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Abstract: The aim of this study was to create a novel machine learning (ML) algorithm for predicting the post-
pubertal mandibular length and Y-axis in females. Cephalometric data from 176 females with Angle Class I
occlusion were used to train and test 7 ML algorithms. For all ML methods tested, the mean absolute errors
(MAES) for the 2-year prediction ranged from 2.78-5.40 mm and 0.88-1.48 degrees, respectively. For the 4-year
prediction, MAEs of mandibular length and Y-axis ranged from 3.21-4.00 mm and 1.19-5.12 degrees,
respectively. The most predictive factors for post-pubertal mandibular length were mandibular length at
previous timepoints, age, sagittal positions of the maxillary and mandibular skeletal bases, mandibular plane
angle, and anterior and posterior face heights. The most predictive factors for post-pubertal Y-axis were Y-axis
at previous timepoints, mandibular plane angle, and sagittal positions of the maxillary and mandibular skeletal
bases. ML methods were identified as capable of predicting mandibular length within 3 mm, and Y-axis within
1 degree. Compared to each other, all of the ML algorithms were similarly accurate, with the exception of MLP
regressor.

Keywords: artificial intelligence; machine learning; growth and development; mandible

1. Introduction

Mandibular growth is an especially important concept for orthodontists when treating a
growing patient. Within the craniofacial complex, there is no component with greater postnatal
growth potential than the mandible [1]. Much attention has been given to the growth of the mandible
and its unique features. The magnitude of growth in the mandible also varies with the age of the
individual, with the largest changes occurring during the adolescent growth spurt [2]. There are also
very clear gender differences in mandibular growth. Growth differences in the mandible between
males and females can be observed in early childhood and become more prominent during
adolescence. Girls have been observed to begin, reach peak, and complete the pubertal growth spurt
approximately two years prior to their male counterparts [3]. There is also significant difference in
the magnitude of growth between the sexes. While females tend to reach the pubertal growth spurt
earlier than males, males are shown to have a more intense growth spurt as well as two additional
years of growth [4]. The rate of condylar change during peak growth is significantly greater for males
and the overall magnitude change in mandibular length is greater in males than females [5].
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Researchers and orthodontists have been attempting to develop methods to predict mandibular
growth for decades. Despite these efforts, even the most experienced of clinicians often fail on their
predictions [6]. Bjork developed a method using metallic implants and cephalometric radiographs to
analyze the growth pattern [2] and rotation [7] of the mandible. He suggested that the most accurate
way to predict the rotation of the mandible from a single radiograph could be based on seven
structural signs that represent bony remodeling of the mandible during growth [7,8]. The predictive
value utilizing this method, however, was shown to be no more accurate than inputting random
values, and therefore deemed clinically unacceptable [9]. Alternatively, Ricketts postulated that the
mandible grows along an arc, and growth can therefore be forecasted based on an arcial pattern [10].

Mathematical and statistical procedures that build upon the previously described models have
also been attempted for predicting mandibular growth. Buschang et al [11] attempted to use
multilevel models that took into consideration the mean growth curve of the population as well as
variations in the individuals observed. The multilevel models were compared with individual data
extrapolated from growth curves and found no statistically significant benefit. In another study
attempting to develop a mathematical model, Oueis et al [12] postulated that evaluating a younger
population might lead to a more predictable method. The study evaluated 15 measurements from the
lateral cephalograms of children aged 4-9 years old and derived a multiple regression equation that
was shown to be of little predictive value.

A burgeoning technology that is being utilized in many fields is that of artificial intelligence (AI)
and machine learning (ML). For simple Al to predict an outcome, it requires every possible outcome
to be programmed into its algorithm. ML is a subset of Al that eliminates this requirement and allows
the computer to learn from inputted data, constructing output data without prior programming of
such information [13]. Al and ML are being increasingly applied in various areas of orthodontics to
improve diagnostics, treatment planning, and patient care. Most current applications of this
emerging technology have focused on image analysis and diagnosis [14-18],
orthodontic/orthognathic decision-making processes and treatment planning [19-30], and growth
prediction [31,32]. In an early study to test the ability of Al and ML to predict mandibular growth,
Jiwa et al [33] sought to train a deep learning algorithm to predict mandibular growth. However,
none of the landmarks were predicted with an error below 1.5 mm and only 3 were predicted with
an error below 2.5 mm. In a previously published study from our group, Wood et al [31] sought to
improve upon the study of Jiwa by gathering a larger number of subjects and reducing the complexity
of the algorithm by narrowing the demographics of the subjects, focusing on Class I males. They
found that all ML methods tested could accurately predict post-pubertal mandibular length and Y-
axis within the range of 3.5 mm and 1.5°, respectively. The initial findings of these studies showed
promising results in accurately predicting mandibular growth using ML techniques. Gender plays a
significant role in human craniofacial growth, with variations observed in the timing and magnitude
of growth between males and females [3,34]. Despite this, there is a lack of research evaluating the
accuracy of ML models in predicting female pubertal mandibular growth. Hence, the objective of this
study was to develop a novel ML model capable of accurately predicting pubertal mandibular
growth in Class I females.

2. Materials and Methods

2.1. Study Sample

The digital lateral cephalometric radiographs used to formulate data for this retrospective study
were collected from the American Association of Orthodontists Foundation (AAOF) Craniofacial
Growth Legacy Collection [35]. The collection consists of patient radiographic images from the
following growth studies: Bolton-Brush Growth, Burlington Growth, Denver Growth, Fels
Longitudinal, Forsyth Twin, Iowa Growth, Mathews Growth, Michigan Growth, and Oregon
Growth. Inclusion criteria included female subjects with cephalometric radiographs captured during
the circumpubertal developmental period and Angle Class I occlusion. Three time points were
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gathered with T1 representing the pre-pubertal stage (Mean age SD: 10.05 + 0.33 yrs), T2 representing
the pubertal stage (Mean age SD: 11.98 + 0.36 yrs), and T3 representing the post-pubertal stage (Mean
age SD: 13.85 + 0.55 yrs). Subjects exhibiting craniofacial anomalies, noticeable skeletal asymmetries,
inadequate image quality, or missing relevant timepoints were excluded from the study. A total of
176 subjects that satisfied the inclusion criteria were selected for the study.

2.2. Sample Size Justification

Power analysis revealed that a minimum of 36 subjects in the test set was required to obtain a
95% confidence interval for the intraclass correlation coefficients (ICCs), ranging from 0.64 to 0.89,
assuming the ICC is 0.80. Furthermore, higher ICC values would result in narrower confidence
interval widths.

2.3. Data Collection

Digital images from the AAOF repository were uploaded into Dolphin Imaging v. 11.95
(Dolphin Imaging and Management Solutions, Chatsworth, Calif, USA) and were traced by a single
investigator (M.P.) using 25 hard tissue landmarks and 12 soft tissue landmarks (Figure 1). A total of
47 linear and angular measurements were measured and recorded; definitions of the measurements
are listed in Table S1. Images were scaled by using fiducial data embedded on the images as described
in reference material provided by the AAOF. Fiduciaries are reference marks located on the images
with known coordinate values allowing the user to compute the scale of the image. The demographic
and cephalometric data were subsequently entered into a spreadsheet and securely stored in a cloud
service (OneDrive, Microsoft Co., Redmond, WA, USA). To evaluate the repeatability of
measurements, a research randomizer was employed to randomly choose 10 images for retracing.
The ICCs were utilized to assess the repeatability of these measurements.

Figure 1. Cephalometric landmarks used in this study. 1. Sella (S), 2. Nasion (N), 3. Orbitale (Or), 4.
Porion (Po), 5. Condylion (Co), 6. Articulare (Ar), 7. Basion (Ba), 8. Gonion (Go), 9. Menton (Me), 10.
Gnathion (Gn), 11. Pogonion (Pog), 12. B point (B), 13. Lower incisor root apex (L1a), 14. Lower incisor
incisal edge (L1i), 15. Mesial of lower first molar (L6ém), 16. Mesiobuccal cusp of lower first molar
(Lémb), 17. Distal of lower first molar (L6d), 18. Distal of upper first molar (U6d), 19. Mesiobuccal

doi:10.20944/preprints202306.2202.v1
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cusp of upper first molar (U6mb), 20. Mesial of upper first molar (Uém), 21. Upper incisor incisal
edge (Uli), 22. Upper incisor root apex (Ula), 23. A point (A), 24. Anterior nasal spine (ANS), 25.
Posterior nasal spine (PNS), 26. Glabella (G), 27. Soft tissue nasion (N'), 28. Pronasale (Pn), 29.
Subnasale (Sn), 30. Soft tissue A point (A’), 31. Upper lip (Ls), 32. Stomion superioris (Ss), 33. Stomion
inferioris (Si), 34. Lower lip (Li), 35. Soft tissue B point (B’), 36. Soft tissue pogonion (Pog'), 37. Soft
tissue menton (Me").

2.4. Algorithm Training and Testing

The algorithm training and testing workflow is illustrated in Figure 2. Data were randomly
distributed into a training set consisting of 80% of the subjects (n=140) and a test set consisting of the
remaining 20% (n=36). The training set was used to train the ML models using the linear and angular
measurements derived from lateral cephalogram tracings from all three timepoints. The prediction
task was executed by giving the algorithms input data from the test set to predict growth magnitude
and direction of the mandible at T3. They were first given measurements from T1 and T2 to predict
values at T3, then given measurements from T1 alone to predict values at T3; thus, providing a 2-year
prediction and a 4-year prediction, respectively. The performance of the trained models was assessed
based on their ability to predict post-pubertal mandibular length (Co-Gn) and Y-axis (SGn-SN).

1. Data Collection

176 samples

4

2. Training 3. Testing 4. Accuracy Assessment
N ;
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Figure 2. Algorithm training and testing workflow.

Overall, six traditional regression algorithms and a small Neural Network (NN) model were
trained and tested for analysis: XGBoost regression, Random Forest regressor, Lasso, Ridge, Linear
Regression, Support Vector Regression (SVR), and Multilayer Perceptron (MLP) regressor. To explore
the linear relationship, least squares regression without any regularizer (linear regression) and with
L1 (Lasso) and L2 (Ridge) regularizers were implemented. Least squares method is a standard
statistical method used to approximate the solution of problems that have more equations than
unknowns. For data that did not fall in a linear path, nonlinear methods like kernel-based SVR, tree-
based XGBoost, RF and NN such as MLP are natural choices. Due to small training set and mixture
of both numerical and categorical features, tree-based regression methods were first to try and we
explored boosting (XGBoost) and bagging trees (Random Forrest) regressors. Random Forest creates


https://doi.org/10.20944/preprints202306.2202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2023 doi:10.20944/preprints202306.2202.v1

5

an ensemble of decision trees to minimize the differences between predicted and actual values of
dependent variables, thus, it is less likely to overfit training data [36]. Although the training set was
too small for data hungry NN model, for the sake of completeness, we added MLP regressor into the
training algorithms. The input to all ML models were the values of the 47 covariates and models are
asked to predict mandibular length and Y-axis growth at 2 and 4-years. We performed automated
hyperparameter tuning using python Hyperopt package for all the models with 100 iterations for
each model. The best configuration was chosen based on the score on validation set then frozen
models tested on held-out test set.

2.5. Statistical Analysis

The mean absolute error (MAE), root mean square error (RMSE), mean error (ME), ICCs, and
Bland-Altman plots were calculated for each technique to evaluate the agreement between the
predicted and actual outcome measurements. The accuracy percentage of the methods were
calculated by the formula (1 - (MAE/Actual value) x 100). The directional and absolute differences
between the predicted and actual measurements were calculated and compared between prediction
methods using analysis of variance (ANOVA), with random effects to account for data correlation
within the 2-year prediction data, within the 4-year prediction data, and overall, and allowed for
different error variances for the 2-year and 4-year prediction data. Comparisons of interest were
among 2-year predictions for each method, among 4-year predictions for each method, and between
2-year and 4-year predictions by method. Paired t-tests were used to test for a significant mean
directional difference between predicted and actual measurements. A two-sided 5% significance level
was used for all tests. All analyses were performed using SAS version 9.4 (SAS Institute, Inc., Cary,
NC, USA).

3. Results

3.1. Reliability Analysis

The results of the reliability analysis are given in Table S2. Most variables showed excellent
repeatability (ICCs > 0.90) [37], with the remainder having good repeatability (0.75 <ICC < 0.90). The
two exceptions to this were soft tissue UFH (G’-5n) and the Holdaway Ratio (L1-NB:Pg-NB) that had
poor repeatability (ICCs<0.50).

3.2. Descriptive Statistics

The descriptive statistics of the cephalometric measurements at T1, T2, and T3, including mean,
standard deviation, and minimum/maximum values, are shown in Table S3.

3.3. Prediction of the Female Post-Pubertal Mandibular Length

The results for the 2-year and 4-year predictions of female post-pubertal mandibular length are
given in Table 1 and Figure 3. For the 2-year prediction, MAEs ranged from 2.78 mm to 5.40 mm,
with Lasso being most accurate and MLP Regressor the least. All methods demonstrated moderate
to good correlation between predicted and actual values (0.63< ICCs < 0.86). Accuracy percentages
ranged from 95.56% to 97.63%. For the 4-year prediction, MAEs ranged from 3.21 mm to 4.00 mm,
with Ridge being most accurate and Random Forest the least. All methods demonstrated moderate
to good correlation between predicted and actual values (0.61< ICCs < 0.84). Accuracy percentages
ranged from 96.71% to 97.36%.

Bland-Altman plots indicated a discernable pattern between predicted and actual values (Figure
3). Both Lasso and Ridge over-estimated post-pubertal mandibular length for smaller lengths and
under-estimated for larger lengths, in both the 2-year and 4-year predictions.

The most predictive factors of female post-pubertal mandibular length selected by Lasso and
Ridge were presented in Figure 4. Mandibular length, age, SNPg, occlusal plane to mandibular plane,
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SNB and L1-MP were among the most predictive factors selected by Lasso, while Ridge additionally

used lower, upper and posterior face heights in its predictions.

Table 1. Results of 2-year and 4-year prediction of the female post-pubertal mandibular length.

2-Year Prediction

4-Year Prediction

Models MAE RMSE ME ICC Accuracy % MAE RMSE ME ICC Accuracy %
XGBoost 3.10  4.18 0.75 0.79 97.45 3.97 5.04 1.17 0.70 96.73
Random Forest 3.16  4.19 0.70 0.74 97.40 4.00 531 1.55 0.61 96.71
Lasso 2.78  3.46 047 0.86 9771 3.25 413 0.71 0.79 97.33

Ridge 2.88  3.60 0.35 0.85 97.63 3.21 3.79 023 0.84 97.36

Linear Regression 5.40  6.40-1.13 0.63 95.56 3.53 4.21 0.13 0.81 97.10
SVR 325 3.850.69 0.84 97.33 3.74 440 0.79 0.78 96.92

MLP 3.88 524 139 0.63 96.81 3.78 4.65-2.11 0.73 96.89

MAE: Mean absolute error, RMSE: Root mean square error, ME: Mean error, ICC: Intra-class correlation

coefficient.
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Figure 3. Bland-Altman plots for 2-year and 4-year predictions of female post-pubertal mandibular

length using Lasso (top) and Ridge (bottom). The blue dashed lines represent upper and lower bounds
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of the 95% confidence intervals. Orange solid line represents mean difference between predicted and
actual post-pubertal mandibular length. .
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Figure 4. Top predictive factors for 2-year and 4-year predictions of female post-pubertal mandibular
length using Lasso (top) and Ridge (bottom).

3.4. Prediction of the Female Post-Pubertal Y-axis

The results for the 2-year and 4-year predictions of female post-pubertal Y-axis are given in Table
2 and Figure 5. For the 2-year prediction, MAEs ranged from 0.88° to 1.48°, with Lasso being most
accurate and MLP Regressor the least. All methods demonstrated good to excellent correlation
between predicted and actual values (0.79< ICCs < 0.94). Accuracy percentages ranged from 97.83%
to 98.71%. For the 4-year prediction, MAEs ranged from 1.19° to 1.66°, with Lasso being most accurate
and Random Forest the least. All methods demonstrated good to excellent correlation between
predicted and actual values (0.87<ICCs <0.90). Accuracy percentages ranged from 97.56% to 98.25%.
No discernable pattern was detected for the Bland-Altman plots between predicted and actual values
(Figure 5). The most predictive factors of female post-pubertal Y-axis selected by Lasso and Ridge
were presented in Figure 6. Y-axis, ANB, SN-MP, FMA, SN-Pg and lower face height were among
the most predictive factors selected by Lasso, while Ridge additionally used Holdaway ratio, UI-NA,
Wits appraisal and SNB in its predictions.

Table 2. Results of 2-year and 4-year prediction of the female post-pubertal Y-axis.

2-Year Prediction 4-Year Prediction
Models MAERMSE ME ICCAccuracy % MAE RMSE ME ICC Accuracy %
XGBoost 1.12 143 034091 98.36 1.37 1.64 046 0.89 97.99
Random Forest 1.24 1.54 0.520.90 98.18 1.66 204 0.650.84 9756

Lasso 0.88 1.25 0.220.94 9871 119 153 0.36 090 98.25
Ridge 1.01 1.45 -0.040.92  98.52 1.32 1.65 0.150.88  98.06
Linear Regression 1.2 152 0.19091 9824 14 171 044 089 9795
SVR 1.01 1.34 0.040.93 98.52 143 175 -0120.87 9790

MLP 1.48 242 0.520.79 97.83 143 176 -0270.87 9790
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MAE: Mean absolute error, RMSE: Root mean square

error, ME: Mean error, ICCL Intra-class correlation

coefficient.
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Figure 5. Bland-Altman plots for 2-year and 4-year predictions of female post-pubertal Y-axis using

Lasso (top) and Ridge (bottom). The blue dashed lines represent upper and lower bounds of the 95%

confidence intervals. Orange solid line represents mean difference between predicted and actual Y-

axis.
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Figure 6. Top predictive factors for 2-year and 4-year predictions of female post-pubertal Y-axis using
Lasso (top) and Ridge (bottom).
3.5. Method Comparison

Directional and absolute difference comparisons between ML methods for 2-year prediction of
post-pubertal mandibular length are given in Table 3. Significant directional and absolute differences
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were observed among the ML methods in 2-year prediction of the post-pubertal mandibular length
(P<.05). MLP regressor produced significantly different directional results compared to all the tested
ML methods; Linear Regression also showed significant directional differences from multiple other
methods. MLP regressor and Linear Regression produced estimates that were significantly larger
compared to various other ML methods.

Similar results were observed among the ML methods in 4-year prediction of the post-pubertal
mandibular length (Table 4). MLP regressor, Random Forest, and XGBoost regression showed
significant directional differences compared to various other methods (P<.05). In terms of absolute
differences, MLP regressor and Random Forest produced estimates that were significantly larger
than Lasso and Ridge.

The ML methods had greater agreement for Y-axis than mandibular length in both absolute and
directional difference and in both the 2-year and 4-year predictions (Tables 5 and 6). MLP regressor
produced estimates significantly larger than Lasso, Ridge, and SVR in the 2-year prediction, while
SVR had significant directional difference compared to most other methods in the 4-year prediction
(P<.05).

Lastly, the directional and absolute differences between the 2-year and 4-year predictions of
post-pubertal mandibular length and Y-axis with each ML algorithm were compared and the results
were given in Tables 7 and 8. Directional and absolute differences of the mandibular length were
significantly smaller in the 4-year predictions compared to the 2-year predictions for Linear
Regression (P=0.028 for directional differences, P<0.001 for absolute differences). Absolute differences
of Y-axis were significantly larger in the 4-year predictions compared to the 2-year predictions for
Random Forest (P=0.025) and SVR (P=0.039). No significant differences in directional differences of
Y-axis were found between the 2-year or 4-year predictions for any method (P>.05).

Table 3. Directional and absolute difference comparisons between ML methods for 2-year prediction
of post-pubertal mandibular length.

Directional Difference Absolute Difference

Result P-value Result  P-value

Lasso < Linear Regression 0.011 Lasso < Linear Regression <.001
Lasso > MLP <.001 Lasso < MLP <.001

Lasso & Random Forest 0.266 Lasso & Random Forest 0.145
Lasso & Ridge 0.932 Lasso & Ridge 0.797

Lasso & SVR 0.630 Lasso & SVR 0.298

Lasso & XGBoost 0.561 Lasso & XGBoost 0.479

Linear Regression > MLP <.001 Linear Regression & MLP 0.103
Linear Regression > Random Forest <001 Linear Regression > Random Forest <.001
Linear Regression > Ridge 0.014 Linear Regression > Ridge <.001
Linear Regression > SVR 0.003 Linear Regression > SVR <.001

Linear Regression > XGBoost 0.002 Linear Regression > XGBoost <.001
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MLP < SVR

MLP < XGBoost

Random Forest & Ridge
Random Forest & SVR
Random Forest & XGBoost
Ridge & SVR

Ridge & XGBoost

SVR & XGBoost
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<.001

<.001

<.001

<.001

0.231

0.527

0.594

0.571

0.505

0.921

MLP > Random Forest
MLP > Ridge

MLP > SVR

MLP > XGBoost

Random Forest & Ridge
Random Forest & SVR
Random Forest & XGBoost
Ridge & SVR

Ridge & XGBoost

SVR & XGBoost
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0.014

<.001

0.004

0.001

0.230

0.676

0.453

0.433

0.652

0.739

Table 4. Directional and absolute difference comparisons between ML methods for 4-year prediction

of post-pubertal mandibular length.

Directional Difference

Absolute Difference

Result P-value Result P-value

Lasso & Linear Regression 0.201 Lasso & Linear Regression 0.510
Lasso > MLP <.001 Lasso < MLP 0.040

Lasso > Random Forest 0.039 Lasso & Random Forest 0.051
Lasso & Ridge 0.290 Lasso & Ridge 0.928

Lasso & SVR 0.858 Lasso & SVR 0.245

Lasso & XGBoost 0.302 Lasso & XGBoost 0.088

Linear Regression > MLP <.001 Linear Regression & MLP 0.160
Linear Regression > Random Forest 0.001 Linear Regression & Random Forest 0.194
Linear Regression & Ridge 0.824 Linear Regression & Ridge 0.454
Linear Regression & SVR 0.145 Linear Regression & SVR 0.613
Linear Regression > XGBoost 0.021 Linear Regression & XGBoost 0.293
MLP < Random Forest 0.004 MLP & Random Forest 0.914

MLP <Ridge <.001 MLP > Ridge 0.032
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MLP < SVR

MLP < XGBoost

Random Forest < Ridge
Random Forest & SVR
Random Forest & XGBoost
Ridge & SVR

Ridge > XGBoost

SVR & XGBoost
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<.001

<.001

0.002

0.059

0.298

0.216

0.037

0.393

MLP & SVR

MLP & XGBoost

Random Forest > Ridge
Random Forest & SVR
Random Forest & XGBoost
Ridge & SVR

Ridge & XGBoost

SVR & XGBoost

0.367

0.722

0.041

0.426

0.804

0.210

0.073

0.584
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Table 5. Directional and absolute difference comparisons between ML methods for 2-year prediction

of post-pubertal Y-axis.

Directional Difference

Absolute Difference

Result P-value

Result P-value

Lasso & Linear Regression
Lasso & MLP

Lasso & Random Forest
Lasso & Ridge

Lasso & SVR

Lasso & XGBoost

Linear Regression & MLP
Linear Regression & Random Forest
Linear Regression & Ridge
Linear Regression & SVR
Linear Regression & XGBoost
MLP & Random Forest

MLP < Ridge

MLP & SVR

MLP & XGBoost

0.923

0.256

0.419

0.331

0.501

0.646

0.218

0.366

0.381

0.564

0.579

0.742

0.036

0.071

0.498

Lasso & Linear Regression
Lasso < MLP

Lasso & Random Forest
Lasso & Ridge

Lasso & SVR

Lasso & XGBoost

Linear Regression & MLP
Linear Regression & Random Forest
Linear Regression & Ridge
Linear Regression & SVR
Linear Regression & XGBoost
MLP & Random Forest

MLP > Ridge

MLP >SVR

MLP & XGBoost

0.121

0.004

0.129

0.529

0.530

0.257

0.186

0.972

0.355

0.354

0.673

0.174

0.025

0.025

0.081
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Random Forest & Ridge 0.076 Random Forest & Ridge 0.373
Random Forest & SVR 0.140 Random Forest & SVR 0.372
Random Forest & XGBoost 0.727 Random Forest & XGBoost 0.699
Ridge & SVR 0.764 Ridge & SVR 0.999
Ridge & XGBoost 0.153 Ridge & XGBoost 0.614
SVR & XGBoost 0.258 SVR & XGBoost 0.613
Table 6. Directional and absolute difference comparisons between ML methods for 4-year prediction
of post-pubertal Y-axis.
Directional Difference Absolute Difference
Result P-value Result P-value
Lasso & Linear Regression 0.694 Lasso & Linear Regression 0.196
Lasso & MLP 0.653 Lasso & MLP 0.150
Lasso & Random Forest 0.145 Lasso < Random Forest 0.005
Lasso & Ridge 0.290 Lasso & Ridge 0.430
Lasso < SVR 0.017 Lasso & SVR 0.143
Lasso & XGBoost 0.631 Lasso & XGBoost 0.270
Linear Regression & MLP 0.399 Linear Regression & MLP 0.885
Linear Regression & Random Forest 0.287 Linear Regression & Random Forest 0.132
Linear Regression & Ridge 0.147 Linear Regression & Ridge 0.613
Linear Regression < SVR 0.006 Linear Regression & SVR 0.862
Linear Regression & XGBoost 0.931 Linear Regression & XGBoost 0.847
MLP & Random Forest 0.057 MLP & Random Forest 0.173
MLP & Ridge 0.543 MLP & Ridge 0.515
MLP & SVR 0.052 MLP & SVR 0.978
MLP & XGBoost 0.353 MLP & XGBoost 0.736
Random Forest < Ridge 0.012 Random Forest > Ridge 0.045

Random Forest < SVR <.001 Random Forest & SVR 0.182
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Random Forest & XGBoost 0.328
Ridge & SVR 0.180
Ridge & XGBoost 0.125

SVR > XGBoost 0.004

Random Forest & XGBoost
Ridge & SVR
Ridge & XGBoost

SVR & XGBoost
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0.090

0.497

0.754

0.715

Table 7. Comparisons of the directional and absolute differences between the 2-year and 4-year

predictions of post-pubertal mandibular length.

Directional Difference Absolute Difference

Method Result P-value Result P-value

XGBoost 2-year & 4-year 0.453 2-year & 4-year 0.060
Random Forest 2-year & 4-year 0.309 2-year & 4-year 0.180
Lasso 2-year & 4-year 0.589 2-year & 4-year 0.294

Ridge 2-year & 4-year 0.831 2-year & 4-year 0.481

Linear Regression 2-year > 4-year 0.028 2-year > 4-year <.001
SVR 2-year & 4-year 0.861 2-year & 4-year 0.296

MLP 2-year & 4-year 0.304 2-year & 4-year 0.275

Table 8. Comparisons of the directional and absolute differences between the 2-year and 4-year

predictions of post-pubertal Y-axis.

Directional Difference

Absolute Difference

Method Result P-value Result P-value

XGBoost 2-year & 4-year 0.663 2-year & 4-year 0.208
Random Forest 2-year & 4-year 0.409 2-year <4-year 0.025
Lasso 2-year & 4-year 0.600 2-year & 4-year 0.130

Ridge 2-year & 4-year 0.497 2-year & 4-year 0.129

Linear Regression 2-year & 4-year 0.363 2-year & 4-year 0.323
SVR 2-year & 4-year 0.543 2-year <4-year 0.039

MLP 2-year & 4-year 0.362 2-year & 4-year 0.810
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4. Discussion

A considerable amount of variation in the amount and direction of pubertal mandibular growth
exists across genders, races, and individuals. To analyze this complex growth pattern, specific
inclusion criteria were employed in this study. Only records from girls at the circumpubertal stage
(10 to 14 years) were analyzed to investigate the peak growth and maturation for the average female.
Our sample was further narrowed by selecting individuals without significant skeletal sagittal
discrepancies, as mandibular growth patterns differ significantly in the presence of sagittal
discrepancy. By establishing a baseline reference with restrictive inclusion criteria, we can gain
insight into the fundamental principles, patterns, and trends of utilizing Al predictive technology.
This paves the way for more in-depth analysis, hypothesis testing, and the development of advanced
methodologies.

There are two major factors that determine the final position of the mandible: mandibular length
represents magnitude and Y-axis represents direction of growth. The primary aim of this study was
to utilize ML models to accurately predict post-pubertal mandibular length and Y-axis from
cephalometric data of a subject given data from before (T1) and during (T2) peak height velocity.
Predictions using pre-pubertal data alone provide a 4-year forecast of growth, while adding pubertal
data provides a 2-year prediction. It would be expected that more input data would result in a more
accurate prediction, but it would also be less clinically useful. The majority of the ML models were
able to produce 4-year predictions of post-pubertal mandibular length within 4 mm and ICCs >0.75.
The 2-year prediction was marginally improved with two of the ML algorithms predicting
mandibular length under 3 mm and ICCs 0.85 or better. For Y-axis, all but one of the ML algorithms
had 4-year predictions under 1.5° and ICCs 0.84 or better. The 2-year predictions were improved with
one ML algorithm predicting Y-axis within 0.88° and an ICC of 0.94. Overall, with few exceptions,
the ML algorithms did not produce significantly more accurate predictions of post-pubertal
mandibular length and Y-axis with the addition of pubertal data. This is a promising finding because
an accurate prediction from a single radiograph would be very clinically useful. It would mean fewer
radiographic exposures for the patient and less time wasted waiting for more growth to occur.
Forecasting growth would allow the orthodontist to decide whether or not growth modification
would be required as a part of the treatment plan.

There are many potential variables that can influence mandibular growth. Previous studies
investigating methods to predict mandibular growth have noted this challenge. Skieller et al [8]
identified 4 variables that could predict mandibular growth rotation and direction. However, Leslie
et al [9] tested their method and found that the values for the 4 variables could be swapped with
random values and produce similar predictions. The ML algorithms in our study identified the
features that had the most influence in the process of predicting post-pubertal mandibular length and
Y-axis. The most influential feature identified by each ML algorithm for predicting each variable was
found to be the value of the same variable at the most recent time point. It stands to reason that this
would be the case and provides proof of concept that the algorithms appropriately weighted
predictive factors. The majority of the predictive features for mandibular length were values
representing maxillary and mandibular sagittal skeletal base. The mandibular rotation model was
also found to be an important factor. Vertical features carried heavier weight in the 2-year prediction
than the 4-year. The fact that vertical growth continues after the completion of sagittal growth might
explain this finding. Interestingly, Wood et al [31] found that vertical features weighed more heavily
in their study on Class I males. Y-axis predictive features identified by the ML algorithms in both
studies were mostly angular measurements related to the mandibular plane and vertical features.
This makes sense considering direction of mandibular growth directly relates to lower face height.
Predictive features relating to dental values were somewhat more surprising; upper and lower incisor
angulation and overjet were also identified by the ML. This could be explained by the fact that the
dentition must compensate for skeletal growth patterns.

A comparison of the ML algorithms revealed very little difference when predicting post-
pubertal Y-axis. Y-axis is less variable over time than mandibular length lending its measurement to
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more predictability. There was also no clear superiority among the ML algorithms in predicting
mandibular length. The Ridge and Lasso models most consistently had the best MAEs and ICCs
which is why they were chosen to be represented in our predictive feature graphs. Based on the
Bland-Altman plots, some of the plots indicate that differences between predicted and actual have a
discernable pattern. Mandibular length was constantly over-estimated for smaller lengths and under-
estimated for larger lengths with all ML methods except MLP regression. MLP regression, a neural
network-based model, consistently underestimated the lengths. No obvious estimation pattern was
seen in the y-axis predictions.

The present research study acknowledges several limitations that need to be considered. First,
the study relied on retrospective data, which inherently carries the risk of recall bias and limited
availability of certain information. Given the limited information on subjects, developmental stage
was based on chronological age, which is the least correlative indicator of maturation. The sample
size used in this study was relatively small, which may limit the generalizability of the findings to
larger populations. Additionally, the study faced challenges in obtaining standardized sources of
data, leading to variations in data quality and reliability. Finally, it is important to acknowledge the
potential for human error in cephalometric tracing and analysis, which can introduce unintentional
biases or inaccuracies. Despite these limitations, the study's findings provide valuable insights and
serve as a starting point for further investigation in this area.

5. Conclusions

The tested ML models were able to predict post-pubertal mandibular length within 3 mm and
Y-axis within 1° and did not produce significantly more accurate predictions with the addition of
pubertal data. Most predictive factors for mandibular length were mandibular length at previous
timepoints, age, sagittal positions of the maxillary and mandibular skeletal bases, mandibular plane
angle, and anterior and posterior face heights. Most predictive factors for Y-axis were Y-axis at
previous timepoints, mandibular plane angle, and sagittal positions of the maxillary and mandibular
skeletal bases. All ML algorithms yielded consistent results with the exception of MLP regressor
consistently underestimating the mandibular length.

Supplementary Materials: The following supporting information can be downloaded at:
www.mdpi.com/xxx/sl, Table S1: Cephalometric variables and their definitions. Table S2: Intra-examiner
repeatability of the measurements. Table S3: The descriptive statistics of the cephalometric measurements at T1,
T2, and T3, including mean, standard deviation, and minimum/maximum values.
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