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Article 

Bridging Gauss-Jordan Reduction and Determinant 
Methods through Cross-Multiplication-Flip (CMF) 
Method in Matrix Inversion and Solving Systems of 
Linear Equations 

Judel V. Protacio 

College of Education, Arts and Sciences, Capiz State University, Capiz, Philippines; jvprotacio@capsu.edu.ph 

Abstract: In this paper, we introduce as a pedagogical strategy an internal division-free, straightforward, and 

symmetrically progressing algorithm in manually computing matrix inverse and solving systems of linear 

equations by revisiting the application of elementary row operations in the Gauss-Jordan reduction method 

and connecting it to the determinant method. The proposed cross-multiplication-flip (CMF) algorithm employs 

cross-multiplication similar to the butterfly movement in computing determinants as a strategic application of 

elementary row operations to efficiently reduce the rows and then applies flipping of rows and entries to put 

an upper triangular matrix into lower triangular form to continue the reduction process.  

Keywords: matrix inverse; systems of linear equations; cross-multiplication; Gauss-Jordan 

reduction; determinant method 

 

1. Introduction 

The concept of matrix inverse is essential in the solution of systems of linear equations and other 

various practical applications. For a nonsingular matrix 𝐴, there is a unique matrix 𝐴ିଵ called the 

usual inverse of 𝐴, with which the condition 𝐴ିଵ𝐴 = 𝐴𝐴ିଵ = 𝐼 holds [1,2]. The usual matrix inverse 

has the following properties, (𝐴ିଵ)ିଵ = 𝐴; (𝐴்)ିଵ = (𝐴ିଵ)்; (𝐴∗)ିଵ = (𝐴ିଵ)∗; (𝐴𝐵)ିଵ = 𝐵ିଵ𝐴ିଵ. 
where 𝐴் is the transpose of 𝐴 and 𝐴∗ is its conjugate transpose. While it is generally thought of 

that 𝐴ିଵ is unique to nonsingular matrices, there are cases where approximations of matrix inverse 

from singular matrices or rectangular matrices are necessary; hence, the concept of generalized matrix 

inverse 𝐴ିଵ෪ defined as follows [3], 𝐴𝐴ିଵ෪ 𝐴 = 𝐴. 
In a system of linear equation 𝑨𝒙 = 𝒃  where 𝐴 is a nonsingular 𝑛 × 𝑛  matrix, left 

multiplication of the equation by 𝐴ିଵ  yields 𝑨ି𝟏𝑨𝒙 = 𝑨ି𝟏𝒃  and with 𝐴𝐴ିଵ = 𝐴ିଵ𝐴 = 𝐼 , the 

solution is given by 𝒙 = 𝑨ି𝟏𝒃 [1,2]. Where 𝐴 is not necessarily singular such that  𝐴𝐴ିଵ෪ 𝐴 = 𝐴, then 𝑨𝒙 = 𝒃 has a solution if and only if 𝑨𝑨ି𝟏෪ 𝒃 = 𝒃 [3]. Consequently, Penrose [3] introduced the Moore-

Penrose matrix inverse denoted by 𝐴ି௉ with the following properties, 𝐴𝐴ି௉𝐴 = 𝐴; 𝐴ି௉𝐴𝐴ି௉ = 𝐴ି௉; (𝐴𝐴ି௉)∗ = 𝐴𝐴ି௉; and (𝐴ି௉𝐴)∗ = 𝐴ି௉𝐴. 
There are other generalized matrix inverses introduced depending on relations and applications 

investigated such as those involved in differential and difference equations, cryptography, Markov 
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chains, and numerical analysis [5,7]. For instance, the Drazin matrix inverse denoted by 𝐴ି஽ satisfies 

the following conditions [6] 𝐴௞𝐴ି஽𝐴 = 𝐴௞; 𝐴ି஽𝐴𝐴𝐴ି஽ = 𝐴ି஽; 𝐴𝐴ି஽ = 𝐴ି஽𝐴 
where 𝑘 called the index of 𝐴, is the least nonnegative integer such that 𝑟𝑎𝑛𝑘(𝐴௞ାଵ) = 𝑟𝑎𝑛𝑘 𝐴௞ . 

Note that the rank of 𝐴 is the number of its nonzero eigenvalues. When 𝑘 = 0, the Drazin inverse 

reduces to the usual matrix inverse; that is 𝐴ି஽ = 𝐴ିଵ.  

With technological applications in the computation of matrix inverse for specific purposes, 

accuracy in estimations and consistency of generalized matrix inverse can be readily obtained. The 

very goal of this paper is directed to the pedagogical context. Hence, we revisit the fundamental 

concepts and procedures to facilitate conceptual understanding of mathematical principles and 

fluency in procedural knowledge. With 𝒙 = 𝑨ି𝟏𝒃, and as matrix size becomes larger, manually 

solving for solution of systems of linear equations by separately computing for the inverse of the 

coefficient matrix becomes tedious and thus the approach becomes less efficient in terms of teaching 

time. One may consider common approaches in solving systems of linear equations without matrix 

inversing such as the Gaussian elimination method, Gauss-Jordan reduction method, LU 

Decomposition. 

In the Gauss-Jordan reduction method, solving both the linear system and matrix inverse can be 

addressed independently. For linear systems 𝑨𝒙 = 𝒃, an augmented matrix [𝑨: 𝒃] is formed and 

elementary row operations are performed to transform 𝐴  into reduced row echelon form. The 

process is actually multiplying 𝑨ି𝟏 and 𝒃 without specifically computing the entries of 𝑨ି𝟏.  

In matrix inversing, we extend the Gauss-Jordan reduction method by forming a linear system 𝑨𝑿 = 𝑩 . With 𝐵 = 𝐼, then by definition, 𝑿 = 𝑨ି𝟏.  Taking 𝐴 is as the coefficient matrix and then 

augmenting it with 𝐼 we produce [𝑨: 𝑰]. Here, the columns of 𝐼 represent n different sets of right-

hand side values of equations of the linear system. Forming [𝑨: 𝑰] and transforming 𝐴 into reduced 

row echelon form implies solving a system of linear equations with 𝑛 different right-hand sides at 

the same time. That is, pre-multiplying 𝐴𝑋 = 𝐼 by 𝐴ିଵ gives 𝐴ିଵ𝐴𝑋 = 𝐴ିଵ𝐼, then finally 𝑋 = 𝐴ିଵ. With 

this approach, solving systems of linear equations is but a special case of matrix inversing. 

The second method of computing matrix inverse involves the determinant as indicated in the 

relation below [1,2]. 

𝐴ିଵ = 1det(𝐴) (𝑎𝑑𝑗 𝐴) =
⎣⎢⎢
⎢⎢⎢
⎡ 𝐴ଵଵdet (𝐴) 𝐴ଵଶdet (𝐴) … 𝐴ଵ௡det (𝐴)𝐴ଶଵdet (𝐴) 𝐴ଶଵdet (𝐴) … 𝐴ଶ௡det (𝐴).𝐴௡ଵdet (𝐴) .𝐴ଶଵdet (𝐴) …… .𝐴௡௡det (𝐴)⎦⎥⎥

⎥⎥⎥
⎤
 

where 𝐴௜௝ = 𝑨𝒋𝒊; 𝑨𝒋𝒊 =  (−1)௝ା௜det (𝑀௝௜) and 𝑀௝௜ is a matrix formed by removing the column and 

row of 𝐴 where 𝑎௝௜ lies. 𝑨𝒋𝒊 is a cofactor of 𝑎௝௜ . 
Current texts in linear algebra treat independently these two usually-employed methods, Gauss-

Jordan reduction method through elementary row operations and determinant method, of matrix 

inversion. In this paper, we attempted to develop a general approach applied to matrices with 

numerical entries to connect the Gauss-Jordan reduction and determinant methods and to propose a 

more straightforward and pedagogically efficient algorithm in manually computing matrix inverse. 
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2. Materials and Methods 

Matrix Reduction and Inversion by Cross-Multiplication-Flip (CMF) Method 

We compute the inverse of an 𝑛 × 𝑛  matrix 𝐴 with the augmented matrix [𝐴: 𝐼]௡ represented 

as follows: 

[𝐴: 𝐼]௡ 

𝑎ଵଵ 𝑎ଵଶ … 𝑎ଵ௡  1 0 … 
0 

 

𝑎ଶଵ 𝑎ଶଶ … 𝑎ଶ௡  0 1 … 
0 

 

. . … .  . . … . 

. . … .  . . … . 

𝑎௡ିଵ ଵ 𝑎௡ିଵ ଶ … 𝑎௡ିଵ ௡  0 0 … 
0 

 

𝑎௡ଵ 𝑎௡ଶ … 𝑎௡௡  0 0 … 
1 

 

In the Gauss-Jordan reduction, the process of matrix inversion involves transformation of  A 

into reduced row echelon form, which in the case of nonsingular matrices, is the identity matrix by 

performing elementary row operations through the rows of the augmented matrix. We start the 

reduction by zeroing out the entries under 𝑎ଵଵ . Assuming the first entries of each row of A are 

nonzero, we do the straightforward approach by taking two successive rows at a time beginning at 

the top. We multiply 𝑅ଶ by −𝑎ଵଵ and 𝑅ଵ by 𝑎ଶଵ. Adding the results would produce a row with 

zero first entry. We continue the process with 𝑅ଶ and 𝑅ଷ, then 𝑅ଷ and 𝑅ସ until 𝑅௡ିଵ and 𝑅௡. We 

write the resulting rows under [𝐴: 𝐼]௡ and label this [𝐴: 𝐵]௡ିଵ as a submatrix with 𝑛 − 1 rows and 𝑛 − 1 columns by disregarding the first column with zero entries. 

The process of multiplying (𝑖 + 1)𝑡ℎ row by 𝑎௜ଵ and the 𝑖𝑡ℎ row by −𝑎௜ାଵ ଵ and adding the 

results leads to a scheme of individually computing each entry of the succeeding submatrix [𝐴: 𝐼]௡ିଵ 

which we refer to here as cross-multiplication and that the resulting entry for the left matrix, 𝑎௜௝(௠)
 , 

is denoted as 𝑎௜௝(௠) = 𝑎௜ଵ(௠ିଵ)𝑎௜ାଵ ௝(௠ିଵ) − 𝑎௜ାଵ ଵ(௠ିଵ)𝑎௜ ௝(௠ିଵ)
 where (𝑚) indicates the number of reductions 

performed. In determinant form, we can also denoted 𝑎௜௝(௠)
 as            𝑎௜௝(௠) = อ𝑎௜ଵ(௠ିଵ) 𝑎௜ ௝(௠ିଵ)𝑎௜ାଵ ଵ(௠ିଵ) 𝑎௜ାଵ ௝(௠ିଵ)อ 

where 𝑎௜௝(଴) = 𝑎௜௝ , which provides a symmetric (butterfly) movement of the algorithm; hence, the 

term cross-multiplication.  We also denote the entries of the right matrix by 𝑏௜௝(௠)
 which is 

determined in similar manner since cross-multiplication is extended to the entire augmented matrix. 

We now represent the initial results as follows: 

[𝐴: 𝐼]௡ 

𝑎ଵଵ 𝑎ଵଶ … 
 𝑎ଵ௡  1 0 … 

0 

 

𝑎ଶଵ 𝑎ଶଶ … 
 𝑎ଶ௡  0 1 … 

0 

 

. . …  .  . . … . 

. . …  .  . . … . 

𝑎௡ିଵ ଵ 𝑎௡ିଵ ଶ … 
 𝑎௡ିଵ ௡  0 0 … 

0 

 

𝑎௡ଵ 𝑎௡ଶ … 
 𝑎௡௡  0 0 … 

1 

 [𝐴: 𝐵]௡ିଵ  𝑎ଵଵ(ଵ)
 𝑎ଵଶ(ଵ)

 … 𝑎ଵ௡ିଵ(ଵ)
  𝑏ଵଵ(ଵ)

 𝑏ଶଵ(ଵ)
 … 0 
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𝑎ଶଵ(ଵ)

 𝑎ଶଶ(ଵ)
 

… 𝑎ଶ ௡ିଵ(ଵ)
      

 . . . .  . . … . 

 𝑎௡ିଵ ଵ(ଵ)
 𝑎௡ିଵ ଶ(ଵ)

 
 𝑎௡ିଵ ௡ିଵ(ଵ)

   
 

 
 𝑏௡ିଵ ௡(ଵ)

 

… … … … … …  … … … … [𝐴: 𝐵]ଶ 
   𝑎ଵଵ(௡ିଶ)

 𝑎ଵଶ(௡ିଶ)
  

𝑏ଵଵ(௡ିଶ)
 𝑏ଵଶ(௡ିଶ)

 … 

 
𝑏ଵ௡(௡ିଶ)

 

   𝑎ଶଵ(௡ିଶ)
 𝑎ଶଶ(௡ିଶ)

  
𝑏ଶଵ(௡ିଶ)

 𝑏ଶଶ(௡ିଶ)
 … 

 
𝑏ଶ௡(௡ିଶ)

 

[𝐴: 𝐵]ଵ 
   

 𝑎ଵଵ(௡ିଵ)
  𝑏ଵଵ(௡ିଵ)

 𝑏ଵଶ(௡ିଵ)
 

… 

 
𝑏ଵ௡(௡ିଵ)

 

At this point, the last row of 𝐴ିଵ can now be determined from [𝐴: 𝐵]ଵ  and it should 

be  

𝑏ଵଵ(௡ିଵ)𝑎ଵଵ(௡ିଵ) 𝑏ଵଶ(௡ିଵ)𝑎ଵଵ(௡ିଵ) 
… 

 

 

 

௕భ೙(೙షభ)௔భభ(೙షభ)  

But we will not compute the last row of 𝐴ିଵ yet to avoid fractions. We now do the first part of 

the FLIP by getting the first row of each submatrix beginning from the lowest submatrix [𝐴: 𝐵]ଵto 

form an augmented matrix by [𝐶: 𝐷]௡. 

[𝐶: 𝐷]௡ 

0 
0 

 
… 0 𝑎ଵଵ(௡ିଵ)

  𝑏ଵଵ(௡ିଵ)
 𝑏ଵଶ(௡ିଵ)

 … 𝑏ଵ௡(௡ିଵ)
 

0 
0 

 
… 𝑎ଵଵ(௡ିଶ)

 𝑎ଵଶ(௡ିଶ)
  𝑏ଵଵ(௡ିଶ)

 𝑏ଵଶ(௡ିଶ)
 … 𝑏ଵ௡(௡ିଶ)

 

. . …  .  . . … . 

. . …  .  . . … . 

0 

 
𝑎ଵଵ(ଵ)

 … 𝑎ଵ௡ିଶ(ଵ)
 𝑎ଵ௡ିଵ(ଵ)

  𝑏ଵଵ(ଵ)
 𝑏ଵଶ(ଵ)

 … 𝑏ଵ௡(ଵ)
 

𝑎ଵଵ 
𝑎ଵଶ 

 
… 𝑎ଵ௡ିଵ 𝑎ଵ௡  1 0 … 0 

Note that we cannot perform cross-multiplication here since the first entries of the left matrix 

are zeros, except that of the last row. We do now the second part of the FLIP by flipping left the 

entries of the left matrix to obtain a matrix in lower triangular form. 

[𝐶: 𝐷]௡ 

𝑎ଵଵ(௡ିଵ)
 

0 

 
… 

0 
0  𝑏ଵଵ(௡ିଵ)

 𝑏ଵଶ(௡ିଵ)
 … 𝑏ଵ௡(௡ିଵ)

 

𝑎ଵଶ(௡ିଶ)
 𝑎ଵଵ(௡ିଶ)

 
… 

0 

 

0 
 𝑏ଵଵ(௡ିଶ)

 𝑏ଵଶ(௡ିଶ)
 … 𝑏ଵ௡(௡ିଶ)

 

. . …  .  . . … . 

. . …  .  . . … . 
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𝑎ଵ௡ିଵ(ଵ)
 𝑎ଵ௡ିଶ(ଵ)

 … 
𝑎ଵଵ(ଵ)

 0 

 
 𝑏ଵଵ(ଵ)

 𝑏ଵଶ(ଵ)
 … 𝑏ଵ௡(ଵ)

 

𝑎ଵ௡ 𝑎ଵ௡ିଵ … 
𝑎ଵଶ 

 
𝑎ଵଵ  1 0 … 0 

We repeat the process of performing cross-multiplication through the rows of [𝐶: 𝐷]௡ to obtain 

the rows of [𝐶: 𝐷]௡ିଵ. Here, we denote the entries of the left matrix by 𝑎௜௝(௠)ᇱ
 and of the right matrix 

by 𝑏௜௝(௠)ᇱ
. 

[𝐶: 𝐷]௡ 

𝑎ଵଵ(௡ିଵ)
 0 … 0 

0 

 
 𝑏ଵଵ(௡ିଵ)

 𝑏ଵଶ(௡ିଵ)
 … 𝑏ଵ௡(௡ିଵ)

 

𝑎ଵଶ(௡ିଶ)
 𝑎ଵଵ(௡ିଶ)

 … 0 
0 

 
 𝑏ଵଵ(௡ିଶ)

 𝑏ଵଶ(௡ିଶ)
 … 𝑏ଵ௡(௡ିଶ)

 

. . …  .  . . … . 

. . …  .  . . … . 

𝑎ଵ௡ିଵ(ଵ)
 𝑎ଵ௡ିଶ(ଵ)

 
… 

 
𝑎ଵଵ(ଵ)

 𝑎ଵ௡ିଵ(ଵ)
  𝑏ଵଵ(ଵ)

 𝑏ଵଶ(ଵ)
 … 𝑏ଵ௡(ଵ)

 

𝑎ଵ௡ 𝑎ଵ௡ିଵ 
… 

 
𝑎ଵଶ 𝑎ଵଵ  1 0 … 0 

[𝐶: 𝐷]௡ିଵ 

 𝑎ଵଵ(ଵ)ᇱ
 … 

0 

 
0  𝑏ଵଵ(ଵ)ᇱ

 𝑏ଵଶ(ଵ)ᇱ
  𝑏ଵ௡(ଵ)ᇱ

 

 𝑎ଶଵ(ଵ)ᇱ
 … 

0 

 
0  𝑏ଶଵ(ଵ)ᇱ

 𝑏ଶଶ(ଵ)ᇱ
  𝑏ଶ௡(ଵ)ᇱ

 

 . …  .  . . … . 

 . …  .  . . … . 

 𝑎௡ିଶଵ(ଵ)ᇱ
  𝑎௡ିଶ௡ିଶ(ଵ)ᇱ

 
0 

 
 𝑏௡ିଶଵ(ଵ)ᇱ

 𝑏௡ିଶଶ(ଵ)ᇱ
  𝑏௡ିଶ௡(ଵ)ᇱ

 

 
𝑎௡ିଵଵ(ଵ)ᇱ

 

 
 𝑎௡ିଵ௡ିଶ(ଵ)ᇱ

 𝑎௡ିଵ௡ିଵ(ଵ)ᇱ
  𝑏௡ିଵଵ(ଵ)ᇱ

 𝑏௡ିଵଵ(ଵ)ᇱ
  𝑏௡ିଵ௡(ଵ)ᇱ

 

… … … … … …  … … … … [𝐶: 𝐷]ଶ 
   𝑎ଵଵ(௡ିଶ)ᇱ

 
0 

 
 𝑏ଵଵ(௡ିଶ)ᇱ

 𝑏ଵଶ(௡ିଶ)ᇱ
 … 𝑏ଵ௡(௡ିଶ)ᇱ

 

   𝑎ଶଵ(௡ିଶ)ᇱ
 𝑎ଶଶ(௡ିଶ)ᇱ

  𝑏ଶଵ(௡ିଶ)ᇱ
 𝑏ଶଶ(௡ିଶ)ᇱ

 … 𝑏ଶ௡(௡ିଶ)ᇱ
 [𝐶: 𝐷]ଵ 

    𝑎ଵଵ(௡ିଵ)ᇱ
  𝑏ଵଵ(௡ିଵ)ᇱ

 𝑏ଵଶ(௡ିଵ)ᇱ
 … 

𝑏ଵ௡(௡ିଵ)ᇱ
 

 

Since the left matrix in [𝐶: 𝐷]௡ is in lower triangular form, every first row of the left matrix of 

every succeeding submatrix [𝐶: 𝐷]௜ takes the form [𝐶: 𝐷]௜  𝑎ଵଵ(௜)ᇱ
 0 

… 
0  𝑏ଵଵ(௜)ᇱ

 𝑏ଵଶ(௜)ᇱ
 … 

𝑏ଵ௡(௜)ᇱ
 

 

that is, 𝑎ଵଵ(௜)ᇱ ≠ 0 and 0 elsewhere. 

To restore the original sequence of rows and columns, we now write the rows of the augmented 

matrix leading to the inverse of A by collecting the first rows of [𝐶: 𝐷]௜ beginning from [𝐶: 𝐷]ଵ and 

doing the FUL movement.  [𝐶: 𝐷]௡ 𝑎ଵଵ(௡ିଵ)ᇱ
 0 … 0 0  𝑏ଵଵ(௡ିଵ)ᇱ

 𝑏ଵଶ(௡ିଵ)ᇱ
 … 𝑏ଵ௡(௡ିଵ)ᇱ
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0 𝑎ଵଵ(௡ିଶ)ᇱ
 … 

0 

 
0  𝑏ଵଵ(௡ିଶ)ᇱ

 𝑏ଵଶ(௡ିଶ)ᇱ
 … 𝑏ଵ௡(௡ିଶ)ᇱ

 

. . …  .  . . … . 

. . …  .  . . … . 

0 0 … 𝑎ଵଵ(ଵ)ᇱ
 

0 

 
 𝑏ଵଵ(ଵ)ᇱ

 𝑏ଵଶ(ଵ)ᇱ
 … 𝑏ଵ௡(ଵ)ᇱ

 

0 0 … 
0 

 
𝑎ଵଵ(௡ିଵ)

  𝑏ଵଵ(௡ିଵ)
 𝑏ଵଶ(௡ିଵ)

 … 𝑏ଵ௡(௡ିଵ)
 

Note that the left matrix is a diagonal matrix and we can now specify the inverse by diving each 

row of [𝐶: 𝐷]௡ by the corresponding diagonal entry of C. Thus 

[𝐼: 𝐴ିଵ]௡ 

1 0 … 0 

 

 

0 

 

 
𝑏ଵଵ(௡ିଵ)ᇱ𝑎ଵଵ(௡ିଵ)ᇱ 𝑏ଵଶ(௡ିଵ)ᇱ𝑎ଵଵ(௡ିଵ)ᇱ 

… 𝑏ଵ௡(௡ିଵ)ᇱ𝑎ଵଵ(௡ିଵ)ᇱ 

0 1 … 0 

 

0 

 

 

 
𝑏ଵଵ(௡ିଶ)ᇱ𝑎ଵଵ(௡ିଶ)ᇱ 𝑏ଵଶ(௡ିଶ)ᇱ𝑎ଵଵ(௡ିଶ)ᇱ 

… 𝑏ଵ௡(௡ିଶ)ᇱ𝑎ଵଵ(௡ିଶ)ᇱ 
. . … . .  . . … . 

. . … . .  . . … . 

0 0 … 1 

 

0 

 

 

 
𝑏ଵଵ(ଵ)ᇱ𝑎ଵଵ(ଵ)ᇱ 𝑏ଵଶ(ଵ)ᇱ𝑎ଵଵ(ଵ)ᇱ 

… 𝑏ଵ௡(ଵ)ᇱ𝑎ଵଵ(ଵ)ᇱ 

0 0 … 0 

 

1 

 

 

 
𝑏ଵଵ(௡ିଵ)𝑎ଵଵ(௡ିଵ) 𝑏ଵଶ(௡ିଵ)𝑎ଵଵ(௡ିଵ) 

… 𝑏ଵ௡(௡ିଵ)𝑎ଵଵ(௡ିଵ) 
Cases with Zero First Entries 

The derivation of the algorithm assumes that there are no zero first entries. If there are zero first 

entries, these rows are considered as standby rows and are not involved in cross-multiplication 

within a submatrix where it belongs. These rows are then transferred to the next submatrix by 

dropping the first zero entry. Below, 𝑎ଶଵ = 0, hence, the row is transferred as first row of the next 

submatrix. Cross-multiplication is performed between the first and third rows of [𝐴: 𝐼]௡. We can also 

first move the row with zero first entry to the bottom of its submatrix to avoid confusion before 

commencing cross-multiplication especially if it is the first row of a submatrix. If all of the first entries 

of a submatrix are zeros, then the matrix is invertible. 

[𝐴: 𝐼]௡ 

𝑎ଵଵ 𝑎ଵଶ … 
 𝑎ଵ௡  1 0 … 

0 

 

0 𝑎ଶଶ … 
 𝑎ଶ௡  0 1 … 

0 

 

. . …  .  . . … . 
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. . …  .  . . … . 

𝑎௡ିଵ ଵ 𝑎௡ିଵ ଶ … 
 𝑎௡ିଵ ௡ 

 
 0 0 … 

0 

 

𝑎௡ଵ 𝑎௡ଶ … 
 𝑎௡௡  0 0 … 

1 

 

[𝐴: 𝐵]௡ିଵ 

 𝑎ଶଶ … 
 𝑎ଶ௡  0 1 … 

0 

 

 𝑎ଶଵ(ଵ)
 𝑎ଶଶ(ଵ)

 
… 𝑎ଶ ௡ିଵ(ଵ)

 

 
     

 . . . .  . . … . 

 𝑎௡ିଵ ଵ(ଵ)
 𝑎௡ିଵ ଶ(ଵ)

 
 𝑎௡ିଵ ௡ିଵ(ଵ)

 

 
    𝑏௡ିଵ ௡(ଵ)

 

3. CMF and Determinant Methods 

For this illustration, we make use of 3 × 3 matrix denoted as follows 𝐴 = ൥𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଵ𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ൩ 

We proceed with reduction by cross-multiplication through the rows of the augmented matrix. 

[𝐴: 𝐼]ଷ 

𝑎ଵଵ 𝑎ଵଶ 
𝑎ଵଷ 

 
 1 0 0 

𝑎ଶଵ 𝑎ଶଶ 
𝑎ଶଷ 

 
 0 1 0 

𝑎ଷଵ 𝑎ଷଶ 
𝑎ଷଷ 

 
 0 0 1 

[𝐴: 𝐵]ଶ 

 𝑎ଵଵ(ଵ)
 

𝑎ଵଶ(ଵ)
 

 
 −𝑎ଶଵ 𝑎ଵଵ 0 

 

 
𝑎ଶଵ(ଵ)

 
𝑎ଶ ଶ(ଵ)

 

 
 0 −𝑎ଷଵ 𝑎ଶଵ 

[𝐴: 𝐵]ଵ 
  

𝑎ଵଵ(ଶ)
 

 
 𝑎ଶଵ(ଵ)𝑎ଶଵ −𝑎ଵଵ(ଵ)𝑎ଷଵ − 𝑎ଶଵ(ଵ)𝑎ଵଵ 𝑎ଵଵ(ଵ)𝑎ଶଵ 

We let  𝐴ିଵ = ൥𝑏ଵଵ 𝑏ଵଶ 𝑏ଵଷ𝑏ଶଵ 𝑏ଶଶ 𝑏ଶଵ𝑏ଷଵ 𝑏ଷଶ 𝑏ଷଷ൩ 

and by the determinant method, 

𝐴ିଵ =
⎣⎢⎢
⎢⎢⎢
⎡ 𝐴ଵଵdet(𝐴) 𝐴ଵଶdet(𝐴) 𝐴ଵଷdet(𝐴)𝐴ଶଵdet(𝐴) 𝐴ଶଶdet(𝐴) 𝐴ଶଷdet(𝐴)𝐴ଷଵdet(𝐴) 𝐴ଷଶdet(𝐴) 𝐴ଷଷdet(𝐴)⎦⎥⎥

⎥⎥⎥
⎤
 

Now we introduce the following lemma: 
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Lemma 1. If 𝐴 a 3 × 3 matrix then 𝑑𝑒𝑡 (𝐴) = ௔భభ(మ)௔మభ  where 

 𝑎௜௝(௠) = อ𝑎௜ଵ(௠ିଵ) 𝑎௜ ௝(௠ିଵ)𝑎௜ାଵ ଵ(௠ିଵ) 𝑎௜ାଵ ௝(௠ିଵ)อ ; 𝑎௜௝(଴) = 𝑎௜௝  .  

Proof. By the above definition of 𝑎௜௝(௠)
, 

 𝑎ଵଵ(ଶ) = 𝑎ଵଵ(ଵ)𝑎ଶଶ(ଵ) − 𝑎ଶଵ(ଵ)𝑎ଵଶ(ଵ)
 = (𝑎ଵଵ𝑎ଶଶ − 𝑎ଶଵ𝑎ଵଶ)(𝑎ଶଵ𝑎ଷଷ − 𝑎ଷଵ𝑎ଶଷ) − (𝑎ଶଵ𝑎ଷଶ − 𝑎ଷଵ𝑎ଶଶ)(𝑎ଵଵ𝑎ଶଷ − 𝑎ଶଵ𝑎ଵଷ)= 𝑎ଶଵ(𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ + 𝑎ଵଶ𝑎ଶଷ𝑎ଷଵ + 𝑎ଵଷ𝑎ଶଵ𝑎ଷଶ − 𝑎ଵଵ𝑎ଶଷ𝑎ଷଶ − 𝑎ଵଶ𝑎ଶଵ𝑎ଷଷ− 𝑎ଵଷ𝑎ଶଶ𝑎ଷଵ) 𝑎ଵଵ(ଶ) = 𝑎ଶଵ ∙ det (𝐴) 

Thus, det(𝐴) = ௔భభ(మ)௔మభ . 
Note that each of 𝑎௜௝(ଵ)

  can be expressed in terms of cofactor 𝐴௜௝ such that 𝑎ଵଵ(ଵ) = 𝑨𝟑𝟑, 𝑎ଵଶ(ଵ) =−𝑨𝟑𝟐, 𝑎ଶଵ(ଵ) = 𝑨𝟏𝟑, 𝑎ଶଶ(ଵ) = −𝑨𝟏𝟐, and 𝑎ଵଵ(ଶ) = −𝑨𝟑𝟑𝑨𝟏𝟐 + 𝑨𝟏𝟑𝑨𝟑𝟐 = 𝑨𝟏𝟑𝑨𝟑𝟐−𝑨𝟑𝟑𝑨𝟏𝟐. 
From [𝐴: 𝐵]ଵ, we can specify the entries in the last row of 𝐴ିଵ as follows: 

   𝑏ଷଵ = ௔మభ(భ)௔మభ௔భభ(మ) = (௔మభ௔యమି௔యభ௔మమ)௔మభ௔భభ(మ) = 𝑨𝟏𝟑௔మభ௔భభ(మ) = ஺యభୢୣ୲ (஺) 
 𝑏ଷଶ = ି௔భభ(భ)௔యభି௔మభ(భ)௔భభ௔భభ(మ) = ି(௔భభ௔మమି௔మభ௔భమ)௔యభି(௔మభ௔యమି௔యభ௔మమ)௔భభ௔భభ(మ)  = (௔భమ௔యభି௔యమ௔భభ)௔మభ௔భభ(మ) = 𝑨𝟐𝟑௔మభ௔భభ(మ) = ஺యమୢୣ୲ (஺),  

and 

 𝑏ଷଷ = ௔భభ(భ)௔మభ௔భభ(మ) = (௔భభ௔మమି௔మభ௔భమ)௔మభ௔భభ(మ) = 𝑨𝟑𝟑௔మభ௔భభ(మ) = ஺యయୢୣ୲ (஺). 
To verify the entries in the first and second rows of 𝐴ିଵ we do the FUL technique. For simplicity 

of notations, we use the cofactor equivalents of each 𝑎௜௝(ଵ)
. 

[𝐶: 𝐷]ଷ 

𝑎ଵଵ(ଶ)
 0 0  𝑎ଶଵ(ଵ)𝑎ଶଵ 

−𝑎ଵଵ(ଵ)𝑎ଷଵ− 𝑎ଶଵ(ଵ)𝑎ଵଵ 

𝑎ଵଵ(ଵ)𝑎ଶଵ 

 

𝑎ଵଶ(ଵ)
 𝑎ଵଵ(ଵ)

 0  
−𝑎ଶଵ 

 
𝑎ଵଵ 0 

𝑎ଵଷ 𝑎ଵଶ 𝑎ଵଵ  
 

1 
0 0 

 𝑎ଵଵ(ଶ)
 0 0  𝑨𝟏𝟑𝑎ଶଵ 

−𝑨𝟑𝟑𝑎ଷଵ− 𝑨𝟏𝟑𝑎ଵଵ 

𝑨𝟑𝟑𝑎ଶଵ 

 

−𝑨𝟑𝟐 𝑨𝟑𝟑 0  
−𝑎ଶଵ 

 
𝑎ଵଵ 0 

𝑎ଵଷ 𝑎ଵଶ 𝑎ଵଵ  
 

1 
0 0 
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[𝐶: 𝐷]ଶ 

 𝑎ଵଵ(ଶ)𝑨𝟑𝟑 0  

−𝑎ଵଵ(ଶ)𝑎ଶଵ+ 𝑨𝟑𝟐𝑨𝟏𝟑𝑎ଶଵ 

 

𝑎ଵଵ(ଶ)𝑎ଵଵ+ 𝑨𝟑𝟐(−𝑨𝟑𝟑𝑎ଷଵ− 𝑨𝟏𝟑𝑎ଵଵ) 

𝑨𝟑𝟐𝑨𝟑𝟑𝑎ଶଵ 

 

 

 

−𝑨𝟑𝟐𝑎ଵଶ− 𝑎ଵଷ𝑨𝟑𝟑 
−𝑨𝟑𝟐𝑎ଵଵ  −𝑨𝟑𝟐 + 𝑎ଵଷ𝑎ଶଵ −𝑎ଵଷ𝑎ଵଵ 0 

[𝐶: 𝐷]ଵ   −𝑎ଵଵ(ଶ)𝑨𝟑𝟑𝑨𝟑𝟐𝑎ଵଵ  

𝑎ଵଵ(ଶ)𝑨𝟑𝟑(−𝑨𝟑𝟐+ 𝑎ଵଷ𝑎ଶଵ)− (−𝑨𝟑𝟐𝑎ଵଶ− 𝑎ଵଷ𝑨𝟑𝟑)(−𝑎ଵଵ(ଶ)𝑎ଶଵ+ 𝑨𝟑𝟐𝑨𝟏𝟑𝑎ଶଵ) 

 

𝑎ଵଵ(ଶ)𝑨𝟑𝟑(−𝑎ଵଷ𝑎ଵଵ)+ (𝑨𝟑𝟐𝑎ଵଶ+ 𝑎ଵଷ𝑨𝟑𝟑)(𝑎ଵଵ(ଶ)𝑎ଵଵ+ 𝑨𝟑𝟐(−𝑨𝟑𝟑𝑎ଷଵ− 𝑨𝟏𝟑𝑎ଵଵ)) 

𝑨𝟑𝟐𝑨𝟑𝟑𝑎ଶଵ(𝑨𝟑𝟐𝑎ଵଶ+ 𝑎ଵଷ𝑨𝟑𝟑) 

 

We now verify the results for the remaining entries in the rows of 𝐴ିଵ. For the entries of the 

second row, we have 𝑏ଶଵ = ି௔మభ(஺భయ஺యమି஺యయ஺భమ)ା௔మభ𝑨𝟑𝟐𝑨𝟏𝟑௔భభ(మ)𝑨𝟑𝟑 = ௔మభ𝑨𝟏𝟐௔భభ(మ) = ஺మభୢୣ୲ (஺); 
𝑏ଶଶ = 𝑎ଵଵ(ଶ)𝑎ଵଵ + 𝑨𝟑𝟐(−𝑨𝟑𝟑𝑎ଷଵ − 𝑨𝟏𝟑𝑎ଵଵ)𝑎ଵଵ(ଶ)𝑨𝟑𝟑

= (𝑨𝟏𝟑𝑨𝟑𝟐𝑎ଵଵ−𝑨𝟑𝟑𝑨𝟏𝟐𝑎ଵଵ) − 𝑨𝟑𝟐𝑨𝟑𝟑𝑎ଷଵ−𝑨𝟑𝟐𝑨𝟏𝟑𝑎ଵଵ𝑎ଵଵ(ଶ)𝑨𝟑𝟑  

= −𝑨𝟏𝟐𝑎ଵଵ − 𝑨𝟑𝟐𝑎ଷଵ𝑎ଵଵ(ଶ) = (𝑎ଶଵ𝑎ଷଷ − 𝑎ଷଵ𝑎ଶଷ)𝑎ଵଵ + (𝑎ଵଵ𝑎ଶଷ − 𝑎ଶଵ𝑎ଵଷ)𝑎ଷଵ𝑎ଵଵ(ଶ)  

= ௔మభ௔యయ௔భభି௔మభ௔భయ௔యభ௔భభ(మ) = ௔మభ𝑨𝟐𝟐௔భభ(మ) = ஺మమୢୣ୲ (஺); 
 𝑏ଶଷ = ஺యమ𝑨𝟑𝟑௔మభ௔భభ(మ)𝑨𝟑𝟑 = ି௔భమభ ௔మభ௔భభ(మ) = ି(௔భభ௔మయି௔మభ௔భయ)௔మభ௔భభ(మ) = 𝑨𝟑𝟐௔మభ௔భభ(మ) = ஺మయୢୣ୲ (஺). 

For the entries of the first row, 

𝑏ଵଵ = 𝑎ଵଵ(ଶ)𝑨𝟑𝟑(−𝑨𝟑𝟐 + 𝑎ଵଷ𝑎ଶଵ) − (−𝑨𝟑𝟐𝑎ଵଶ − 𝑎ଵଷ𝑨𝟑𝟑)ቀ−𝑎ଵଵ(ଶ)𝑎ଶଵ + 𝑨𝟑𝟐𝑨𝟏𝟑𝑎ଶଵቁ−𝑎ଵଵ(ଶ)𝑨𝟑𝟑𝑨𝟑𝟐𝑎ଵଵ= 𝐴ଵଶ𝐴ଷଷ − 𝐴ଵଷ𝐴ଷଶ + 𝑎ଵଶ𝑎ଶଵ𝐴ଵଶ + 𝑎ଵଷ𝑎ଶଵ𝐴ଵଷ−𝑎ଵଵ(ଶ)𝑎ଵଵ  

= ௔మభ(௔మమ௔యయି௔మయ௔యమ)௔భభ(మ) = ௔మభ𝑨𝟏𝟏௔భభ(మ) = ஺భభୢୣ୲ (஺);  
𝑏ଵଶ = 𝑎ଵଵ(ଶ)𝑨𝟑𝟑(−𝑎ଵଷ𝑎ଵଵ) + (𝑨𝟑𝟐𝑎ଵଶ + 𝑎ଵଷ𝑨𝟑𝟑) ቀ𝑎ଵଵ(ଶ)𝑎ଵଵ + 𝑨𝟑𝟐(−𝑨𝟑𝟑𝑎ଷଵ − 𝑨𝟏𝟑𝑎ଵଵ)ቁ𝑎ଵଵ(ଶ)𝑨𝟑𝟑𝑨𝟑𝟐𝑎ଵଵ= −(𝐴ଵଶ𝑎ଵଵ𝑎ଵଶ + 𝐴ଷଶ𝑎ଵଶ𝑎ଷଵ + 𝐴ଷଷ𝑎ଵଷ𝑎ଷଵ + 𝐴ଵଷ𝑎ଵଵ𝑎ଵଷ𝑎ଵଵ(ଶ)𝑎ଵଵ  
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 = ௔భభ௔మభ(௔భమ௔యయି௔భయ௔యమ)௔భభ(మ)௔భభ = ௔మభ𝑨𝟐𝟏௔భభ(మ) = ஺భమୢୣ୲ (஺); 
𝑏ଵଷ = 𝑨𝟑𝟐𝑨𝟑𝟑𝑎ଶଵ(𝑨𝟑𝟐𝑎ଵଶ + 𝑎ଵଷ𝑨𝟑𝟑)−𝑎ଵଵ(ଶ)𝑨𝟑𝟑𝑨𝟑𝟐𝑎ଵଵ

= 𝑎ଶଵ(𝑎ଵଶ𝑎ଶଵ𝑎ଵଷ − 𝑎ଵଶ𝑎ଵଵ𝑎ଶଷ) + 𝑎ଶଵ(𝑎ଵଷ𝑎ଵଵ𝑎ଶଶ − 𝑎ଵଷ𝑎ଶଵ𝑎ଵଶ)−𝑎ଵଵ(ଶ)𝑎ଵଵ  

= ௔మభ௔భభ(ି௔భమ௔మయା௔భయ௔మమ)ି௔భభ(మ)௔భభ = ௔మభ𝑨𝟑𝟏௔భభ(మ) = ஺భయୢୣ୲ (஺). 
4. CMF and Solving Systems of Linear Equations 

Earlier in this paper, we assume that the process of computing the matrix inverse is an extension 

of the Gauss-Jordan reduction method of solving systems of linear equations by forming system 𝐴𝑋 = 𝐼. With the developed algorithm, we can now address the problem of solving linear systems by 

replacing each column of 𝐼 by a set of right-hand values of the equations in the system. 

[𝐴: 𝑏]௡ 

𝑎ଵଵ 𝑎ଵଶ …  𝑎ଵ௡  𝑏ଵଵ 𝑐ଵଵ … 𝑎ଶଵ 𝑎ଶଶ …  𝑎ଶ௡  𝑏ଶଵ 𝑐ଶଵ  

. . …  .    . 

. . …  .    . 𝑎௡ିଵ ଵ 𝑎௡ିଵ ଶ …  𝑎௡ିଵ ௡  𝑏௡ିଵ ଵ 𝑐௡ିଵ ଵ … 𝑎௡ଵ 𝑎௡ଶ …  𝑎௡௡  𝑏௡ଵ  𝑐௡ଵ  … 

[𝐴: 𝑏]௡ିଵ 

 𝑎ଵଵ(ଵ)
 𝑎ଵଶ(ଵ)

 … 𝑎ଵ௡ିଵ(ଵ)
  𝑏ଵଵ(ଵ)

 𝑐ଵଵ(ଵ)
 … 

 

 
𝑎ଶଵ(ଵ)

 𝑎ଶଶ(ଵ)
 

… 𝑎ଶ ௡ିଵ(ଵ)
  𝑏ଶଵ(ଵ)

 𝑐ଶଵ(ଵ)
  

 . . . .  . . … 

 𝑎௡ିଵ ଵ(ଵ)
 𝑎௡ିଵ ଶ(ଵ)

 
 𝑎௡ିଵ ௡ିଵ(ଵ)

  𝑐௡ିଵ ଵ(ଵ)
 

 𝑐௡ିଵ ଶ(ଵ)
 

 

… … … … … …  … … … [𝐴: 𝑏]ଶ    𝑎ଵଵ(௡ିଶ)
 𝑎ଵଶ(௡ିଶ)

  𝑏ଵଵ(௡ିଶ)
 𝑐ଵଵ(௡ିଶ)

 … 

   𝑎ଶଵ(௡ିଶ)
 𝑎ଶଶ(௡ିଶ)

  𝑏ଶଵ(௡ିଶ)
 𝑐ଶଵ(௡ିଶ)

 … [𝐴: 𝑏]ଵ 
   

 𝑎ଵଵ(௡ିଵ)
  𝑏ଵଵ(௡ିଵ)

 𝑐ଵଵ(௡ିଵ)
 

… 

 𝑥௡ = ௕భభ(೙షభ)௔భభ(೙షభ) or 𝑥௡ = ௖భభ(೙షభ)௔భభ(೙షభ), and so on. Working the way up, we can solve for 𝑥௡ିଵ, 𝑥௡ିଶ, …, 𝑥ଶ, 𝑥ଵ 

by back substitution. Likewise, by doing FLIP, we complete the Gauss-Jordan reduction to readily 

obtain the solution. 

[𝐶: 𝑑]௡ 

𝑎ଵଵ(௡ିଵ)
 0 … 0 

0 

 
 𝑏ଵଵ(௡ିଵ)

 𝑐ଵଵ(௡ିଵ)
 … 

𝑎ଵଶ(௡ିଶ)
 𝑎ଵଵ(௡ିଶ)

 … 0 
0 

 
 𝑏ଵଵ(௡ିଶ)

 𝑐ଵଵ(௡ିଶ)
 … 

. . …  .  . . … 

. . …  .  . . … 
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𝑎ଵ௡ିଵ(ଵ)
 𝑎ଵ௡ିଶ(ଵ)

 
… 

 
𝑎ଵଵ(ଵ)

 𝑎ଵ௡ିଵ(ଵ)
  𝑏ଵଵ(ଵ)

 𝑐ଵଵ(ଵ)
 … 

𝑎ଵ௡ 𝑎ଵ௡ିଵ 
… 

 
𝑎ଵଶ 𝑎ଵଵ  𝑏ଵଵ 𝑐ଵଵ … 

[𝐶: 𝑑]௡ିଵ 

 𝑎ଵଵ(ଵ)ᇱ
 … 

0 

 
0  𝑏ଵଵ(ଵ)ᇱ

 𝑐ଵଵ(ଵ)ᇱ
  

 𝑎ଶଵ(ଵ)ᇱ
 … 

0 

 
0  𝑏ଶଵ(ଵ)ᇱ

 𝑐ଶଵ(ଵ)ᇱ
  

 . …  .  . . … 

 . …  .  . . … 

 𝑎௡ିଶଵ(ଵ)ᇱ
  𝑎௡ିଶ௡ିଶ(ଵ)ᇱ

 
0 

 
 𝑏௡ିଶଵ(ଵ)ᇱ

 𝑐௡ିଶଵ(ଵ)ᇱ
  

 
𝑎௡ିଵଵ(ଵ)ᇱ

 

 
 𝑎௡ିଵ௡ିଶ(ଵ)ᇱ

 𝑎௡ିଵ௡ିଵ(ଵ)ᇱ
  𝑏௡ିଵଵ(ଵ)ᇱ

 𝑐௡ିଵଵ(ଵ)ᇱ
  

…          [𝐶: 𝑑]ଶ 
   𝑎ଵଵ(௡ିଶ)ᇱ

 
0 

 
 𝑏ଵଵ(௡ିଶ)ᇱ

 𝑐ଵଵ(௡ିଶ)ᇱ
  

   𝑎ଶଵ(௡ିଶ)ᇱ
 𝑎ଶଶ(௡ିଶ)ᇱ

  𝑏ଶଵ(௡ିଶ)ᇱ
 𝑐ଶଵ(௡ିଶ)ᇱ

  [𝐶: 𝑑]ଵ     𝑎ଵଵ(௡ିଵ)ᇱ
  𝑏ଵଵ(௡ିଵ)ᇱ

 𝑐ଵଵ(௡ିଵ)ᇱ
  

Here for instance, 𝑥ଵ = ௕భభ(೙షభ)ᇲ௔భభ(೙షభ)ᇲ, 𝑥ଶ = ௕భభ(೙షమ)ᇲ௔భభ(೙షమ)ᇲ, …, 𝑥௡ିଵ = ௕భభ(భ)ᇲ௔భభ(మ)ᇲ, 𝑥ଶ = 
௕భభ(೙షభ)௔భభ(೙షభ). 

5. Verifying the Proposed Algorithm with Numerical Examples 

We test the developed algorithm with specific cases and verify the result by the definition of 

matrix inverse. 

Illustration 1. 3 × 3 matrix. 

    𝐴 = ൥2 3 11 2 11 −2 2൩ 

[𝐴: 𝐼]ଷ 

2 3 1  1 0 0 

1 2 1  0 1 0 

1 -2 2  0 0 1 

[𝐴: 𝐵]ଶ 
 1 1  -1 2 0 

 -4 1  0 -1 1 [𝐴: 𝐵]ଵ 

 
  5 

 
-4 7 1 

Collect a row from each submatrix and do FLIP 

[𝐶: 𝐷]ଷ 

5 0 0  -4 7 1 

1 1 0  -1 2 0 

1 3 2  1 0 0 [𝐶: 𝐷]ଶ  5 0  -1 3 -1 
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 2 2  2 -2 0 [𝐶: 𝐷]ଵ 

 
  10 

 
12 -16 -2 

Collect first row from each submatrix and do FLIP 

 10 0 0  12 -16 2 

 0 5 0  -1 3 -1 

 0 0 5  -4 7 1 

        

[𝐼: 𝐴ିଵ] 
1 0 0 

 65 
−85  

15 

 

0 1 0 

 −15  
35 

−15  

 

0 0 1 

 −45  
75 

15 

 

We verify the result by the definition 𝐴𝐴ିଵ = 𝐴ିଵ𝐴 = 𝐼. 
൥2 3 11 2 11 −2 2൩ ⎣⎢⎢⎢

⎡ ଺ହ ିହ଼ ଵହିଵହ ଷହ ିଵହିସହ ଻ହ ଵହ ⎦⎥⎥⎥
⎤
 = ⎣⎢⎢⎢

⎡ ଺ହ ିହ଼ ଵହିଵହ ଷହ ିଵହିସହ ଻ହ ଵହ ⎦⎥⎥⎥
⎤ ൥2 3 11 2 11 −2 2൩ = ൥1 0 00 1 00 0 1൩ 

Illustration 2. 4 × 4 matrix with resulting zero first entry. 

  

𝐴 = ቎1 2 1 32 −2 0 113 −11 21 34቏ 

[𝐴: 𝐼]ସ 

1 2 1 3  1 0 0 0 

2 -2 0 1  0 1 0 0 

1 -1 2 3  0 0 1 0 

3 1 1 4  0 0 0 1 

[𝐴: 𝐵]ଷ 

 -6 -2 -5  -2 1 0 0 

* 0 4 5  0 -1 2 0 

 4 -5 -5  0 0 -3 1 

*Row 2 in [𝐴: 𝐵]ଷ is a standby row. [𝐴: 𝐵]ଶ   38 50  8 -4 18 -6 

  4 5  0 -1 2 0 [𝐴: 𝐵]ଵ 

 
   

-10 
 -32 -22 

4 24 
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We collect 1 row from each submatrix and do FLIP.  Since an augmented matrix represents an equation, 

we can reduce to lower term a row with entries having common factor. [𝐶: 𝐷]ସ 5 0 0 0  16 11 -2 -12 

5 4 0 0  0 -1 2 0 

5 2 6 0  2 -1 0 0 

3 1 2 1  1 0 0 0 [𝐶: 𝐷]ଷ  20 0 0  -80 -60 20 60 

 -10 30 0  10 0 -10 0 

 -1 -8 5  -1 3 0 0 

Reducing to lower terms. 

  1 0 0  -4 -3 1 3 

  1 -3 0  -1 0 1 0 

  1 8 -5  1 -3 0 0 [𝐶: 𝐷]ଶ   -3 0  3 3 0 -3 

  11 -5  2 -3 -1 0 [𝐶: 𝐷]ଵ 

 
   

15 
 -39 -24 

3 33 

Collect first rows and do FLIP 

 15 0 0 0  -39 -24 3 33 

 0 -3 0 0  3 3 0 -3 

 0 0 1 0  -4 -3 1 3 

 0 0 0 5  16 11 -2 -12 

We express the results with a denominator 5. [𝐼: 𝐴ିଵ] 
1 0 0 

0 

 

−135  
−85  

15 
115  

 

0 1 0 

0 

 

−55  
−55  

0 55 

 

0 0 1 

0 

 

−205  
−155  

55 
155  

 

 

0 0 0 

1 

 

165  
115  

−25  
−125  

 

We verify the result as follows. 
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቎1 2 1 32 −2 0 113 −11 2 31 4቏
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
−135 −85 15 115−55 −55 0 55−205165

−155115
55 155−25 −125 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤ =

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
−135 −85 15 115−55 −55 0 55−205165

−155115
55 155−25 −125 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤ ቎1 2 1 32 −2 0 113 −11 2 31 4቏

= ቎1 0 0 00 1 0 000 00 1 00 1቏ 

Illustration 3. Solving a system of linear equations. 

൞ 𝑥ଵ − 𝑥ଶ + 𝑥ଷ + 𝑥ସ = 12𝑥ଵ + 𝑥ଶ − 𝑥ଷ − 𝑥ସ = 2𝑥ଵ + 2𝑥ଶ + 𝑥ଷ + 2𝑥ସ = 102𝑥ଵ − 2𝑥ଶ − 𝑥ଷ − 𝑥ସ = −4 

We form the augmented matrix and proceed with cross-multiplication as follows 

[𝐴: 𝑏]ସ 

1 -1 1 1  1  

2 1 -1 -1  2  

1 2 1 2  10  

2 -2 -1 -1  -4  [𝐴: 𝑏]ଷ  3 -3 -3  0 Reduce before flipping 

 3 3 5  18  

 -6 -3 -5  -24  [𝐴: 𝑏]ଶ   18 24  54 Reduce before flipping 

  9 15  36  [𝐴: 𝑏]ଵ    54  162 Reduce before flipping 

 

   1  3 

𝑥ସ = 3 

At this point, one may consider 

back substitution instead of 

flipping [𝐴: 𝑏]ସ 1 0 0 0  3 𝑥ସ = 3 

4 3 0 0  9  

1 1 -1 0  0  

1 1 -1 1  1  [𝐴: 𝑏]ଷ  3 0 0  -3 𝑥ଷ = −1 

 1 -4 0  -9  

 0 0 

1 

 1 

Standby. This already gives  𝑥ଵ = 1 
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[𝐴: 𝑏]ଶ   -12 0  -24 𝑥ଶ = 2 

  0 1  1 𝑥ଵ = 1 

        

6. Conclusions 

The computation of matrix inverse by CMF is an innovation of the Gauss-Jordan reduction 

method by individually computing the entries of succeeding reduced augmented matrices through 𝑎௜௝ିଵ(௠) = 𝑎௜ଵ𝑎௜ାଵ ௝ − 𝑎௜ାଵ ଵ𝑎௜ ௝ or 𝑎௜௝ିଵ(௠) = ቚ 𝑎௜ଵ 𝑎௜௝𝑎௜ାଵ ଵ 𝑎௜ାଵ ௝ቚ; 𝑎௜௝ିଵ(଴) = 𝑎௜௝ିଵ. Beginning with the augmented 

matrix [𝐴: 𝐼]௡ the algorithm is continued until a matrix with one row [𝐴: 𝐵]ଵis obtained. By taking 

the first row from each submatrix, an augmented matrix where the left matrix is in upper triangular 

form is obtained. Doing the FLIP by flipping the rows up and then flipping the rows of the left matrix 

to the left produces an augmented matrix where the left matrix is in lower triangular form, [𝐶: 𝐷]௡. 

The process of reduction by cross-multiplication is performed until obtaining the last submatrix [𝐶: 𝐷]ଵ. Collecting the first row from each submatrix [𝐶: 𝐷]௜  and then doing the FLIP movement 

generates an augmented matrix from which the inverse is determined by dividing the entries of the 

right matrix by the corresponding diagonal entries of the left matrix. 

Solving systems of linear equations by CMF follows the same algorithm as matrix inversing by 

treating each row of 𝐼 as different sets of right-hand values of the equations of the linear system. 

For 𝑛 = 3 , the CMF proceeds in the same process as the determinant method in matrix 

inversing; thus, bridging the Gauss-Jordan reduction and determinant methods. 

The limitation of the cross-multiplication occurs when a zero first entry occurs in which cross-

multiplication cannot be performed. This can be compensated by permuting the rows, treating the 

row zero as a standby row and then placing it at the bottom row of the succeeding augmented 

submatrix.  
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