i.e. Y” only contains the stationary information of the
graph structure and loses all the local information in node for being smoothed. In addition, from the
proof we see that the pointwise ReLU transformation is a conspirator. Theorem 2 tells us that Tanh is
better at keeping linear independence among column features. We design a numerical experiment on
synthetic data to test, under a 100-layer GCN architecture, how activation functions affect the rank of the
output in each hidden layer during the feedforward process. As Figure 1a shows, the rank of hidden
features decreases rapidly with ReLU, while having little fluctuation under Tanh, and even the identity
function performs better than ReLU. So we propose to replace ReLU by Tanh.
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Figure 1. Changes in the number of independent features with the increment of network depth.

Besides activation function, to find a way to deepen GCN, we first show that any graph convolution
with well-defined analytic spectral filter defined on Asym € RN*N can be written as a product of a block
Krylov matrix with a learnable parameter matrix in a specific form. Based on this, we propose snowball
network and truncated Krylov network.

We take S = RFXF. Given a set of block vectors {Xk}m c RNXE the S-span of {Xk}m is defined as

spanS{Xl, L Xm) = Z XiCy : Cx € S}. Then, the order-m block Krylov subspace with respect to the

matrix A € RNV the block vector B € RV and the vector space S, and its corresponding block Krylov
matrix are respectlvely defined as

%K (A,B) = span®{B,AB,...,A" B}, Ku(A,B) = [B,AB,..., A" 'B] € RN,

It is shown in [11,15] that there exists a smallest m such that for any k > m, AkB ¢ 7(,181 (A, B), where m
depends on A and B.
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Let p(Asym) denote the spectrum radius of Asym and suppose p(Asym) < R where R is the radius of
convergence for a real analytic scalar function g. Based on the above definitions and conclusions, the
graph convolution can be written as

& o(n)
A g™ (0) 4 : T .
gUhsm)X = ) S AL X = [X, AgmX, .., Al X] [(T0)T, (09)T, -, (T )] = Kin(Asyim, X)T°
n=0 ’

4)
where FZ.S e REF fori=1,...,m—1 are parameter matrix blocks and IS € R"FXF Then, a graph
convolutional layer can generally be written as

§(Asym) XW' = K(Asym, X)TSW' = Ky (Asym, X)WS (5)

where W’ € RF*¥O is a parameter matrix, and WS = TSW’ € RO, The essential number of learnable
parameters is mF X O.

The block Krylov form provides an insight about why an architecture that concatenates multi-scale
features in each layer will boost the expressive power of GCN. Based on this idea, we propose the
snowball and truncated Block Krylov architectures [44] shown in Figure 2, where we stack multi-scale
information in each layer. From the performance comparison on semi-supervised node classification tasks
with different label percentage in Table 1, we can see that the proposed models consistently perform better
than the state-of-the-art models, especially when there are less labeled nodes. See detailed experimental

results in [44].
A ] ”
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|
L2X L2H; 12H,
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\

Figure 2. Snowball and Truncated Krylov Architectures.
2.2. Future Works on Over-Smoothing

Weight Initialization for GNNs

Even without aggregation in each hidden layer, an NN with deep architecture still suffers from
vanishing activation variances and back-propagated gradients variance problem [13], which make the
training of deep NN hard. In last decade, designing new parameter initialization methods is proved to
be effective [13,18] to address the variance reduction problem during feedforward and backpropagation
process. This motivates us to investigate the variance propagation in GNNs and analyze if the current
weight initialization methods are suitable for GNNs or not. To this end, we can show that the vanishing
variance caused by aggregation operation in GNNs is more serious than NN. Designing a new parameter
initialization scheme for GNNs is potentially a feasible way to address this problem and empirically
achieves promising performance [45]. we will propose a new method in this subsection.
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Table 1. Accuracy without Validation. For each (column), the greener the cell, the better the performance.
The redder, the worse. If our methods achieve better performance than all others, the corresponding cell

will be in bold.
) Cora CiteSeer PubMed

Algorithms ‘0.5% 1% 2% 3% 4% 5% |0.5% 1% 2% 3% 4% 5% |0.03% 0.05% 0.1% 0.3%

LP 56.4 62.365.4 34.8 614 664 65.4
Cheby _M 42.859.9 66.2 68.3 69.3 72.8
Co-training | 56.6 66.473.575.9 78.9 80.8/47.3 55.7 62.1 62.5 64.5 65.5| 622 68.3 72.7 78.2
Self-training  |53.7 66.173.877.279.480.0/43.3 58.168.269.870.471.0) 51.9 58.7 66.8 77.0
Union 58.5 69.975.978.580.481.7|46.3 59.1 66.7 66.7 67.6 68.2| 58.4 64.0 70.7 79.2
Intersection  |49.7 65.072.977.179.4 80.2/42.9 59.168.6 70.170.8 71.2| 52.0 59.3 69.7 77.6

MultiStage | 61.1 63.774476.1772  |53.0 57.8 63.8 68.0 69.0 574 643 702

M3s 61.5 67.275.677.878.0  |56.1 62.166.470.370.5 59.2 644 70.6
GCN 42.6 56.9 67.874.977.6 79.3|834 46.5 62.6 66.9 68.7 69.6| 46.4 "49.7 56.3 76.6
GCN-SVAT  |43.6 53.971.475.6 78.378.5/47.0 52.4 65.8 68.6 69.570.7| 52.1 56.9 63.5 77.2
GCN-DVAT | 49 61.871.975.978.478.6/51.5 58.567.469.270.871.3| 533 58.6 66.3 77.3
linear Snowball | 67.6 74.6 78.9 80.9 82.3 82.9| 56.0 63.4 69.3 70.6 72.5 72.6| 65.5 68.5 73.6 79.7
Snowball  |68.4 73.278.480.8 82.3 83.0/ 56.4 63.968.7 70.571.8 72.8 66.5 68.6 73.2 80.1

truncated Kryloo 718 765800820 83,0 84.159.9 661698 713723 73.7 687 714 75.5 804

The current initialization scheme of GNNs still follows the Xavier initialization [13], i.e. W; ~
\/nj\fnm , \/njftj+1 , or He (or Kaiming) initialization [18], i.e. W; ~ N (O, V2/ ni), which is designed
for traditional multilayer perceptron (MLP) , where W; is the parameter matrix of layer i and #; is the
number of hidden units of layer i. These two initialization methods are derived by studying the variance
propagation between layers during feedforward and backpropagation process. These two processes
are different in GNNs by an extra multiplication of aggregation operator A. To analyze the variance
propagation, we use deep GCN as an example, use A = Ay, and decompose it as follows,

Yo =X, Hy = ArwXWy, Y1 = f(Hy), Huq = Ay YW, Y = f(Hi), 1=1,...,n
Y = softmax (A, Y, W,) = softmax(H,,1), £ = —trace(ZTlogY)

ul-

(6)

where H;, Y; € RN*F1, W, € RF<Fii1; 7 € RNXC s the ground truth matrix with one-hot label vector. Then
the gradient propagates in the following way,

S storu A, o
Variance Analysis: Forward View
Consider element , j in matrix H; 1 during the feed-forward process in (6),
F, N
(Hl+1)ij = (ArW) YI(WI ZZ w)ik (YD ke (W)t tjr Yiy1 = f(Hi), I=1,...n 8

t=1k=1
Suppose we have linear activation function such as that proposed in [60]; each element in W; is
i.i.d.initialized with E ((Wl)ij) = 0; E((Y))xr) = 0 and all elements in Y; are independent 2. Then,
Var ((Yl+1)ij) = Var ((Y;41)) can be written as

2 For simplicity, the independence assumption is directly borrowed from [13], but theoretically it is too strong for GNNs. We will

try to relax this assumption in the future.
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N
o F
Var Z(Arw>ik (YD (W)t ZZVM w)ik (YD) ke (Wl)t]) diiIVaF(Yl)Var(Wz) ©)

Suppose each element in Y; shares the same variance denoted as Var (Y;). To prevent variance
vanishing between layers, i.e. Var (Y}, 1) = Var (Y}), from (8) we can approximately have (see computation
in Appendix A.2.1)

di+1
Var(W)) = gitl (10)
Fi
This tells us that the variance of W; depends on the degree of a node, but since the parameter matrix
is shared by all nodes, we cannot design a node specified initialization scheme. Thus, we make a
compromise between nodes as follows

N
d;+1
1';1( i+1) 1 + average node degree
Var(W)) ~ NE E, (11)

Another way is to use weighted average by considering the node degree as the weight of each node.
Through this way, we have

N L (di+1)
d +1 d +1 i=1
Var(W) = Z : N (12)
=1 2 di+1 (X di+1)
j=1 i=1
Variance Analysis: Backward View
Under the same assumption as feedforward view and suppose each element in aH and BL are

independent to each other and has zero mean, from (7) we can approximately (see computatlon in

Appendix A.2.2)

8£—8_'£_A L T d.L T 2 oL

o~ av e awg T g (13)
Then,

Fiii N
0L X oL
(3Hz) - Z‘(ATW)”‘((;HZ ) (W
ij t=1k=1 +1/kt 1)
(3W1—1 )z] (Aerl—l) i (a?)] - I;(;( rw)kt(Yl 1)tl) (aH )
Thus,
Fii1 N
a_L — n a-L TN | _ Fl+1 a_E
var ((‘91‘11)"] = Ve Z ZArW”‘ (8H1+1 )kt W )t']] Cdi+ 1Var(aHl+l)Var (W)
) t=1 k=1 )
oL N L 1 oL
Var ( ) ) = Var ( (Arw)k (Yl—l) ) (_) Var (Yl 1) Var( )
( Wiy 1 kz_:l' t=1 t g oH, kj Z di +1 oH,
Y (i +1)
i+
i— 1
Var(W)) = i=1 . + average node degree a8

NFjq Friq
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From (9) and (15), Var (Y;_1) can be approximately written as

NF HONE
Var oL 1 Var oL Var (W;) ~ Var oL — Var (Wyr_1)
(9Hl N JH 4 JdH,, 41 N
Yodi+1 P=I+1 Y di+ 1
i=1 i=1 (17)
-2
NF._, ~ NFy
Var (Y;_1) ~ Yo +1Var (Yj—p)Var(W;_,) = Var(Yo)ll_[O o dk_'_lVar(Wp)
From (15), if each Var(W} ) equals to Var(W) and each F; equals to F, then
Var Var(Yp)Var oL NE Var(W) ' (18)
3Wz 1 dk 0 OHp 1 )\ Eidi +1
Combined with (11), we can set the variance of the parameter matrix as
3 d
2 i+ 1
El( i+1) 2(1 + average node degree)
Var(W)) = = (19)
N(F; + Fiy1) (F1+Fry1)

Thus, each element in W; can be drawn from N/(0, \/ 2(1+aveg3§;igocll§ degree) )
+

Adaptive ReLU (AdaReLU) Activation Function

To satisfy the assumption that the activation function is linear at the beginning of training process
and to still learn a nonlinear function during training, we design the following adaptive ReLU (AdaReLU)

activation function
N ﬁixi, if xX; > 0
f(xl) o { aix;, ifx;<0

where a; and f; are learnable parameters and are initialized to be 1. If a; = a and B; = f for all i, we
have channel-shared AdaReLU, otherwise we have channel-wise AdaReL.U 3. From the preliminary
experimental results, channel-wise works better than channel-shared AdaReLU.

There exist some experimental evidence [45] that controlling variance flow by initialization like (19)
can relieve the performance decrease of deep GCN. But more tests and hyperparameter tunning still
needs to be done. More theoretical analysis on variance propagation needs to be done.

3. GNNs on Heterophily Graphs

GNNs are considered as an extension of basic Neural Networks (NNs) by additionally making use
of graph structure based on the relational inductive bias (homophily assumption), rather than treating
the nodes as collections of independent and identically distributed (i.i.d.) samples. Though GNNs are
believed to outperform basic NNs in real-world tasks, it is found that in some cases, the graph-aware
models have little performance gain or even underperform graph-agnostic models [6,46,51,69,71]. One of
the main reasons for the performance degradation is believed to be heterophily, i.e. when the connected
nodes tend to have different labels [69,71]. Heterophily challenge has received attention recently and
there are increasing number of models being put forward to analyze [39,43] and address this problem
[6,36,41,42,64,69,70].

In this section , we first introduce the most commently used homophily metrics in Section 3.1. Then,
we show that not all cases of heterophily are harmful for GNNs and propose new metrics based on a
similarity matrix which considers the influence of both graph structure and input features on GNNs in

3 The words "channel-shared" and "channel-wise" are borrowed from [18], which indicate if we share the same learning parameter

between each feature dimension or not.
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Section 3.2. The metrics demonstrate advantages over the commonly used homophily metrics by tests on
synthetic graphs. From the metrics and the observations, we find some cases of harmful heterophily can
be addressed by diversification operation and its effectiveness can be proved in Section 3.3. With this fact
and knowledge of filterbanks, we propose the Adaptive Channel Mixing (ACM) framework in Section
3.4 to adaptively exploit aggregation, diversification and identity channels in each GNN layer to address
harmful heterophily. We validate the ACM-augmented baselines with real-world node classification
tasks. They consistently achieve significant performance gain and exceed the state-of-the-art GNNs on
most of the tasks without incurring significant computational burden. In Section 3.5, we introduce some
prior work on addressing heterophily problems and explain their differences with ACM framework. The
limitation of diversification operation and remaining challenges of heterophily problems are discussed in
Section 3.6

3.1. Metrics of Homophily

The metrics of homophily are defined by considering different relations between node labels and
graph structures defined by adjacency matrix. There are three commonly used homophily metrics: edge
homophily [1,70], node homophily [51], and class homophily [35] 4 defined as follows:

|{euv | ey E((;/Zu,: :Zv'}| |{u|u€Nv/Zu —Zv }|

H = —, H, ,
edge (g) €] node |(V| UEZ‘V
(20)
1 v, [wlZy=1 Loey [t | Zox = 1,u € No, Zu: = Zo,)|
Helass = =~ _ 1 Z hy———— =
n Yovefo|Z, =1} o

where [a] = max(a,0); hi is the class-wise homophily metric [35]. They are all in the range of [0,1] and
a value close to 1 corresponds to strong homophily while a value close to 0 indicates strong heterophily.
Hedge (G) measures the proportion of edges that connect two nodes in the same class; Hyode (G) evaluates
the average proportion of edge-label consistency of all nodes; Hgjass(G) tries to avoid the sensitivity to
imbalanced class, which can cause Heqge misleadingly large. The above definitions are all based on the
graph-label consistency and imply that the inconsistency will cause harmful effect to the performance of
GNNs. With this in mind, we will show a counter example to illustrate the insufficiency of the above
metrics and propose new metrics in the following subsection.

3.2. Analysis of Heterophily and Aggregation Homophily Metric

Heterophily is believed to be harmful for message-passing based GNNs [6,51,70] because intuitively
features of nodes in different classes will be falsely mixed and this will lead nodes indistinguishable [70].
Nevertheless, it is not always the case, e.g. the bipartite graph shown in Figure 3 is highly heterophilous
according to the homophily metrics in (20), but after mean aggregation, the nodes in classes 1 and 2
only exchange colors and are still distinguishable. Authors in [6] also point out the insufficiency of
Hjode by examples to show that different graph typologies with the same Hyo4e can carry different label
information.

4 The authors in [35] did not name this homophily metric. We name it class homophily based on its definition.
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agg(@) =1 6 3 6

Figure 3. Example of harmless heterophily

To analyze to what extent the graph structure can affect the output of a GNN, we first simplify the
GCN by removing its nonlinearity as [60]. Let A € RNN denote a general aggregation operator. Then,
Equation (1) can be simplified as,

Y = softmax(AXW) = softmax(Y”) (21)
After each gradient decent step AW = y%, where v is the learning rate, the update of Y’ will be,

AY' = AXAW = ;/AXg « Ax9E AXXTAT(z-Y)=S(A,X)(Z-Y) (22)

A aw
where S(A,X) = AX(AX)T is a post-aggregation node similarity matrix, Z — Y is the prediction error
matrix. The update direction of node i is essentially a weighted sum of the prediction error, i.e.

AY)i = Ljev [S(A, X)]i,]- (Z-Y)j.

To study the effect of heterophily, we first define the aggregation similarity score as follows.

Definition 1. Aggregation similarity score

|{v | Meanu({S(A, X)oulZu,: = Zv,:}) > Meanu({S(A, X)oulZu,: # ZU,;})}|
[V

Sagg (S(A, X)) = (23)

where Mean,, ({-}) takes the average over u of a given multiset of values or variables.

Sagg(S(A, X)) measures the proportion of nodes v € V that will put relatively larger similarity
weights on nodes in the same class than in other classes after aggregation. It is easy to see that
Sagg(S(A, X)) € [0,1]. But in practice, we observe that in most datasets, we will have S,g5(S(4, X)) > 0.5.
Based on this observation, we rescale (23) to the following modified aggregation similarity for practical
usage,

S (S(A, X)) = [28ag5 (S(4, X)) - 1]+ (24)

In order to measure the consistency between labels and graph structures without considering node
features and make a fair comparison with the existing homophily metrics in (20), we define the graph (&)
aggregation (A) homophily and its modified version as

Hagg(g) = Sagg (S(A'Z))' Hgég(g) = Slavég (S(A,Z)) (25)
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In practice, we will only check Hagg(G) when Hﬁég(g) = 0. As Figure 3 shows, when A = Ay,

Hagg(G) = Hla‘gg (G) = 1. Thus, this new metric reflects the fact that nodes in classes 1 and 2 are
still highly distinguishable after aggregation, while other metrics mentioned before fail to capture the

information and misleadingly give value 0. This shows the advantage of Hags(G) and Hé\fég (G) by

additionally considering information from aggregation operator A and the similarity matrix.

Comparison of Homophily Metrics on Synthetic Graphs

To comprehensively compare Hf,\gg(g) with the metrics in (20) in terms of how they reveal the
influence of graph structure on the GNN performance, we generate synthetic graphs (d-regular graphs
with edge homophily varied from 0.005 to 0.95) and evaluate SGC with 1-hop aggregation (SGC-1) [60]
and GCN [24] on them.

The performance of SGC-1 and GCN are expected to be monotonically increasing with a proper
and informative homophily metric. However, Figure 4a—c show that the performance curves under
Hedge(G), Hnode(G) and Hepass (@) are U-shaped >, while Figure 4d reveals a nearly monotonic curve
only with a little numerical perturbation around 1. This indicates that Hﬁgg(g) can describe how the
graph structure affects the performance of SGC-1 and GCN more appropriately and adequately than the
existing metrics.

>\10 §
O
o8
>
Eo.e
£0.4
Q
Fo0.2

0.00.2040608 0.00.2040.60.8
Edge Homophily Node Homophily

(@ Hedge (g) (b) Hnode (g)

sync-cora_gcn
--- sync-cora_sgcl
sync-citeseer_gcn
1l --=- sync-citeseer_sgcl
| sync-pubmed_gcn
=== sync-pubmed_sgcl
sync-chameleon_gcn
sync-chameleon_sgcl
sync-squirrel_gcn
--- sync-squirrel_sgcl
sync-film_gcn
- sync-film_sgcl

0002040608 02 04 06 0.8 1.0
Class Homophily ~ Modified Agg Homophily

() Hclass (g) (d) Hggg (g)

Figure 4. Comparison of baseline performance under different homophily metrics.

3.3. How Diversification Operation Helps with Harmful Heterophily

We first consider the example shown in Figure 5. From S(A, X), nodes 1,3 assign relatively large
positive weights to nodes in class 2 after aggregation, which will make node 1,3 hard to be distinguished
from nodes in class 2. Despite the fact, we can still distinguish between nodes 1,3 and 4,5,6,7 by
considering their neighborhood difference: nodes 1,3 are different from most of their neighbors while
nodes 4,5,6,7 are similar to most of their neighbors. This indicates, in some cases, although some nodes
become similar after aggregation, they are still distinguishable via their surrounding dissimilarities. This
leads us to use diversification operation, i.e. high-pass (HP) filter I — A [10] (will be introduced in the next

5 Asimilar J-shaped curve is found in [70], though using different data generation processes. It does not mention the insufficiency
of edge homophily.
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subsection) to extract the information of neighborhood differences and address harmful heterophily. As
S(I- A, X) in Figure 5 shows, nodes 1,3 will assign negative weights to nodes 4,5,6,7 after diversification
operation, i.e. nodes 1,3 treat nodes 4,5,6,7 as negative samples and will move away from them during
backpropagation. Base on this example, we first propose diversification distinguishability as follows to
measures the proportion of nodes that diversification operation is potentially helpful for,

.Classl .Class2 A‘XXTA" (I_A‘)XXT(I_A‘)
.50 .50 .50 .50 .50 .50 .50 .50 .00 .67 -.20 -25 -.20 -
X = .50 1.0 .33 .20 .25 .20 .25 .00 .00 .00 .00 .00 .00 .00
= .50 .33 .56 .60 .58 .60 .58 .67 .00 .89 -.27 -33 -27 -33
1: [1,0] .50 .20 .60 .68 .65 .68 .65 -20 .00 -.27 .08 .10 .08 .10
2:[1,0] .50 .25 .58 65 63 65 63 -25.00 -33 10 13 10 13
3: [1,0] 50 .25 .60 68 65 68 65 -20.00 -27 08 10 08 10
4:10,1] .50 .25 .58 65 63 65 63 -25.00 -33 .10 .13 10 .13
Z {8:} Large positive weighs in Positive w.eights ip intrg—class blocks,
L inter-class block for node 1,3. Non-negative weights in cross-class
7:[0,1] blocks.

Figure 5. Example of how HP filter addresses harmful heterophily.

Definition 2. Diversification Distinguishability (DD) based on S(I — A, X).
Given S(I1— A, X), a node v is diversification distinguishable if the following two conditions are satisfied at
the same time,

1. Mean, ({S(I— A, X)oultt € V A Zy: = Zy}) > 0;

A (26)
2. Mean, (1S(I= A, X)oulu € V A Zy: # Zy,}) <0
Then, graph diversification distinguishability value is defined as
DD A,X(g) = % | {vlv is diversification distinguishable}l (27)

We can see that DD +(G) € [0,1] . The effectiveness of diversification operation can be proved for
binary classification problems under certain conditions based on definition 2, leading us to:

Theorem 3. Suppose X = Z,A = Ar. Then, for a binary classification problem, i.e. C = 2, all nodes are
diversification distinguishable, i.e. DD ,(G) = 1.

Theorem 3 theoretically demonstrates the importance of diversification operation to extract high-frequency
information of graph signal [10]. Combined with aggregation operation, which is a low-pass filter [10,48],
we can get a filterbank which uses both aggregation and diversification operations to distinctively extract
the low- and high-frequency information from graph signals. We will introduce filterbank in the next
subsection.

3.4. Filterbank and Adaptive Channel Mixing(ACM) GNN Framework

Filterbank

For the graph signal x defined on G, a 2-channel linear (analysis) filterbank [10] ® includes a pair
of low-pass(LP) and high-pass(HP) filters Hy p, Hyp, where Hy p and Hyp retain the low-frequency and
high-frequency content of x, respectively. Filterbanks with Hyp + Hyp = I will not lose any information
of the input signal, i.e. perfect reconstruction property [10].

However, most existing GNNs are under uni-channel filtering architecture [17,24,58] with either Hy p
or Hyp channel that only partially preserves the input information. Generally, the Laplacian matrices

6 In graph signal processing, an additional synthesis filter [10] is required to form the 2-channel filterbank. But synthesis filter is

not needed in our framework, so we do not introduce it in our paper.
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(Lsym, Lrw, isym, Lew) can be regarded as HP filters [10] and affinity matrices (Asym, Arw, Asym, Arw) can
be treated as LP filters [16,48]. Moreover, we consider MLPs as owing a special identity filterbank with
matrix [ that satisfies Hp + Hyp =1+ 0= 1.

Filterbank in Spatial Form

Filterbank methods can also be extended to spatial GNNs. Formally, on the node level, left
multiplying Hyp and Hyp on x performs as aggregation and diversification operations, respectively. For
example, suppose Hyp = A and Hyp = I — A, then for node i we have

(HLPx Z Az]x]r (HHPx>l =X Z Ai,jxj (28)
jEiN; Ui} jeiN; Ui}

where A; j is the connection weight between two nodes. To leverage HP and identity channels in GNNs,
we propose the Adaptive Channel Mixing (ACM) framework which can be applied to lots of baseline
GNN. We use GCN as an example and introduce ACM framework in matrix form. We use Hyp and Hyyp
to represent general LP and HP filters. The ACM framework includes 3 steps as follows,

Step 1. Feature Extraction for Each Channel:

Option 1: H} = ReLU (H.pH'~'W} "), H; = ReLU (HppH'~'Wi;'), Hj = ReLU (IH'Wi™);
Option 2: H} = HypReLU (H'™'W} "), H}; = HupReLU (H''Wi;!), Hj = I ReLU (H'Wi™!);

W1, Wil wi-1 e RFFoR,

Step 2. Feature-based Weight Learning (29)
a = o(Hl W’) al, = o(Hl W ) al = a(HlWl) Wit Wit Wit e RF

[ocL, oy, al] = Softmax ([alL, a“zél, d” Mix” T/ ) , Wll\/hx R¥>3 T e Ris the temperature;

Step 3. Node-wise Channel Mixing:

H = (diag(a’L)HlL + diag(ah)Hb + diag(aé)Hé).

The framework with option 1 in step 1 is ACM framework and with option 2 is ACMII framework.
ACM(II)-GCN first implement distinct feature extractions for 3 channels, respectively. After processed
by a set of filterbanks, 3 filtered components H!, Hh, H} are obtained. Different nodes may have different
needs for the information in the 3 channels, e.g. in Figure 5, nodes 1,3 demand high-frequency information
while node 2 only needs low-frequency information. To adaptively exploit information from different
channels, ACM(II)-GCN learns row-wise (node-wise) feature-conditioned weights to combine the 3
channels. ACM(II) can be easily plugged into spatial GNNSs by replacing Hyp and Hyp by aggregation
and diversification operations as shown in (28).

Complexity

Number of learnable parameters in layer  of ACM(II)-GCN is 3F;_1 (F; + 1) + 9, while it is F;_1F; in
GCN. The computation of step 1-3 takes NF;(8 + 6F;_1) + 2F;(nnz(Hyp) + nnz(Hyp)) + 18N flops, while
GCN layer takes 2NF;_1F; + 2F;(nnz(Hyp)) flops, where nnz(-) is the number of non-zero elements.

Performance Comparison

We implement SGC [60] with 1 hop and 2 hops (SGC-1, SGC-2), GCNII [5], GCNII" [5], GCN [24]
and snowball networks with 2 and 3 layers (snowball-2, snowball-3) and apply them in ACM or ACMII
framework: we use Ay, as LP filter and the corresponding HP filter is I — A,. We compare them with
several baseline and SOTA GNN models: MLP with 2 layers (MLP-2), GAT [58], APPNP [25], GPRGNN
[6], HoGCN [70], MixHop [1], GCN+JK [24,35,63], GAT+]JK [35,58,63], FAGCN [2] GraphSAGE [17] and
Geom-GCN [51]. Besides the 9 benchmark datasets Cornell, Wisconsin, Texas, Film, Chameleon, Squirrel,
Cora, Citeseer and Pubmed used in [51], we further test the above models on a new benchmark dataset,
Deezer-Europe, that is proposed in [35]. On each dataset used in [51], we test the models 10 times following
the same early stopping strategy, the same random data splitting method and Adam [23] optimizer as
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used in GPRGNN [6]. For Deezer-Europe, we test the above models 5 times with the same early stopping
strategy, the same fixed splits and AdamW [37] used in [35].

To better visualize the performance boost and the comparison with SOTA models, in Figure 6,
we plot the bar charts of the test accuracy of SOTA models, 3 selected baselines (GCN, snowball-2,
snowball-3) and their ACM and ACMII augmented models on 6 most commonly used benchmark
heterophily datasets (See [40] for the full results and comparison). We can see that after being applied in
ACM or ACMII framework, the performance of the 3 baseline models are significantly boosted on all
tasks and can achieve SOTA performance. Especially on Cornell, Texas, Film and Squirrel, the augmented
models significantly outperform the current SOTA models. Overall, It suggests that ACM or ACMII
framework can help GNNs to generalize better on node classification tasks on heterophilous graphs.

Cornell (SOTA=APPNP) ~Wisconsin (SOTA=MLP-2) Texas (SOTA=GPRGNN)

100
= = = SOTA
X X X
~ ~ 90 - mm baseline GNNs
> > >
o o 9 = ACM-GNNs
3 3 80 3 == ACMII-GNNs
1%} 1%} Q
< < <
® % 70 I
() (0} ()
[ [ [
GCN snowball-2 snowball-3 60 GCN snowball-2 snowball-3 GCN snowball-2 snowball-3

(@) HY,,(G) = 0.8032, 1 (b) HY.(G) = 07768, (© HY (G) = 0.694, 12.82 %

4.1 % 13.13 %

Chameleon (SOTA=GAT+JK) Film (SOTA=GPRGNN) Squirrel (SOTA=GCN+JK)

60
370 3 3
s s s
> >40 >
gos
3 335 3
1} o o
<60 < <
3 $ 30 3
~ [ [
55
GCN snowball-2 snowball-3 GCN snowball-2 snowball-3 GCN snowball-2 snowball-3
(d) H)g, (G) = 0.61,7 0.9 (e) HY,(G) = 0.6822, () HY(G) = 03566,
% 12.54% 14.62 %

Figure 6. Comparison of SOTA models (magenta), selected baseline GNNs (red) and their ACM (green)
and ACMII (blue) augmented models on 6 selected datasets. The black line and the error bar indicate the
standard deviation. The symbol “1” means the amount of improvement of the best ACM-baseline and
ACM-baseline over the SOTA models.

3.5. Prior Work

We discuss relevant work of GNNs on addressing heterophily challenge in this part. Authors in
[1] acknowledge the difficulty of learning on graphs with weak homophily and propose MixHop to
extract features from multi-hop neighborhood to get more information. Geom-GCN [51] precomputes
unsupervised node embeddings and uses graph structure defined by geometric relationships in the
embedding space to define the bi-level aggregation process. Authors in [20] propose measurements
based on feature smoothness and label smoothness that are potentially helpful to guide GNNs on
dealing with heterophilous graphs. HyGCN [70] combines 3 key designs to address heterophily: (1) ego-
and neighbor-embedding separation; (2) higher-order neighborhoods; (3) combination of intermediate
representations. CPGNN [69] models label correlations by the compatibility matrix, which is beneficial
for heterophily settings, and propagates a prior belief estimation into GNNs by the compatibility matrix.
FBGNN [47] first proposes to use filterbank to address heterophily problem, but it does not fully explain
the insights behind HP filters and does not contain identity channel and node-wise channel mixing
mechanism. FAGCN [2] learns edge-level aggregation weights as GAT [58] but allows the weights to
be negative which enables the network to capture the high-frequency components in graph signals.

doi:10.20944/preprints202307.0118.v1
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GPRGNN [6] uses learnable weights that can be both positive and negative for feature propagation,
it allows GRPGNN to adapt heterophily structure of graph and is able to handle both high- and
low-frequency parts of the graph signals.

3.6. Future Work

Limitation of Diversification Operation

Diversification operation does not work well in all harmful heterophily cases. For example, consider
an imbalanced dataset where several small clusters with distinctive labels are densely connected to a
large cluster. In this case, the surrounding differences of nodes in small clusters are similar, i.e. the
neighborhood differences are mainly from their connection to the same large cluster, and this possibly
makes diversification operation fail to discriminate them. Thus, it is obvious that ACM framework is not
able to handle all heterophily cases.

From Figure 4, we can see that GNNs consistently perform well in the high homophily area. This
reveals the fact that all homophily cases are helpful. This reminds us that instead of using a fixed
adjacency matrix, we can learn a new adjacency matrix with different homophily level. With this in mind,
we design an architecture with additional adjacency learner as shown in Figure 7: instead of using a
fixed predefined adjacency matrix, we will learn an adjacency matrix with edges that can reveal the label
similarity between nodes, i.e. homophily. . This adjacency learner should ideally be trained end-to end.
From some preliminary experimental results (not included in this report) of a GCN with a pretrained
adjacency learner, this method is promising although there are some stability issues need to be fixed.

Adjacency
Learner

Adjacency A
Feature X GNN(4,4,, X) Output Y- Loss L(Z,Y)
Label Z

Figure 7. GNN with adjacency learner.
Exploring Different Ways for Adjacency Candidate Selection

Some tricks can be explored when we are selecting the adjacency candidates for the adjacency
learner:

e Sample or select (top-k1) nodes from complementary graph, put them together with the pre-defined
neighborhood set to form adjacency candidate set, then sample or select (top-kz) adjacency
candidates for training. Try to train it end-to-end.

e Consider modeling the candidate selection process as a multi-armed bandit problem. Find an

efficient way to learn to select good candidates from complementary graph. Can use pseudo count
to prevent selecting the same nodes repeatedly.

4. Graph Representation Learning for Reinforcement Learning

4.1. Markov Decision Process (MDP)

MDP is a framework to model the learning process that the agent learns from the interaction with the
environment[56,67,68]. The interaction happens in discrete time steps, t = 0,1,2,3,---. Atstep t, given
a state S; = s; € S, the agent picks an action a; € A(s¢) according to a policy 7(:|s¢), which is a rule of
choosing actions given a state. Then, at time ¢ + 1, the environmental dynamicsp : SXRXAXS — [0,1]
take the agent to a new state Sy11 = s;+1 € S and provide a numerical reward Ry 1 = #41(St, a¢,514+1) € R.
Such a sequence of interaction gives us a trajectory © = {So, Ao, R1,S1,A1,R2,52,A2,R3,---}. The
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objective is to find an optimal policy to maximize the expected long-term discounted cumulative reward
Va(s) = [ Z V¥R, 1111St = s] for each state s, where y is the discount factor.
=0

For a glven policy 7, solving its value function V;; is equivalent to solving the following linear
system,
Vi =ty +yPrVy (30)

where V; = [V, (s)]sTes eRSr, = [rn(s)]STGS € RISL P, = [Pr(5'5)]s ses € RSXISI The state transition
matrix P, essentially defines a graph structure over states and the reward vector ry is a signal defines
on graph. Thus, solving value function can be considered as a (supervised or semi-supervised) node
regression tasks over graph. Besides solving V;, the graph structure can also be used for reward
propagation and representation learning in Reinforcement Learning (RL) [26-28].

4.2. Graph Representation Learning for MDP

Treating MDP as a graph is an old but never outdated idea. Traditional methods use graph Laplacian
for a fixed policy to estimate Vy, e.g. proto-value function [49]. In addition to value function estimation,
[28] proposes to use GCN to learn potential-based reward shaping, which can accelerate the learning
process of the agent.

The above methods both construct the graph from the sampled trajectory data. With modern Graph
Representation Learning (GRL) methods e.g. node embedding methods [3], link prediction methods
[52,54,57], we can learn to reconstruct the underlying graph (adjacency matrix) from sampled data more
efficiently. And label propagation [53], which is a commonly used algorithm for graph semi-supervised
learning, can be helpful for efficient reward propagation. In Section 4.3, we will introduce the potential
of using GRL for reward propagation and representation learning in reinforcement learning.

4.3. Reinforcement Learning with Graph Representation Learning

In this section, we will draw how to represent Markov Decision Process (MDP) with graph and
introduce two possible ways of using graph representation learning to address the problems defined on
MDP.

Each state can be treated as a node on a graph, the transition probability between each pair of nodes
(an element in state transition matrix) can be represented by the edge (or weight) between them and value
function is a function defined on each node of the graph. The details (for finite MDP) are introduced in
matrix form as follows [38,59]:

e Denote |S||A| X |S| environment transition matrix as P, where
Psas) Zp (s',ls, a) (31)

and Py o) 2 0, Xy P(s) = 1, for all s, a. Note that P is not a square matrix.
e We rewrite the policy 7 by an [S| X |S||A| matrix I, where I ¢,y = 7(als) if s = s, otherwise 0:

IT = diag(n(ls1)", -+, 7(-lsisp) ") (32)

where n(-lsi)T is an |Al-dimensional row vector. From this definition, one can quickly verify
that the matrix product IIP gives the |S| X |S| state-to-state transition matrix P, (asymmetric)
induced by the policy 7 in the environment P, and the |S||A] X |S||A| matrix product PII gives
the state-action-to-state-action transition matrix P;, (asymmetric) induced by policy 7 in the
environment P.

e We denote the |S||A| X 1 reward vector as r, whose entry ¥ (sa) specifies the reward obtained when
taking action a in state s, i.e.

T(sa) = E[rls, a] Z Psps - 1(s,a,5"). (33)
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e The state value function and state-action value function can be represented by

Ve = Z Y!(ITP)'TTr = TIr + yIIPV, € RSX Q. =} »/(PIT)'r = r + yPIIQ, € RFMX! (34)
i=0 i=0

4.3.1. Learn Reward Propagation as Label Propagation

The sampling process from an MDP can be considered as a random walk defined on a graph, because
the relation (edge) between each pair of states is essentially a transition probability 7. Discovering the
underlying graph of a MDP can help us to leverage the correlation between states to learn value function
or do to efficient exploration in sparse reward environment.

Usually, the graph is constructed from the trajectory data, i.e. the pairwise state transition data. But
once we update the policy, we need to reconstruct the graph. With graph embedding methods for link
prediction tasks, e.g., Deepwalk [52], node2vec [14], Line[57], we are able to learn graph reconstruction
by inferring some unobserved transition. To be more specifically, instead of learning Pr(s’|s) for a fixed
policy 71, we can learn the state-action transition probability P(s’ls,a), which is independent of 7. In this
way, we can take use of trajectory data in all history no matter the policy changes or not. And once we
are given a policy, we can infer the graph by combining 7t(als) and P(s'[s, a).

4.3.2. Graph Embedding as Auxiliary Task for Representation Learning

Learning auxiliary tasks is showed to be helpful for state representation learning [22], which is
critical to learn a good policy for agents. Among the methods, successor representation is showed to be
theoretically and empirically important for learning a good state representations [8,29]. Modeling the
successor triplet (s,a,s") for MDP is essentially equivalent to modeling the triplet (head, relation, tail) in
knowledge graph. And there exist a lot of algorithms in knowledge graph embedding community to
address triplet embedding problem, e.g., TransE [3], RotateE [55], QuatE [65] and DihEdral [62]. These
methods can be borrowed to learn richer representation for RL tasks.

Appendix A. Calculation of Variances

Appendix A.1. Background
We first decompose the deep GCN architecture as follows

Yo =X, Hy = AXWy, Y1 = f(Hy)

H1_|_1 = AY[W[, Yl+1 = f(H1+1), | = 1, oo n
Y = softmax(AY,W,) = softmax(Hj+1)

L = —trace(ZTlogY)

(A)

7 From this perspective, we should not treat the trajectory as sequential data, because we do not necessarily have an ordered

relation between states on a graph, even for directed graph. Although the observation seems to have an order in it, we actually
only have transition relation.
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where Hj, Y; € RN¥F, W) € REXFii1; Z € RNXC s the ground truth matrix with one-hot label vector
Z; . in each row, C is number of classes; L is the scalar loss. Then the gradient propagates in the following

way
Output sz = softmax(Hy1) -
afAL/n - YTAafiLH ;TL,, =
Hidden ;—II; = 88_1[;1 o f'(Hy), %Il‘_l
L _ soL ¢

i oH, -1

= WZ

oL (A2)

-1 8H

where © is the Hadamard product. The gradient propagation of GCN differs from that of multi-layer
perceptron (MLP) by an extra multiplication of A when the gradient signal flows through ;.

Appendix A.2. Variance Analysis

Appendix A.2.1. Forward View

Hiq = AYW,, (Hija);; = A Yi(W),j = Z

Y1+1 = f(Hl+1), 1= 1,...,1’1

A (V)i (Wi, j
1

(A3)

Suppose the activation function is identity function such as [60], all element in W share the same variance

and each element in X are independent and share the same variance, E ((Y;)y;) = 0 and E ((Wl)i]') =0,

Var ((Yl+1)i]‘) can be written as

(A4)

F, N Fi N
ZZ Yl kt Wt,] ZZVaI‘ ik Yl Kkt Wt,])
t=1 k= t=1 k=1
1
=F/(di+1) mVar (Y;) Var (W)
F;

Then, if we want Var (Y;41) = Var (Y;) we will have

di+1
Fy

Var(W) =

Var (Y;)Var(W) = Var (Y;41)

(A5)

Since the parameter matrix is shared by all nodes, we cannot design a node specified initialization
scheme for the W. Thus, we initialize each element in W by the average values as follows

N
X (di+1)

i—=1 1 + average node degree

Var(W) = NE

(A6)

If we relax the assumption E ((¥;)x) = 0 and assume it nonzero, as shown in [18], if we use ReLU

activation function, we will have

N
2Y (di+1)
Var(W) =

i—1 _ 2(1 + average node degree)

NE

(A7)
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If we consider the correlation between nodes and keep the assumption that each dimension of the
feature (columns in X) is independent and E(X) # 0, we will have

Fi N
Var((HH_l)l] = Var [Z Z (Y1) Wt]]
=1

1k
= F;-Var ZAzk (Y1) ] ]— ZAlk(Yl)k Var(W)
- (A8)
F
= WE keZA"/i (Y,)k] Var (W)
= i ) P ar
=t keZ‘N,- (Yl)k—l_k,je;;k;&j(l/l) ¢ (X)), | Var(w)

Since

E((Y)x (¥1);) = Cov ((Y)x, (%);) + E (V)) E((%)))
we can have several reasonable assumptions over Cov ((Yl) o (Y1) ]-) to get different results

o The adjacency matrix with self-loop can be considered as a prior covariance matrix and thus a
reasonable assumption is Cov ((Yl)k/ (Yl)]') = Var ((Y;),) = Var ((Yl)]»).

e Consider symmetric normalized A as a prior covariance matrix and we have Cov ((Yl) e (Y1) j) =
JVar (¥)) Var (%)) = Var (%))

These assumptions all lead us to

E((Y)x (Y1);) = Var (Vo)) + E* (Y)e) = E (V)i

Thus we have

Var((Huga)o) = Fr- g (6 107 (060 Var (W) »
= F-E((V));) Var(W) = F;- %Var (H;) Var(W)
Thus
Var(W) = 2 (A10)

Fy
Suppose E((Y));(¥1);) > 0 and Cov((Yy),(¥1);) = 0, since Cov((Yp)i,(¥1);)
\/Var((Yl)k)Var((Yl)j) = Var((Y;)), we have E((Y), (Yl)]') <E (Yl),% and we assume E((Y}), (Yl)]’) =
aE (Y;),a € [0,1]. Then,

IA

1
Vaf((Hl+1)ij) =F- W(di +1)(ad; + 1)E (Y;)} Var(W)
di+1
:FI-O; :1 E (;)2 Var(W) (A11)
d;
—F- %Var (H;) Var(W)
Thus,
Var(W) = 2(di +1) (A12)

Fi(ad; +1)
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(di +1)/(ad; + 1) can be considered as the effective degree of node i and an estimation is

Li2(di+1)/(adi+1)

= NE (A13)
2 x average effective node degree
= 2
Appendix A.2.2. Backward View
Under linear assumption, we have H; = ¥; and
oL JL .~ JdL _r JL  _r .dL
oH oy, amna  aw, - = Agm (A1)
We have ;
oL I+1 N . oL .
ZZ ) = A
(‘9Hl)z] ;; lk(aHH-l)kt( RE
B NN (A15)
JL A r( JL ; JL
= AY_ = A Y_
(a7, = et (37, = L At (35,
And

~ S 1)Var(8Hl+1)Var (Wy)

oL )” NF4 (A16)
=i

Z‘(di_kl)Var(W,)

e[ 3% st (57
ZN{ A (Yi_q)yi | Var [(;_Isl)k]]

=1
N
1 JdL
- [,; P Var (Y- 1)Var(8H,)

From (A4), Var (Y;—1) can be approximately written as

NF
Var (Yj—1) = Var (Hj—) ~ Zd—kljlvar (Yj—p)Var(W)
) (A17)

~ VaI'(Y()) H mV&l‘(W)

Then
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JL
Var|| ———
(( W4 )ij]
N [i 1
P dp+1

Appendix A.3. Energy Analysis

(A18)

n

NE,
Yidr+1

Var(W)

oL
Var(Yp)Var (F)
m p o211

Another way to design weight initialization is from the flow of energy perspective. Under the linear
assumption and suppose we can do QR factorization of the weight matrices to make them orthogonal
and WIW = WWT = aI, then we have

trace(Hla_lHl+1) = trace((AYIWl)TAYIWl)

= trace (WIT YIT ATAYI Wl) = trace (W,WITYITATAYI)

N N
= trace [a /\?YlTuiuiTYl] = trace [a Z /\?uiTYl(u;?rYl)T] (A19)
i=1 i=1

ol 2 al 2
= trace [a Z /\? “uiTYIHZ] = trace[ ||uiTH1+1||2]

i=1 i=1

Suppose all |)u1TY1||§ and uITHH_l are equal, then

N N N

SN L AR N (A20)
Y A2 ’A’F Y,
P = di+1

If we use ReLU activation function, we have

2N 2N 2N

- N A2 N (A21)
Y A? ‘A’ F L
P = di+1
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