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Abstract: Leaf photosynthetic pigments play a crucial role in evaluating nutritional elements and 

physiological states. In facility agriculture, it is vital to obtain rapidly and accurately the pigment 

content and distribution of leaves to ensure precise water and fertilizer management. In our 

research, we utilized chlorophyll a (Chla), chlorophyll b (Chlb), chlorophyll (Chll), and carotenoid 

(Caro) as indicators to study the variations in leaf position of Lycopersicon esculentum Mill. Under 10 

nitrogen concentration applications, a total of 2610 leaves (435 samples) were collected using visible-

near infrared hyperspectral imaging (VNIR-HSI). In this study, a "coarse-fine" screening strategy 

was proposed by using competitive adaptive reweighted sampling (CARS) and iteratively retained 

informative variable (IRIV) algorithm to extract characteristic wavelengths. Finally, simultaneous 

and quantitative models were established using partial least squares regression (PLSR). The CARS-

IRIV-PLSR was used to create models to achieve a better prediction effect. The coefficient 

determination (R2), root mean square error (RMSE), and ratio performance deviation (RPD) were 

predicted to be 0.8240, 1.43, 2.38 for Chla, 0.8391, 0.53, 2.49 for Chlb, 0.7899, 2.24, 2.18 for Chll, and 

0.7577, 0.27, 2.03 for Caro, respectively. The combination of these models with the pseudo-color 

image allowed for a visual inversion of the content and distribution of pigment. These findings have 

important implications for guiding pigment distribution, nutrient diagnosis, and fertilization 

decisions in plant growth management. 

Keywords: hyperspectral imaging; photosynthetic pigments; leaf position; characteristic variable 

selection; visualization 

 

1. Introduction 

Nitrogen is an indispensable element for the growth of green plants since it is involved in the 

synthesis of photosynthetic pigments, photosynthesis, yield, and quality. The administration of 

appropriate nitrogen can boost the synthesis of photosynthetic pigments, improving the efficiency of 

photosynthesis. This process can aid in the synthesis of organic compounds, which ultimately 

encourage the growth and development of plants [1–3]. Plants with low nitrogen levels restrict the 

production of photosynthetic pigments, resulting in yellowing of leaves and stunted growth [4,5]. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
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Excessive nitrogen inhibits the absorption of other essential elements, such as potassium and 

magnesium, leading to a deficiency in these elements [4,5]. This shortage, in turn, has an impact on 

physiological function. Furthermore, it reduces the quality of flowers and fruits and the ability to 

resist pests and diseases. The growth and development of plants can be affected by varying levels of 

nitrogen. Notably, there is a positive correlation between the content of photosynthetic pigment 

concentration and nitrogen status. The determination of pigment content in leaves can serve as an 

indirect indicator of nitrogen diagnosis. Nitrogen is readily transported inside plants, leading to 

variations in pigment content across different leaf locations [6]. Regarding the inspection of the 

pigment aspect, the traditional laboratory chemical analysis remains the predominant method. 

Although this approach produces accurate and intuitive results, it is also time-consuming, 

destructive, and environmentally unfriendly. Obtaining accurate results for large samples promptly 

is even more challenging. This hysteresis not only has an impact on agricultural production but also 

makes it difficult for agricultural managers to make scientifically sound decisions. Visible-near 

infrared (VNIR) spectroscopy is a rapid, efficient, and non-destructive inspection method that has 

been used to obtain differences in pigment concentration in plant leaves [7]. As a result, spectrum 

analysis has become a prominent research topic for scholars both domestically and abroad in recent 

years.  

The visible-near infrared hyperspectral imager (VNIR-HSI) is a non-contact technology that 

integrates spectrum and images, making it a powerful tool for environmental monitoring, 

agricultural production, medical diagnosis, and other fields [8–12]. VNIR-HSI technology provides 

an effective means for quantitative and qualitative analysis of crop growth monitoring, quality 

detection, and nutritional diagnosis in agricultural production. Producers can accurately evaluate the 

growth state, quality features, and nutrient level using reflectance spectrum analysis, enabling them 

to perform precision management of the environment and fertilization. The fundamental 

components of photosynthesis in green plants are photosynthetic pigments, primarily chlorophyll 

(Chll) and carotenoid (Caro). These molecules can absorb light energy and convert it into chemical 

energy to promote the process of photosynthesis. Chll, comprising mainly chlorophyll a (Chla) and 

chlorophyll b (Chlb), is the main light-capturing molecule that absorbs light energy and transfers it 

to the reaction center to catalyze the process [13]. Meanwhile, Caro plays a supporting part. Different 

photosynthetic pigments in leaves collaborate to regulate photosynthesis to achieve the best 

photosynthetic efficiency and growth condition. Thus, leaf pigment concentration is directly tied to 

the photosynthetic rate and directly impacts plant growth and development. VNIR-HSI is performed 

on plant leaves to determine the spatial distribution and spectrum features. The accuracy and quality 

of the data are improved through various processing techniques such as denoising, calibration, 

dimensioning, and so on [14,38–42]. Vahtmäe et al. [15] established a prediction model for the 

concentrations of Chla, Chlb, Chll, and Caro in various Baltic Sea Macroalgae, demonstrating that 

VNIR-HSI technology may be effectively applied to the detection of photosynthetic pigment. Wang 

et al. [16] took Chla, Chlb, Chll, and Caro in tea under various nitrogen treatment levels as the 

research indicates. Combined with VNIR-HSI technology and feature selection algorithm to construct 

prediction models, the correlation coefficients of each pigment prediction were greater than 0.9. It 

demonstrates that VNIR-HSI can be applied to the rapid and accurate prediction of pigment content. 

Che et al. [17] analyzed the phenotypes of photosynthetic pigments in Neopyropia yezoensis for 

phycoerythrin (PE), phycocyanin (PC), allophycocyanin (APC), and Chla using VNIR-HSI. Two 

machine learning techniques, partial least squares regression (PLSR) and support vector machine 

regression (SVR), were employed in the prediction model after several pre-processing approaches. 

However, there has been no research on the spatial composition and distribution of photosynthetic 

pigments in crops. 

This work aimed to use VNIR-HSI technology to simultaneously detect and visualize the 

distribution of pigment content in Lycopersicon esculentum Mill leaves. More specifically, the research 

objects were the leaves of Lycopersicon esculentum Mill seedlings cultivated in nutritional solutions 

with variable nitrogen concentrations at various leaf locations. The content of Chla, Chlb, Chll, and 

Caro were used as research indexes. The chemical constituents of the leaves were determined by 
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traditional laboratory methods, and the spectrum and image were obtained by VNIR-HSI. The batch 

extraction and processing software was compiled for selecting regions of interest (ROI). A "coarse-

fine" characteristic variable screening strategy was adopted for the pre-treated spectral data to 

establish quantitative models that could simultaneously predict multiple pigments. Finally, these 

models were applied to the image to visualize the pigment content and distribution. Figure 1 shows 

the schematic diagram of this work. The significance of this study is to, on the one hand, use 

hyperspectral imaging technology combined with a machine learning algorithm to construct pigment 

prediction models and carry out visual expression. On the other hand, the optimum nitrogen 

concentration of Lycopersicon esculentum Mill nutrient solution in facility agriculture has been 

explored to provide a scientific basis for precise fertilizer management in facility agriculture. 

 

Figure 1. The schematic diagram of this work. 

2. Results 

2.1. Statistical analysis of measured pigments content of leaf position 

Different nitrogen concentrations in the nutrient solution caused significant differences in 

pigment content of leaf position for Lycopersicon esculentum Mill, as shown in Figure 2. The maximum 

growth rate with increasing concentration was 7.32%, 11.56%, 7.70%, and 10.44% for Chla, Chlb, Chll, 

and Caro, respectively, at nitrogen concentrations below N100 (302.84 mg/L). When the nitrogen 

concentration was greater than N100, the maximum rate of decline with increasing concentration 

reached 11.32%, 12.46%, 11.63%, and 8.56%, respectively. As a result, the maximum amount of leaf 

pigment and the optimal nitrogen concentration for Lycopersicon esculentum Mill seedlings was 302.84 

mg/L in the nutrient solution. Meanwhile, the inhibitory effect of high concentration was stronger 

than that of low concentration. Since nitrogen is readily translocated in the plant organism. The 

content reduction rates from Upper to Middle for Chla, Chlb, Chll, and Caro were 11.48%, 15.13%, 

7.55%, and 18.22%, respectively. The reduction rates from Middle to Lower were 15.47%, 12.41%, 

14.13%, and 22.52%, respectively. Therefore, the distribution pattern of leaf pigment content was 

Upper > Middle > Lower. This conclusion is the absorption of nutrient elements by photosynthesis of 

crops. 
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Figure 2. Effect of nitrogen concentration on pigment content in Lycopersicon esculentum Mill leaves. 

2.2. Sample partition and data preprocessing 

This work aimed to construct simultaneous quantification models for Chla, Chlb, Chll, and Caro. 

In model development, calibration is required to construct the model and perform cross-validation, 

while prediction is used to evaluate the predictive performance of the model. All samples (N = 435) 

were divided into two datasets by the SPXY algorithm [18,19], which partitions sample sets based on 

joint x-y distance. Among them, 326 samples (accounting for 75% of the total) and 109 samples 

(accounting for 25% of the total) constitute the calibration and prediction datasets, respectively. 

Different spectral pretreatment methods were adopted for different pigment indicators. For different 

pigment markers, various pretreatment techniques were used. No-pretreatment and pretreatment 

spectral variables were predicted using PLS [20,21], and the results are shown in Table S1. The S-

G+SNV pretreatment with Rp2 = 0.8064, RMSEp = 1.49, and RPD = 2.27 produced the best results for 

Chla. The S-G pretreatment with Rp2 = 0.8286, RMSEp = 0.54, and RPD = 2.42 produced the best results 

for Chlb. The SNV pretreatment with Rp2 = 0.7776, RMSEp = 2.29, and RPD = 2.12 produced the best 

results for Chll. The SNV pretreatment with Rp2 = 0.7294, RMSEp = 0.29, and RPD = 1.92 produced the 

best results for Caro. Table 1 displays the statistical reference values for various pigment indicators 

in leaves using the best pretreatment strategy. The similarity between the sample mean of the 

calibration and prediction indicates the rationality of dataset partitioning. 

Table 1. Statistics of pigments content in leaves. 

Pigments Subsets NSa Range (mg/L) Mean (mg/L) SDb (mg/L) 

Chla 
Calibration set 326 3.37-21.13 9.22 3.05 

Prediction set  109 5.56-20.14 9.61 2.52 

Chlb 
Calibration set 326 1.22-8.49 3.29 1.23 

Prediction set  109 1.80-7.89 3.45 1.04 

Chll 
Calibration set 326 4.61-29.62 12.44 4.19 

Prediction set  109 7.52-28.02 13.26 5.07 

Caro 
Calibration set 326 0.6-3.23 1.48 0.48 

Prediction set  109 0.9-2.8 1.50 0.42 
aNS: number of samples; bSD: standard deviation. 

2.3. Results of CARS-PLS modeling 

The purpose of the CARS algorithm is to eliminate irrelevant variables and reduce collinearity 

between variables. Figures S1–S4 describes the changes in the number of sample variables (NSV), 

root mean square error of cross-validation (RMSEcv), and regression coefficient path (RCs) in the 
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subset as the number of MCS runs increases. As the number of MCS runs increased, the filtered 

variables declined exponentially at first, then gradually leveled off. The RMSEcv showed a trend of 

decreasing and then increasing. It indicated that the variables that were removed at the beginning of 

the variable screening process were not correlated with the components to be measured. 

Subsequently, unrelated variables were added to the subset of variables. More effective wavelengths 

have been retained in the RCs annotation. At this time, the RMSEcv reached the minimum value, and 

the selected variables were the optimal variable set, . For Chla, the RMSEcv was minimum when the 

sampling frequency was 64. The prediction model was created with 16 variables in the subset (Rp2 = 

0.8168, RMSEp = 1.45, RPD = 2.34), as shown in Figure S1, Tables S3 and 2. For Chlb, when the 

sampling frequency was 64, the RMSEcv was minimum. The prediction model was created with 16 

variables in the subset (Rp2 = 0.8302, RMSEp = 0.54, RPD = 2.43), as shown in Figure S2, Tables S3 and 

2. For Chll, when the sampling frequency was 61, the RMSEcv was minimum. The prediction model 

was created with 19 variables in the subset (Rp2 = 0.7869, RMSEp = 2.25, RPD = 2.17), as shown in 

Figure S3, Table S3 and Table 2. For Caro, when the sampling frequency was 62, the RMSEcv was 

minimum. The prediction model was created with 18 variables in the subset (Rp2 = 0.7532, RMSEp = 

0.28, RPD = 2.01), as shown in Figure S4, Tables S3 and 2. 

Table 2. Results of prediction models for different pigments. 

Pigments Models 
Calibration set  Prediction set 

RPD 
Rc2 RMSEc  Rp2 RMSEp 

Chla 

PLS 0.7877 1.88  0.8064 1.49 2.27 

CARS-PLS 0.8040 1.81  0.8168 1.45 2.34 

CARS-IRIV-PLS 0.8045 1.81  0.8240 1.43 2.38 

Chlb 

PLS 0.7790 0.79  0.8286 0.54 2.42 

CARS-PLS 0.7899 0.77  0.8302 0.54 2.43 

CARS-IRIV-PLS 0.7953 0.74  0.8391 0.53 2.49 

Chll 

PLS 0.7964 2.53  0.7776 2.25 2.12 

CARS-PLS 0.8185 2.41  0.7869 2.25 2.17 

CARS-IRIV-PLS 0.8190 2.40  0.7899 2.24 2.18 

Caro 

PLS 0.6768 0.35  0.7294 0.29 1.92 

CARS-PLS 0.7170 0.33  0.7532 0.28 2.01 

CARS-IRIV-PLS 0.7191 0.33  0.7577 0.27 2.03 

2.4. Results of CARS-IRIV-PLS modeling 

Considering the existence of adjacent variables in the characteristic variables screened by CARS, 

there may be redundant variables present. The IRIV algorithm establishes a series of sub-models 

based on a randomly generated subset of sample variables. Variables that appear more frequently in 

the sub-models have higher weights and are retained during multiple iterations. However, this 

algorithm requires multiple iterations, resulting in a relatively large computational workload. Given 

this, this work combines CARS and IRIV algorithms to "exploit strengths and avoid weaknesses". The 

IRIV algorithm was used to screen the characteristic variables of the CARS algorithm. Furthermore, 

the variables selected by the CARS algorithm were determined to be strong informative variables, 

weak informative variables, uninformative variables, and interfering variables. Table S2 describes the 

classification of variables screened by the CARS algorithm using the IRIV algorithm. The results 

showed that only strong and weak variables existed in the variables selected by the CARS algorithm 

after judging by the IRIV algorithm. The optimal combination of variables was obtained by cross-

validating the inverse elimination of the combination of strong and weak information variables by 

the IRIV algorithm, as shown in Table S3. Table 2 describes the results of prediction models for Chla, 

Chlb, Chll, and Caro. For Chla, the prediction model was created to achieve the optimal effect with 

12 variables by the CARS-IRIV algorithm (Rp2 = 0.8240, RMSEp = 1.43, RPD = 2.38). For Chlb, the 

prediction model was created to achieve the optimal effect with 10 variables (Rp2 = 0.8391, RMSEp = 

0.53, RPD = 2.49). For Chll, the prediction model was created to achieve the optimal effect with 10 
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variables (Rp2 = 0.7899, RMSEp = 2.24, RPD = 2.18). For Caro, the prediction model was created to 

achieve the optimal effect with 11 variables (Rp2 = 0.7577, RMSEp = 0.27, RPD = 2.03). 

2.5. Visualized distribution of leaf pigments 

The image information of the leaf position of Lycopersicon esculentum Mill seedling under 

different nitrogen concentrations was collected using hyperspectral imaging system. The leaves from 

the N60, N100, and N140 cultivation were selected and their contour was extracted using ENVI 

software. The characteristic wavelengths were superimposed to calculate the pigment content value 

of each pixel to generate the leaf gray level map using the optimal prediction model of Chla, Chlb, 

Chll, and Caro. The leaf image was inverted and color rendering was applied to the pixels in 

accordance with the content value and pseudo-color map to produce a visualization that shows the 

distribution of pigment. Figure 3 describe the distribution and content of pigments at different leaf 

locations of N60, N100 and N140 nitrogen concentrations, respectively. The pigment concentration 

ranged from 0 to 30 mg/L. The numerical annotation represents the corresponding leaf pigment 

content. The results showed that the maximum content of each pigment in the leaves was reached 

under the N100 concentration treatment, and the pigment content was higher under the N60 

concentration treatment than N140. This result further indicates that N100 was the optimum nitrogen 

concentration for Lycopersicon esculentum Mill seedlings, while the inhibitory effect was stronger at 

higher concentrations than at lower ones. The pigment content of leaves showed a pattern of Chll > 

Chla > Chlb > Caro. The pigment content between leaf locations showed a distribution of Upper > 

Middle > Lower. It is caused by the absorption of nutrients during the photosynthesis of the crop. 

The results are in agreement with the chemical measurement. Thus, visualization analysis can clearly 

elucidate the distribution and content of pigments in different leaf positions at different nutrient 

nitrogen concentrations. 

 

Figure 3. Visualization of pigment content and distribution pattern of leaf position under cultivation 

with different nitrogen concentration. (a) Visualization of leaf pigments under N60 cultivation; (b) 

Visualization of leaf pigments under N100 cultivation; (c) Visualization of leaf pigments under N140 

cultivation. (blue represents the minimum value, and red represents the maximum value). 

3. Discussion 

The CARS algorithm adopts EDF to remove the wave points with small regression coefficients, 

which can enhance the characteristic extraction process. The characteristic wavelengths for Chla, 

Chlb, Chll, and Caro accounted for 2.48% (16/646), 2.48% (16/646), 2.94% (19/646), and 2.79% (18/646) 

of the full spectrum, respectively. However, there were adjacent wavelengths present in the optimal 

combination of variables for each pigment correlation. The IRIV algorithm uses Mann-Whitney U-

test to discriminate the degree of correlation of variables, and the optimal variable set for each 

pigment has no uninformative or interfering variables. This indicates that the CARS algorithm has 

certain advantages in characteristic variable extraction. The optimal combination of variables was 
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obtained by inverse elimination of the set of variables. Finally, the characteristic wavelengths were 

extracted for Chla, Chlb, Chll, and Caro accounting for 1.86% (12/646), 1.55% (10/646), 1.86% (12/646), 

and 1.70% (11/646) of the full spectrum, respectively. The characteristic variables extracted were 

reduced by 0.62%, 0.93%, 1.08%, and 1.09%, respectively, compared to those extracted by the CARS 

algorithm. It is also shown that weak information variables play an important role in the combination, 

which can effectively improve the predictive performance of the model. From Table 2, it can be 

concluded that the prediction effect was CARS-IRIV-PLS > CARS-PLS > PLS. This demonstrates the 

reliability of the "coarse-fine" characteristic extraction strategy of CARS-IRIV proposed in this study. 

This also reflects the enormous potential of VNIR-HSI technology combined with the CARS-IRIV-

PLS model in the synchronous quantitative detection of pigments. 

Figure 4 depicts the distribution of characteristic variables extracted from pigments using CARS 

and CARS-IRIV algorithms. The characteristic wavelengths of Chla, Chlb, Chll, and Caro were 

mainly concentrated at 435-510 nm, 660-760 nm, and 800-895 nm. And all have 691 nm, 702 nm, 715 

nm, 730 nm, and 760 nm selected. In the visible spectral region, Chla, Chlb, and Chll mainly absorb 

blue, purple, and red light, with two strong absorption regions at 400-460 nm and 630-680 nm 

[5,8,22,23]. Caro mainly absorbs blue, and purple light, which is a strong absorption region at 400-

500 nm [5,10,24,25]. In the near-infrared spectral region, it is mainly caused by the absorption of water 

or oxygen. Notably, Chla, Chlb, Chll, and Caro have overlapping bands selected. The visible region 

is due to the action of the chromogenic group (C=O, C=C, C≡C) and chromatic group (-OH) [26–29]. 

In the near-infrared region, it was mainly affected by the O-H bond and O2 inside the blade, the 

double frequency and triple frequency, and the combination frequency of the stretching vibration of 

the C-H group [30]. 

 

Figure 4. Extraction results of spectral variables for the Chla, Chlb, Chll, and Caro in Lycopersicon 

esculentum Mill leaves. 

Chla, Chlb, Chll, and Caro are the main photosynthetic pigments in plants. According to Figure 

3, the content and distribution of pigment in the leaves could be obtained. Chla decreased gradually 

from the bottom of the leaf to the top and from the vein to the edge of the leaf. This is caused that 

Chla is mainly present in the chloroplast thylakoid membrane, while the nutrients are transported to 

the leaves through the leaf veins [16,31]. Therefore, Chla content was higher in the bottom and vein 

parts of the leaves. In contrast, the top and leaf edge parts of the leaves had a relatively low nutrient 

supply, resulting in relatively low Chla content. Chlb is mainly distributed in the photosynthetic 

membrane of chloroplasts [32]. The distribution in the leaves is heterogeneous, with higher levels 
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around the leaves and in the veins, and lower levels in the center. Chll is mainly composed of Chla 

and Chlb. It is mainly distributed in chloroplasts, but also the other cytoplasm of leaves. The content 

of Chlb is much lower than that of Chla, accounting for only 10-15% of the Chll [33], resulting in a 

distribution pattern of Chll that is roughly consistent with that of Chla. Caro is mainly distributed in 

the epidermis and subepidermis cells of leaves. Lycopersicon esculentum Mill seedling is in the 

flourishing stage of development, photosynthesis promotes the active and high content of Chll in 

leaves. In this process, Caro protects the leaves from UV and free radical damage. Therefore, it is 

present in high levels in the epidermal and subepidermal cells of the leaves. However, Caro mainly 

acts on leaf color and their content is low, resulting in Caro being covered by Chll. It is similar to the 

distribution of Chlb in leaves. The differences in the distribution of pigments in leaf locations are due 

to differences in nutrient transport and light exposure, which are consistent with the physiological 

characteristics of green plants. 

4. Materials and Methods 

4.1. Experimental design and sample collection 

The experiment was carried out in the scientific greenhouse of the College of Agricultural 

Engineering, Shanxi Agricultural University (37°25' N, 112°34' E) from November 12, 2021, to 

December 13, 2021, and September 25, 2022, to October 18, 2022, respectively. The seedling of 

Lycopersicum esculentum Mill. cv. Provence with "4 leaves and 1 core" was purchased from the nursery 

company. A total of 145 plants were transplanted into a nutritive bowl with coconut bran as substrate. 

The nutrient solution adopted the Lycopersicum esculentum Mill formula self-prepared water-soluble 

fertilizer of the Holland Greenhouse Horticulture Research Institute, with 10 nitrogen gradients 

(denote as N20, N40, N60, N80, N100, N120, N140, N160, N180, N200). Ca2+ was supplemented with 

calcium fertilizer (Ca2+ ≥ 94%, Green-Micro Power Crop Nutrition Co., UK) to keep the concentration 

constant. Nitrogen concentration was regulated using urea, and Table S4 shows its precise addition, 

EC, and pH. The leaves were sampled at the "transplant-bloom" (seedling) stage. At this time, 10-11 

branches extended from the main stem. As shown in Figure 1A, arranged the leaves in descending 

order. Wherein, the 9-7 branch blades were classified as the upper leaf location (Upper), the 6-4 

branch blades were the middle leaf location (Middle), and the 3-1 branch blades were the lower leaf 

location (Lower). Lycopersicum esculentum Mill is a "single-branch and leafiness" plant. Therefore, 

sample collection on each branch is referred to in Figure 1B. The leaves with uniform size and 

spreading were picked based on the sampling rule, with 6 leaves (1 sample) chosen from each leaf 

location for a total of 2610 leaves (435 samples). The samples were stored in sealed bags with 

sequential numbers and kept in a dry ice-filled incubator. 

4.2. Hyperspectral image acquisition 

Leaf images were collected using the VNIR-HSI (Headwall Photonics, Starter Kit, USA) scanning 

platform. This system captures 856 spectral bands from 380 to 1000 nm with a spectral resolution of 

approximately 0.727 nm. A spectral range with a total of 646 bands, ranging from 430 to 900 nm, is 

chosen due to the significant reflectivity error near the measuring range. The movement speed, push-

broom stroke, and distance between the lens and leaf for the system were set to 2.721 mm/s, 100 mm, 

and 28 cm, respectively, to obtain clear and undistorted images. First, wash the dust and impurities 

off the leaf surface with deionized water. Second, blot the surface moisture with filter paper. Finally, 

the leaves were laid flat on the stage to obtain hyperspectral images. To reduce the image interference 

generated by the system light source and dark current, the hyperspectral image is corrected for black 

and white according to the following equation. 

0 b

w b

R R
R

R R





 (1) 
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Where, R is the corrected hyperspectral image; R0 is the original hyperspectral image; Rw is the 

white background image with the standard white calibration plate (> 99.9% reflectance); Rb is the dark 

background image with the lens cap closed (< 0% reflectance). 

4.3. Chemical measurement of pigment content 

After collecting spectral images from the samples, the content of Chla, Chlb, Chll, and Caro was 

measured using an ultraviolet spectrophotometer (Jingke Shangfen, Shanghai, China). After 

removing the veins, each sample was sliced into pieces of about 2*2 mm, mixed evenly, weighed 0.2 

g, and deposited in a test tube. It was extracted with 96% ethyl alcohol in the darkness for 24 h until 

the pieces turned white. The absorbance of the prepared pigment extracts was measured at 

wavelengths of 665, 649, and 470 nm, respectively [28]. Each sample was repeated 3 times, and the 

pigment content was calculated according to the following formula. 

665 64913.95 6.88Chla A A     (2) 

649 66524.96 7.32Chlb A A   
 

(3) 

Chll Chla Chlb 
 

(4) 

 4701000 2.05 114.8 / 245Caro Chla ChlbA     
 

(5) 

4.4. Selection of ROI 

On the one hand, there are veins of different sizes distributed in the leaves, especially the largest 

midrib in the center. VNIR-HIS, on the other hand, has a high resolution and lots of pixels. Choosing 

the ROI for the leaves was challenging due to these factors. SpectralView software (Headwall 

Photonics, USA) was used for secondary development with Visual Basic (Version 6.0, Microsoft, 

USA), which produced software for batch extraction and processing of hyperspectral data. The core 

module of the program was made up of a pixel-generating module and a batch-processing module. 

The elliptical model was used to determine the coordinates of the center of ROI, the length of the X/Y 

semi-axis (a, b), and the distance between the X/Y axes (Δx, Δy were both set to 1). Followed the 

principle of "from left to right, from top to bottom" in the target image to sequentially collect the 

pixels in the ROI according to formula (6), and generated the ROI coordinate matrix. SpectralView 

software was used to import images and actively extract the reflectivity information based on the 

coordinate matrix. Depending on the requirements, the batch processing module could produce 

numerical calculation results such as mean, mean difference, and variance. The leaf is mostly made 

up of the leaf tip, leaf base, leaf margin, and other components. To extract as many of these parts as 

possible. Therefore, the leaf was divided into three areas to extract a total of 32,000 pixels, as shown 

in Figure 1 ROI selection, that is, each sample extracted 192,000 (32,000 × 6) pixels. The sample average 

spectral (according to formula (7)) was adopted as the basic dataset for subsequent processing. 

2 2

2 2
1i i

x y

a b
   (6) 

1 2 3 ,

1

1 1
( )

n

i n i k

i

A A A A A A
n n 

     
 

(7) 

4.5. Spectrum pretreatment and model calibration 

Spectrum stability is always influenced by leaf gloss, leaf reflection, background interference, 

and baseline drift during the scanning process. Therefore, the effective spectrum was preprocessed 

using the Sacitzky-Golay smoothing filter (S-G) [34,35], standard normal variable (SNV) [36], and S-

G+SNV [37] approaches, which reduced interference before modeling and effectively improved the 

prediction accuracy of the model, as shown in Figure 5.  
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While VNIR-HSI can effectively provide simultaneous data, the numerous variables also result 

in curses of dimensionality, which reduces the load and predictive capacity of the model. In this study, 

competitive adaptive reweighted sampling (CARS) and iterative retained information variable (IRIV) 

were used to reduce the dimension of variables. This is beneficial to the interpretability of variables 

and improves the accuracy of prediction models. 

 

Figure 5. Preprocessed of spectrum data. (a) Raw spectrum for all the samples; (b) S-G preprocessed 

spectrum for all the samples; (c) SNV preprocessed spectrum for all the samples; (d) S-G+SNV 

preprocessed spectrum for all the samples. 

The CARS algorithm selects the optimal combination of effective variables in the spectrum by 

imitating the principle of "survival of the fittest" in Darwinian evolution [38,39]. For the spectrum 

array of m × p dimensions (m represents the number of samples, and p represents the number of 

variables), CARS selected the effective wavelengths through the following steps. 

1. Based on monte carlo sampling (MCS), a PLS model is established by randomly selecting 80% 

of the calibration set of samples to obtain the regression coefficients |Ki| (i = 1, 2, ···, p) for the i-

th wavelength; 

2. The exponentially decreasing function (EDF) is applied to eliminate the wavelength with smaller 

|Ki|, and the retention rate of the variable is rj = ae-bj (j = 1, 2, ···, N). Among them, j represents 

the j-th MCS; N represents the number of MCS; a and b are constants, calculated by r1 = 1 and rN 

= 2/p, the formula are as follows; 

1/ -1
/ 2

N
a p （ ）（ ）  (8) 

ln( / 2) / ( -1)b p N
 

(9) 

3. The variables are further filtered based on the adaptive reweighted sampling (ARS) technique. 

The variables were filtered by evaluating the weights 1

/
p

i i i

i

w K K


 
(i = 1, 2, ···, p). 

4. Repeat the above steps until the number of MCS reaches a predetermined value of N. 

5. The 5-fold root mean square error of cross-validation (RMSEcv) is used as the evaluation criterion. 

The values of the subset of variables obtained from each MCS are compared, and the subset of 

variables corresponding to the minimum RMSEcv is selected as the optimal variable. 
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The iterative retaining information variable (IRIV) algorithm uses random combinations and 

interactions of variables to extract characteristic variables based on a binary matrix rearrangement 

filter [40–42]. IRIV takes the following steps to select effective wavelengths. 

1. The spectrum bands randomly generate an m × p matrix A containing only 0 and 1 (0 and 1 

indicate whether the corresponding variables are involved in performing the modeling), with 

the same number of 0 and 1. The PLS model is established in each row of matrix A. The RMSEcv 

obtained from the 5-fold cross-validation is used as the evaluation criterion. This obtains an m × 

1 vector denoted as RMSEcv0. Replace the 1 with 0 and the 0 with 1 in the i-th (i = 1, 2, ···, p) 

column of the A to obtain the matrix B. Similarly, a PLS model is established in each row of the 

B to obtain an m × 1 vector denoted as RMSEcvi; 

2. Define Φ0 and Φi to assess the importance of each variable with the following equations. The 

difference between the mean values of Φ0 and Φi is denoted as DMi. If DMi < 0, it is a strong or 

weak information variable; If DMi > 0, it is an uninformative or interfering variable. Mann-

Whitney U-test is performed by defining P = 0.05 as the threshold. Finally, the variables are 

classified as strong information, weak information, uninformative, and interfering information; 

0 0

0

 1  0
;

 1  0

th th

ki ki

K iKth th

i ki i ki

k RMSECV if A k RMSECV if A

k RMSECV if B k RMSECV if B

  
    

  
 (10) 

3. In each iteration, strong and weak information variables are retained, and uninformative and 

interfering information variables are eliminated. Return to step 1) for the next iteration until only 

strong and weak information is left in the set of variables; 

4. Backward elimination is performed for t retained variables. First, a PLS model is established for 

t variables to obtain RMSEcvt. Then, a PLS model is established for t-1 variables by eliminating 

the j-th (j = 1, 2, ···, t) variable to obtain RMSEcvj. If RMSEcvj is less than RMSEcvt, the j-th variable 

is eliminated, otherwise, it is retained. Loop this process, and the remaining variables are the 

final selected characteristic variables. 

In this work, the CARA-IRIV algorithm was proposed by combining the advantages of the rapid 

iteration rate of CARS and the selection of strong and weak information variables by IRIV. It was 

used to screen pigment-related variables in leaves, thereby reducing the redundancy of explainable 

variables and improving model performance. Combined with PLS, the prediction models of CARS-

PLS and CARS-IRIV-PLS were established, respectively. At the same time, 50 runs were performed 

on CARA-PLS and CARA-IRIV-PLS. The predictive ability of the model was evaluated by the 

coefficient determination of calibration (Rc2) and prediction (Rp2), root mean square error of 

calibration (RMSEc) and prediction (RMSEp), and ratio performance deviation (RPD). MATLAB 

software (Ver. 2018a, MathWorks, Natick, MA, USA) was used to process and analyze the data. 

4.6. Visualization of leaf pigment 

Hyperspectral imaging technology perfectly combines spectrum and image information, with 

each pixel on the image containing a spectrum curve. Aside from detecting the sample index, the 

detection index can be quantitatively inverted to the sample image combined with the optimal 

prediction model parameters to realize the visual expression of the index to be measured. 

ENVI software (Ver. 5.1, Harris Geospatial, Broomfield, CO, USA) was used to process the 

corresponding wavelength multiplied by the weight coefficient to obtain the assignment value of 

each pixel, i.e., the leaf pigment content value. At the same time, the enhanced Lee filter was used to 

reduce the speckle noise. The filter size, damping coefficient, homogeneity zone, and heterogeneous 

zone were set to 3*3, 1, 0.52, and 1.73, respectively. Lastly, the pseudo-color map combined with the 

assignment size inverting the pixel points on the leaf image produces a visual representation of the 

content distribution. 

5. Conclusions 

In this study, Chla, Chlb, Chll, and Caro of leaves in Lycopersicon esculentum Mill seedlings were 

studied under different nitrogen concentration cultivation. VNIR-HSI technology combined with a 
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machine learning algorithm was used to model the prediction of pigment content. Thus, it is 

convenient to realize the visualization of pigment expression. The nitrogen concentration of the 

nutrient solution was 302.84 mg/L, and the pigment content of the leaves was the largest. The 

distribution pattern of pigment content in leaf position was Upper > Middle > Lower. Meanwhile, the 

inhibitory effect of high concentration was stronger than that of low concentration, which could 

provide data support for quantitative management of nitrogen concentration of water and fertilizer 

in facility agriculture. The “coarse-fine” characteristic variable extraction strategy of CARS-IRIV is 

proposed, which can effectively reduce adjacent bands and retain effective information as much as 

possible. The PLSR was used to establish the prediction model for each pigment index to achieve 

better results. The model prediction accuracy was improved after characteristic wavelengths 

screening. Combining the CARS-IRIV-PLSR model with hyperspectral imaging technology 

effectively visualizes the expression of leaf pigments. The content of pigments and their distribution 

in leaves can be visualized, which helps to monitor the growth condition, pigment content, and 

nutrient diagnosis of plants in facility agriculture non-destructively. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org. Table S1: Prediction results of pigments using different pre-processing methods; 

Table S2: Classification of variables screened by the CARS algorithm using the IRIV algorithm; Table S3. The key 

wavelengths screened by CARS and CARS-IRIV algorithms for Chla, Chlb, Chll, and Caro; Table S4: Fertilizer 

(mg/L), EC, and pH with different nitrogen concentrations; Figure S1: The changes in sample variables (NSV), 

RMSEcv, and regression coefficient paths (RCs) in a subset of CARS arithmetic for Chla; Figure S2: The changes 

in sample variables (NSV), RMSEcv, and regression coefficient paths (RCs) in a subset of CARS arithmetic for 

Chlb; Figure S3: The changes in sample variables (NSV), RMSEcv, and regression coefficient paths (RCs) in a 

subset of CARS arithmetic for Chll; Figure S4: The changes in sample variables (NSV), RMSEcv, and regression 

coefficient paths (RCs) in a subset of CARS arithmetic for Caro. 
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