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Bridging Gauss-Jordan Reduction and Determinant
Methods through Cross-Multiplication-Flip (CMF)
Method in Matrix Inversion and Solving Systems of
Linear Equations

Judel V. Protacio

College of Education, Arts and Sciences, Capiz State University, Capiz, Philippines; jvprotacio@capsu.edu.ph

Abstract: In this paper, we introduce as a pedagogical strategy an internal division-free, straightforward, and
symmetrically progressing algorithm in manually computing matrix inverse and solving systems of linear
equations by revisiting the application of elementary row operations in the Gauss-Jordan reduction method
and connecting it to the determinant method. The proposed cross-multiplication-flip (CMF) algorithm employs
cross-multiplication similar to the butterfly movement in computing determinants as a strategic application of
elementary row operations to efficiently reduce the rows and then applies flipping of rows and entries to put
an upper triangular matrix into lower triangular form to continue the reduction process.

Keywords: matrix inverse; systems of linear equations; cross-multiplication; Gauss-Jordan
reduction; determinant method

1. Introduction

The concept of matrix inverse is essential in the solution of systems of linear equations and other
various practical applications. For a nonsingular matrix 4, there is a unique matrix A~ called the
usual inverse of A, with which the condition A™*A = AA™! = holds [1,2]. The usual matrix inverse
has the following properties,

A D 1t=4;

(AT)—l — (A—l)T;

@A)t = (A4

(AB)™* = B~14™1,
where AT is the transpose of A and A* is its conjugate transpose. While it is generally thought of
that A™! is unique to nonsingular matrices, there are cases where approximations of matrix inverse
from singular matrices or rectangular matrices are necessary; hence, the concept of generalized matrix
inverse A~1defined as follows [3],

AATIA = A.

In a system of linear equation Ax =b where A is a nonsingular n Xn matrix, left
multiplication of the equation by A™! yields A™'Ax =A"'b and with AA™'=A"1A=1, the
solution is given by x = A~1b [1,2]. Where A is not necessarily singular such that AA~1A = A, then
Ax = b hasasolutionif and only if AA™'b = b [3]. Consequently, Penrose [3] introduced the Moore-
Penrose matrix inverse denoted by A" with the following properties,

AATPA = 4;
A"PAATP = A7F;
(AA™P)* = AA™P; and
(A7PA)y = A7PA.

There are other generalized matrix inverses introduced depending on relations and applications
investigated such as those involved in differential and difference equations, cryptography, Markov
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chains, and numerical analysis [5,7]. For instance, the Drazin matrix inverse denoted by A" satisfies
the following conditions [6]

AkA™P A = AK;

APAAA™P = A7P;

AA™P = A7PA

where k called the index of 4, is the least nonnegative integer such that rank(4**') = rank A*.
Note that the rank of A is the number of its nonzero eigenvalues. When k = 0, the Drazin inverse
reduces to the usual matrix inverse; thatis A2 = 4™1.

With technological applications in the computation of matrix inverse for specific purposes,
accuracy in estimations and consistency of generalized matrix inverse can be readily obtained. The
very goal of this paper is directed to the pedagogical context. Hence, we revisit the fundamental
concepts and procedures to facilitate conceptual understanding of mathematical principles and
fluency in procedural knowledge. With x = A~!b, and as matrix size becomes larger, manually
solving for solution of systems of linear equations by separately computing for the inverse of the
coefficient matrix becomes tedious and thus the approach becomes less efficient in terms of teaching
time. One may consider common approaches in solving systems of linear equations without matrix
inversing such as the Gaussian elimination method, Gauss-Jordan reduction method, LU
Decomposition.

In the Gauss-Jordan reduction method, solving both the linear system and matrix inverse can be
addressed independently. For linear systems Ax = b, an augmented matrix [A4:b] is formed and
elementary row operations are performed to transform A into reduced row echelon form. The
process is actually multiplying A~! and b without specifically computing the entries of A™1.

In matrix inversing, we extend the Gauss-Jordan reduction method by forming a linear system
AX = B . With B = I, then by definition,X = A™1. Taking A is as the coefficient matrix and then
augmenting it with I we produce [A:I]. Here, the columns of I represent n different sets of right-
hand side values of equations of the linear system. Forming [A4:I] and transforming A into reduced
row echelon form implies solving a system of linear equations with n different right-hand sides at
the same time. That is, pre-multiplying AX = I by A™" gives A"'AX = A~'I, then finally X = A™*. With
this approach, solving systems of linear equations is but a special case of matrix inversing.

The second method of computing matrix inverse involves the determinant as indicated in the
relation below [1,2].

[ An Ay Aip
det (A) det(4) " det(A)
A-1 = 1 (adj A) = Az Ay Azn
~ det(A) JA) = |Get (4) det (4) det (4)
Apa Ay Ann
[det (4) det(4) * det (A)l

where A;; = Aj;; Aj; = (—1)/*'det (M;;) and M;; is a matrix formed by removing the column and
row of A where aj; lies. Aj; is a cofactor of aj;.

Current texts in linear algebra treat independently these two usually-employed methods, Gauss-
Jordan reduction method through elementary row operations and determinant method, of matrix
inversion. In this paper, we attempted to develop a general approach applied to matrices with
numerical entries to connect the Gauss-Jordan reduction and determinant methods and to propose a

more straightforward and pedagogically efficient algorithm in manually computing matrix inverse.
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2. Materials and Methods

Matrix Reduction and Inversion by Cross-Multiplication-Flip (CMF) Method
We compute the inverse of an n X n matrix A with the augmented matrix [A:I], represented

as follows:

0

aqq Qaqp vee Ain 1 0
0

azi azz Qazn 0 1

[A:1],

0

an-11 an-12 An-1n 0 0
1

any ana . Ann 0 0

In the Gauss-Jordan reduction, the process of matrix inversion involves transformation of A
into reduced row echelon form, which in the case of nonsingular matrices, is the identity matrix by
performing elementary row operations through the rows of the augmented matrix. We start the
reduction by zeroing out the entries under a;;. Assuming the first entries of each row of A are
nonzero, we do the straightforward approach by taking two successive rows at a time beginning at
the top. We multiply R, by —a;; and R; by a,;. Adding the results would produce a row with
zero first entry. We continue the process with R, and R, then R; and R, until R,_; and R,. We
write the resulting rows under [A:]], and label this [A:B],—; as a submatrix with n —1 rows and
n —1 columns by disregarding the first column with zero entries.

The process of multiplying (i + 1)th row by a;; and the ith row by —a;;;,; and adding the

results leads to a scheme of individually computing each entry of the succeeding submatrix [4:1],_;
which we refer to here as cross-multiplication and that the resulting entry for the left matrix, ag.n) ,

(m) (m-1) _(m-1) _ (m-1) (m-1)

is denoted as a; L BT e where (m) indicates the number of reductions
WY

performed. In determinant form, we can also denoted ag.n) as ag.") = l(in—l) L(rjn 1)
Aiv11 i+1j

where ai(J(.)) = a;; , which provides a symmetric (butterfly) movement of the algorithm; hence, the

term cross-multiplication. We also denote the entries of the right matrix by bi(;n) which is

determined in similar manner since cross-multiplication is extended to the entire augmented matrix.
We now represent the initial results as follows:

0

agq Qqp e Ain 1 0
0

arq ayo Ao 0 1

[A:1],

0

An-11 An-12 An-1n 0 0
1

an1 Ano Ann 0 0

. ® ® @® @ (D
[4: Bln-1 aq a2 Ain-1 byy b1 0
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@
azq

a®

n-11

[A:B],

[4:B];

(€8]
az;

@
an’12

(n-2)
ag

(n-2)
az

€Y)

a2 n-1
@
An1n-1
b(n‘z)
(n-2) 11
g
(n-2)
(n—2) b21
22
(n-1) (n—-1)
agy bi;

(n-2)
by,

(n-2)
b22

(n-1)
by,

At this point, the lastrow of A™! can now be determined from [4:B],

be

(n-1) (n-1)

bll b12
(n-1) (n=1)
11 a11

-1
Din

(n-1)
11

d0i:10.20944/preprints202307.0070.v1

pD

n-1in

(n-2)
bln

b(n_z)

2n

(n-1)
bln

and it should

But we will not compute the last row of A™* yet to avoid fractions. We now do the first part of
the FLIP by getting the first row of each submatrix beginning from the lowest submatrix [A: B];to
form an augmented matrix by [C:D],.

0
0
0
0
[C:D],
0
1
a§1)
Qa2
a1

(n-2)
gy

(€]
Ain-2

Ain-1

(n—-1) (n—-1)
ag; bi;

(n-2) (n-2)
asp byy

@ (€8]

1n-1 by

A 1

b(n_l)

12

(n-2)
by,

€Y
by,

b(n_l)

in

(n-2)
bln

)
bln

Note that we cannot perform cross-multiplication here since the first entries of the left matrix
are zeros, except that of the last row. We do now the second part of the FLIP by flipping left the
entries of the left matrix to obtain a matrix in lower triangular form.

0
(n-1)
a
(n-2) (n-2)
asp ag

[C: D],

0

0 b3

(n-2)
bll

(n-1)
by,

(n-2)
b12

b(n_l)

in

(n-2)
bln
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5
®
a 0
® @® 11 ® ® ®
Ain-1 Ain—2 byi b, by
a2
Ain A1pn-1 e agq 1 0 e 0

We repeat the process of performing cross-multiplication through the rows of [C:D], to obtain
the rows of [C:D],_;. Here, we denote the entries of the left matrix by ag.n)' and of the right matrix

(m)r
by b;; .
(n-1) 0 0 0 (n-1) (n-1) (n-1)
asy bi; b1, by
(n—2) (n—2) 0 0 (n-2) (n—2) b(n—z)
Ay agy s bi; b1, 1n
[C:D],
1) (€8] o (€8] @ 1 (€8] (€8]
Ain-1 Ain—2 ajy Ain-1 byy by, by,
A1n A1n-1 (V) a1 1 0 0
(1) 0 0 b(l)’ b(l)’ b(l)’
Ay s 11 12 1n
(1) 0 0 b(l)’ b(l)’ b(l)’
azq 21 22 2n
[C: D]y
(€3] (€5 0 (€5 (€5 (€3]
An21 Anon-2 b, 224 b, ”2, by om
o
n—-11 (1) (D) (1) (1) (€50
Ap1in-2  Ap-in—1 by 14 by 14 by in
[C: D], 0
(n-2)1 (n—-2)r (n-2)r (n—-2)r
a;; by by, e by
(n-2) (n-2)r -2y (n-2) (n-2)1
21 Y byy by, o by
[C: D], b’
(n-1yr (-1 (1) in
a; byy by,

Since the left matrix in [C: D], is in lower triangular form, every first row of the left matrix of

every succeeding submatrix [C:D]; takes the form
@
b in

[C:D]; agil)r 0 0 biil)’ biiz)’

that is, aﬁ)' # 0 and 0 elsewhere.
To restore the original sequence of rows and columns, we now write the rows of the augmented

matrix leading to the inverse of A by collecting the first rows of [C:D]; beginning from [C:D]; and
doing the FUL movement.

©ol Y 0 0 0 i e
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0
(n-2)/ -2y (n-2y (n-2)
0 gy RS 0 byy by, e by,
0 0 y 0 y y (W
e agg b1y by, e by,
0 0 0 (n-1) (n-1) (n-1) b(n—l)
e agy bi; b, e 1n

Note that the left matrix is a diagonal matrix and we can now specify the inverse by diving each
row of [C:D],, by the corresponding diagonal entry of C. Thus

(n—1)r (n—1)r (n-1)
1 0 0 byy by, by,
0 (n—-1)r a(n—l)l a(n—l)l
11 11 11
(n=2)r (n=2)r (n=2)r
0 1 0 0 by, bi, by
(n=2)r (n=2)r (n—=2)r
g a;; a
[1: A_l]n
(€8 v (1)
0 0 1 0 byy by, by
(1) (1) (€50
iy ary ajy
(n-1) (n-1) (n-1)
0 0 0 1 by by, by
LD oD L@
11 11 11

Cases with Zero First Entries

The derivation of the algorithm assumes that there are no zero first entries. If there are zero first
entries, these rows are considered as standby rows and are not involved in cross-multiplication
within a submatrix where it belongs. These rows are then transferred to the next submatrix by
dropping the first zero entry. Below, a,; = 0, hence, the row is transferred as first row of the next
submatrix. Cross-multiplication is performed between the first and third rows of [A:[],. We can also
first move the row with zero first entry to the bottom of its submatrix to avoid confusion before
commencing cross-multiplication especially if it is the first row of a submatrix. If all of the first entries
of a submatrix are zeros, then the matrix is invertible.

[4:1],, 0
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An-1n 0

An_11 An_12 0 0
1

an1 an2 Ann 0 0
0

ayy Ao 0 1

(€Y
o) o) %2n-1
21 22
[A: B]p-1
a(l)l )
® @ n-1n- (€Y}
an—ll an—l 2 bn—ln

3. CMF and Determinant Methods

For this illustration, we make use of 3 X 3 matrix denoted as follows
a;; 412 dg3
A= 01 Ay QA
Q31 dQdzz dsz

We proceed with reduction by cross-multiplication through the rows of the augmented matrix.

Qa3
aqq aqp 1 0 O
Qzs
[A: 1] Ay Ay 0 1 0
azs
asq az, 0 0 1
1)
a
aﬁ) 12 —az ai 0
[4: B], aglz)
aglf 0 —as; az1
[4: B], al?
a§11)‘121 —aﬁ)am - agll)all aﬂ)am
We let
b1y bi; by3
A7t = by by by
b31 b32 b33
and by the determinant method,
[ A Aqp Az ]
det(4) det(4) det(4)
A1 = Az Az Azs
det(4) det(4) det(4)
Asq Az Azz
[det(4) det(4) det(4)l

Now we introduce the following lemma:
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Lemma 1. If A a 3 X 3 matrix then det (A) = 2L where

azi
m-1) _(m-1)
m) _ [ Yo o
4G = m-ny  m-pp i T -
i+11 i+1 ]

Proof. By the above definition of ai(]r-"),

@ _ @, @ 1 (1)
A4 = Q1103 — A1 4y
= (a11032 — A2101,)(Az1033 — A310,3) — (A2103; — A3105,)(A11023 — A21043)

= 031(a11022033 + A12023031 + Q13021033 — Aq1033033 — (3031033

— Q1302031)
a? = ay, - det (4)

@
Thus, det(4) = al—l
21

Note that each of ag) can be expressed in terms of cofactor A;; such that agll) = A3z, ag) =

1 1 2
—Asy, a5y = Agz, a5y = —Agy, and a? = —A33Ay; + Ay3Asy = A13Azy—AszAgy.
From [A:B];, we can specify the entries in the last row of A~ as follows:

(1)
Doy = 921921 _ (az1a32—0a31022)A21 — A13dz: — A4
T afy afy T det@
(€] (1
Do = —Q17031=037 a11 _ —(@11822—021012)a31—(A21032-A31022)a11
32 — @ - @
11 11
_ (@12031-032811)a21 _ A23021 _ 432
o & " dma
and
aMa (aq1az2—az1a42)a Assza A
bss = 11( )21 — (@11022 (2)1 12)021 _ 33( )21 _ _As3
2 2 2 .
aq a1q aq det (4)

To verify the entries in the first and second rows of A™! we do the FUL technique. For simplicity
of notations, we use the cofactor equivalents of each ag).

_a(l)a a(l)a
() ® 11 %31 11 Q21
a; 0 0 ay; az; o
B Rt
—az1
[C:D]; af} al? 0 as; 0
a3 a2 a1 0 0
1
@ —A3z3a3; A33az;
a11 O 0 A13a21
—Agzayy
—az1
—Az; Aszz 0 ayq 0
a3 Az a1 0 0
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9
2 2
_agl)a21 agl)all
@ A32A330;1
a;y Az3 0 + 432413051 + A3z (—Az3a3,
[C:D], —Ay3aq4)
—Azzaq;
—A320q, —A3z; + ay305; —ay3011 0
— ay3433
2
a{? A33(~A3, @
aqiq Ass3(—agz3aq1)
+ a13a;1)
+ (43204, A3zA330;71(A3204;
@ — (—A32a4 @
[C:D]y —ay; A33A32014 + a;3433)(a;7ay;  + ai3Az3)

- a13A33)(—a§21)a21

+ A3z (—Azzas;
+ A32413051)

—Ay3a41))

We now verify the results for the remaining entries in the rows of A~'. For the entries of the
second row, we have

b, = —031(A13A432—A33412)+021432413 _ Q1412 _ Ayq
21 — 2 - 2 - 7
agl)A33 agl) det (A)

2
_ a§1)a11 + A3y(—Azza3; — Aq3a41)

b22 -

2
a$? Az

_ (A13A4320,,—A33A12011) — A33A3303,—A33A13044

2
a$) Az

_ —Aqpay1 — Aza3; (A1G33 — A31033)a11 + (A11053 — Az1043)A3;

(2
A

@3]
a4

_ G21033Q11—021043031 _ Q21422 _  Azz |
- (2) - @ 4
a11 a11 det (A)

Dou = A3pA33a51 _ —Ai,ap1 _ —(G41023—02113)dp1 _ A32ap1 _ Aps
23 — () - @ = [©) - @) - :
a1 433 ajq a1q ajq det (4)

For the entries of the first row,

2 2
ail)Ass (—A3; + a;3a;51) — (—A3204; — a13A33)(—a§1)a21 + A32A13a21)
11 = >

_agl)AssAzzan

_ AgpAzz — A13Azp + 012031412 + 013031413

@
—Qaq1 A11

— A21(022033—0A23032) _ A21411 — A1,
a§21> det (4)’

a? a
@) 4., (- A A (2) Aq,(—A —A
a;7Az3(—as3a41) + (Az2a1; + ag3433) (a7 aq; + Azz(—Aszas; 13011)

2
ail)AssAszan

12 =

_ —(A12a11015 + A32012031 + A33a13031 + A13011043

- ()
A1 011
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_ a11031(a12a33—Q13A33) _ Az1421 _ A1y |
agzl)an aﬁ) det (4)’

_ A3A33a;1(A32a,; + ai3433)

bis =
2
—agl)AssAszau

_ a21(A12021Q13 — A12011023) + 21(A1301102; — A13021043)

(2)
_a11 aiq
— a21011(=A12023+a13072) — az1431 — Ag3
—agzl)all agzl) det (4)

4. CMF and Solving Systems of Linear Equations

Earlier in this paper, we assume that the process of computing the matrix inverse is an extension
of the Gauss-Jordan reduction method of solving systems of linear equations by forming system
AX = I. With the developed algorithm, we can now address the problem of solving linear systems by
replacing each column of I by a set of right-hand values of the equations in the system.

a1 a2 A1n b4 C11
az1 Qazz Qazn by C21
[A: b],
An-11 An-12 An-1n by_14 Cn-11
Qani An2 “e- Ann b,y Cn1
1) @ (1) 1) 1)
Ay iy Ain—1 bi; €11
1) @ o 1) 1) 1)
azy az; Az n-1 by €21
[A: b1
(€9)] (€] (€9)] (€9)]
n-11 An-12 An-1n-1 Cn-11 It
Cn—l 2
. (n-2) (n-2) (n-2) (n-2)
[A: D], agy Ay bi; C11
(n-2) (n-2) (n-2) (n-2)
az az; by, €21
[A: b]l
(n-1) (n-1) (n-1)
a; byy €11
(n-1) C(Tl—l) .
Xp = % or x, = %, and so on. Working the way up, we can solve for x,_1, X5, ..., X3, X1
11 11

by back substitution. Likewise, by doing FLIP, we complete the Gauss-Jordan reduction to readily
obtain the solution.

(n-1) (n—-1) (n—-1)
a; 0 0 by, €11
0
. (n-2) (n-2) (n-2) (n-2)
[C:d], a,, a; 0 bi} 1
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(€8] (€8] o 1) @ (€8] 1)
Ain-1 Ain—2 aiq Ain-1 by €11
A1n A1n-1 Az ai1 b4 C11
0
wr )y (1
et o u by €11
0
@ (@ (1
421 o 0 byq €21
[C:d]n-1
(1) @ 0 B @
An 21 Ap on-2 n-21 Cn21
a(l)’
n-11 (6L (€L (1)1 @
Anlin—2  Aplin—1 b, 14 Cn-11
[C:d], 0
(n-2)r (n-2)r (n-2)r
411 byy C11
(n=2)r (n=2)r (n=2)r (n—=2)r
421 22 by €21
[C:d], aﬁ—l)’ bﬁ_”’ Cl(rlz—l)'
b(n—l)r bi"_z)' b(1)r bﬁl_l)

. _ P11 _ D11 _ P11 _
Here for instance, Xy = =D Xy = =2yt ***1 Xp-1 = ~@r Xy = ~n-D*
aiy a1 a1 aiy

5. Verifying the Proposed Algorithm with Numerical Examples

We test the developed algorithm with specific cases and verify the result by the definition of
matrix inverse.

INlustration 1. 3 X 3 matrix.

2 3 1
A=11 2 1
1 -2 2
2 3 1 1 0 0
[A:1]3 1 2 1 0 1 0
1 -2 2 0 0 1
1 1 -1 2 0
[A: B],
-4 1 0 -1 1
[A: B]l
5 -4 7 1
Collect a row from each submatrix and do FLIP
5 0 0 -4 7 1
[C:D]s 1 1 0 -1 2 0
1 3 2 1 0 0
[C:D], 5 0 -1 3 -1
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2 2 2 -2 0
[C:D];
10 12 -16 -2
Collect first row from each submatrix and do FLIP
10 0 0 12 -16 2
0 5 0 -1 3 -1
0 0 5 -4 7 1
1
6 -8 =
1 0 0 e — 5
5 5
-1
-1 3 =
I:A71 0 1 0 — = 5
[ ] s s
1
—4 7 =1
0 0 1 — = 5
5 5

We verify the result by the definition AA™' = A™'A = 1.

6 -8 1 6 -8 1
2 3 1|5 5 5| |5 5 Sfz 3 11 1 0 0
PPN | ERE R I R R I PO
5 5 5 5 5 5
Illustration 2. 4 X 4 matrix with resulting zero first entry.
1 2 1 3
4=11 012 3
31 1 4
1 2 1 3 1 0 0 0
2 -2 0 1 0 1 0 0
s 1 1 2 3 0 0 1 0
3 1 1 4 0 0 0 1
-6 -2 -5 -2 1 0 0
[A: B]s * 0 4 5 0 -1 2 0
4 -5 -5 0 0 -3 1
*Row 2in [A:B];3 is a standby row.
[4: B], 38 50 8 -4 18 -6
4 5 0 -1 2 0
[4: B], -10 4 24
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We collect 1 row from each submatrix and do FLIP. Since an augmented matrix represents an equation,
we can reduce to lower term a row with entries having common factor.
[C:D], 5 0 0 0 16 11 2 12
5 4 0 0 0 -1 2 0
5 2 6 0 2 -1 0 0
3 1 2 1 1 0 0 0
[C:D]; 20 0 0 -80 -60 20 60
-10 30 0 10 0 -10 0
-1 -8 5 -1 3 0 0
Reducing to lower terms.
1 0 0 -4 -3 1 3
1 -3 0 -1 0 1 0
1 8 -5 1 -3 0 0
[C: D], -3 0 3 3 0 -3
11 -5 2 -3 -1 0
[C:D], 15 3 33
-39 -24
Collect first rows and do FLIP
15 0 0 0 -39 -24 3 33
0 -3 0 0 3 3 0 -3
0 0 1 0 -4 -3 1 3
0 0 0 5 16 11 -2 -12
We express the results with a denominator 5.
a7 0 s o8 1w
1 0 0 5 5 5
0 =5 -5 0 5
0 1 0 5 5 5
0 20 551
0 0 1 5 5 5
! =
0 0 0 5 5 5 5

We verify the result as follows.
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-13 - 1 11 7 —-13 -8 1 11
5 5 5 5 5 5 5 5
12 13122 > 5 D2, 5z o1
2 -2 0 1l{5 5 5 [_| 5 &5 5 {2 -2 0 1
1 -1 2 3||-20 -15 5 15 -20 -15 5 15 ({1 -1 2 3
31 145 5 55|35 T 538114
16 11 -2 -12 16 11 -2 -12
5 5 5 5115 5 5 51
10 0 O
_l0o 10 0
0 0 1 0
0 0 0 1
Illustration 3. Solving a system of linear equations.
X1 — Xy +x3+x4=1
2X1 + Xy — X3 — X4 =2
X1+ 2x, + x3 + 2x, =10
2X1 — 2Xy, — X3 — X4 = —4
We form the augmented matrix and proceed with cross-multiplication as follows
1 -1 1 1 1
2 1 -1 -1 2
bl 1 2 1 2 10
2 -2 -1 -1 -4
[4:b]3 3 -3 -3 0 Reduce before flipping
3 3 5 18
-6 -3 -5 -24
[4: b], 18 24 54 Reduce before flipping
9 15 36
[A: b]4 54 162 Reduce before flipping
x4 =3
. 2 At this point, one may consider
back substitution instead of
flipping
[A:Db]s 1 0 0 0 3 X, =3
4 3 0 0 9
1 1 -1 0 0
1 1 -1 1 1
[A:b]5 3 0 0 -3 X3 =—1
1 -4 0 -9
1 Standby. This already gives

0 0 1 x =1
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6. Conclusions

The computation of matrix inverse by CMF is an innovation of the Gauss-Jordan reduction

method by individually computing the entries of succeeding reduced augmented matrices through

a™ =, a;,,; — ajeqgqa;; or a™ = i YWl q©
ij—1 = Q141 i+114 =17 1Qj411 Qg1 7 U1

= a;j_;. Beginning with the augmented
matrix [A:]],, the algorithm is continued until a matrix with one row [A: B],is obtained. By taking
the first row from each submatrix, an augmented matrix where the left matrix is in upper triangular
form is obtained. Doing the FLIP by flipping the rows up and then flipping the rows of the left matrix
to the left produces an augmented matrix where the left matrix is in lower triangular form, [C:D],.
The process of reduction by cross-multiplication is performed until obtaining the last submatrix
[C: D];. Collecting the first row from each submatrix [C:D]; and then doing the FLIP movement
generates an augmented matrix from which the inverse is determined by dividing the entries of the
right matrix by the corresponding diagonal entries of the left matrix.

Solving systems of linear equations by CMF follows the same algorithm as matrix inversing by
treating each row of I as different sets of right-hand values of the equations of the linear system.

For n =3, the CMF proceeds in the same process as the determinant method in matrix
inversing; thus, bridging the Gauss-Jordan reduction and determinant methods.

The limitation of the cross-multiplication occurs when a zero first entry occurs in which cross-
multiplication cannot be performed. This can be compensated by permuting the rows, treating the
row zero as a standby row and then placing it at the bottom row of the succeeding augmented
submatrix.
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