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Abstract: Leaf photosynthetic pigments play a crucial role in evaluating nutritional elements and
physiological states. In facility agriculture, it is vital to obtain rapidly and accurately the pigment
content and distribution of leaves to ensure precise water and fertilizer management. In our
research, we utilized chlorophyll a (Chla), chlorophyll b (Chlb), chlorophyll (Chll), and carotenoid
(Caro) as indicators to study the variations in leaf position of Lycopersicon esculentum Mill. Under 10
nitrogen concentration applications, a total of 2610 leaves (435 samples) were collected using visible-
near infrared hyperspectral imaging (VNIR-HSI). In this study, a "coarse-fine" screening strategy
was proposed by using competitive adaptive reweighted sampling (CARS) and iteratively retained
informative variable (IRIV) algorithm to extract characteristic wavelengths. Finally, simultaneous
and quantitative models were established using partial least squares regression (PLSR). The CARS-
IRIV-PLSR was used to create models to achieve a better prediction effect. The coefficient
determination (R?), root mean square error (RMSE), and ratio performance deviation (RPD) were
predicted to be 0.8240, 1.43, 2.38 for Chla, 0.8391, 0.53, 2.49 for Chlb, 0.7899, 2.24, 2.18 for Chll, and
0.7577, 0.27, 2.03 for Caro, respectively. The combination of these models with the pseudo-color
image allowed for a visual inversion of the content and distribution of pigment. These findings have
important implications for guiding pigment distribution, nutrient diagnosis, and fertilization
decisions in plant growth management.

Keywords: hyperspectral imaging; photosynthetic pigments; leaf position; characteristic variable
selection; visualization

1. Introduction

Nitrogen is an indispensable element for the growth of green plants since it is involved in the
synthesis of photosynthetic pigments, photosynthesis, yield, and quality. The administration of
appropriate nitrogen can boost the synthesis of photosynthetic pigments, improving the efficiency of
photosynthesis. This process can aid in the synthesis of organic compounds, which ultimately
encourage the growth and development of plants [1-3]. Plants with low nitrogen levels restrict the
production of photosynthetic pigments, resulting in yellowing of leaves and stunted growth [4,5].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Excessive nitrogen inhibits the absorption of other essential elements, such as potassium and
magnesium, leading to a deficiency in these elements [4,5]. This shortage, in turn, has an impact on
physiological function. Furthermore, it reduces the quality of flowers and fruits and the ability to
resist pests and diseases. The growth and development of plants can be affected by varying levels of
nitrogen. Notably, there is a positive correlation between the content of photosynthetic pigment
concentration and nitrogen status. The determination of pigment content in leaves can serve as an
indirect indicator of nitrogen diagnosis. Nitrogen is readily transported inside plants, leading to
variations in pigment content across different leaf locations [6]. Regarding the inspection of the
pigment aspect, the traditional laboratory chemical analysis remains the predominant method.
Although this approach produces accurate and intuitive results, it is also time-consuming,
destructive, and environmentally unfriendly. Obtaining accurate results for large samples promptly
is even more challenging. This hysteresis not only has an impact on agricultural production but also
makes it difficult for agricultural managers to make scientifically sound decisions. Visible-near
infrared (VNIR) spectroscopy is a rapid, efficient, and non-destructive inspection method that has
been used to obtain differences in pigment concentration in plant leaves [7]. As a result, spectrum
analysis has become a prominent research topic for scholars both domestically and abroad in recent
years.

The visible-near infrared hyperspectral imager (VNIR-HSI) is a non-contact technology that
integrates spectrum and images, making it a powerful tool for environmental monitoring,
agricultural production, medical diagnosis, and other fields [8-12]. VNIR-HSI technology provides
an effective means for quantitative and qualitative analysis of crop growth monitoring, quality
detection, and nutritional diagnosis in agricultural production. Producers can accurately evaluate the
growth state, quality features, and nutrient level using reflectance spectrum analysis, enabling them
to perform precision management of the environment and fertilization. The fundamental
components of photosynthesis in green plants are photosynthetic pigments, primarily chlorophyll
(Chll) and carotenoid (Caro). These molecules can absorb light energy and convert it into chemical
energy to promote the process of photosynthesis. Chll, comprising mainly chlorophyll a (Chla) and
chlorophyll b (Chlb), is the main light-capturing molecule that absorbs light energy and transfers it
to the reaction center to catalyze the process [13]. Meanwhile, Caro plays a supporting part. Different
photosynthetic pigments in leaves collaborate to regulate photosynthesis to achieve the best
photosynthetic efficiency and growth condition. Thus, leaf pigment concentration is directly tied to
the photosynthetic rate and directly impacts plant growth and development. VNIR-HSI is performed
on plant leaves to determine the spatial distribution and spectrum features. The accuracy and quality
of the data are improved through various processing techniques such as denoising, calibration,
dimensioning, and so on [14,38-42]. Vahtmaée et al. [15] established a prediction model for the
concentrations of Chla, Chlb, Chll, and Caro in various Baltic Sea Macroalgae, demonstrating that
VNIR-HSI technology may be effectively applied to the detection of photosynthetic pigment. Wang
et al. [16] took Chla, Chlb, Chll, and Caro in tea under various nitrogen treatment levels as the
research indicates. Combined with VNIR-HSI technology and feature selection algorithm to construct
prediction models, the correlation coefficients of each pigment prediction were greater than 0.9. It
demonstrates that VNIR-HSI can be applied to the rapid and accurate prediction of pigment content.
Che et al. [17] analyzed the phenotypes of photosynthetic pigments in Neopyropia yezoensis for
phycoerythrin (PE), phycocyanin (PC), allophycocyanin (APC), and Chla using VNIR-HSI. Two
machine learning techniques, partial least squares regression (PLSR) and support vector machine
regression (SVR), were employed in the prediction model after several pre-processing approaches.
However, there has been no research on the spatial composition and distribution of photosynthetic
pigments in crops.

This work aimed to use VNIR-HSI technology to simultaneously detect and visualize the
distribution of pigment content in Lycopersicon esculentum Mill leaves. More specifically, the research
objects were the leaves of Lycopersicon esculentum Mill seedlings cultivated in nutritional solutions
with variable nitrogen concentrations at various leaf locations. The content of Chla, Chlb, Chll, and
Caro were used as research indexes. The chemical constituents of the leaves were determined by
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traditional laboratory methods, and the spectrum and image were obtained by VNIR-HSI. The batch
extraction and processing software was compiled for selecting regions of interest (ROI). A "coarse-
fine" characteristic variable screening strategy was adopted for the pre-treated spectral data to
establish quantitative models that could simultaneously predict multiple pigments. Finally, these
models were applied to the image to visualize the pigment content and distribution. Figure 1 shows
the schematic diagram of this work. The significance of this study is to, on the one hand, use
hyperspectral imaging technology combined with a machine learning algorithm to construct pigment
prediction models and carry out visual expression. On the other hand, the optimum nitrogen
concentration of Lycopersicon esculentum Mill nutrient solution in facility agriculture has been
explored to provide a scientific basis for precise fertilizer management in facility agriculture.
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Figure 1. The schematic diagram of this work.
2. Results

2.1. Statistical analysis of measured pigments content of leaf position

Different nitrogen concentrations in the nutrient solution caused significant differences in
pigment content of leaf position for Lycopersicon esculentum Mill, as shown in Figure 2. The maximum
growth rate with increasing concentration was 7.32%, 11.56%, 7.70%, and 10.44% for Chla, Chlb, Chll,
and Caro, respectively, at nitrogen concentrations below N100 (302.84 mg/L). When the nitrogen
concentration was greater than N100, the maximum rate of decline with increasing concentration
reached 11.32%, 12.46%, 11.63%, and 8.56%, respectively. As a result, the maximum amount of leaf
pigment and the optimal nitrogen concentration for Lycopersicon esculentum Mill seedlings was 302.84
mg/L in the nutrient solution. Meanwhile, the inhibitory effect of high concentration was stronger
than that of low concentration. Since nitrogen is readily translocated in the plant organism. The
content reduction rates from Upper to Middle for Chla, Chlb, Chll, and Caro were 11.48%, 15.13%,
7.55%, and 18.22%, respectively. The reduction rates from Middle to Lower were 15.47%, 12.41%,
14.13%, and 22.52%, respectively. Therefore, the distribution pattern of leaf pigment content was
Upper > Middle > Lower. This conclusion is the absorption of nutrient elements by photosynthesis of
crops.
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Figure 2. Effect of nitrogen concentration on pigment content in Lycopersicon esculentum Mill leaves.

2.2. Sample partition and data preprocessing

This work aimed to construct simultaneous quantification models for Chla, Chlb, Chll, and Caro.
In model development, calibration is required to construct the model and perform cross-validation,
while prediction is used to evaluate the predictive performance of the model. All samples (N = 435)
were divided into two datasets by the SPXY algorithm [18,19], which partitions sample sets based on
joint x-y distance. Among them, 326 samples (accounting for 75% of the total) and 109 samples
(accounting for 25% of the total) constitute the calibration and prediction datasets, respectively.
Different spectral pretreatment methods were adopted for different pigment indicators. For different
pigment markers, various pretreatment techniques were used. No-pretreatment and pretreatment
spectral variables were predicted using PLS [20,21], and the results are shown in Table S1. The S-
G+SNV pretreatment with Rp? = 0.8064, RMSEp = 1.49, and RPD = 2.27 produced the best results for
Chla. The S-G pretreatment with Rp? =0.8286, RMSE, = 0.54, and RPD =2.42 produced the best results
for Chlb. The SNV pretreatment with Rp? = 0.7776, RMSEp = 2.29, and RPD = 2.12 produced the best
results for Chll. The SNV pretreatment with Rp? = 0.7294, RMSE; = 0.29, and RPD = 1.92 produced the
best results for Caro. Table 1 displays the statistical reference values for various pigment indicators
in leaves using the best pretreatment strategy. The similarity between the sample mean of the
calibration and prediction indicates the rationality of dataset partitioning.

Table 1. Statistics of pigments content in leaves.

Pigments Subsets NSa Range (mg/L) Mean (mg/L) SDb (mg/L)
Chla Calibration set 326 3.37-21.13 9.22 3.05
Prediction set 109 5.56-20.14 9.61 2.52
Chlb Calibration set 326 1.22-8.49 3.29 1.23
Prediction set 109 1.80-7.89 3.45 1.04
Chil Calibration set 326 4.61-29.62 12.44 4.19
Prediction set 109 7.52-28.02 13.26 5.07
Caro Calibration set 326 0.6-3.23 1.48 0.48
Prediction set 109 0.9-2.8 1.50 0.42

aNS: number of samples; "SD: standard deviation.

2.3. Results of CARS-PLS modeling

The purpose of the CARS algorithm is to eliminate irrelevant variables and reduce collinearity
between variables. Figures S1-54 describes the changes in the number of sample variables (NSV),
root mean square error of cross-validation (RMSEw), and regression coefficient path (RCs) in the

d0i:10.20944/preprints202307.0033.v1
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subset as the number of MCS runs increases. As the number of MCS runs increased, the filtered
variables declined exponentially at first, then gradually leveled off. The RMSE« showed a trend of
decreasing and then increasing. It indicated that the variables that were removed at the beginning of
the variable screening process were not correlated with the components to be measured.
Subsequently, unrelated variables were added to the subset of variables. More effective wavelengths
have been retained in the RCs annotation. At this time, the RMSE« reached the minimum value, and
the selected variables were the optimal variable set, . For Chla, the RMSE« was minimum when the
sampling frequency was 64. The prediction model was created with 16 variables in the subset (Rp? =
0.8168, RMSEp = 1.45, RPD = 2.34), as shown in Figure S1, Tables S3 and 2. For Chlb, when the
sampling frequency was 64, the RMSE« was minimum. The prediction model was created with 16
variables in the subset (Rp? = 0.8302, RMSE; = 0.54, RPD = 2.43), as shown in Figure S2, Tables S3 and
2. For Chll, when the sampling frequency was 61, the RMSE« was minimum. The prediction model
was created with 19 variables in the subset (Rp? = 0.7869, RMSE, = 2.25, RPD = 2.17), as shown in
Figure S3, Table S3 and Table 2. For Caro, when the sampling frequency was 62, the RMSEc was
minimum. The prediction model was created with 18 variables in the subset (Rp? = 0.7532, RMSE; =
0.28, RPD =2.01), as shown in Figure 54, Tables S3 and 2.

Table 2. Results of prediction models for different pigments.

] Calibration set Prediction set
Pigments Models Rz RMSE. R,? RMSE, RPD
PLS 0.7877 1.88 0.8064 1.49 2.27
Chla CARS-PLS 0.8040 1.81 0.8168 1.45 2.34
CARS-IRIV-PLS 0.8045 1.81 0.8240 1.43 2.38
PLS 0.7790 0.79 0.8286 0.54 2.42
Chlb CARS-PLS 0.7899 0.77 0.8302 0.54 2.43
CARS-IRIV-PLS 0.7953 0.74 0.8391 0.53 2.49
PLS 0.7964 2.53 0.7776 2.25 2.12
Chll CARS-PLS 0.8185 241 0.7869 2.25 2.17
CARS-IRIV-PLS 0.8190 2.40 0.7899 2.24 2.18
PLS 0.6768 0.35 0.7294 0.29 1.92
Caro CARS-PLS 0.7170 0.33 0.7532 0.28 2.01
CARS-IRIV-PLS 0.7191 0.33 0.7577 0.27 2.03

2.4. Results of CARS-IRIV-PLS modeling

Considering the existence of adjacent variables in the characteristic variables screened by CARS,
there may be redundant variables present. The IRIV algorithm establishes a series of sub-models
based on a randomly generated subset of sample variables. Variables that appear more frequently in
the sub-models have higher weights and are retained during multiple iterations. However, this
algorithm requires multiple iterations, resulting in a relatively large computational workload. Given
this, this work combines CARS and IRIV algorithms to "exploit strengths and avoid weaknesses". The
IRIV algorithm was used to screen the characteristic variables of the CARS algorithm. Furthermore,
the variables selected by the CARS algorithm were determined to be strong informative variables,
weak informative variables, uninformative variables, and interfering variables. Table S2 describes the
classification of variables screened by the CARS algorithm using the IRIV algorithm. The results
showed that only strong and weak variables existed in the variables selected by the CARS algorithm
after judging by the IRIV algorithm. The optimal combination of variables was obtained by cross-
validating the inverse elimination of the combination of strong and weak information variables by
the IRIV algorithm, as shown in Table S3. Table 2 describes the results of prediction models for Chla,
Chlb, Chll, and Caro. For Chla, the prediction model was created to achieve the optimal effect with
12 variables by the CARS-IRIV algorithm (Rp? = 0.8240, RMSE; = 1.43, RPD = 2.38). For Chlb, the
prediction model was created to achieve the optimal effect with 10 variables (Rp? = 0.8391, RMSE; =
0.53, RPD = 2.49). For Chll, the prediction model was created to achieve the optimal effect with 10
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variables (Rp? = 0.7899, RMSE, = 2.24, RPD = 2.18). For Caro, the prediction model was created to
achieve the optimal effect with 11 variables (Rp? = 0.7577, RMSE; = 0.27, RPD = 2.03).

2.5. Visualized distribution of leaf pigments

The image information of the leaf position of Lycopersicon esculentum Mill seedling under
different nitrogen concentrations was collected using hyperspectral imaging system. The leaves from
the N60, N100, and N140 cultivation were selected and their contour was extracted using ENVI
software. The characteristic wavelengths were superimposed to calculate the pigment content value
of each pixel to generate the leaf gray level map using the optimal prediction model of Chla, Chlb,
Chll, and Caro. The leaf image was inverted and color rendering was applied to the pixels in
accordance with the content value and pseudo-color map to produce a visualization that shows the
distribution of pigment. Figure 3 describe the distribution and content of pigments at different leaf
locations of N60, N100 and N140 nitrogen concentrations, respectively. The pigment concentration
ranged from 0 to 30 mg/L. The numerical annotation represents the corresponding leaf pigment
content. The results showed that the maximum content of each pigment in the leaves was reached
under the N100 concentration treatment, and the pigment content was higher under the N60
concentration treatment than N140. This result further indicates that N100 was the optimum nitrogen
concentration for Lycopersicon esculentum Mill seedlings, while the inhibitory effect was stronger at
higher concentrations than at lower ones. The pigment content of leaves showed a pattern of Chll >
Chla > Chlb > Caro. The pigment content between leaf locations showed a distribution of Upper >
Middle > Lower. It is caused by the absorption of nutrients during the photosynthesis of the crop.
The results are in agreement with the chemical measurement. Thus, visualization analysis can clearly
elucidate the distribution and content of pigments in different leaf positions at different nutrient
nitrogen concentrations.

a Chla Chib chil Caro b

Upper

Middle 4 Middle 3
g 7 ™ he
[ - Q)
i

Lower Lower

297 mg/L 11.91 mg/L

Figure 3. Visualization of pigment content and distribution pattern of leaf position under cultivation
with different nitrogen concentration. (a) Visualization of leaf pigments under N60 cultivation; (b)
Visualization of leaf pigments under N100 cultivation; (c) Visualization of leaf pigments under N140
cultivation. (blue represents the minimum value, and red represents the maximum value).

3. Discussion

The CARS algorithm adopts EDF to remove the wave points with small regression coefficients,
which can enhance the characteristic extraction process. The characteristic wavelengths for Chla,
Chlb, Chll, and Caro accounted for 2.48% (16/646), 2.48% (16/646), 2.94% (19/646), and 2.79% (18/646)
of the full spectrum, respectively. However, there were adjacent wavelengths present in the optimal
combination of variables for each pigment correlation. The IRIV algorithm uses Mann-Whitney U-
test to discriminate the degree of correlation of variables, and the optimal variable set for each
pigment has no uninformative or interfering variables. This indicates that the CARS algorithm has
certain advantages in characteristic variable extraction. The optimal combination of variables was
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obtained by inverse elimination of the set of variables. Finally, the characteristic wavelengths were
extracted for Chla, Chlb, Chll, and Caro accounting for 1.86% (12/646), 1.55% (10/646), 1.86% (12/646),
and 1.70% (11/646) of the full spectrum, respectively. The characteristic variables extracted were
reduced by 0.62%, 0.93%, 1.08%, and 1.09%, respectively, compared to those extracted by the CARS
algorithm. It is also shown that weak information variables play an important role in the combination,
which can effectively improve the predictive performance of the model. From Table 2, it can be
concluded that the prediction effect was CARS-IRIV-PLS > CARS-PLS > PLS. This demonstrates the
reliability of the "coarse-fine" characteristic extraction strategy of CARS-IRIV proposed in this study.
This also reflects the enormous potential of VNIR-HSI technology combined with the CARS-IRIV-
PLS model in the synchronous quantitative detection of pigments.

Figure 4 depicts the distribution of characteristic variables extracted from pigments using CARS
and CARS-IRIV algorithms. The characteristic wavelengths of Chla, Chlb, Chll, and Caro were
mainly concentrated at 435-510 nm, 660-760 nm, and 800-895 nm. And all have 691 nm, 702 nm, 715
nm, 730 nm, and 760 nm selected. In the visible spectral region, Chla, Chlb, and Chll mainly absorb
blue, purple, and red light, with two strong absorption regions at 400-460 nm and 630-680 nm
[5,8,22,23]. Caro mainly absorbs blue, and purple light, which is a strong absorption region at 400-
500 nm [5,10,24,25]. In the near-infrared spectral region, it is mainly caused by the absorption of water
or oxygen. Notably, Chla, Chlb, Chll, and Caro have overlapping bands selected. The visible region
is due to the action of the chromogenic group (C=0O, C=C, C=C) and chromatic group (-OH) [26-29].
In the near-infrared region, it was mainly affected by the O-H bond and O: inside the blade, the
double frequency and triple frequency, and the combination frequency of the stretching vibration of
the C-H group [30].

@ CARS
CARS-IRIV
o 9 9 DOV )
Chlorophyll a
o o 9 9000 @ 9 o 9
Chlorophyll b
o B @ IO WV 9
Chlorophyll
P O @O O <@ o
Carotenoid
1 1 1 1 1
500 600 700 800 900 1000
Wavelength(nm)

Figure 4. Extraction results of spectral variables for the Chla, Chlb, Chll, and Caro in Lycopersicon
esculentum Mill leaves.

Chla, Chlb, Chll, and Caro are the main photosynthetic pigments in plants. According to Figure
3, the content and distribution of pigment in the leaves could be obtained. Chla decreased gradually
from the bottom of the leaf to the top and from the vein to the edge of the leaf. This is caused that
Chla is mainly present in the chloroplast thylakoid membrane, while the nutrients are transported to
the leaves through the leaf veins [16,31]. Therefore, Chla content was higher in the bottom and vein
parts of the leaves. In contrast, the top and leaf edge parts of the leaves had a relatively low nutrient
supply, resulting in relatively low Chla content. Chlb is mainly distributed in the photosynthetic
membrane of chloroplasts [32]. The distribution in the leaves is heterogeneous, with higher levels

d0i:10.20944/preprints202307.0033.v1
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around the leaves and in the veins, and lower levels in the center. Chll is mainly composed of Chla
and Chlb. It is mainly distributed in chloroplasts, but also the other cytoplasm of leaves. The content
of Chlb is much lower than that of Chla, accounting for only 10-15% of the Chll [33], resulting in a
distribution pattern of Chll that is roughly consistent with that of Chla. Caro is mainly distributed in
the epidermis and subepidermis cells of leaves. Lycopersicon esculentum Mill seedling is in the
flourishing stage of development, photosynthesis promotes the active and high content of Chll in
leaves. In this process, Caro protects the leaves from UV and free radical damage. Therefore, it is
present in high levels in the epidermal and subepidermal cells of the leaves. However, Caro mainly
acts on leaf color and their content is low, resulting in Caro being covered by Chll. It is similar to the
distribution of Chlb in leaves. The differences in the distribution of pigments in leaf locations are due
to differences in nutrient transport and light exposure, which are consistent with the physiological
characteristics of green plants.

4. Materials and Methods

4.1. Experimental design and sample collection

The experiment was carried out in the scientific greenhouse of the College of Agricultural
Engineering, Shanxi Agricultural University (37°25' N, 112°34' E) from November 12, 2021, to
December 13, 2021, and September 25, 2022, to October 18, 2022, respectively. The seedling of
Lycopersicum esculentum Mill. cv. Provence with "4 leaves and 1 core" was purchased from the nursery
company. A total of 145 plants were transplanted into a nutritive bowl with coconut bran as substrate.
The nutrient solution adopted the Lycopersicum esculentum Mill formula self-prepared water-soluble
fertilizer of the Holland Greenhouse Horticulture Research Institute, with 10 nitrogen gradients
(denote as N20, N40, N60, N80, N100, N120, N140, N160, N180, N200). Ca?* was supplemented with
calcium fertilizer (Ca? = 94%, Green-Micro Power Crop Nutrition Co., UK) to keep the concentration
constant. Nitrogen concentration was regulated using urea, and Table S4 shows its precise addition,
EC, and pH. The leaves were sampled at the "transplant-bloom" (seedling) stage. At this time, 10-11
branches extended from the main stem. As shown in Figure 1A, arranged the leaves in descending
order. Wherein, the 9-7 branch blades were classified as the upper leaf location (Upper), the 6-4
branch blades were the middle leaf location (Middle), and the 3-1 branch blades were the lower leaf
location (Lower). Lycopersicum esculentum Mill is a "single-branch and leafiness" plant. Therefore,
sample collection on each branch is referred to in Figure 1B. The leaves with uniform size and
spreading were picked based on the sampling rule, with 6 leaves (1 sample) chosen from each leaf
location for a total of 2610 leaves (435 samples). The samples were stored in sealed bags with
sequential numbers and kept in a dry ice-filled incubator.

4.2. Hyperspectral image acquisition

Leaf images were collected using the VNIR-HSI (Headwall Photonics, Starter Kit, USA) scanning
platform. This system captures 856 spectral bands from 380 to 1000 nm with a spectral resolution of
approximately 0.727 nm. A spectral range with a total of 646 bands, ranging from 430 to 900 nm, is
chosen due to the significant reflectivity error near the measuring range. The movement speed, push-
broom stroke, and distance between the lens and leaf for the system were set to 2.721 mm/s, 100 mm,
and 28 cm, respectively, to obtain clear and undistorted images. First, wash the dust and impurities
off the leaf surface with deionized water. Second, blot the surface moisture with filter paper. Finally,
the leaves were laid flat on the stage to obtain hyperspectral images. To reduce the image interference
generated by the system light source and dark current, the hyperspectral image is corrected for black
and white according to the following equation.

_ Ro=Ryp

R M
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Where, R is the corrected hyperspectral image; Ro is the original hyperspectral image; R is the
white background image with the standard white calibration plate (> 99.9% reflectance); Ry is the dark
background image with the lens cap closed (< 0% reflectance).

4.3. Chemical measurement of pigment content

After collecting spectral images from the samples, the content of Chla, Chlb, Chll, and Caro was
measured using an ultraviolet spectrophotometer (Jingke Shangfen, Shanghai, China). After
removing the veins, each sample was sliced into pieces of about 2*2 mm, mixed evenly, weighed 0.2
g, and deposited in a test tube. It was extracted with 96% ethyl alcohol in the darkness for 24 h until
the pieces turned white. The absorbance of the prepared pigment extracts was measured at
wavelengths of 665, 649, and 470 nm, respectively [28]. Each sample was repeated 3 times, and the
pigment content was calculated according to the following formula.

Chla =13.95x Ags —6.88 X Aguo 2)

Chlb =24.96 X Agio—7.32 X Ages (3)

Chll = Chla + Chlb (4)

Caro = (1000 X Ayz0—2.05x Chla —114.8 x Chlb) /245 (5)

4.4. Selection of ROI

On the one hand, there are veins of different sizes distributed in the leaves, especially the largest
midrib in the center. VNIR-HIS, on the other hand, has a high resolution and lots of pixels. Choosing
the ROI for the leaves was challenging due to these factors. SpectralView software (Headwall
Photonics, USA) was used for secondary development with Visual Basic (Version 6.0, Microsoft,
USA), which produced software for batch extraction and processing of hyperspectral data. The core
module of the program was made up of a pixel-generating module and a batch-processing module.
The elliptical model was used to determine the coordinates of the center of RO, the length of the X/Y
semi-axis (a, b), and the distance between the X/Y axes (Ax, Ay were both set to 1). Followed the
principle of "from left to right, from top to bottom" in the target image to sequentially collect the
pixels in the ROI according to formula (6), and generated the ROI coordinate matrix. SpectralView
software was used to import images and actively extract the reflectivity information based on the
coordinate matrix. Depending on the requirements, the batch processing module could produce
numerical calculation results such as mean, mean difference, and variance. The leaf is mostly made
up of the leaf tip, leaf base, leaf margin, and other components. To extract as many of these parts as
possible. Therefore, the leaf was divided into three areas to extract a total of 32,000 pixels, as shown
in Figure 1 ROI selection, that is, each sample extracted 192,000 (32,000 x 6) pixels. The sample average
spectral (according to formula (7)) was adopted as the basic dataset for subsequent processing.

x
52 ©)
A=T(A A A 4 A) =S A, %

4.5. Spectrum pretreatment and model calibration

Spectrum stability is always influenced by leaf gloss, leaf reflection, background interference,
and baseline drift during the scanning process. Therefore, the effective spectrum was preprocessed
using the Sacitzky-Golay smoothing filter (S-G) [34,35], standard normal variable (SNV) [36], and S-
G+SNV [37] approaches, which reduced interference before modeling and effectively improved the
prediction accuracy of the model, as shown in Figure 5.

d0i:10.20944/preprints202307.0033.v1
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While VNIR-HSI can effectively provide simultaneous data, the numerous variables also result
in curses of dimensionality, which reduces the load and predictive capacity of the model. In this study,
competitive adaptive reweighted sampling (CARS) and iterative retained information variable (IRIV)
were used to reduce the dimension of variables. This is beneficial to the interpretability of variables
and improves the accuracy of prediction models.

s o = o
= > = =
T

Reflectance (%/100)

Spectral preprocess by 5S-G (%/100)

L : L
700 200 900 500 600 700 800 900
Wavelength (nm)

L L
500 600

Wavelength (nm)

Spectral preprocess by SNV
Spectral preprocess by S-G+SNV

" . . L i i
500 600 700 800 900 00

s L L
600 700 800 900
Wavelength (nm)

Wavelength (nm)

Figure 5. Preprocessed of spectrum data. (a) Raw spectrum for all the samples; (b) S-G preprocessed
spectrum for all the samples; (c) SNV preprocessed spectrum for all the samples; (d) S-G+SNV
preprocessed spectrum for all the samples.

The CARS algorithm selects the optimal combination of effective variables in the spectrum by
imitating the principle of "survival of the fittest" in Darwinian evolution [38,39]. For the spectrum
array of m x p dimensions (m represents the number of samples, and p represents the number of
variables), CARS selected the effective wavelengths through the following steps.

1. Based on monte carlo sampling (MCS), a PLS model is established by randomly selecting 80%
of the calibration set of samples to obtain the regression coefficients |Kil (i=1, 2, -, p) for the i-
th wavelength;

2. The exponentially decreasing function (EDF) is applied to eliminate the wavelength with smaller
IKil, and the retention rate of the variable is 1j = ae® (j =1, 2, -, N). Among them, j represents
the j-th MCS; N represents the number of MCS; a and b are constants, calculated by r1 =1 and r~
= 2/p, the formula are as follows;

a=(p/2D"NY (8)

b=In(p/2)/(N-1) )
3. The variables are further filtered based on the adaptive reweighted sampling (ARS) technique.
P
w, =K/ >|K)]
The variables were filtered by evaluating the weights i=1 i=12, -, p).
4. Repeat the above steps until the number of MCS reaches a predetermined value of N.
5. The 5-fold root mean square error of cross-validation (RMSE«w) is used as the evaluation criterion.

The values of the subset of variables obtained from each MCS are compared, and the subset of
variables corresponding to the minimum RMSE.v is selected as the optimal variable.
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The iterative retaining information variable (IRIV) algorithm uses random combinations and
interactions of variables to extract characteristic variables based on a binary matrix rearrangement
filter [40-42]. IRIV takes the following steps to select effective wavelengths.

1. The spectrum bands randomly generate an m x p matrix A containing only 0 and 1 (0 and 1
indicate whether the corresponding variables are involved in performing the modeling), with
the same number of 0 and 1. The PLS model is established in each row of matrix A. The RMSEc
obtained from the 5-fold cross-validation is used as the evaluation criterion. This obtains an m x
1 vector denoted as RMSEwo. Replace the 1 with 0 and the 0 with 1 in the i-th (i=1, 2, -, p)
column of the A to obtain the matrix B. Similarly, a PLS model is established in each row of the
B to obtain an m x 1 vector denoted as RMSE.v;;

2. Define @0 and @i to assess the importance of each variable with the following equations. The
difference between the mean values of ®o and @ is denoted as DM.. If DMi <0, it is a strong or
weak information variable; If DMi > 0, it is an uninformative or interfering variable. Mann-
Whitney U-test is performed by defining P = 0.05 as the threshold. Finally, the variables are
classified as strong information, weak information, uninformative, and interfering information;

_ : 10
o {k’hRMSECVI. if B, =1 (10)

iK

k"RMSECV, if A, =1 © - k"RMSECV, if A, =0
k"RMSECV, if B,=0

3. In each iteration, strong and weak information variables are retained, and uninformative and
interfering information variables are eliminated. Return to step 1) for the next iteration until only
strong and weak information is left in the set of variables;

4. Backward elimination is performed for t retained variables. First, a PLS model is established for
t variables to obtain RMSEet. Then, a PLS model is established for t-1 variables by eliminating
the j-th (j=1, 2, -, t) variable to obtain RMSE«j. If RMSE.j is less than RMSE«v, the j-th variable
is eliminated, otherwise, it is retained. Loop this process, and the remaining variables are the
final selected characteristic variables.

In this work, the CARA-IRIV algorithm was proposed by combining the advantages of the rapid
iteration rate of CARS and the selection of strong and weak information variables by IRIV. It was
used to screen pigment-related variables in leaves, thereby reducing the redundancy of explainable
variables and improving model performance. Combined with PLS, the prediction models of CARS-
PLS and CARS-IRIV-PLS were established, respectively. At the same time, 50 runs were performed
on CARA-PLS and CARA-IRIV-PLS. The predictive ability of the model was evaluated by the
coefficient determination of calibration (R&?) and prediction (Rp?), root mean square error of
calibration (RMSEc) and prediction (RMSEp), and ratio performance deviation (RPD). MATLAB
software (Ver. 2018a, MathWorks, Natick, MA, USA) was used to process and analyze the data.

4.6. Visualization of leaf pigment

Hyperspectral imaging technology perfectly combines spectrum and image information, with
each pixel on the image containing a spectrum curve. Aside from detecting the sample index, the
detection index can be quantitatively inverted to the sample image combined with the optimal
prediction model parameters to realize the visual expression of the index to be measured.

ENVI software (Ver. 5.1, Harris Geospatial, Broomfield, CO, USA) was used to process the
corresponding wavelength multiplied by the weight coefficient to obtain the assignment value of
each pixel, i.e,, the leaf pigment content value. At the same time, the enhanced Lee filter was used to
reduce the speckle noise. The filter size, damping coefficient, homogeneity zone, and heterogeneous
zone were set to 3*3, 1, 0.52, and 1.73, respectively. Lastly, the pseudo-color map combined with the
assignment size inverting the pixel points on the leaf image produces a visual representation of the
content distribution.

5. Conclusions

In this study, Chla, Chlb, Chll, and Caro of leaves in Lycopersicon esculentum Mill seedlings were
studied under different nitrogen concentration cultivation. VNIR-HSI technology combined with a
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machine learning algorithm was used to model the prediction of pigment content. Thus, it is
convenient to realize the visualization of pigment expression. The nitrogen concentration of the
nutrient solution was 302.84 mg/L, and the pigment content of the leaves was the largest. The
distribution pattern of pigment content in leaf position was Upper > Middle > Lower. Meanwhile, the
inhibitory effect of high concentration was stronger than that of low concentration, which could
provide data support for quantitative management of nitrogen concentration of water and fertilizer
in facility agriculture. The “coarse-fine” characteristic variable extraction strategy of CARS-IRIV is
proposed, which can effectively reduce adjacent bands and retain effective information as much as
possible. The PLSR was used to establish the prediction model for each pigment index to achieve
better results. The model prediction accuracy was improved after characteristic wavelengths
screening. Combining the CARS-IRIV-PLSR model with hyperspectral imaging technology
effectively visualizes the expression of leaf pigments. The content of pigments and their distribution
in leaves can be visualized, which helps to monitor the growth condition, pigment content, and
nutrient diagnosis of plants in facility agriculture non-destructively.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org. Table S1: Prediction results of pigments using different pre-processing methods;
Table S2: Classification of variables screened by the CARS algorithm using the IRIV algorithm; Table S3. The key
wavelengths screened by CARS and CARS-IRIV algorithms for Chla, Chlb, Chll, and Caro; Table S4: Fertilizer
(mg/L), EC, and pH with different nitrogen concentrations; Figure S1: The changes in sample variables (NSV),
RMSEcv, and regression coefficient paths (RCs) in a subset of CARS arithmetic for Chla; Figure S2: The changes
in sample variables (NSV), RMSEcv, and regression coefficient paths (RCs) in a subset of CARS arithmetic for
Chlb; Figure S3: The changes in sample variables (NSV), RMSEcv, and regression coefficient paths (RCs) in a
subset of CARS arithmetic for Chll; Figure S4: The changes in sample variables (NSV), RMSEcv, and regression
coefficient paths (RCs) in a subset of CARS arithmetic for Caro.
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