Investigation of Seasonal variation of Fatty Acid and Mineral concentrations of Pecorino Romano cheese: imputation of missing values for enhanced classification and metabolic profile reconstruction
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[bookmark: _Hlk138696481]S1.a Probabilistic Principal Component Analysis: Data projection onto latent space
Probabilistic Principal Component Analysis seeks to relate a p-dimensional single observation vector  to a q-dimensional LVs vector  where q<p, thus mapping the original variable into a new space which offers a more parsimonious explanation of the dependences between observations. In such a model, LVs are assumed to be i.i.d and to follow a normal distribution. The p-dimensional error model  is also considered, and it is assumed to behave like a gaussian noise . Error is isotropic since the variances are assumed equal for all the p variables. Hence the PPCA model links the observation vector to a linear combination of the LVs, where noise term is taken into account as well (Tipping & Bishop, 1999):
										(S.1)
In Eq. A.1, is the loading matrix and  is the mean value for each observed variable. A linear combination of gaussian variables gives rise to a gaussian distribution for the observation vector . Particularly, the use of an isotropic gaussian noise along with the factor model reported in Eq. 1 implies that the conditional probability distribution of the observation vector  given  is equal to:
.  										(S.2)
Where the marginal distribution of is conventionally defined by . Nonetheless, when it becomes necessary to obtain model scores from experimental data (for instance, for classification purposes), it is crucial to calculate the estimated value of LVs from the observed data. This task can be achieved by applying Bayes’ Theorem to ,  and  distributions, thus obtaining (Tipping & Bishop, 1999): 
.  								(S.3)
Where  is a qxq matrix evaluated as follows:	
 .										(S.4)
The inference of the optimal loading matrix is performed by means of the EM algorithm, which maximises the log-likelihood function with respect to model parameters (i.e.,  and ). In the E-step, the expected values of the LVs are estimated given the observed data and the current estimates of the model parameters. In the M-step, the model parameters are re-estimated by maximising the log likelihood function using the expected values of the LVs derived in the previous E-step. These two steps are repeated iteratively until the algorithm converges (Tipping & Bishop, 1999). Several convergence criteria are available in the literature (Nyamundanda et al., 2010). In this work, the convergence criterion requires that the EM algorithm be executed until the difference between two log-likelihood functions computed in two successive iterations is less than a tolerance value set to 0.001 or until the maximum number of iterations, set equal to 1000, is exceeded. It is important to specify that the maximum likelihood estimate of the loading matrix corresponds to the loading matrix given by conventional PCA, with the addition that the assessment of model uncertainty is available in such a probabilistic formulation. 
Once the optimal loading values of the PPCA model have been identified, the next step is to project the data containing missing values onto the space of latent variables and then reconstruct the partial samples, given the scores obtained from the probability model. Firstly, observation vector  and the loading matrix for which the likelihood function is maximised  are split in two contributions:
											(S.5)
										(S.6)
Here,  corresponds to a rx1 vector correspondent to missing elements of the observation vector, which are identified as non-numerical values, whereas  is a (p-r)xq matrix which denotes the loading matrix partition related to the known variables (i.e. elemental composition) of the observation vector to project. The quantiy r is the number of variables containing at least one missing value for a given sample.  denotes the loading matrix block associated with the missing information (i.e. %FAME). Therefore, a new matrix computed from :	
									(S.7)
 matrix dimensionality is preserved when  is used for  calculation. The following step foresees the computation of the scores vecor  made up of the contribution  of the sole loading related to known variables for each specific sample:
									(S.8)
Where is a (p-r)x1 vector of variables average values. The expression reported in eq. A.7 is not the final form of score vector, as it only considers the contribute of non-missing variables on the projection onto the latent space. Therefore,  is employed to obtain the reconstructed data (Tipping & Bishop, 1999):
								(S.9)
It is important to specify that is not orthogonal and thus not optimal (Tipping & Bishop, 1999).  is then expressed in therms of its singular value decomposition:
											(S.10)
Where  is a pxq matrix of orthonormal column vectors,  is the qxq diagonal matrix of singular values, and  is a qxq orthogonal matrix.  matrix represents the orthogonalised form of loading matrix obtained from maximum likelihood estimation, and corresponds to the loadings obtained by conventional PCA. Hence the final expression of score matrix obtained from the overall contribution of both known and reconstructed information is given as follows:	
										(S.11)
The first two elements of  score vector were plotted in figure 1, for classification purposes.


[bookmark: _Hlk138696450]S2.a Loading Analysis for Probabilistic Principal Component Analysis
Table S1 report the loadings of individual fatty acids (FAs) and elements for the first two principal components (PCs), aiming to evaluate the influence of cheese production seasons on their content. As shown in the paper, short chain fatty acids are generally more abundant during the winter season, along with Zinc and Potassium elements. On the contrary, medium chain saturated fatty acids, omega-3 compounds, rumenic and vaccenic acids were positively correlated with spring season together with Phosphorus, Sulphur and Calcium. Finally, cheese produced in early summer were generally rich in long chain saturated fatty acids.
Table S1. Loading values on first and second PCs obtained by PPCA
	Variable
	Loading on PC1
	Loading on PC2
	Variable
	Loading on PC1
	Loading on PC2
	Variable
	Loading on PC1
	Loading on PC2

	'C4:0'
	0.109305
	-0.20962
	'C18:1 5t'
	0.0267
	-0.02454
	'CLA 9t,11c'
	-0.11032
	0.0479

	'C6:0'
	0.159599
	-0.03058
	'C18:1 6t + C18:1 8t'
	0.05921
	-0.22573
	'CLA 10t,12c+C21:0'
	-0.05506
	-0.01006

	'C7:0'
	0.154653
	0.085226
	'C18:1 9t'
	0.09675
	-0.21659
	'CLA 9c,11c'
	0.14933
	0.01322

	'C8:0'
	0.160066
	0.001488
	'C18:1 10t'
	0.08931
	0.03098
	'CLA 12t,14t + CLA 11c 13c'
	0.10765
	-0.06803

	'C10:0'
	0.156294
	0.067634
	'C18:1 11t'
	0.1601
	-0.01826
	'CLA 11t,13t'
	0.145
	0.04116

	'C11:0'
	0.142946
	0.131658
	'C18:1 12t'
	0.13384
	-0.13339
	'CLA 9t,11t'
	0.04365
	0.11291

	'C12:0'
	0.152066
	0.101636
	'C18:1 13t + C18:1 14t'
	0.15111
	-0.03878
	'C20:2 11c,14c n6'
	0.0392
	-0.00811

	'C13:0 i'
	-0.143654
	-0.05934
	'C18:1 9c'
	-0.14782
	-0.13137
	'C20:3 5c,8c,11c'
	0
	0

	'C13:0 ai'
	0.065134
	0.216256
	'C18:1 15t + C18:1 10c'
	-0.07415
	0.01776
	'C22:0'
	-0.15589
	0.03995

	'C14:0 i'
	-0.141302
	0.053299
	'C18:1 11c'
	-0.00544
	-0.23734
	'C20:3 8c,11c,14c n6'
	0
	0

	'C14:0'
	0.04377
	0.299376
	'C18:1 12c n6'
	-0.1227
	-0.19239
	'C20:3 11c,14c,17c n3'
	0
	0

	'C15:0 i'
	-0.001255
	0.01442
	'C18:1 13c'
	0.14177
	-0.02881
	'C20:4 5c,8c,11c,14c n6'
	-0.09007
	-0.23291

	'C15:0 ai'
	-0.157415
	0.006647
	'C18:1 16t + C18:1 14c'
	0.14731
	-0.08363
	'C23:0'
	-0.14974
	0.07024

	'C14:1 9c'
	-0.097979
	0.233402
	'C18:2 9t,12t n6'
	0.05362
	0.11814
	'C24:0'
	-0.13884
	0.02298

	'C15:0'
	-0.03347
	0.301288
	'C18:2 9c,13t'
	0.14355
	0.00854
	'C20:5 5c,8c,11c,14c,17c n3'
	0.07998
	0.048

	'C16:0 i'
	-0.069347
	-0.04938
	'C18:2 9c,12t + C18:2 8t 12c n6'
	0.1388
	-0.04486
	'C24:1 15c'
	-0.09548
	-0.00974

	'C16:0'
	-0.146491
	0.133046
	'C18:1 16c'
	0.12804
	-0.00779
	'C26:0'
	0.08071
	-0.17262

	'C17:0 i '
	-0.129969
	-0.10527
	'C18:2 9t,12c n6'
	-0.05811
	0.08004
	'C22:5 7c,10c,13c,16c,19c'
	-0.09787
	0.02091

	'C16:1 9t'
	0.154378
	-0.00921
	'C18:2 11t,15c n3'
	0.1491
	0.00581
	'C22:6 4c,7c, 10c,13c,16c,19c n3'
	-0.09954
	-0.05648

	'C16:1 7c'
	-0.077373
	-0.12222
	'C18:2 9c,12c n6'
	-0.14649
	-0.11195
	'Ca'
	0.11432
	0.06848

	'C17:0 ai'
	0.01944
	0.092416
	'C18:2 9c,15c n3'
	0.10441
	-0.08581
	'Mg'
	0.04028
	-0.00029

	'C16:1 9c'
	-0.138848
	0.14086
	'C20:0'
	-0.14442
	0.02877
	'Na'
	-0.02792
	0.10717

	'C17:0'
	-0.149132
	0.074825
	'C18:3 6c,9c,12c n6'
	-0.00718
	0.05701
	'K'
	0.10207
	-0.07966

	'C18:0 i'
	-0.071596
	-0.02956
	'C20:1 9c '
	-0.08928
	0.08684
	'P'
	0.10454
	0.11838

	'C17:1 10c'
	0
	0
	'C20:1 11c'
	-0.14044
	-0.05902
	'S'
	0.10164
	0.02933

	'C18:0'
	-0.118953
	-0.183
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	0.1131
	0.01354
	'Zn'
	0.13186
	-0.04806

	'C18:1 4t'
	0.011864
	-0.2148
	'CLA 9c,11t'
	0.15374
	0.02622
	'Fe'
	-0.02162
	-0.10903




