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Abstract: The aim of this study was to create a novel machine learning (ML) algorithm for predicting the post-

pubertal mandibular length and Y-axis in females. Cephalometric data from 176 females with Angle Class I 

occlusion were used to train and test 7 ML algorithms. For all ML methods tested, the mean absolute errors 

(MAEs) for the 2-year prediction ranged from 2.78-5.40 mm and 0.88-1.48 degrees, respectively. For the 4-year 

prediction, MAEs of mandibular length and Y-axis ranged from 3.21-4.00 mm and 1.19-5.12 degrees, 

respectively. The most predictive factors for post-pubertal mandibular length were mandibular length at 

previous timepoints, age, sagittal positions of the maxillary and mandibular skeletal bases, mandibular plane 

angle, and anterior and posterior face heights. The most predictive factors for post-pubertal Y-axis were Y-axis 

at previous timepoints, mandibular plane angle, and sagittal positions of the maxillary and mandibular skeletal 

bases. ML methods were identified as capable of predicting mandibular length within 3 mm, and Y-axis within 

1 degree. Compared to each other, all of the ML algorithms were similarly accurate, with the exception of MLP 

regressor. 

Keywords: artificial intelligence; machine learning; growth and development; mandible 

 

1. Introduction 

Mandibular growth is an especially important concept for orthodontists when treating a 

growing patient. Within the craniofacial complex, there is no component with greater postnatal 

growth potential than the mandible [1]. Much attention has been given to the growth of the mandible 

and its unique features. The magnitude of growth in the mandible also varies with the age of the 

individual, with the largest changes occurring during the adolescent growth spurt [2]. There are also 

very clear gender differences in mandibular growth. Growth differences in the mandible between 

males and females can be observed in early childhood and become more prominent during 

adolescence. Girls have been observed to begin, reach peak, and complete the pubertal growth spurt 

approximately two years prior to their male counterparts [3]. There is also significant difference in 

the magnitude of growth between the sexes. While females tend to reach the pubertal growth spurt 

earlier than males, males are shown to have a more intense growth spurt as well as two additional 

years of growth [4]. The rate of condylar change during peak growth is significantly greater for males 

and the overall magnitude change in mandibular length is greater in males than females [5].   
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Researchers and orthodontists have been attempting to develop methods to predict mandibular 

growth for decades. Despite these efforts, even the most experienced of clinicians often fail on their 

predictions [6]. Bjork developed a method using metallic implants and cephalometric radiographs to 

analyze the growth pattern [2] and rotation [7] of the mandible. He suggested that the most accurate 

way to predict the rotation of the mandible from a single radiograph could be based on seven 

structural signs that represent bony remodeling of the mandible during growth [7,8]. The predictive 

value utilizing this method, however, was shown to be no more accurate than inputting random 

values, and therefore deemed clinically unacceptable [9]. Alternatively, Ricketts postulated that the 

mandible grows along an arc, and growth can therefore be forecasted based on an arcial pattern [10]. 

Mathematical and statistical procedures that build upon the previously described models have 

also been attempted for predicting mandibular growth. Buschang et al [11] attempted to use 

multilevel models that took into consideration the mean growth curve of the population as well as 

variations in the individuals observed. The multilevel models were compared with individual data 

extrapolated from growth curves and found no statistically significant benefit. In another study 

attempting to develop a mathematical model, Oueis et al [12] postulated that evaluating a younger 

population might lead to a more predictable method. The study evaluated 15 measurements from the 

lateral cephalograms of children aged 4-9 years old and derived a multiple regression equation that 

was shown to be of little predictive value. 

A burgeoning technology that is being utilized in many fields is that of artificial intelligence (AI) 

and machine learning (ML). For simple AI to predict an outcome, it requires every possible outcome 

to be programmed into its algorithm. ML is a subset of AI that eliminates this requirement and allows 

the computer to learn from inputted data, constructing output data without prior programming of 

such information [13]. AI and ML are being increasingly applied in various areas of orthodontics to 

improve diagnostics, treatment planning, and patient care. Most current applications of this 

emerging technology have focused on image analysis and diagnosis [14-18], 

orthodontic/orthognathic decision-making processes and treatment planning [19-30], and growth 

prediction [31,32]. In an early study to test the ability of AI and ML to predict mandibular growth, 

Jiwa et al [33] sought to train a deep learning algorithm to predict mandibular growth. However, 

none of the landmarks were predicted with an error below 1.5 mm and only 3 were predicted with 

an error below 2.5 mm. In a previously published study from our group, Wood et al [31] sought to 

improve upon the study of Jiwa by gathering a larger number of subjects and reducing the complexity 

of the algorithm by narrowing the demographics of the subjects, focusing on Class I males. They 

found that all ML methods tested could accurately predict post-pubertal mandibular length and Y-

axis within the range of 3.5 mm and 1.5°, respectively. The initial findings of these studies showed 

promising results in accurately predicting mandibular growth using ML techniques. Gender plays a 

significant role in human craniofacial growth, with variations observed in the timing and magnitude 

of growth between males and females [3,34]. Despite this, there is a lack of research evaluating the 

accuracy of ML models in predicting female pubertal mandibular growth. Hence, the objective of this 

study was to develop a novel ML model capable of accurately predicting pubertal mandibular 

growth in Class I females. 

2. Materials and Methods 

2.1. Study Sample 

The digital lateral cephalometric radiographs used to formulate data for this retrospective study 

were collected from the American Association of Orthodontists Foundation (AAOF) Craniofacial 

Growth Legacy Collection [35]. The collection consists of patient radiographic images from the 

following growth studies: Bolton-Brush Growth, Burlington Growth, Denver Growth, Fels 

Longitudinal, Forsyth Twin, Iowa Growth, Mathews Growth, Michigan Growth, and Oregon 

Growth. Inclusion criteria included female subjects with cephalometric radiographs captured during 

the circumpubertal developmental period and Angle Class I occlusion. Three time points were 
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gathered with T1 representing the pre-pubertal stage (Mean age SD: 10.05 ± 0.33 yrs), T2 representing 

the pubertal stage (Mean age SD: 11.98 ± 0.36 yrs), and T3 representing the post-pubertal stage (Mean 

age SD: 13.85 ± 0.55 yrs). Subjects exhibiting craniofacial anomalies, noticeable skeletal asymmetries, 

inadequate image quality, or missing relevant timepoints were excluded from the study. A total of 

176 subjects that satisfied the inclusion criteria were selected for the study. 

2.2. Sample Size Justification 

Power analysis revealed that a minimum of 36 subjects in the test set was required to obtain a 

95% confidence interval for the intraclass correlation coefficients (ICCs), ranging from 0.64 to 0.89, 

assuming the ICC is 0.80. Furthermore, higher ICC values would result in narrower confidence 

interval widths. 

2.3. Data Collection 

Digital images from the AAOF repository were uploaded into Dolphin Imaging v. 11.95 

(Dolphin Imaging and Management Solutions, Chatsworth, Calif, USA) and were traced by a single 

investigator (M.P.) using 25 hard tissue landmarks and 12 soft tissue landmarks (Figure 1). A total of 

47 linear and angular measurements were measured and recorded; definitions of the measurements 

are listed in Table S1. Images were scaled by using fiducial data embedded on the images as described 

in reference material provided by the AAOF. Fiduciaries are reference marks located on the images 

with known coordinate values allowing the user to compute the scale of the image. The demographic 

and cephalometric data were subsequently entered into a spreadsheet and securely stored in a cloud 

service (OneDrive, Microsoft Co., Redmond, WA, USA). To evaluate the repeatability of 

measurements, a research randomizer was employed to randomly choose 10 images for retracing. 

The ICCs were utilized to assess the repeatability of these measurements. 

 

Figure 1. Cephalometric landmarks used in this study. 1. Sella (S), 2. Nasion (N), 3. Orbitale (Or), 4. 

Porion (Po), 5. Condylion (Co), 6. Articulare (Ar), 7. Basion (Ba), 8. Gonion (Go), 9. Menton (Me), 10. 

Gnathion (Gn), 11. Pogonion (Pog), 12. B point (B), 13. Lower incisor root apex (L1a), 14. Lower incisor 

incisal edge (L1i), 15. Mesial of lower first molar (L6m), 16. Mesiobuccal cusp of lower first molar 

(L6mb), 17. Distal of lower first molar (L6d), 18. Distal of upper first molar (U6d), 19. Mesiobuccal 
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cusp of upper first molar (U6mb), 20. Mesial of upper first molar (U6m), 21. Upper incisor incisal 

edge (U1i), 22. Upper incisor root apex (U1a), 23. A point (A), 24. Anterior nasal spine (ANS), 25. 

Posterior nasal spine (PNS), 26. Glabella (G), 27. Soft tissue nasion (N'), 28. Pronasale (Pn), 29. 

Subnasale (Sn), 30. Soft tissue A point (A’), 31. Upper lip (Ls), 32. Stomion superioris (Ss), 33. Stomion 

inferioris (Si), 34. Lower lip (Li), 35. Soft tissue B point (B’), 36. Soft tissue pogonion (Pog'), 37. Soft 

tissue menton (Me'). 

2.4. Algorithm Training and Testing  

The algorithm training and testing workflow is illustrated in Figure 2. Data were randomly 

distributed into a training set consisting of 80% of the subjects (n=140) and a test set consisting of the 

remaining 20% (n=36). The training set was used to train the ML models using the linear and angular 

measurements derived from lateral cephalogram tracings from all three timepoints. The prediction 

task was executed by giving the algorithms input data from the test set to predict growth magnitude 

and direction of the mandible at T3. They were first given measurements from T1 and T2 to predict 

values at T3, then given measurements from T1 alone to predict values at T3; thus, providing a 2-year 

prediction and a 4-year prediction, respectively. The performance of the trained models was assessed 

based on their ability to predict post-pubertal mandibular length (Co-Gn) and Y-axis (SGn-SN). 

 

Figure 2. Algorithm training and testing workflow. 

Overall, six traditional regression algorithms and a small Neural Network (NN) model were 

trained and tested for analysis: XGBoost regression, Random Forest regressor, Lasso, Ridge, Linear 

Regression, Support Vector Regression (SVR), and Multilayer Perceptron (MLP) regressor. To explore 

the linear relationship, least squares regression without any regularizer (linear regression) and with 

L1 (Lasso) and L2 (Ridge) regularizers were implemented. Least squares method is a standard 

statistical method used to approximate the solution of problems that have more equations than 

unknowns. For data that did not fall in a linear path, nonlinear methods like kernel-based SVR, tree-

based XGBoost, RF and NN such as MLP are natural choices. Due to small training set and mixture 

of both numerical and categorical features, tree-based regression methods were first to try and we 

explored boosting (XGBoost) and bagging trees (Random Forrest) regressors. Random Forest creates 
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an ensemble of decision trees to minimize the differences between predicted and actual values of 

dependent variables, thus, it is less likely to overfit training data [36]. Although the training set was 

too small for data hungry NN model, for the sake of completeness, we added MLP regressor into the 

training algorithms. The input to all ML models were the values of the 47 covariates and models are 

asked to predict mandibular length and Y-axis growth at 2 and 4-years. We performed automated 

hyperparameter tuning using python Hyperopt package for all the models with 100 iterations for 

each model. The best configuration was chosen based on the score on validation set then frozen 

models tested on held-out test set. 

2.5. Statistical Analysis 

The mean absolute error (MAE), root mean square error (RMSE), mean error (ME), ICCs, and 

Bland-Altman plots were calculated for each technique to evaluate the agreement between the 

predicted and actual outcome measurements. The accuracy percentage of the methods were 

calculated by the formula (1 - (MAE/Actual value) x 100). The directional and absolute differences 

between the predicted and actual measurements were calculated and compared between prediction 

methods using analysis of variance (ANOVA), with random effects to account for data correlation 

within the 2-year prediction data, within the 4-year prediction data, and overall, and allowed for 

different error variances for the 2-year and 4-year prediction data. Comparisons of interest were 

among 2-year predictions for each method, among 4-year predictions for each method, and between 

2-year and 4-year predictions by method. Paired t-tests were used to test for a significant mean 

directional difference between predicted and actual measurements. A two-sided 5% significance level 

was used for all tests. All analyses were performed using SAS version 9.4 (SAS Institute, Inc., Cary, 

NC, USA). 

3. Results 

3.1. Reliability Analysis 

The results of the reliability analysis are given in Table S2. Most variables showed excellent 

repeatability (ICCs > 0.90) [37], with the remainder having good repeatability (0.75 < ICC < 0.90). The 

two exceptions to this were soft tissue UFH (G’-Sn) and the Holdaway Ratio (L1-NB:Pg-NB) that had 

poor repeatability (ICCs<0.50). 

3.2. Descriptive Statistics 

The descriptive statistics of the cephalometric measurements at T1, T2, and T3, including mean, 

standard deviation, and minimum/maximum values, are shown in Table S3.  

3.3. Prediction of the Female Post-Pubertal Mandibular Length 

The results for the 2-year and 4-year predictions of female post-pubertal mandibular length are 

given in Table 1 and Figure 3. For the 2-year prediction, MAEs ranged from 2.78 mm to 5.40 mm, 

with Lasso being most accurate and MLP Regressor the least. All methods demonstrated moderate 

to good correlation between predicted and actual values (0.63< ICCs < 0.86). Accuracy percentages 

ranged from 95.56% to 97.63%. For the 4-year prediction, MAEs ranged from 3.21 mm to 4.00 mm, 

with Ridge being most accurate and Random Forest the least. All methods demonstrated moderate 

to good correlation between predicted and actual values (0.61< ICCs < 0.84). Accuracy percentages 

ranged from 96.71% to 97.36%.  

Bland-Altman plots indicated a discernable pattern between predicted and actual values (Figure 

3). Both Lasso and Ridge over-estimated post-pubertal mandibular length for smaller lengths and 

under-estimated for larger lengths, in both the 2-year and 4-year predictions.  

The most predictive factors of female post-pubertal mandibular length selected by Lasso and 

Ridge were presented in Figure 4. Mandibular length, age, SNPg, occlusal plane to mandibular plane, 
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SNB and L1-MP were among the most predictive factors selected by Lasso, while Ridge additionally 

used lower, upper and posterior face heights in its predictions.  

Table 1. Results of 2-year and 4-year prediction of the female post-pubertal mandibular length. 

 2-Year Prediction 4-Year Prediction 

Models MAE RMSE ME ICC Accuracy % MAE RMSE ME ICC Accuracy %

XGBoost 3.10 4.18 0.75 0.79 97.45 3.97 5.04 1.17 0.70 96.73

Random Forest 3.16 4.19 0.70 0.74 97.40 4.00 5.31 1.55 0.61 96.71

Lasso 2.78 3.46 0.47 0.86 97.71 3.25 4.13 0.71 0.79 97.33

Ridge 2.88 3.60 0.35 0.85 97.63 3.21 3.79 0.23 0.84 97.36

Linear Regression 5.40 6.40-1.13 0.63 95.56 3.53 4.21 0.13 0.81 97.10

SVR 3.25 3.85 0.69 0.84 97.33 3.74 4.40 0.79 0.78 96.92

MLP 3.88 5.24 1.39 0.63 96.81 3.78 4.65 -2.11 0.73 96.89

MAE: Mean absolute error, RMSE: Root mean square error, ME: Mean error, ICC: Intra-class correlation 

coefficient. 

 

Figure 3. Bland-Altman plots for 2-year and 4-year predictions of female post-pubertal mandibular 

length using Lasso (top) and Ridge (bottom). The blue dashed lines represent upper and lower bounds 
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of the 95% confidence intervals. Orange solid line represents mean difference between predicted and 

actual post-pubertal mandibular length. . 

 

Figure 4. Top predictive factors for 2-year and 4-year predictions of female post-pubertal mandibular 

length using Lasso (top) and Ridge (bottom). 

3.4. Prediction of the Female Post-Pubertal Y-axis 

The results for the 2-year and 4-year predictions of female post-pubertal Y-axis are given in Table 

2 and Figure 5. For the 2-year prediction, MAEs ranged from 0.88° to 1.48°, with Lasso being most 

accurate and MLP Regressor the least. All methods demonstrated good to excellent correlation 

between predicted and actual values (0.79< ICCs < 0.94). Accuracy percentages ranged from 97.83% 

to 98.71%. For the 4-year prediction, MAEs ranged from 1.19° to 1.66°, with Lasso being most accurate 

and Random Forest the least. All methods demonstrated good to excellent correlation between 

predicted and actual values (0.87< ICCs < 0.90). Accuracy percentages ranged from 97.56% to 98.25%. 

No discernable pattern was detected for the Bland-Altman plots between predicted and actual values 

(Figure 5). The most predictive factors of female post-pubertal Y-axis selected by Lasso and Ridge 

were presented in Figure 6. Y-axis, ANB, SN-MP, FMA, SN-Pg and lower face height were among 

the most predictive factors selected by Lasso, while Ridge additionally used Holdaway ratio, U1-NA, 

Wits appraisal and SNB in its predictions. 

Table 2. Results of 2-year and 4-year prediction of the female post-pubertal Y-axis. 

 2-Year Prediction 4-Year Prediction 

Models MAE RMSE ME ICCAccuracy % MAE RMSE ME ICC Accuracy %

XGBoost 1.12 1.43 0.34 0.91 98.36 1.37 1.64 0.46 0.89 97.99 

Random Forest 1.24 1.54 0.52 0.90 98.18 1.66 2.04 0.65 0.84 97.56 

Lasso 0.88 1.25 0.22 0.94 98.71 1.19 1.53 0.36 0.90 98.25 

Ridge 1.01 1.45 -0.040.92 98.52 1.32 1.65 0.15 0.88 98.06 

Linear Regression 1.2 1.52 0.19 0.91 98.24 1.4 1.71 0.44 0.89 97.95 

SVR 1.01 1.34 0.04 0.93 98.52 1.43 1.75 -0.12 0.87 97.90 

MLP 1.48 2.42 0.52 0.79 97.83 1.43 1.76 -0.27 0.87 97.90 
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MAE: Mean absolute error, RMSE: Root mean square error, ME: Mean error, ICCL Intra-class correlation 

coefficient. 

 

Figure 5. Bland-Altman plots for 2-year and 4-year predictions of female post-pubertal Y-axis using 

Lasso (top) and Ridge (bottom). The blue dashed lines represent upper and lower bounds of the 95% 

confidence intervals. Orange solid line represents mean difference between predicted and actual Y-

axis. 

 

Figure 6. Top predictive factors for 2-year and 4-year predictions of female post-pubertal Y-axis using 

Lasso (top) and Ridge (bottom). 

3.5. Method Comparison 

Directional and absolute difference comparisons between ML methods for 2-year prediction of 

post-pubertal mandibular length are given in Table 3. Significant directional and absolute differences 
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were observed among the ML methods in 2-year prediction of the post-pubertal mandibular length 

(P<.05). MLP regressor produced significantly different directional results compared to all the tested 

ML methods; Linear Regression also showed significant directional differences from multiple other 

methods. MLP regressor and Linear Regression produced estimates that were significantly larger 

compared to various other ML methods. 

Similar results were observed among the ML methods in 4-year prediction of the post-pubertal 

mandibular length (Table 4). MLP regressor, Random Forest, and XGBoost regression showed 

significant directional differences compared to various other methods (P<.05). In terms of absolute 

differences, MLP regressor and Random Forest produced estimates that were significantly larger 

than Lasso and Ridge.  

The ML methods had greater agreement for Y-axis than mandibular length in both absolute and 

directional difference and in both the 2-year and 4-year predictions (Tables 5 and 6). MLP regressor 

produced estimates significantly larger than Lasso, Ridge, and SVR in the 2-year prediction, while 

SVR had significant directional difference compared to most other methods in the 4-year prediction 

(P<.05). 

Lastly, the directional and absolute differences between the 2-year and 4-year predictions of 

post-pubertal mandibular length and Y-axis with each ML algorithm were compared and the results 

were given in Tables 7 and 8. Directional and absolute differences of the mandibular length were 

significantly smaller in the 4-year predictions compared to the 2-year predictions for Linear 

Regression (P=0.028 for directional differences, P<0.001 for absolute differences). Absolute differences 

of Y-axis were significantly larger in the 4-year predictions compared to the 2-year predictions for 

Random Forest (P=0.025) and SVR (P=0.039). No significant differences in directional differences of 

Y-axis were found between the 2-year or 4-year predictions for any method (P>.05). 

Table 3. Directional and absolute difference comparisons between ML methods for 2-year prediction 

of post-pubertal mandibular length. 

Directional Difference Absolute Difference 

Result P-value Result P-value 

Lasso < Linear Regression 0.011 Lasso < Linear Regression <.001 

Lasso > MLP <.001 Lasso < MLP <.001 

Lasso & Random Forest 0.266 Lasso & Random Forest 0.145 

Lasso & Ridge 0.932 Lasso & Ridge 0.797 

Lasso & SVR 0.630 Lasso & SVR 0.298 

Lasso & XGBoost 0.561 Lasso & XGBoost 0.479 

Linear Regression > MLP <.001 Linear Regression & MLP 0.103 

Linear Regression > Random Forest <.001 Linear Regression > Random Forest <.001 

Linear Regression > Ridge 0.014 Linear Regression > Ridge <.001 

Linear Regression > SVR 0.003 Linear Regression > SVR <.001 

Linear Regression > XGBoost 0.002 Linear Regression > XGBoost <.001 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2023                   doi:10.20944/preprints202306.2202.v1

https://doi.org/10.20944/preprints202306.2202.v1


 10 

 

MLP < Random Forest <.001 MLP > Random Forest 0.014 

MLP < Ridge <.001 MLP > Ridge <.001 

MLP < SVR <.001 MLP > SVR 0.004 

MLP < XGBoost <.001 MLP > XGBoost 0.001 

Random Forest & Ridge 0.231 Random Forest & Ridge 0.230 

Random Forest & SVR 0.527 Random Forest & SVR 0.676 

Random Forest & XGBoost 0.594 Random Forest & XGBoost 0.453 

Ridge & SVR 0.571 Ridge & SVR 0.433 

Ridge & XGBoost 0.505 Ridge & XGBoost 0.652 

SVR & XGBoost 0.921 SVR & XGBoost 0.739 

Table 4. Directional and absolute difference comparisons between ML methods for 4-year prediction 

of post-pubertal mandibular length. 

Directional Difference Absolute Difference 

Result P-value Result P-value 

Lasso & Linear Regression 0.201 Lasso & Linear Regression 0.510 

Lasso > MLP <.001 Lasso < MLP 0.040 

Lasso > Random Forest 0.039 Lasso & Random Forest 0.051 

Lasso & Ridge 0.290 Lasso & Ridge 0.928 

Lasso & SVR 0.858 Lasso & SVR 0.245 

Lasso & XGBoost 0.302 Lasso & XGBoost 0.088 

Linear Regression > MLP <.001 Linear Regression & MLP 0.160 

Linear Regression > Random Forest 0.001 Linear Regression & Random Forest 0.194 

Linear Regression & Ridge 0.824 Linear Regression & Ridge 0.454 

Linear Regression & SVR 0.145 Linear Regression & SVR 0.613 

Linear Regression > XGBoost 0.021 Linear Regression & XGBoost 0.293 

MLP < Random Forest 0.004 MLP & Random Forest 0.914 

MLP < Ridge <.001 MLP > Ridge 0.032 
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MLP < SVR <.001 MLP & SVR 0.367 

MLP < XGBoost <.001 MLP & XGBoost 0.722 

Random Forest < Ridge 0.002 Random Forest > Ridge 0.041 

Random Forest & SVR 0.059 Random Forest & SVR 0.426 

Random Forest & XGBoost 0.298 Random Forest & XGBoost 0.804 

Ridge & SVR 0.216 Ridge & SVR 0.210 

Ridge > XGBoost 0.037 Ridge & XGBoost 0.073 

SVR & XGBoost 0.393 SVR & XGBoost 0.584 

Table 5. Directional and absolute difference comparisons between ML methods for 2-year prediction 

of post-pubertal Y-axis. 

Directional Difference Absolute Difference 

Result P-value Result P-value 

Lasso & Linear Regression 0.923 Lasso & Linear Regression 0.121 

Lasso & MLP 0.256 Lasso < MLP 0.004 

Lasso & Random Forest 0.419 Lasso & Random Forest 0.129 

Lasso & Ridge 0.331 Lasso & Ridge 0.529 

Lasso & SVR 0.501 Lasso & SVR 0.530 

Lasso & XGBoost 0.646 Lasso & XGBoost 0.257 

Linear Regression & MLP 0.218 Linear Regression & MLP 0.186 

Linear Regression & Random Forest 0.366 Linear Regression & Random Forest 0.972 

Linear Regression & Ridge 0.381 Linear Regression & Ridge 0.355 

Linear Regression & SVR 0.564 Linear Regression & SVR 0.354 

Linear Regression & XGBoost 0.579 Linear Regression & XGBoost 0.673 

MLP & Random Forest 0.742 MLP & Random Forest 0.174 

MLP < Ridge 0.036 MLP > Ridge 0.025 

MLP & SVR 0.071 MLP > SVR 0.025 

MLP & XGBoost 0.498 MLP & XGBoost 0.081 
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Random Forest & Ridge 0.076 Random Forest & Ridge 0.373 

Random Forest & SVR 0.140 Random Forest & SVR 0.372 

Random Forest & XGBoost 0.727 Random Forest & XGBoost 0.699 

Ridge & SVR 0.764 Ridge & SVR 0.999 

Ridge & XGBoost 0.153 Ridge & XGBoost 0.614 

SVR & XGBoost 0.258 SVR & XGBoost 0.613 

Table 6. Directional and absolute difference comparisons between ML methods for 4-year prediction 

of post-pubertal Y-axis. 

Directional Difference Absolute Difference 

Result P-value Result P-value 

Lasso & Linear Regression 0.694 Lasso & Linear Regression 0.196 

Lasso & MLP 0.653 Lasso & MLP 0.150 

Lasso & Random Forest 0.145 Lasso < Random Forest 0.005 

Lasso & Ridge 0.290 Lasso & Ridge 0.430 

Lasso < SVR 0.017 Lasso & SVR 0.143 

Lasso & XGBoost 0.631 Lasso & XGBoost 0.270 

Linear Regression & MLP 0.399 Linear Regression & MLP 0.885 

Linear Regression & Random Forest 0.287 Linear Regression & Random Forest 0.132 

Linear Regression & Ridge 0.147 Linear Regression & Ridge 0.613 

Linear Regression < SVR 0.006 Linear Regression & SVR 0.862 

Linear Regression & XGBoost 0.931 Linear Regression & XGBoost 0.847 

MLP & Random Forest 0.057 MLP & Random Forest 0.173 

MLP & Ridge 0.543 MLP & Ridge 0.515 

MLP & SVR 0.052 MLP & SVR 0.978 

MLP & XGBoost 0.353 MLP & XGBoost 0.736 

Random Forest < Ridge 0.012 Random Forest > Ridge 0.045 

Random Forest < SVR <.001 Random Forest & SVR 0.182 
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Random Forest & XGBoost 0.328 Random Forest & XGBoost 0.090 

Ridge & SVR 0.180 Ridge & SVR 0.497 

Ridge & XGBoost 0.125 Ridge & XGBoost 0.754 

SVR > XGBoost 0.004 SVR & XGBoost 0.715 

Table 7. Comparisons of the directional and absolute differences between the 2-year and 4-year 

predictions of post-pubertal mandibular length. 

Directional Difference Absolute Difference

Method Result P-value Result P-value

XGBoost 2-year & 4-year 0.453 2-year & 4-year 0.060

Random Forest 2-year & 4-year 0.309 2-year & 4-year 0.180

Lasso 2-year & 4-year 0.589 2-year & 4-year 0.294

Ridge 2-year & 4-year 0.831 2-year & 4-year 0.481

Linear Regression 2-year > 4-year 0.028 2-year > 4-year <.001

SVR 2-year & 4-year 0.861 2-year & 4-year 0.296

MLP 2-year & 4-year 0.304 2-year & 4-year 0.275

Table 8. Comparisons of the directional and absolute differences between the 2-year and 4-year 

predictions of post-pubertal Y-axis. 

Directional Difference Absolute Difference

Method Result P-value Result P-value

XGBoost 2-year & 4-year 0.663 2-year & 4-year 0.208

Random Forest 2-year & 4-year 0.409 2-year < 4-year 0.025

Lasso 2-year & 4-year 0.600 2-year & 4-year 0.130

Ridge 2-year & 4-year 0.497 2-year & 4-year 0.129

Linear Regression 2-year & 4-year 0.363 2-year & 4-year 0.323

SVR 2-year & 4-year 0.543 2-year < 4-year 0.039

MLP 2-year & 4-year 0.362 2-year & 4-year 0.810
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4. Discussion 

A considerable amount of variation in the amount and direction of pubertal mandibular growth 

exists across genders, races, and individuals. To analyze this complex growth pattern, specific 

inclusion criteria were employed in this study. Only records from girls at the circumpubertal stage 

(10 to 14 years) were analyzed to investigate the peak growth and maturation for the average female. 

Our sample was further narrowed by selecting individuals without significant skeletal sagittal 

discrepancies, as mandibular growth patterns differ significantly in the presence of sagittal 

discrepancy. By establishing a baseline reference with restrictive inclusion criteria, we can gain 

insight into the fundamental principles, patterns, and trends of utilizing AI predictive technology. 

This paves the way for more in-depth analysis, hypothesis testing, and the development of advanced 

methodologies. 

There are two major factors that determine the final position of the mandible: mandibular length 

represents magnitude and Y-axis represents direction of growth. The primary aim of this study was 

to utilize ML models to accurately predict post-pubertal mandibular length and Y-axis from 

cephalometric data of a subject given data from before (T1) and during (T2) peak height velocity. 

Predictions using pre-pubertal data alone provide a 4-year forecast of growth, while adding pubertal 

data provides a 2-year prediction. It would be expected that more input data would result in a more 

accurate prediction, but it would also be less clinically useful. The majority of the ML models were 

able to produce 4-year predictions of post-pubertal mandibular length within 4 mm and ICCs >0.75. 

The 2-year prediction was marginally improved with two of the ML algorithms predicting 

mandibular length under 3 mm and ICCs 0.85 or better. For Y-axis, all but one of the ML algorithms 

had 4-year predictions under 1.5° and ICCs 0.84 or better. The 2-year predictions were improved with 

one ML algorithm predicting Y-axis within 0.88° and an ICC of 0.94. Overall, with few exceptions, 

the ML algorithms did not produce significantly more accurate predictions of post-pubertal 

mandibular length and Y-axis with the addition of pubertal data. This is a promising finding because 

an accurate prediction from a single radiograph would be very clinically useful. It would mean fewer 

radiographic exposures for the patient and less time wasted waiting for more growth to occur. 

Forecasting growth would allow the orthodontist to decide whether or not growth modification 

would be required as a part of the treatment plan.  

There are many potential variables that can influence mandibular growth. Previous studies 

investigating methods to predict mandibular growth have noted this challenge. Skieller et al [8] 

identified 4 variables that could predict mandibular growth rotation and direction. However, Leslie 

et al [9] tested their method and found that the values for the 4 variables could be swapped with 

random values and produce similar predictions. The ML algorithms in our study identified the 

features that had the most influence in the process of predicting post-pubertal mandibular length and 

Y-axis. The most influential feature identified by each ML algorithm for predicting each variable was 

found to be the value of the same variable at the most recent time point. It stands to reason that this 

would be the case and provides proof of concept that the algorithms appropriately weighted 

predictive factors. The majority of the predictive features for mandibular length were values 

representing maxillary and mandibular sagittal skeletal base. The mandibular rotation model was 

also found to be an important factor. Vertical features carried heavier weight in the 2-year prediction 

than the 4-year. The fact that vertical growth continues after the completion of sagittal growth might 

explain this finding. Interestingly, Wood et al [31] found that vertical features weighed more heavily 

in their study on Class I males. Y-axis predictive features identified by the ML algorithms in both 

studies were mostly angular measurements related to the mandibular plane and vertical features. 

This makes sense considering direction of mandibular growth directly relates to lower face height. 

Predictive features relating to dental values were somewhat more surprising; upper and lower incisor 

angulation and overjet were also identified by the ML. This could be explained by the fact that the 

dentition must compensate for skeletal growth patterns.   

A comparison of the ML algorithms revealed very little difference when predicting post-

pubertal Y-axis. Y-axis is less variable over time than mandibular length lending its measurement to 
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more predictability. There was also no clear superiority among the ML algorithms in predicting 

mandibular length. The Ridge and Lasso models most consistently had the best MAEs and ICCs 

which is why they were chosen to be represented in our predictive feature graphs. Based on the 

Bland-Altman plots, some of the plots indicate that differences between predicted and actual have a 

discernable pattern. Mandibular length was constantly over-estimated for smaller lengths and under-

estimated for larger lengths with all ML methods except MLP regression. MLP regression, a neural 

network-based model, consistently underestimated the lengths. No obvious estimation pattern was 

seen in the y-axis predictions.   

The present research study acknowledges several limitations that need to be considered. First, 

the study relied on retrospective data, which inherently carries the risk of recall bias and limited 

availability of certain information. Given the limited information on subjects, developmental stage 

was based on chronological age, which is the least correlative indicator of maturation. The sample 

size used in this study was relatively small, which may limit the generalizability of the findings to 

larger populations. Additionally, the study faced challenges in obtaining standardized sources of 

data, leading to variations in data quality and reliability. Finally, it is important to acknowledge the 

potential for human error in cephalometric tracing and analysis, which can introduce unintentional 

biases or inaccuracies. Despite these limitations, the study's findings provide valuable insights and 

serve as a starting point for further investigation in this area. 

5. Conclusions 

The tested ML models were able to predict post-pubertal mandibular length within 3 mm and 

Y-axis within 1° and did not produce significantly more accurate predictions with the addition of 

pubertal data. Most predictive factors for mandibular length were mandibular length at previous 

timepoints, age, sagittal positions of the maxillary and mandibular skeletal bases, mandibular plane 

angle, and anterior and posterior face heights. Most predictive factors for Y-axis were Y-axis at 

previous timepoints, mandibular plane angle, and sagittal positions of the maxillary and mandibular 

skeletal bases. All ML algorithms yielded consistent results with the exception of MLP regressor 

consistently underestimating the mandibular length. 
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