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ABSTRACT. Our recent work has focused on the application of infinite
group theory and related algebraic geometric tools in the context of
transcription factors and microRNAs. We were able to differentiate be-
tween “healthy” nucleotide sequences and disrupted sequences that may
be associated with various diseases. In this paper, we extend our efforts
to the study of messenger RNA metabolism, showcasing the power of
our approach. We investigate (i) mRNA translation in prokaryotes and
eukaryotes, (ii) polyadenylation in eukaryotes, which is crucial for nu-
clear export, translation, stability, and splicing of mRNA, (iii) miRNAs
involved in RNA silencing and post-transcriptional regulation of gene
expression, and (iv) the identification of disrupted sequences that could
lead to potential illnesses. To achieve this, we employ (a) infinite (finitely
generated) groups fp, with generators representing the r + 1 distinct nu-
cleotides and a relation between them [e.g., the consensus sequence in the
mRNA translation (i), the poly(A) tail in item (ii), and the miRNA seed
in item (iii)], (b) aperiodicity theory, which connects “healthy groups”
fp to free groups F; of rank r and their profinite completion F., and (c)
the representation theory of groups f, over the space-time-spin group
SL2(C), highlighting the role of surfaces with isolated singularities in
the character variety. Our approach could potentially contribute to the
understanding of the molecular mechanisms underlying various diseases
and help develop new diagnostic or therapeutic strategies.

Keywords: RNA metabolism; micro-RNAs; diseases; finitely generated
group; SLy(C) character variety; aperiodicity.

1. INTRODUCTION

Genome-scale metabolic pathways [1, 2], genome—environment interac-
tions [3], the immune response [4], post-transcriptional regulatory mecha-
nisms [5] and oncohistones [6] represent aspects of a research field connecting
the heritable genetic code to other biological codes.

The aforementioned genetic code is defined precisely as a non-injective
map from the 64 codons to the 20 amino acids. Both finite groups [7, 8, 9]
and quantum groups [10] play a leading role in modeling this code. More
explicitly, in our paper [8], complete quantum information is encoded in
the 22 irreducible characters of the small group (240, 105) = Z5 x 20, with
20 the binary octahedral group. The characters are put in correspondence
with the DNA multiplets encoding the proteinogenic amino acids and the
multiplicity is reflected in the dimension of the character representation.
Further developments are explored in [11] showing that the small group
(336,118) = Z7 % 20 is another model of the genetic code reflecting the
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symmetry of Lsml — 7 complex in the spliceosome. The 8-fold symmet-
ric histone complex is investigated in [12] with the character table of the
group (384,5589) = Zg x 20. The latest papers inaugurate the role played
by a specific algebraic surface called the Kummer surface in the quantum
modeling of the genetic code.

From now, we refer to the “epigenetic code” as all processes that reveal
and execute gene expression. This includes DNA methylation processes [13],
mRNA translation preparation, the poly(A) tail, the RNA-induced silencing
complex (RISC) — a vital tool in gene regulation comprising single strands
of RNA (ssRNA) and double strands of small interfering RNA (siRNA) —
and other regulatory nucleotide sequence fragments that are discarded after
splicing. For a relation between the epigenetic code and morphogenesis, see
[14].

Chemical modifications in RNA also drive the metabolism of transcription
of the genetic information. Post-transcriptional regulation in gene expres-
sion is a hot topic known as epitranscriptomics. There are more than 170
known types of RNA methylation processes but the most common in eu-
karyotes is the possible methylation of A = mS%A on sites with a specific
short sequence RRACH (R=Aor G, H= A, U or C), see e.g. [15, 16, 17].

For studying the epigenetic code (hereinafter referred to as the e-code),
we employ infinite (finitely generated) groups denoted by f,, and their rep-
resentations over the (2 x 2) matrix group SLy(C), where the entries are
complex numbers [19]. The significance of this group extends across all
fields of physics as it represents a space-time-spin group. In this study, we
apply a mathematical field known as algebraic geometry to define the e-code.
This has never been done before.

Our crucial observation is that an f, group associated with a "healthy”
sequence usually approximates a free group F;., where the rank r equals the
number of distinct nucleotides (nt) minus one. A sequence deviating from
this may suggest a potential e-code deregulation leading to a disease. How-
ever, an f, group closely resembling a free group does not provide sufficient
assurance against a disease. Additional examination of the SL2(C) repre-
sentations of f, — termed the character variety— specifically, its basis —
called a Groebner basis G — is necessary.

The Groebner basis comprises a set of surfaces. A surface within G con-
taining isolated singularities indicates another potential disease that can be
identified specifically, e.g., relating to an oncogene or a neurological disorder
[19, Figure 6, Tables 2 to 4]. The e-code we define comprises such algebraic
geometric characteristics.

An additional attribute of “healthy” sequences, which leads to a group f,
approximating the free group F, and not mentioned in [19], is their connec-
tion to aperiodicity. Schrédinger’s book [20] proposes aperiodicity of living
“crystals”. Our paper [21] characterizes aperiodic DNA sequences. We fur-
ther this concept by introducing the so-called profinite completion F, of the

free group F,. A sequence f,§” of finitely generated groups approaching F..
emerges by applying [ repeated substitutions to the generators of f,. How-

ever, all distinct groups fé” should possess the same profinite completion
F,.. Profinite groups Fj (corresponding to sequences containing two distinct
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nt) and By (corresponding to sequences containing three distinct nt) have
been examined in a prominent algebraic geometry treatise [22]. We present
the details below in a manner that is accessible to a non-specialist reader.
In Section 2, we illustrate our mathematical concepts through a few simple
pedagogical examples. In Section 3, we apply these concepts to the cases
of mRNA translation, microRNAs and m%A methylation. In Section 4, we
provide additional comments, a summary diagram and perspectives.

2. METHODS AND PRELIMINARY RESULTS

2.1. Infinite finitely generated groups f, and free groups F;.

The TATA box. We'll start with a simple example of an infinitely finitely
generated group taken from the context of introns. The DNA sequence lo-
cated in the core promoter region of many eukaryotic genes is the Goldberg-
Hogness sequence, also known as the TATA box. This sequence contains
a non-coding segment with repeated T and A base pairs. The TATA box
serves as the binding site for the TATA-binding protein and other tran-
scription factors in some eukaryotic genes. Its consensus sequence takes
the form rel=TATAAAA. Variations in this consensus sequence, resulting
from genetic polymorphism, can lead to diseases like Gilbert’s syndrome and
immune suppression [23].

In our methodology, we define the group f, = (A,T|rel), which con-
tains infinitely many elements. There are numerous ways to investigate this
group, but we opted for a specific one. This method involves calculating
the number of conjugacy classes of subgroups of index d of f,, (a sequence
we’ll refer to as the card seq of f,). The card seq of f, for the selected
TATA sequence is [1,1,2,3,2,8,7,10,18,28---]. Interestingly, the group
Hy = <A7T|A2 = T3> shows a similar card seq (at least up to the highest
index we can reach with the calculations). The group Hs, as defined, is
isomorphic to the so-called modular group PSL(2,7Z) — the group of (2 x 2)
matrices of determinant 1 with integer entries. This group has an intrigu-
ing topological interpretation as the fundamental group of the trefoil knot
manifold. Thus, we find that the group f, is close’ to H3 since the card seq
of both groups is the same, but we can easily verify that f, and H3 are not
isomorphic.

In paper [25, Section 3.1 and Table 2], we discovered that Hecke groups
H, = <A,T|A2 = Tq>, with ¢ = 3 or 4, have a card seq corresponding to
'healthy” TATA box sequences. The f, group for a TATA box with a card
seq resembling that of Hecke groups, with ¢ # 3 or ¢ # 4, or even that of
groups slightly different from Hs and Hy, signifies Gilbert’s syndrome.

Polyadenylation signals. For our second example, we select a sequence from
the context of eukaryotic polyadenylation [24]. Polyadenylation involves the
addition of a poly(A) tail to an RNA transcript, usually a messenger RNA
(mRNA). A consensus poly(A) sequence takes the form rell=AAUAAA.
This corresponds to a two-generator group of the form f, = (AU|rell). The
card seq of such a group is found to be [1,1,1,1,1,1,1,1,1,1,- -], implying
a single conjugacy class for each index. It appears that the free group
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Fy = (A,U|AU), of rank 1, has the same card seq as the f, group with
relation rell, even though both groups are not isomorphic.

Another consensus poly(A) sequence takes the form rel2=UGUAA. This
corresponds to a three-generator group of the form f, = (A4, U, G|rel2). The
card seq of such a group is found to be [1,3,7,26,97,624,4163, - - - ]. Intrigu-
ingly, the free group F» = (A, U, G|AUG), of rank 2, has the same card seq
as the f}, group with relation rel2, despite both groups not being isomorphic.

From our perspective, DNA/RNA sequences that lead to f, groups closely
resembling a free group are considered ’healthy’ sequences [19, 21, 25]. The
standard poly(A) sequences mentioned earlier play a regulatory role in pro-
ducing mature mRNA during translation. Sequences that generate an f,
group diverging from a free group F, may be indicative of a disease.

2.2. Aperiodic sequences, their attached groups f, and free groups.
In this subsection, we’ll elucidate how a group f,, with a card seq identified
to be close to a free group F;., can be linked to an aperiodic sequence and
the profinite completion F,.. We introduced the concept of aperiodic groups
and sequences in our earlier papers [25, Section 4] and [21, Section 2].

Consider the motif rel = TTTATT A, which serves as a consensus se-
quence for the transcription factor of the DBX gene in Drosophila melanogaster
(fruit flies). This gene is involved in neuronal specification and differenti-
ation. The group f, = (A, T|rel) has the same card seq as the free group
Fy of rank 1. Furthermore, by splitting rel into two segments rel = rel grelp
and applying the substitution maps A — rely = TTTA, T — relp =TTA,
we generate the substitution sequence

Sppx = AT, AT, TTTATTA, TTATTATTATTTATTATTATTTA,---.
Upon inspection, it’s straightforward to observe that all finitely generated
groups fzgl), with their generators being

AT, TTTATTA, TTATTATTATTTATTATTATTTA,- -, respectively,
possess the card seq of Fj.

As per Reference [25, Section 4], a substitution rule to be considered
aperiodic must satisfy two conditions: (1) the substitution matrix M must
be primitive, meaning it should be a strictly positive matrix (all entries > 0),
irreducible, and M* should be strictly positive for some k. This condition
is denoted as M >> 0, and (2) the Perron-Frobenius App eigenvalue must
be irrational. It’s worth noting that the Perron-Frobenius eigenvector of an
irreducible non-negative matrix is the only one whose entries are all positive.

The aforementioned sequence has a substitution matrix M = (i 2)

One can verify that M is primitive since M2 >> 0 and Apr = (34 /13)/2.
Conditions (1) and (2) are satisfied, implying that the substitution Sppx is
aperiodic.

Numerous other genes have transcription factors with a motif rel gener-
ating an aperiodic sequence [21, Table 2].

2.3. Aperiodic sequences and the profinite groups F,.. This section
can be skipped without affecting the comprehension of the rest of the paper.
It endeavors to answer the following question: why do the aforementioned
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groups f,gl) produce the same card seq as that of the free group F1?7 The ten-
tative answer to this question is that the profinite completion of all groups
fé’) is the profinite group F. By making this observation, we align the
aperiodicity of sequences with profinite groups. Profinite groups were in-
troduced by Grothendieck in the context of algebraic geometry [22]. Here,
we describe the necessary ingredients for the layperson, focusing first on 21
and then on FQ, and their relevance to our present work.

A group G can be considered a 'topological group’ by applying the ’dis-
crete topology’, in which the elements of GG are points of a ’discrete space’,
form a ’discontinuous sequence’ and are isolated from each other. Every
subset is ’open’ in the discrete topology. A profinite group is a topological
group that, in a certain sense, is assembled from a system of finite groups. A
profinite group requires a system of finite groups and group homomorphisms
between them. .

Given a group G, there is a related profinite group G defined as the
inverse limit G = lim. G/N, of the groups G/N, where N runs through the
normal subgroups of G of finite index [a normal subgroup is a subgroup that
remains invariant under conjugation by members of the group|. Each finite
quotient group corresponds to a normal subgroup N of G and the profinite
completion G can be perceived as containing an analogue of each of these
normal subgroups.

The profinite group G exhibits several properties: it is non-abelian, resid-
ually finite [meaning that for any non-identity element ¢ in G, there exists a
finite quotient of G in which g is not the identity], and totally disconnected
[meaning that the only connected subsets of G are singletons, sets containing
only one element].

In general, an explicit construction of profinite groups G cannot be ob-
tained. However, Fy and F, are not overly complex to handle.

About the profinite group Fy. Let’s begin with Fj. The free group Fy on a
single generator can be described as a group with one generator, say a, and
no relations. It consists of all possible finite strings that can be formed by
combining the generator and its inverse. It is the infinite cyclic group Z =
{1,a,a7%,a%,a7%,a%,a3,---}. Now, let’s discuss the profinite completion
of Fi. The profinite group Fy is isomorphic to the group of all units of
the commutative ring of p-adic integers Z,, across all primes p. It is often
denoted as Zj since it corresponds to the elements of Z, with a valuation of
zero. The p-adic integers are a special class of numbers utilized in number
theory and algebraic geometry.

About the profinite group Fy. Let’s briefly discuss F,. This topic was initi-
ated in [22]. The subject is complex. It’s connected to the so-called Belyi
theorem, a fundamental result that establishes a connection between alge-
braic curves defined over the algebraic closure of the rationals, Q, and certain
rational functions called Belyi functions.

An algebraic curve defined over Q can be represented as a branched cov-
ering of the Riemann sphere (the complex projective line P!(C)) branched
only over three points (usually taken as 0, 1, and co) if and only if the curve
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itself is defined over a number field, which is a finite extension of the field
of rational numbers Q.

In other words, the Belyi theorem implies that an algebraic curve defined
over a number field can be mapped to the Riemann sphere in such a way
that the ramification (branching) is restricted to just three points. The
rational functions that provide these branched coverings are known as Belyi
functions.

The significance of the Belyi theorem lies in the fact that it provides
a method to study algebraic curves defined over number fields by analyz-
ing their ramified coverings and the associated dessins d’enfants, which are
combinatorial objects encoding the ramification data.

Specifically, we have the crucial result that

71 (PY(C)\ {0,1,00}) = Fy,

i.e., the so-called étale fundamental group for the triply branched projective
line is the profinite group F5.

2.4. SLy(C) representations of groups f, and a Groebner basis G.
While the previous section about profinite groups showcases the importance
of algebraic geometry in the context of DNA/RNA sequences, it remains
somewhat abstract. To address this, we can consider the representations of
an fj, group over the space-time-spin group SLy(C), as we did in [18, 19, 21].

Representations of f;, in SLy(C) are homomorphisms p : f, — SL2(C)
with character x,(g) = tr(p(g)), g € fp. The notation tr(p(g)) signifies the
trace of the matrix p(g). The set of characters is employed to determine an
algebraic set by taking the quotient of the set of representations p by the
group SLy(C), which acts by conjugation on representations[26, 27].

In such papers, we elaborated that the character variety of f, is a set
comprised of a sequence X of multivariate polynomials. A particular basis
related to X is the Groebner basis G(X ), whose factors define hypersurfaces.

Our precursor paper [18] focused on a possible algebraic approach of topo-
logical quantum computing. Later, in [19, 21], we could investigate SLq(C)
representations of short DNA/RNA sequences (e.g. the consensus sequence
of a transcription factor or the seed of a microRNA) and relate them to a
potential disease.

For a two-generator group f,, the factors are three-dimensional surfaces.
In general, these surfaces can be classified by mapping them to a rational
surface across five categories [19, Section 3]. Often encountered surfaces are
degree p Del Pezzo surfaces where 1 < p < 9. A rational surface may either
be non-singular, ’almost non-singular’, having only isolated singularities, or
singular. Almost non-singular surfaces are crucial in our context. A simple
singularity is referred to as an A-D-E singularity and must be of the type
Ap,n>1, Dy, n>4, Fg, E7 or Eg.

The A-D-E type is mirrored in the notation we employ. For instance,
G (tA1;mA2,nAs, ) Jenotes a surface containing [ type Ay , m type Aa, n type
Aj singularities, etc. A generic surface is the Cayley cubic we encountered
in our previous papers, defined as S*441) = zyz 422 +y2 422 -4 [19, Figure
5].
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For a three-generator group f,, the factors of G(X') are seven-dimensional
surfaces of the form S,pcq(z,y,2). Some of them belong to the Fricke
family [19, Equation 3], which is associated with the four-punctured sphere.
But for a chosen set of parameters a, b, ¢, d, the hypersurface reduces to an
ordinary three-dimensional surface.

For a four-generator group f,, the factors of G(X) are 14-dimensional
surfaces containing 4 copies of the form S(z,y, z), S(z,u,v), S(y,u,v) and
S(z,v,w) for selected choices of 8 parameters.

Ficure 1. Up: The degree 2 Del Pezzo surface within
Grara. Down: The degree 3 Del Pezzo surface S (A1) within

grell :

Groebner basis for the TATA box. The Groebner basis for the character
variety associated with the f, group of generator rel=TATAAAA of the
TATA box, studied in subsection 2.1, is found to be:

2

Grara= (2t —oy? —ayz+ 22 +y? +yz - 322+ 0 - 2)(2%2 — 2y — w2 +y — 2)

S§(A2) §(A4) (33 — 22 _ 3g 4 2),

where S(42) = 22y — 23 — zz —y + 3z and S = 222 — 22 —yz —x +2 are
degree 3 Del Pezzo surfaces.

The Groebner basis Grara comprises a degree 2 Del Pezzo surface (see
Fig. 1, up), and a rational scroll whole analytic expression is in the first
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row. Both surfaces are singular. The second row consists of two surfaces
with simple singularities of type A, and Ay, respectively. The last term
represents a curve (not a surface).

Groebner basis for polyadenylation signals. For the first polyadenylation sig-
nal considered in subsection 2.1, the relation of the f,, group is rell=AAUAAA.
The corresponding Groebner basis is:

447)

Grel; = 3 rational scrolls x P? x §1441) (A1) o cyrve.

The Groebner basis greh

tionally equivalent to the projective plane P2, the Cayley cubic S (441) " the
degree 3 Del Pezzo surface S = a2y — 222 —zz+yz+2—y (see Fig. 1,
down) and a curve.

For the second polyadenylation signal considered in subsection 2.1, the
relation of the f, group is rel2=UGUAA. The factors of G(X) are seven-
dimensional hypersurfaces Sy cd(2,y,2). However, choosing specific pa-
rameters, such as So0.0,0(, y, z) or S1,1,1,1(x, y, ), we obtain three-dimensional
surfaces. These are found to be degree 3 Del Pezzo surfaces with simple sin-
gularities of the form S2, with 1=1, 2 or 3, quadrics, or curves.

contains three rational scrolls, a surface bira-

Groebner basis for the transcription factor of DBX gene. For the DBX gene
studied in Section 2.2, the Groebner basis takes the form

Gppx = scroll x P2 x §(41) x §(A2) 5 g(441) curve, where scroll=y?z —
2y —yz+ax — z and P? = 2* — 2%y + 2z — 422 + y + 2 are singular. The
other factors are DP? surfaces with isolated singularities that are S(44) =
yz? —y? —xz—y?, SU2) = 23 — % 4+ yz + x — 3z, the Cayley cubic S(*441)
and curve = 3% — 22 — 3y + 2.

3. FURTHER RESULTS

In this section, we produce further results related to mRNA metabolism
and miRNA.

3.1. Algebraic geometry of mRINA translation.

The Shine-Dalgarno box. Ribosomal RNA (rRNA) — a type of non cod-
ing RNA- is the main component of a macromolecular machine, called the
ribosome, whose role is to ensure mRNA translation. The initiation of trans-
lation needs the recognition of the appropriate sequences on the m-RNA by
the ribosome. A major factor in this recognition is an mRNA-rRNA in-
teraction first proposed by Shine and Dalgarno [28]. They proposed that
the ribosomal nucleotides recognize the complementary purine-rich sequence
rel3=AGGAGGU, which is found around 8 bases upstream of the start codon
AUG in a number of mRNAs found in viruses that affect Escherichia coli.

Let us study the group f, = (A, G,U|rel3). The card seq of f, is found
to be the same than that of the free group Fs.

The SLy(C) chararacter variety is a scheme X whose a Groebner basis
G(X) is made of of 7-dimensional surfaces Sqp.cq(,y, 2). By projecting to
3 dimensions, one gets surfaces like So00,0(,y,2) and S11,1,1(x,y,2) as in
Section 2.4. We find degree 3 Del Pezzo surfaces with isolated singularities
SAY = g2y 4+ y2? + dxz + 4y and 22y +y22 + 22 + 22 + 62z + 5y — 62 — 7,
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S(A2) = gyz 4 222 4 22 + 4 and S) = zyz + 322 + 22 — 52, quadrics and
curves.

DNA/RNA 1 2 p fp not close to Fr .
:: A potential
rel fo card seq 3 = disease
4 ?fp close to Fr
fp aperiodic ,_r_&)
7

5 ?Yes

simple singularities = yes ‘
in Groebner basis 8

6 0 no

healthy

FIGURE 2. A diagram illustrating the main results discussed
in the text. For example, for the transcription factor of the
gene EGR1, rel=GCGTGGGCG [25, Section 4.1.2], the path
is1 — 2 — 4 — 5 — 6 showing no risk of disease. But for the
transcription factor of gene DBX (see Section 2.2 and 2.4),
rel= TTTATTA, the path is 1 -2 — 4 — 5 — 8 meaning a
potential disease (see Table 1).

Kozak consensus sequence. The Kozak consensus sequence is a nucleotide
motif that functions as the protein translation initiation site in most eu-
karyotic mRNA transcripts [29]. The small (40S) subunit of eukaryotic
ribosomes bind, initially at the capped 5-end of messenger RNA and then
migrate, stopping at the first AUG codon in a favorable context for initiat-
ing translation. In eukaryotes, the Kozak sequence ensures that a protein is
correctly translated from the genetic message, mediating ribosome assem-
bly and translation initiation. A sequence logo of the most conserved bases
around the initiation codon AUG for human mRNAs may be found in the
first caption of [30] as reld = ACCAUGGC.

Let us study the group f, = (A, C, G, U|rel4) . The card seq of f, is found
to be the same than that of the free group F3 of rank 3. This group can be
linked to an aperiodic sequence by following the steps given in Section 2.2.

By splitting rel4 into four segments rel4 = rel grelgrelgrely; and applying
the substitution maps C' — relg = A, A = rely = CCAUG, U — rely = G,
G — relg = C, we generate the substitution sequence

SKozak = C, A, U, G,CAUG, ACCAUGGC, CCAUGA?2CCAUGGC?A, - -
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Upon inspection, it’s straightforward to observe that all finitely generated

groups f;”, with their generators being
CAUG,ACCAUGGC,CCAUGA?CCAUGGC?A, - - -, respectively, pos-
sess the card seq of F3.

The aforementioned sequence has a substitution matrix M =

oo~ o
e )

o O O
OO O =

1
One can verify that M is primitive since M* >> 0 and A\pp ~ 2.2055694 is
the only real (and irrational) solution of the equation z® — 222 — 1. Condi-
tions (1) and (2) of Section 2.2 are satisfied, implying that the substitution
SKozak 18 aperiodic. See [31] for a connection of the later Perron-Frobenius
eigenvalue to random Fibonacci sequences.

Mutation of a purine at position —3 with respect to the AUG codon is
kwown to be associated to a disease such as a type of thalassemia due to a
bad initiation of a-globin [29]. In our approach the mutation from reld to
rel4’=CCCAUGGC leads to a substitution M’ that is no longer primitive
so that the property of aperiodicity of the sequence is lost. However the
cardseq of the associated f, group is still that of the free group F3. No other
substitution in the sequence rel4’ can be found to restore the aperiodicity.

3.2. Algebraic geometry of miRNAs. A microRNA (miRNA) is a small,
single-stranded, non-coding RNA molecule containing approximately 22 nu-
cleotides. miRNAs play crucial roles in RNA silencing and post-transcriptional
regulation of gene expression by specifically targeting certain mRNAs for
degradation and translational repression [32, 33]. miRNA genes are typically
transcribed by RNA polymerase II (Pol II), which binds to a promoter lo-
cated near the DNA sequence, encoding what will become the hairpin loop of
a pre-miRNA (for precursor-miRNA). The pre-miRNAs are approximately
70 nucleotides in length and fold into imperfect stem-loop structures.

A miRNA consists of a duplex comprising two strands (-5p and -3p).
However, a single strand is selected into the RNA-induced silencing complex
to serve as a template during the transcript of a complementary mRNA
[34, 35]. For details about the miRNA sequences, we use the Mir database
[36, 37, 38].

It should be emphasized that a given miRNA may have hundreds of dif-
ferent mRNA targets, and a single target might be regulated by multiple
miRNAs.

For previous results about how to define a f, group from the seed of a
miRNA, the reader may consult [19, Section 4.3].

Below, we focus on other examples.

miRNA hsa-mir-122. Mir-122 is a tissue specific miRNA which is highly
expressed in liver [39, Figure 5]. It is involved in cholesterol accumulation
and fathy acid metabolism. It has a leading role in controlling hapatitis C
virus (HCV) [40, 41].

The seed region for mir-122-5p is seed0=GGAGUGU. The corresponding
group f, = (C, G, Ul|seed0) has the card seq of the free group F.
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Let us first check if the seed sequence is aperiodic. By splitting seed0
into three segments seed0= seed g4seedgseedy and applying the substitution
maps A — seedq = GG, G — seedg = AGU, U — seedy = GU, one can
check that the finitely generated groups f,gl) with generators

GGAGUGU, AGUAGUGGAGUGUAGUGU, ---

possess the card seq of the free group F5. Following the method described

010
in Section 2.2, one gets the (primitive) substitution matrix M = [2 1 1
011

whose characteristic polynomial A3 — 2A%2 — 2\ + 2 has three real roots. The
largest one is the (irrational) Perron-Frobenius eigenvalue App &~ 2.481194.
One concludes the sequence seed0 is aperiodic.

Let us now look at the Groebner basis for the SLy(C) representation of f,
with the method described in Section 2.4. One obtains Gpir—122-5p(0,0,0,0) =
8yz(2—2%) and Gir—122-5p(1,1,1,1) = —42%(x — 22+ 2+ 1) (y+2° — 22— 22).
One can check that for all values of the parameters G p ¢ q(2,y, z) only con-
tains factors which are curves (not surfaces).

miRNA hsa-mir-503. The slowest evolving miRNA gene in the human species
(hsa) is hsa-mir-503 [37]. It regulates gene expression in various pathological
processes of diseases, including carcinogenesis, angiogenesis, tissue fibrosis,
and oxidative stress [42].

The seed region for mir-503-5p is seed=AGCAGCGG. The correspond-
ing group f, = (4, C,G|seedl) has the card seq of the free group F,. For
this group, the Groebner basis with parameters (a,b,c,d) = (0,0,0,0) is
quite simple: Gpir—503—-5p(0,0,0,0) = S(4A1)(a:,y,z), which is the already
mentioned Cayley cubic.

For (a,b,¢,d) = (1,1,0,0), Gmir—503—5p(1,1,0,0) = =3zyzks(x,y, z), where
k3(x,y, z) is the Fricke surface found in [43, Section 3.3]. For (a,b,c,d) =
(1,1,1,1), there are several more polynomials. One of them defines the
Fricke surface xyz + 22 + 9% + 22 — 22 — y — 2.

The considered seed region for mir-503-3p is GGGUAUU. The surfaces in
the Groebner basis are very simple in this case, and no simple singularities
exist within them.

miRNA hsa-mir-146a. Mir-146 is primarily involved in the regulation of
inflammation and other processes functioning in the innate immune system.
It plays a role in neuropathogenesis.

The considered seed region for hsa-mir-146a-5p is seed2=GAGAAC [37].
Again the corresponding group f, = (4, C, G|seed2) has the card seq of the
free group Fo.

The Groebner basis with parameters (a, b, ¢,d) = (0,0,0,0) is

Ghsa—_146a—sp(1, 1,1, 1) = (x2+y +2)(y — 22 +2)? (22 + 22 — 2y — 4)SB42),
where SG42) = 23 — gy — 2yz — 22 — 4z

The Groebner basis with parameters (a, b, c,d) = (1,1,1,1) is of the form

Ghsa—146a—s5p(1,1,1,1) = DP* x f242) x quadric x curves, where DP* is
a degree 4 del Pezzo surface.
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miRNAs and disease. As we announced earlier (see also [19]), a potential
disease is associated with f, groups which fail to satisfy at least one of three
requirements (1) the card seq of f, should be that of a free group F;., (2) the
generating sequence should be aperiodic, (3) the SLo(C) character variety
of f, should have a Groebner basis devoid of isolated singularities (even
though the f,, group may have the card seq of a free group [19, Figure 6]).

Following this criteria, the sequence hsa-mir-122-5p is healthy while the
sequences hsa-mir-503-5p and hsa-mir-146a-5p are not since the criterion
(3) is not satisfied. Additional examples can be found in [19, Table 3].

Besides isolated singularities, the Groebner basis may contain singular
surfaces that are not simply singular. The DP* surface in Ghsa—146a—5p(1,1,1,1)
is an example of a singular surface. Further mathematical techniques are re-
quired to investigate these surfaces [44]. However, we will not discuss these
methods in this paper.

TABLE 1. A few possible paths in the diagram of Figure 2
terminating at 6 (healthy) or (3)-(7)-(8) (potential disease).
The set {6,8} denotes a lack of a clear conclusion about the
existence of an isolated singularity. The selected examples
are taken in three parts that are transcription factors (group
1), regulating elements in introns (group 2) and miRNAs
(group 3). Details are given in the text. Otherwise a refer-
ence is provided.

Sequence rel path
EGR1 [25] GCGTGGGCG 1-2—-4—-55—6
FOS [25] TGAGTCA |1—-2—-4—5—{6,8}
Nanog [25] TAATGG 1—-2—4— {78}
DBX TTTATTA 14224528
TATA TATAAAA 1-2—-3—(7,8)
poly(A) (rell) AAUAAA 1—-2—4—{7,8}
poly(A) (rel2) UGUAA 1—-2—4—{7,8}
Shine-Dalgarno (rel3) AGGAGGU 1254558
Kozak (reld) ACCAUGGC |1—-2—4—5—{6,8}
Kozak (rel4’) CCCAUGGC 122247
hsa-mir-122-5p [41] (seed0) GGAGUGU 1-2—254-55-6
hsa~-mir-132-5p [45] CCGUGGC 152-54—-5-6
hsa-mir-503-5p (seedl) [42] | AGCAGCGG 1-2—->5-—>8
hsa-mir-146a-5p (seed2) [46] GAGAAC 1—-2—{7,8}
hsa-mir-7-5p [47] GGAAGA 1—2—{3,7,8}
hsa-mir-7-5p GGAAGAC 1-2—-4—-5—-6
hsa-mir-7-3p AACAAAU 152247
hsa-mir-155-3p [35, 46] UCCUAC 124 {7,8}
hsa-mir-155-3p UCCUACA 1—-+2-—-3

4. DISCUSSION

In this section, we summarize our paper by referring to the diagram in
Figure 2. Given a short DNA/RNA sequence, rel, which represents a con-
sensus sequence in a transcription factor, the seed of a miRNA, or a relevant
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TABLE 2. A detailed group theoretical analysis of m%A mod-
ifications for bacteria (the sequence GCCAG) and eukaryotes
(sequence RRACH (R=Aor G, H= A, U or C) ). Col-
umn 2 is the group closer to the f, group generated by the
sequence in column 1 (F, is for the free group of rank r, Hs
is for the modular group PSL(2,7Z). If the sequence is aperi-
odic, the Perron-Frobenius eigenvalue App is given in column
3. The type of isolated singularity, if any, is in column 4. The
path in the diagram of Figure 2 is shown in column 5.

Sequence | group | aperiodic | Groebner basis path
bacterial

GCCAG Fy 1.83928 no 1-2—-4—-5—6
eukaryote

AAACA | F no S(A2) g(Aidz) | 1 2 54— {78}
AAACC | Hs no no 1—-2— {37}
AAACU 5 no no 152247
GGACA | F, 1.83928 | §(42) §(A242) |1 4,9 44 3558
GGACC Fy no no 1-52—>4—>7
GGACU F3 no unknown 15247

sequence in mRNA recognition and processing, we construct a finitely gener-
ated group, f,. The architecture of subgroups, card seq, within this group is
computed (see Section 2.1). If the f,, card seq matches that of the free group
F, (of rank r equal to nt-1), we proceed to path 4; otherwise, a potential dis-
ease could be in sight (path 3). After reaching path 4, the next step involves
checking the aperiodicity of rel and the corresponding f, group, as described
in Section 2.2. The final step is to examine the presence (or absence) of iso-
lated singularities in the Groebner basis G for the SLo(C) character variety
associated with f,, as outlined in Section 2.4. For a healthy sequence, the
path concludes at 6, while a potential disease may be indicated if the path
ends at 3, 7 or 8.

In Table 1, we provide several examples of paths. All three checks can
be performed, even if paths 4 or 5 are not followed. For instance, the
termination {7,8} signifies that the sequence fails both in being aperiodic
and in being devoid of simple singularities.

For sequences with 4 distinct nucleotides (like the sequence of transcrip-
tion factor FOX or the Kozak sequence reld), it is difficult to conclude about
the risk of a disease. The generic Groebner basis G(x,y,z) always contains
surfaces with isolated singularities such as S®41) and S©341) and there are
four copies of them. The termination {6,8} applies for this case.

Algebraic geometry of m®A modifications. As mentioned in the in-
troduction, a subfield of epigenetics deals about post-transcriptional mRNA
modifications. N®-methyladenosine (m%A) is the most frequent modification
in most eukaryotes. But mSA is also present in bacteria with the consensus
motif GOCAG [48, 49]. An interesting aspect is that the mRNA m5A motif
in bacteria is distinct from the consensus motif in eukaryotes (RRACH). This
features the evolutionary machinery present in the last eukaryotic common
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ancestor (LECA) compared to the last universal common ancestor (LUCA)
[50, Fig. 2].

In Table 2, we provide details about the group generated by these se-
quences, when the sequence is aperiodic and/or has a Groebner basis of its
character variety containing an isolated singularity. As in Table 1, the path
in the diagram of Figure 2 is shown.

We clearly read that only the bacterial sequence leads to a path termi-
nating at the edge 6 of the diagram of Figure 2. In the closest eukaryotic
sequence GGACA (from the viewpoint of group analysis), isolated singulari-
ties are found, such as the degree 3 Del Pezzo surface S(4242) = 3 2224y,
The other sequences are not aperiodic. On the biological point of view, it is
known that an appropriate level of m®A4 methylation is beneficial but it may
be a risk to drive it in an artificial way because it may destroy the delicate
balance of regulations performed within the messenger RNA.

Our approach is quite comprehensive and can be applied in numerous
contexts beyond those we have considered thus far. It has the potential to
impact the search for underlying causes of diseases and aid in the discovery
of therapeutic strategies. The e-code, the processes that reveal and exe-
cute gene expression, has a sophisticated structure, which our mathematical
approach aims to elucidate.
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