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Dual-stream Asymmetric Network 
Ruyi Yin, Bin Yang *, Zuyan Huang and Xiaozhi Zhang 

College of Electrical Engineering, University of South China, Hengyang 421001 China 
* Correspondence: yangbin01420@163.com 

Abstract: Infrared and visible image fusion technologies are used to characterize the same scene by diverse 
modalities. However, most existing deep learning-based fusion methods are designed as symmetric networks, 
which ignore the differences between modal images and lead to the source image information loss during 
feature extraction. In this paper, we propose a new fusion framework for the different characteristics of infrared 
and visible images. Specifically, we design a dual-stream asymmetric network with two different feature 
extraction networks to extract infrared and visible feature maps respectively. The transformer architecture is 
introduced in the infrared feature extraction branch, which can force the network to focus on the local features 
of infrared images while still obtaining their contextual information. And the visible feature extraction branch 
uses residual dense blocks to fully extract the rich background and texture detail information of visible images. 
In this way, it can provide better infrared targets and visible details for the fused image. Experimental results 
on multiple datasets indicate that DSA-Net outperforms state-of-the-art methods in both qualitative and 
quantitative evaluations. In addition, we also apply the fusion results to the target detection task, which 
indirectly demonstrates the fusion performances of our method. 

Keywords: infrared and visible image fusion; transformer; deep learning; residual dense block 
 

1. Introduction 

Image fusion can combine images of the same scene captured by different sensors to obtain an 
image with rich information to make up for the shortage of information in single-sensor imaging, 
which is beneficial to the subsequent application of images. Infrared (IR) and visible (VIS) image 
fusion is a widely used branch of image fusion applications. The infrared images are obtained by the 
sensor capturing the infrared wavelength of the scene with significant thermal radiation information, 
which can effectively distinguish the target even under poor lighting or extreme weather conditions. 
However, the target contour edges as well as the background in the infrared images are always 
blurred. On the contrary, the visible image records the reflected light captured by the sensor and has 
rich texture details and structure information. So it is in accordance with human visual cognition. The 
infrared and visible fusion algorithm combines the advantages of both to generate a fused image with 
prominent targets and abundant texture information, which is widely used in military 
reconnaissance [1], industrial production [2], civilian surveillance [3], and other fields [4]. 

The purpose of infrared and visible image fusion is to extract and integrate the essential feature 
information from source images acquired by distinct imaging devices into a single fused image. 
Therefore, extracting the significant features of the fusion image is one of the central problems. Over 
the past few decades, numerous fusion methods have been proposed by researchers, which can be 
roughly divided into two categories: traditional fusion methods [5–7] and deep learning-based fusion 
methods [8–10]. Traditional fusion methods measure pixel’s salience in the spatial domain or 
transform domain, and later design specific fusion rules to fuse them to obtain the fused image. 
Typical traditional methods include sparse representation-based methods [11,12], multi-scale 
transform-based methods [13,14], subspace-based methods [15,16], and hybrid methods [17]. Such 
methods have good performances by integrating reasonable fusion strategies into the fusion results. 
Unfortunately, traditional methods generally exhibit restricted fusion performance due to two 
reasons. First, the dependence of the traditional theory on manual design leads to the complexity of 
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the algorithmic framework, and this approach that uses fixed mathematical variations to extract 
features ignores the modal differences between source images. Secondly, the limited choice of 
reasonable fusion rules also somewhat limits the performances. 

Over the past few years, deep learning techniques have gained considerable action in the domain 
of computer vision [18,19]. Relying on powerful nonlinear representational capability of 
convolutional neural networks (CNN), fusion performance of deep learning-based image fusion 
methods is typically superior to that of traditional methods. However, they cannot conquer the 
problem of long-range contextual information dependencies, which leads to the loss of some 
significant global features. Moreover, these methods extract differ modal features by symmetric 
models, ignoring the modal differences between infrared and visible images. During the process of 
feature extraction, it is challenging to prevent the loss of intricate details, resulting in a decay of 
features in the fused results. To solve these problems, we propose an asymmetric network for infrared 
and visible image fusion. For the facts that the modalities of infrared and visible images are different, 
we design two unique feature extraction modules separately. The residual dense block is used in the 
visible image feature extraction module to minimize the degradation of intermediate feature and 
retain the intricate features of visible images to the fullest extent. The transformer is embedded in the 
infrared image feature extraction module. This module utilizes the attention mechanism of the 
transformer to focus on important thermal radiation information in infrared images, ignoring 
redundant background information. The infrared image feature extraction module also uses dense 
concatenation to repeatedly utilize previous features, which can reduce feature loss. We also design 
a depth feature fusion block for global depth features extraction and fusion, and use residual 
connections to reduce network degradation. Finally, the fused images with high brightness and clear 
edge contours as well as significant infrared targets are obtained. In brief, the principal achievements 
and contributions of this paper can be briefly summarized as follows. 

Asymmetric network: we design an asymmetric network to build two different feature 
extraction modules. It is good for the different modal characteristics of infrared and visible images, 
preserving the infrared target and visible texture information respectively. Subsequently, the two 
modality features were fused via the main pathway. 

Transformer: Although convolutional neural networks are more capable of acquiring local 
information, they have limited performance in maintaining remote contextual information of the 
source images. In contrast, Transformer can expand the receptive field of the image and acquire more 
contextual information by global relationship modeling. Therefore, we embed the transformer into 
the CNN network so that the network can inherit the advantages of CNN and the transformer and 
maximize the retention of global and local features. 

Generalization capability: The experimental results on the RoadScene dataset and TNO dataset 
indicate that DSA-Net performs better than the other nine representative advanced methods both in 
subjective and objective evaluations. Furthermore, the experiment has also been expanded to include 
object detection, and the results demonstrate that our method has a greater potential in advancing 
advanced computer vision tasks. 

The rest of this paper is organized as follows. Section 2 reviews some works related to our 
method. Section 3 describes the proposed DSA-Net in detail, including the overall framework, 
network architecture, and loss function. In Section 4, we conduct comparative experiments to validate 
the merits of the proposed approach. In addition, we perform ablation experiments, generalization 
experiments, and applications in target detection. Finally, conclusions are given in Section 5. 

2. Related Work 

In this section, we first review the existing infrared and visible image fusion algorithms in 
Section 2.1, followed by a brief introduction to the Transformer in Section 2.2. 

2.1. Deep Learning-Based Fusion Methods 

In 2017, Liu et al. [20] firstly use CNN to extract image features and design fusion strategies to 
achieve image fusion tasks. However, this method was limited to multi-focus image fusion tasks. 
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Later, Liu et al. [21] presented an analogous approach for infrared and visible image fusion. They 
used CNN to obtain the weight map and obtained the fused image through a series of post-
processing. These two methods simply use CNN for feature extraction only, and other parts of the 
fusion framework still need to be designed manually, without completely getting rid of the 
traditional algorithms. In 2018, Li et al. [22] proposed an encoding-decoding framework which uses 
dense concatenation in the encoder to fully extract feature maps and also designs a fusion strategy to 
combine the extracted features. Then the decoder is utilized to decode the features and reconstruct 
the fused image. However, this approach still requires the manual design of fusion rules and cannot 
fully achieve end-to-end fusion. In 2019, Ma et al. [23] introduced generative adversarial networks 
(GAN) into infrared and visible image fusion, using a pair of simple generators and discriminators 
to obtain fused images. Subsequently, Ma et al. [24] proposed a model called DDcGAN, which uses 
a dual discriminator to reduce the loss of source image information. However, GAN is not stable in 
unsupervised learning tasks and the fused image edge contours may be blurred. In 2020, Xu et al. 
[25] proposed a unified fusion model that trains the model by learning multiple fusion tasks 
continuously to avoid catastrophic forgetting, storage, and computation problems. In 2021, Liu et al. 
[26] propose a deep network for infrared and visible image fusion using a feature learning module 
with a fusion learning mechanism to optimize the fusion effect. In 2022, Tang et al. [27] proposed a 
Y-shape fusion framework and used a dynamic transformer module to acquire local features and 
important contextual information. 

2.2. Transformer 

In 2017, Vaswani first proposed the concept of a Transformer [28] to capture more long-range 
information. Which conquers the inherent problem of CNN, i.e., long memory loss, by employing 
multi-headed self-attention. Since then, Transformer has swept the field of natural language 
processing (NIP) [29,30]. In 2020, Dosovitskiy proposed a vision Transformer (VIT) for image 
classification [31], which was the first application of a Transformer in the field of vision. Since then, 
transformer has been extensively developed in the field of vision. For example, a new Transformer 
network for medical image segmentation [32], an end-to-end video instance segmentation [33], a pure 
semantic segmentation [34], and even better models of visual Transformer [35,36] for other vision 
tasks. Recently, transformer have also been widely used in image fusion tasks. In 2021, Vs et al. [37] 
put forward a transformer-based multi-scale fusion strategy, which captures local and global 
features, by using spatial CNN branches and Transformer branches for multi-scale feature fusion. 
Zhao et al. [38] used density nets for encoding and dual Transformer to focus and integrate 
information from the infrared and visible images. Subsequently, Fu et al. [39] presented a patch 
pyramid Transformer (PPT) for image fusion, a patch transformer is designed to transform the image 
into a series of patches and then leverage the pyramid Transformer for feature extraction. Rao et al. 
[40] came up with a lightweight fusion framework by combining Transformer and adversarial 
learning, where a generator was designed for generating the fused image and two discriminators for 
optimizing the perceptual quality of the fused images. 

3. Proposed Method 

In this section, we present the structure of our method and the loss function in detail. 

3.1. Framework Overview 

Figure 1 shows the framework of our proposed network. The main framework consists of three 
parts, the infrared feature extraction module, the visible feature extraction module, and the merge 
module. Since infrared images contain strong thermal radiation information and can effectively 
distinguish targets, we use a combination of CNN and transformer for infrared image feature 
extraction. The transformer is designed to model global dependencies, the network architecture of 
which is shown in Figure 2. Visible images are rich in texture details and background information, so 
we use the densely connected convolution layer to extract local features, the network architecture of 
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which is shown in Figure 6. With these two branches, the useful information from the source images 
can be fully extracted. Then these features are concatenated together and fed into a merge module. 
This module uses convolution skip joints to produce a continuous memory mechanism, which can 
adaptively learn more effective features from previous and current local features and stabilize the 
training of the broader network. The decoding block is used for the generation of subsampling and 
fusion results and consists in turn of a convolution layer with a kernel size of 3 3 , a batch 
normalization (BN), and a corrected linear unit (ReLU). Since our network is an end-to-end network, 
the output of the network is the fused image. 

 
Figure 1. DSA-Net framework structure. 

 
Figure 2. Transformer framework structure. 

3.2. Infrared Feature Extraction Module 

Infrared images have strong target information, in order to obtain infrared feature maps with 
local enhancement, we use a combination of CNN and transformer to extract infrared image features. 
The framework of transformer, adopts multi-head self-attention and has good global contextual 
feature exploration capability. Which is shown in Figure 2. Transformer consists of two LayerNorm, 
multi-head self-attention (MSA), and multilayer perceptron (MLP). LayerNorm normalizes the 
features, which can keep similarities between different channels’ statistical properties and enhances 
the generalization ability of the model. After normalization, the features are linearly projected into 
multiple feature subspaces to obtain attention weights Q, weight indexes K, and feature vectors V. 
Then parallel processing is performed using multiple independent scaled dot product attention, as 
shown in Figure 3. Compared with single attention, MSA can effectively prevent the model from 
over-focusing on its own location when encoding information about the current location. The scaled 
dot product attention is shown in Figure 4. The similarity matrix is obtained by using Q and K for 
dot product operation; Scale represents the quantization operation, which can prevent the similarity 
matrix variance from being too large and make the training gradient update more stable; Mask is the 
padding operation, but unlike the ordinary padding 0, it will be padded with negative infinity, and 
then normalized by Softmax layer to get the attention weight matrix, and the attention of the padding 
part will be 0, which does not affect the subsequent operations. Finally, the attention map image is 
generated by multiplying the feature vector V with the corresponding attention weights. The 
attention process can be expressed as Equation (1). The MLP is shown in Figure 5 and consists of Full 
Connection, GELU activation function, and Dropout. The MLP layer can perform nonlinear 
transformations on the features, which can be better adapted to complex image tasks. Moreover, MLP 
layer can extract higher-level features from the input features, which can represent information such 
as objects and backgrounds in an image. And the residual connection in Transformer can effectively 
solve the problem of gradient disappearance and the degradation of the weight matrix. Through the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2023                   doi:10.20944/preprints202306.2220.v1

https://doi.org/10.20944/preprints202306.2220.v1


 5 

 

above operations, the Transformer uses the self-attention mechanism to establish the relationship 
between image features, which can capture the global information and long-distance dependence in 
an image. 

                            , , Softmax
T

k

QKAttention Q K V V
d

 
   

 
,                 (1) 

 
Figure 3. MSA structure details. 

 
Figure 4. Scaled Dot-Product Attention structure details. 

 
Figure 5. MLP structure details. 

3.3. Visible Feature Extraction Module 

Visible images have a higher spatial resolution and contain more texture details. Therefore, we 
design a visible feature extraction module with a residual dense block (RDB) [41] to extract the visible 
features. In this module, we first extract and obtain visible shallow features using three convolution 
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layers, followed by deep feature extraction by the RDB. The RDB is shown in Figure 6, which consists 
of five convolution layers. Each convolution layer can acquire the features of all previous layers 
through local dense connections, thus making full use of the features of each layer. The final 
convolution layer filters all the previous features and adaptively controls the output information. 
Finally, the shallow and deep feature results are combined using residual connectivity, and the 
residual connectivity enhances the gradient connectivity, which can effectively prevent the gradient 
from disappearing. The visible image can fully extract its local features through its feature extraction 
module, prevents the degradation of intermediate features, and obtains a feature map with rich 
texture detail features. 

 
Figure 6. RDB structure details. 

3.4. Merge Module 

The features obtained from the infrared feature extraction module and the visible feature 
extraction module are concatenated as the input to the merge module. The merge module consists of 
ten convolution layers and skip connections. The convolution layers all consist of 3 3  convolution, 
BN, and ReLU activation functions. The first five convolution layers are used to extract the depth 
features of the infrared and visible images. As the network depth increases, the issue of feature 
degradation is more likely to arise, which can be addressed by incorporating skip connections. And 
the skip connections also use the learned features of the previous layer in this layer, which achieves 
feature reuse. Finally, the extracted depth features are used in the last five convolution layers, to 
achieve features decode, and to obtain the fused image. 

3.5. Loss Function 

Since our method is unsupervised learning, the loss function plays a crucial role in the fusion 
effect. It is an important challenge to fully retain the features of the source images, such as the infrared 
salient targets in infrared images and the detailed textures in visible images. Therefore, in order to 
fully retain the source image information, our loss function consists of three types of loss terms, 
structure loss ssimL , intensity loss intL , and gradient loss gradL . The structure loss constrains the 

similarity between the fused image and the source images. The intensity loss constrains the fused 
image to maintain a similar intensity distribution as the source image while the gradient loss enforces 
the presence of additional texture details in the fused image. The loss function of the network can be 
expressed as follows: 

                                  ssim int gradL L L L     ,                      (2) 

where  ,   and   are the weighting factors of the three loss functions, which are used to control 
the total loss function balance. 

Ensure that the fused image has similar structural information to the source images, which can 
be expressed as 
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                      1 , 1 ,
ssim ssimssim VIS F VIS IR F IRL SSIM I I SSIM I I     ,           (3) 

VISI , IRI  and FI  denote the visible image, the infrared image, and the fused image of both, 
respectively. 

ssimVIS  and 
ssimIR  represents the SSIM loss weights between the fused image and the 

visible and infrared images.  SSIM   denotes the structural similarity operation between the fused 
image and the source images, which is defined as follows: 

                  31 2
2 2 2 2

31 2

2 2, XYX Y X Y
X Y

X YX Y X Y

CC CSSIM I I
CC C

   
    

 
  

   
,              (4) 

where   denotes the mean and   denotes the standard deviation or covariance. 1C , 2C , and 3C  

are constants to prevent 2 2
X Y  , 2 2

X Y   and X Y   being 0 from causing formula instability. It 
constrains the loss and distortion of the fused image from the similarity of brightness, contrast, and 
structural information. 

The SSIM loss function is weakly constrained in terms of pixel intensity, while the significant 
targets in visible images have great pixel intensity. Therefore, we also design the intensity loss to 
retain the infrared targets in the source image. 

                  2 2

2 2

1 1
int intint VIS F VIS IR F IRL I I I I
HW HW

          
   

,              (5) 

where 
intVIS  and 

intIR  represent the intensity loss weights between the fused image and the visible 

and infrared images. H and W denote the height and width of the fused image. 2  is the l2-norm. 
In addition, we use the gradient loss constraint to fuse the images to retain the detailed textures 

in the visible images as well as the target edges of the infrared images. 

             2 2

2 2

1 1
grad gradgrad VIS F VIS IR F IRL I I I I

HW HW
            

   
,           (6) 

where 
gradVIS  and 

gradIR  represents the gradient loss weight between the fused image and the 

visible and infrared images.   denotes the gradient operator. 
Due to the optimization of the above loss function, the fused image can well retain the structural 

information, intensity information, and gradient information of the source images. We hope that the 
fusion image retains more structural information of the visible image, combined gradient 
information, and more infrared image intensity information. Therefore, the loss weights described 
above should meet the following conditions: 

                         , ,
ssim ssim int int grad gradVIS IR VIS IR VIS IR        ,                  (7) 

4. Experiments 

In this section, the experimental configuration and experimental details will be outlined in 
Section 4.1. Then, we present the comparison methods and objective evaluation metrics in subsection 
4.2. The ablation experiments on the network structure are presented in subsection 4.3, demonstrating 
the rationality of our network structure. The comparison experiments and generalization 
experiments are presented in subsection 4.4 and subsection 4.5, respectively, revealing the superiority 
of our proposed method. Finally, we perform target detection task-driven evaluation experiments in 
4.6 to evaluate different fusion methods from the perspective of advanced vision tasks. 

4.1. Experimental Configuration and Experimental Details 

Two mainstream datasets TNO dataset and RoadScene dataset were used in this work. We 
collected 51 and 83 pairs of infrared and visible image pairs from these two datasets, respectively. 
Then 50 pairs are randomly selected from the RoadScene datasets as the training data, while all the 
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remaining image pairs were used as the test data. To obtain sufficient training samples, the training 
data is expanded using an overlapping cropping strategy. It is worth mentioning that the cropping 
strategy is a widely used data enhancement method in the image domain. In our experiments, the 
RGB images in the RoadScene dataset are converted to the YUV color model, the Y channel is used 
for image fusion, and finally the fused images are converted to RGB images. 

Specifically, 40964 pairs of infrared and visible image patches with 120 × 120 size are generated 
for network training. Since the cropping strategy is only used for data expansion, the test data is not 
used. Therefore, by feeding the entire image into the trained model, fusion results can be generated. 
In our experiments, the epoch is 25 and the batch size is fixed at 29. The learning rate was set to 0.001 
and the Adam optimizer was used for model optimization. The three weighting factors  ,   and 
  in the loss function are specified as 1.1, 10 and 10, respectively. All experiments were conducted 
on a computer with an Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz and an NVIDIA GeForce RTX 
3090 GPU. And the proposed deep model is implemented on the PyTorch framework. 

4.2. Comparison Methods and Evaluation Indicators 

To ensure a thorough evaluation of the proposed algorithm, we performed experiments on both 
the RoadScene and TNO datasets. We compared our approach with nine state-of-the-art methods, 
including three representative traditional methods, namely GF [42], ADF [43], and IVFusion [44], and 
six deep learning-based methods, namely DenseFuse [22], GAN-FM [45], DDcGAN [24], YDTR [27], 
IFCNN [46], and PMGI [25]. The implementations of all nine methods are publicly available and we 
set the optional parameters in the same way as reported in the original paper. 

For quantitative evaluation, six metrics are selected to objectively assess the fusion performance, 
including structure similarity index measure (SSIM) [47], mean square error (MSE) [48], correlation 
coefficient (CC) [49], peak signal-to-noise ratio (PSNR) [50], the sum of correlations of differences 
(SCD) [51], and Chen-Blum Metric (QCB) [52]. SSIM evaluates the structural loss and distortion of 
fused images from the human visual system's perspective, and MSE calculates the error between the 
fused images and the source images. CC measures the degree of linear correlation between the fused 
images and the source images. PSNR measures the ratio of peak power to the noise power in the 
fused images. SCD measures the maximum information of the fused images containing each source 
image. QCB evaluates the image quality of the fused images based on the human visual system model. 
In addition, larger SSIM, CC, PSNR, SCD, and QCB indicate better fusion performances. Smaller MSE 
indicates better fusion performances. 

4.3. Ablation Experiments 

To investigate the effectiveness of our asymmetric network structure, Transformer-based 
infrared feature extraction module, and RDB-based visible feature extraction module, we perform 
ablation validation on TNO and RoadScene datasets. We divide the model structure into five groups 
of types, a) Transformer-based dual-stream symmetric network (D-Trans): in order to verify the 
effectiveness of the asymmetric network structure, we apply the infrared feature extraction module 
of this paper to visible image feature extraction as well, and construct a symmetric network. b) RDB-
based dual-stream symmetric network (D-RDB): also to verify the effectiveness of the asymmetric 
network structure, we apply the visible feature extraction module of this paper to infrared image 
feature extraction. c) Without Transformer (O-Trans): in order to investigate the importance of the 
Transformer, we move the Transformer out of the infrared feature extraction module to study its 
function. d) Without RDB (O-RDB): to verify the necessity of RDB, we remove the RDB in the network 
to illustrate its validity. e) To verify the effectiveness of the Transformer and RDB for infrared and 
visible feature extraction, respectively, we exchange their extraction modules (E-FEM). 

4.3.1. Qualitative Comparisons 

Figure 7 and Figure 8 show the fusion results of the TNO and RoadScene datasets, respectively. 
To allow for better comparison, we zoomed in for a close-up of a local area in each fusion result. From 
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the fusion results of D-Trans and D-RDB, it can be seen that we changed the asymmetric network to 
a two-stream symmetric network, resulting in blurred edges of infrared targets and insufficient 
clarity of the scene, which indicates that the proposed asymmetric network has better complementary 
information preservation capabilities. In the absence of the Transformer module, the infrared feature 
extraction module cannot capture the infrared protruding target well due to the failure to build the 
long-distance dependency well. So the infrared character target in Figure 7 and the clouds in the sky 
in Figure 8 are relatively blurry. As for the case without RDB, we can see that its results fail to fully 
extract the visible details although the infrared target is better maintained, and the background 
texture of the fused image and the landmark lines of the RoadScene are not clear enough. In addition, 
the E-FEM fusion is not well preserved in both infrared target and texture details, which can prove 
the effectiveness of the Transformer and RDB for infrared and visible feature extraction, respectively. 

 
(a) IR (b) VIS            (c) D-Trans          (d) D-RDB 

 
(e) O-Trans (f) O-RDB         (g) E-FEM           (h) Our 

Figure 7. Subjective results of the ablation experiment TNO datasets. 

 
(a) IR (b) VIS            (c) D-Trans          (d) D-RDB 

 
(e) O-Trans (f) O-RDB         (g) E-FEM           (h) Our 

Figure 8. Subjective results of the ablation experiment RoadScene datasets. 

4.3.2. Quantitative Comparisons 

To evaluate the ablation experiments more objectively, we assessed the quality of their fusion 
results using image quality metrics. Table 1 shows the objective results in two different datasets. The 
table highlights the top-performing results in bold font, while the second-best results are indicated 
in italic font. It is easy to see that our final method has the best overall score ranking in both the TNO 
datasets and the RoadScene datasets. Combining this with the subjective evaluation can demonstrate 
the effectiveness of our network structure and the individual modules in the network. 
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Table 1. Objective results of the ablation experiment RoadScene and TNO datasets. 

Datasets Methods 
Quality Metrics 

SSIM MSE CC PSNR SCD QCB 

RoadScene 

D-Trans 0.7141 125.1179 0.7754 27.1705 1.2882 0.4773 
D-RDB 0.7317 72.9455 0.7762 29.5688 1.2598 0.5086 
O-Trans 0.7306 68.2725 0.7837 29.8866 1.2907 0.5027 
O-RDB 0.7192 66.7998 0.7732 30.0231 1.3115 0.5112 
E-FEM 0.7330 82.1417 0.7815 29.0312 1.2557 0.5021 

Our 0.7277 46.6912 0.7990 31.5830 1.3218 0.5469 

TNO 

D-Trans 0.7125 117.3409 0.5523 27.4721 1.5780 0.4768 
D-RDB 0.7289 83.4061 0.5416 29.1615 1.4354 0.4805 
O-Trans 0.7539 83.2827 0.5279 29.1897 1.4338 0.4892 
O-RDB 0.7605 83.8169 0.5553 29.1480 1.5119 0.4945 
E-FEM 0.7624 90.1372 0.5351 28.7422 1.4452 0.4844 

Our 0.7587 80.6446 0.5452 29.3554 1.5180 0.5000 

4.4. Comparative Experiments 

To fully evaluate the fusion performance of our approach, we first compared the proposed 
method with nine other algorithms on the RoadScene datasets. 

4.4.1. Qualitative Comparisons 

We randomly selected 50 of the 83 infrared and visible image pairs as the training set and used 
the remaining 33 image pairs as the test set. As shown in Figure 9, our fusion results outperform the 
other methods in improving the visual quality and integrating complementary information. To show 
the difference more clearly, we zoom in the red boxed area and can observe that the three traditional 
methods ADF and GF have a loss of clothing texture details and a general prominence of significant 
targets. IVFusion fusion results do not match human visual effects and look unnatural. DDcGAN 
retains texture details while failing to poor image quality, producing significant artifacts. The 
methods of DenseFuse, IFCNN, and GAN-FM maintain the intensity information of infrared and 
have high overall contrast, but the detailed information of visible images is more severely weakened. 
(e.g., stripes on clothes, bicycle markings on the ground). And the PMGI and YDTR methods have 
too much useless information. 

 
(a) IR (b) VIS              (c) ADF           (d) IVFusion 

 
(e) GF (f) DenseFuse        (g) DDcGAN         (h) IFCNN 
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(i) PMGI (j) GAN-FM           (k) YDTR            (l) Our 

Figure 9. Graph of fusion results of different methods. 

Figure 10 shows the second set of source images of different methods and their fused image 
results. All nine methods have their own advantages but still have some drawbacks compared with 
our method. Specifically, both IVFusion and DDcGAN are inferior to all other methods from a visual 
sensory perspective. From the perspective of texture detail preservation, the methods of IFCNN, 
PMGI, GAN-FM, and YDTR inevitably suffer from the infrared thermal radiation information, 
blurring the background and visible features (e.g., patterns in zoomed-in regions, distant tree 
branches). However, it is worth mentioning that they retain sufficient infrared salient target 
information. In contrast, the ADF, GF, and DenseFuse methods are able to balance visible and 
infrared information, highlighting salient targets while retaining rich texture details. However, they 
are still inferior to DAS-Net, and in the enlarged area of the red box, only our method clearly shows 
the pattern on the clothes. In summary, only our method can effectively integrate the complementary 
information from the source image and simultaneously ensure the visual quality of the fused image. 

 
(a) IR (b) VIS              (c) ADF           (d) IVFusion 

 
(e) GF (f) DenseFuse        (g) DDcGAN         (h) IFCNN 

 
(i) PMGI (j) GAN-FM           (k) YDTR            (l) Our 

Figure 10. Graph of fusion results of different methods. 

4.4.2. Quantitative Comparisons 

We selected 33 image pairs from the RoadScene datasets for quantitative evaluation. The 
quantitative results for the six statistical metrics are shown in Figure 11 and Table 2. For each metric, 
the best and second best fusion results for all methods are marked in bold and italics, respectively. It 
can be observed that our method has outstanding stability and advantages on the RoadScene 
datasets. The best CC show a strong correlation between the fused image and the source image, which 
means that our method is more compatible with the human visual system. In addition, although 
PMGI performs well in individual metrics, it ranks low in three metrics, SSIM, CC, and SCD. In 
contrast, our method performs well overall, ranking higher across all metrics. A large number of 
qualitative and quantitative results on the RoadScene datasets show that our method can generate 
fused images that conform to human vision and retain the information of the source images to the 
maximum extent. 
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Figure 11. Graphs of performance metrics for different fusion methods. 

Table 2. Objective results of the comparative experiment RoadScene datasets. 

Methods 
Quality Metrics 

SSIM MSE CC PSNR SCD QCB 

ADF 0.6909 93.2764 0.7810 28.4483 1.0776 0.5285 
IVFusion 0.4642 60.1766 0.6855 30.3363 0.9305 0.4535 

GF 0.7190 90.6036 0.7769 28.5830 1.2868 0.5465 
DenseFuse 0.7453 93.8907 0.7851 28.4170 1.0819 0.5440 
DDcGAN 0.5589 48.4804 0.7410 31.5353 1.1833 0.4594 

IFCNN 0.7045 99.6146 0.7694 28.1568 1.1557 0.4973 
PMGI 0.6777 26.9935 0.7120 34.2283 0.9673 0.5852 

GAN-FM 0.6590 52.2970 0.7680 30.9994 1.3848 0.5327 
YDTR 0.7231 131.9041 0.7771 26.9622 1.1619 0.5236 
Our 0.7277 46.6912 0.7990 31.5830 1.3218 0.5469 

4.5. Generalization Experiments 

Generalization performance is an important aspect of evaluating deep learning-based methods. 
Therefore, we provide generalization experiments on the TNO datasets to demonstrate the 
generalizability of the proposed approach. It is worth mentioning that our fusion model is trained on 
the RoadScene datasets and tested directly on the TNO datasets. 
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4.5.1. Subjective Results 

As shown in Figure 12, the fusion results obtained by the different methods in the TNO dataset 
introduce some meaningless information, which is reflected in the loss of texture details and the 
diminution of significant targets. To visualize the effect of the fused images, we zoom in on the region 
with rich texture details in the red box. We can observe that compared with our method, the three 
traditional methods ADF, IVFusion, and GF have some degree of loss of door frame details, which is 
because the texture details in the background region are contaminated by the thermal radiation 
information, especially the IVFusion method, which failing to preserve the useful information of the 
source image well and the overall visual effect is poor. The DDcGAN method has a limited ability to 
extract texture details from the visible image, and not only has a distortion problem but also cannot 
preserve the sharpened edges of the target. As for the method of YDTR, the intensity information of 
the significant targets is diminished to different degrees, and the overall contrast is low. In the PMGI 
results, the thermal radiation information is obviously disturbed, the sky color is not clean enough, 
while the texture of door frames, grassy areas and roads are not adequately preserved. It is worth 
mentioning that DenseFuse, IFCNN and GAN-FM interfere less with the useless information, but the 
texture details are still lost and the edges of the door frame are not clear enough. Overall, DAS-Net 
provides a good visual effect, on one hand, our method maintains clear background information, 
such as bright skies, layered grasses, and door frames with distinct edges, on the other hand, the 
major significant information from the infrared image is clearly highlighted. 

 
(a) IR (b) VIS              (c) ADF           (d) IVFusion 

 
(e) GF (f) DenseFuse        (g) DDcGAN         (h) IFCNN 

 
(i) PMGI (j) GAN-FM           (k) YDTR            (l) Our 

Figure 12. Fusion images of "person walking" for different methods, along with their respective source 
images. 

The second set of source images and their fused image results for different methods are shown 
in Figure 13. It is obvious that our fusion results are better than the other nine methods from the 
viewpoint of visual effect, preservation of texture details, and significant target. The methods of 
IFCNN, PMGI, GAN-FM, and YDTR do not retain enough texture details, the background 
information of tree branches and railings is blurred, and the intensity information of infrared is too 
low, resulting in low contrast between light and dark in the fused image. Although the ADF and GF 
methods retain relatively clear background information, it can be observed from the areas with rich 
texture details in the red box that the fusion effect is still our method. 
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(a) IR (b) VIS              (c) ADF           (d) IVFusion 

 
(e) GF (f) DenseFuse        (g) DDcGAN         (h) IFCNN 

 
(i) PMGI (j) GAN-FM           (k) YDTR            (l) Our 

Figure 13. Fusion images of "forest trail" for different methods, along with their respective source 
images. 

4.5.2. Objective Results 

We selected 51 image pairs from the TNO dataset for quantitative evaluation. Figure 14 displays 
the performance metrics for each fusion result, while Table 3 shows the average performance metric 
values for these fusion methods. For each metric, the best and second best fusion results for all 
methods are marked in bold and italics, respectively. As can be seen in several figures, our method 
has significant advantages on SSIM, MSE, CC, and QCB on the TNO dataset. This phenomenon implies 
that our fused images have the best visual effect and contain rich texture information and infrared 
salient target information. In addition, our method ranks second in PSNR and SCD, which indicates 
that our method transfers enough source image information to the fused images. In summary, a large 
number of qualitative and quantitative results on the TNO dataset show that our method has 
outstanding generalization and stability, and is able to retain sufficient texture details and intensity 
information. We boil this advantage down to several aspects. On the one hand, we design an 
asymmetric network for the different modal characteristics of the infrared and visible images, 
preserving thermal radiation information of infrared images and texture details of visible images, 
respectively. On the other hand, we embed the transformer into the CNN network, which allows the 
network to preserve the global and local features to the maximum extent. 
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Figure 14. Graphs of performance metrics for different fusion methods. 

Table 3. Objective results of the generalization experiment TNO datasets. 

Methods 
Quality Metrics 

SSIM MSE CC PSNR SCD QCB 

ADF 0.7085 101.6540 0.5407 28.1317 1.4522 0.4888 
IVFusion 0.5224 133.1557 0.4016 27.4738 1.0104 0.4795 

GF 0.7529 99.9707 0.5368 28.2123 1.5735 0.4891 
DenseFuse 0.7547 104.4317 0.5068 28.0037 1.4427 0.4774 
DDcGAN 0.5785 107.4098 0.5120 28.2019 1.4089 0.4497 

IFCNN 0.7230 108.8827 0.5246 27.7912 1.5154 0.4804 
PMGI 0.7067 87.2343 0.5363 29.7962 1.4668 0.4823 

GAN-FM 0.6763 100.7944 0.5049 28.3592 1.5058 0.4540 
YDTR 0.7443 131.2808 0.5213 26.9846 1.4979 0.4478 
Our 0.7587 80.6446 0.5452 29.3554 1.5180 0.5000 

4.6. Detecting Performance 

Target detection is an important research direction in the field of computer vision, and its 
performance reflects well the semantic information integrated into the fused images. To be able to 
better evaluate the target detection performance of fused images, we use the YOLOX detector [53] for 
detection. We conducted experiments on 50 randomly selected pairs of images from the MFNet 
dataset, including 25 pairs of nighttime images and 25 pairs of daytime images, which almost describe 
the urban scenes. 

4.6.1. Subjective Results 

Figure 15, Figure 16 and Figure 17 show some typical source images and the detection results of 
different methods. From the visualization results, we can find that visible images contain rich 
background information but are difficult to detect salient targets, while infrared images can provide 
sufficient semantic information about salient targets (e.g., people) and the target has high contrast 
with the background, which is more helpful for detectors to detect salient targets. Different fusion 
algorithms can integrate the complementary information of these two images, however, the 
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performance of fusion and detection differs due to the difference in methods. For example, in the 
00004N scenario, the methods of IVFusion, GF, DDcGAN, PMGI, and YDTR detect only one person, 
and ADF, DenseFuse, and GAN-FM detect two people, while our method and IFCNN detect three 
people with higher confidence level than IFCNN. A similar scenario occurs in the 00726N scene, 
where our method accurately detects people, cars, and also trucks, but trucks cannot be detected by 
the source image as well as other methods. This shows that our method fully integrates the intensity 
information of infrared images and the texture information of visible, and is suitable for subsequent 
image applications. 

 
(a) IR (b) VIS              (c) ADF           (d) IVFusion 

 
(e) GF (f) DenseFuse        (g) DDcGAN         (h) IFCNN 

 
(i) PMGI (j) GAN-FM           (k) YDTR            (l) Our 

Figure 15. Subjective results of target detection on scene 00004N. 

 
(a) IR (b) VIS              (c) ADF           (d) IVFusion 

 
(e) GF (f) DenseFuse        (g) DDcGAN         (h) IFCNN 

 
(i) PMGI (j) GAN-FM           (k) YDTR            (l) Our 

Figure 16. Subjective results of target detection on scene 00726N. 
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In daytime images, the confidence level of visible images for detecting pedestrians is lower than 
that of infrared images due to daytime illumination factors, and even some pedestrian targets may 
not be detected. In the 00420D scene, DDcGAN cannot keep the sharpened edges of pedestrians and 
other objects, resulting in low confidence of both targets. Due to the interference of useless 
information, ADF, IVFusion, IFCNN, and YDTR have some targets undetected. The poor fusion of 
GF, GAN-FM, and PMGI leads to lower confidence in detecting pedestrians and other objects than 
the source image. In contrast, our method and DenseFuse fully integrate the semantic information in 
the source images, preserving the source image targets and details. Compared with others, our fused 
images can detect all targets with confidence levels closer to the source image for all detected targets, 
which demonstrates the advantage of our method in facilitating advanced vision tasks. 

 
(a) IR (b) VIS              (c) ADF           (d) IVFusion 

 
(e) GF (f) DenseFuse        (g) DDcGAN         (h) IFCNN 

 
(i) PMGI (j) GAN-FM           (k) YDTR            (l) Our 

Figure 17. Subjective results of target detection on scene 00420D. 

4.6.2. Objective Results 

To further evaluate the performance of different methods for the detection task, we use the mean 
evaluation precision (mAP) for quantitative evaluation. The mAP has a value between 0 and 1, the 
closer to 1, the better in the model. mAP@0.5 and mAP@0.9 denotes the mAP values at confidence 
thresholds of 0.5 and 0.9, respectively. The results are shown in Table few and it can be seen that our 
method performs better under both thresholds. Especially in terms of mAP@0.9, the fused images of 
our method have a clear advantage and rank first in terms of average accuracy. In terms of mAP@0.5, 
GAN-FM performs the best and our method is second, while GAN-FM performs poorly in the other 
threshold. This further indicates the excellent stability of our method. Based on the above subjective 
and objective analysis, we conclude that the fused images of the proposed method can perform well 
in the image fusion task and also help improve the performance of target detection. 

Table 4. Detection results of source images and different fusion methods. 

Methods 
mAP@0.5 mAP@0.9 

Person Car Average Person Car Average 

IR 0.6307 0.3023 0.4665 0.2562 0.3013 0.2788 
VIS 0.4953 0.7240 0.6096 0.1901 0.4358 0.3129 

ADF 0.6935 0.7208 0.7072 0.2456 0.4505 0.3480 
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IVFusion 0.7288 0.7040 0.7164 0.1768 0.3733 0.2750 
GF 0.6562 0.7300 0.6931 0.2415 0.4603 0.3509 

DenseFuse 0.6915 0.7353 0.7134 0.2413 0.4425 0.3419 
DDcGAN 0.4010 0.6968 0.5489 0.1072 0.3550 0.2316 

IFCNN 0.7038 0.7305 0.7172 0.2541 0.4108 0.3324 
PMGI 0.6990 0.6788 0.6889 0.2238 0.3448 0.2843 

GAN-FM 0.7450 0.7548 0.7499 0.2409 0.4178 0.3293 
YDTR 0.7149 0.5708 0.6428 0.2348 0.4972 0.3660 
Our 0.7241 0.7388 0.7223 0.2458 0.4865 0.3661 

5. Conclusions 

In this paper, we propose a new end-to-end network to solve the problem of infrared and visible 
image fusion. For the characteristics of two different modal images, we design dual-stream 
asymmetric branched paths to extract infrared and visible image features, use Transformer to capture 
global information and long-distance dependencies in infrared images, and use residual dense blocks 
to fully extract texture details in visible images. Finally, the captured features are fully merged by the 
main path to further retain important information. This approach enables the preservation of both 
texture details from visible images and thermal radiation targets from infrared images in a superior 
manner. We conducted a large number of comparison experiments and generalization experiments 
testing using RoadScene datasets and TNO datasets. The experimental results reveal that our 
approach outperforms existing techniques in both subjective and objective evaluations, 
demonstrating its outstanding performance and generalization ability. And target detection 
experiments were carried out on the MFNet datasets to showcase the prowess of our approach in 
elevating high-level visual tasks. 
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