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Abstract: Delay in data transmission is one of key performance indicators (KPIs) of a network. The 
planning and project value of delay in network management is of crucial importance for the optimal 
allocation  of  network  resources  and  their  performance  focuses.  To  create  optimal  solutions, 
predictive models, which are currently most often based on machine learning (ML), are used. This 
paper aims to investigate the training, testing and selection of the best predictive delay model for a 
VoIP  service  in  an  Long  Term  Evolution  (LTE)  network  using  three ML  techniques  ‐ Neural 
Networks (NN), Support Vector Machines (SVM) and k‐Nearest Neighbors (k‐NN). The space of 
model  input variables  is optimized by dimensionality  reduction  techniques: RReliefF algorithm, 
Backward  selection via  the  recursive  feature elimination algorithm and  the Pareto 80/20  rule. A 
three‐segment road in the geo‐space between the cities of Banja Luka (BL) and Doboj (Db) in the 
Republic of Srpska (RS), Bosnia and Herzegovina (BiH), covered by the cellular network (LTE) of 
the M:tel BL operator was chosen for the case study. The results show that, in all three optimization 
approaches,  the  k‐NN  model  is  selected  as  the  best  solution.  For  the  RReliefF  optimization 
algorithm, the best model has 6 inputs and minimum relative error (RE), RE=0.109; for the Backward 
selection via the recursive feature elimination algorithm, the best model has 4 inputs and RE=0.041; 
and for the Pareto 80/20 rule, the best model has 11 inputs and RE= 0.049. The comparative analysis 
of the results concludes that according to observed criteria for the selection of the final model, the 
best solution is an approach to optimizing the number of predictors based on the Backward selection 
via the recursive feature elimination algorithm. 

Keywords:  delay;  dimensionality  reduction;  LTE;  VoIP;  Neural  Networks;  Support  Vector 
Machines; k‐Nearest Neighbors; Feature Selection; Pareto 80/20 rule 
 

1. Introduction 

Sustainable Quality of Service (QoS) for users is one of the main tasks of mobile operators. This 
orients them to provide comprehensive support for various applications and services with numerous 
QoS requirements in order to meet the expected levels of user Quality of Experience (QoE) [1,2]. The 
development  of  Long  Term  Evolution  (LTE)  technology, which  today  is  based  on  IP  network 
configuration [3], is an example of such an orientation. The target reason is optimal performance, i.e. 
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low delay, high data transfer speed, as well as better optimization of packet transfer. In addition to 
the mentioned key features of LTE network technology, there is Radio Resource Management (RRM), 
which can  raise network performance almost  to  the  level of  the Shannon  limit  [4]. An  important 
operational technology of LTE is Packet scheduling for assigning to each User Equipment (UE) a part 
of network  resources depending on QoS  requirements, but  also on  the  impact of delay,  channel 
quality, number of active UEs, throughput, etc. During the congestion  in the network, users’ QoS 
requirements increase, and today popular interactive real‐time services, such as Voice over IP (VoIP), 
i.e. Voice over Long Term Evolution (VoLTE) and streaming, are the most sensitive and susceptible 
to degradation during that period. Key network performance indicators during congestion are end‐
to‐end (E2E) delay and jitter, which represents variations in delay [5]. According to the standard 123 
107 v12.0.0 (2014) of the European Telecommunications Standards Institute (ETSI) [6], the maximum 
tolerated delay for VoIP services is defined as 100 ms, and 300 ms for streaming services. End‐to‐end 
delay can be defined as the time required for a data packet to be transmitted through a network from 
a source node to a destination node, and in a VoIP network it consists of the sum of transmission 
delay, signal propagation delay and packet waiting delay.   

Current  research  in  various  fields  shows  that  predictive models, which  predict  events  and 
situations from the present towards the future based on data from the past, have an enormously wide 
range of applications. Especially in telecommunications, predictive models are most often based on 
machine  learning  (ML)  techniques. The actuality and application of predictive models using ML 
techniques are encouraged by a very rapid  increase in the amount of multidimensional data  ‐ Big 
Data (BD) publicly available on the Internet. BD increases the complexity of the problem of finding 
the optimal way to the solution to functional tasks in the network domain. At the same time, the high 
dimensionality of data, i.e. a large number of variables often makes it difficult to create a model and 
jeopardizes  the accuracy of prediction  results. Among  the discovered approaches  to solutions  for 
reducing the problem of complexity, as a key indicator of the state configuration in the situational 
dynamics of telecommunication traffic, data preprocessing by dimensionality reduction techniques 
is  used. Data  dimensionality  reduction  implies  optimization  of  the  space  of  input/independent 
variables  and  the number of predictors, but with  the obligation  to preserve  relevance  and other 
qualitative attributes of information [7]. Feature Selection is one of the most common and important 
dimensionality reduction techniques, and, in research papers, it is also known as variable selection, 
attribute  selection  or  variable  subset  selection.  In  this  paper,  the  research  focus  is  on  three 
dimensionality  reduction  approaches:  RReliefF  algorithm,  Backward  selection  via  the  recursive 
feature elimination algorithm and the Pareto 80/20 rule, where the first two approaches belong to 
Feature selection techniques. The selection of input variables is a process that includes the detection 
of variables that have a significant impact on the prediction of output, and the removal of redundant 
variables.  As  the  main  benefits  achieved  by  this  technique,  the  following  can  be  highlighted: 
increasing the speed of data mining algorithms, increasing the accuracy of prediction, reducing the 
complexity of the model [7,8].   

Starting  from  the assumption  that better planning and design of networks and allocation of 
network resources can be achieved in the future if the value of end‐to‐end delay is known, this paper 
examines the performance of three predictive delay models for a VoIP service  in an LTE network 
based  on  Neural  Networks  techniques  (NN),  Support  Vector  Machines  (SVM)  and  k‐Nearest 
Neighbors (k‐NN), whose input set of variables is optimized [9]. As a case study, the geographic area 
in the Republic of Srpska (RS), Bosnia and Herzegovina (BiH), in the vicinity of a three‐segment road 
between the cities of Banja Luka (BL) and Doboj (Db), which is covered by the cellular network of the 
M:tel BL operator, is chosen. The main goal is to select an ML model with an optimal number of input 
variables, which provides the most accurate prediction results. 

The most important aims and objectives of this research are the following: 

 Reducing the dimensionality of the space of model input variables by optimization with Feature 
Selection  techniques  (RReliefF  and Backward  selection  via  the  recursive  feature  elimination 
algorithms) and the Pareto 80/20 rule;   
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 Training and testing of ML models: NN, SVM and k‐NN with the selection of the best delay 
prediction model in the LTE network using accuracy and complexity/interpretability criteria;   

 Presentation of the aforementioned approaches to optimizing the number of predictors for LTE 
KPI predictive modeling, which is, according to the authorsʹ knowledge and according to the 
review of former research papers, a particularly innovative solution given in this paper; 

 Implementation of a unique methodology of indirect assessment and calculation of the value of 
the dependent variable based on the average number of active users in the network; 

 Creation of universally applicable predictive modeling of delays in the LTE network based on 
real research, and a data space connected to one of the most important roads in the geo‐road 
network of RS, BiH, was chosen for the case study.   

The  paper  is  structurally  divided  into  five  sections.  After  the  introductory  part,  Section  2 
presents a review of relevant published research papers, and Section 3 contains the materials and 
methods used in the paper. The main research focus is on Section 4 where the results and discussion 
are provided, after which the conclusions are drawn in Section 6. The references used are listed in the 
last section of the paper, after the conclusion. 

2. Review of Relevant Published Research 

In  the  research  [10],  the  authors  created models  for  end‐to‐end delay prediction  in Cellular 
Vehicle‐to‐Everything (C‐V2X) communication using different ML techniques. Model training was 
performed on KPI‐related variables, and data was collected from real LTE networks. In this paper, 
prediction  is  viewed  as  a  delay  classification  problem  depending  on  a  given  threshold.  Similar 
research  is  conducted  in  [11] with  a  focus  on  delay  prediction  for  V2X  applications  in Mobile 
Cloud/Edge Computing  systems.  The  proposed  prediction  framework  in  this  case  consists  of  a 
component  based  on machine  learning  techniques  and  a  statistical  component.  The  paper  [12] 
presents an algorithm for resource allocation prediction in LTE uplink (UL) connection for machine 
to  machine  (M2M)  applications.  Mathematical  models  for  prediction  probability,  successful 
prediction  probability,  failed  prediction  probability,  resource  utilization/underutilization 
probability, and mean uplink delay model were developed. All these models are validated using a 
simulation model  implemented on the OPNET platform. An original approach based on machine 
learning for delay prediction in 4G networks is presented in [13]. To create the model, the authors 
use real data from three different mobile networks. The paper [14] considers a case study related to 
the Industrial Internet of Things (IIoT) in which the potential of digitization of mines is investigated. 
For this purpose, a software tool for sending sensor data using the LTE network is presented, and 
predictive delay models are created in order to evaluate the network performance. Lai & Tang (2013), 
in their paper [15], develop a Packet Prediction Mechanism (PPM), based on mathematical models, 
for delay prediction when using real‐time services. The main research  focus  is on a virtual queue 
concept, which has the function of predicting the behavior of incoming packets in the future based 
on the packets currently in the queue. Due to the increasing user demand for real‐time services, the 
development of wireless access technologies that provide greater bandwidth is evident every day. 
Therefore, the same team of authors, in the published research paper [16], proposes and designs LTE 
scheduling mechanism  and  PPM.  In  doing  so,  the  authors  assume  that  the  proposed  PPM will 
increase capacity,  reduce  resource consumption and  thereby  increase network efficiency. Starting 
from the assumption that the monitoring and prediction of QoS indicators are the basic prerequisites 
for user  satisfaction  in  the use of LTE network  services, delay  and  average user  throughput  are 
considered as key  indicators of network performance  in  the paper  [17]. The authors have created 
models to estimate the values of these dependent variables as linear functions of total network traffic 
and average Channel Quality Indicator (CQI). In [18], the subject of research is the changes in Round‐
trip  time  (RTT)  delay  and  the  prediction  of  the  increase  in  these  values  in mobile  broadband 
networks. Four classification models based on machine learning were developed, using data from a 
large number of probes in the network, and the best classification performance was shown by the 
binary ensemble model. 
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The essential characteristics of the previously analyzed papers are shown in Table 1. For each 
paper marked with a reference number,  the models and  techniques used,  the prediction problem 
being  solved  (regression/classification),  the  service/application  being  observed,  and  some  of  the 
dimensionality reduction methods and techniques if applied are given. 

Table 1. Overview of important criteria in relevant published research papers 

Ref. 
No.  Models and techniques 

Regression/ 
Classificati

on 

Service/ 
Application 

Dimensionality 
reduction 

methods and 
techniques 

[10] 

NN, Recurrent Neural Network 
(RNN) with Long Short‐Term Memory 
(LSTM) neurons, Random Forest (RF), 

SVM 

Classificati
on 

C‐V2X 
Maximum 
Dependency 

(MD) algorithm 

[11] 

LSTM; 
k‐medoids classification, 
Epanechnikov Kerne, 

Moving average functions 

Regression 
and 

Classificati
on 

Delay‐sensitive V2X 
Applications in 

Mobile Cloud/Edge 
Computing Systems 

‐ 

[12]  Mathematical models  Regression 
M2M uplink 

communication 
‐ 

[13] 
Logistic Regression (LR), SVM, 

Decision Tree (DT) 
Classificati

on 
Operational 4G 

Networks Services 
Random Forest 

[14] 
Artificial Neural Networks, Decision 
Tree, Ensemble modeling: Bagging 
technique with a Decision Tree 

Regression  IIoT 
Lag features, 

Window features 

[15] 
Mathematical models, PPM, virtual 

queues 
Regression  Real time services  ‐ 

[16] 
Mathematical models, PPM, virtual 

queues 
Regression  Real time services  ‐ 

[17] 
Multivariate linear regression 

technique 
Regression  LTE services  ‐ 

[18] 
Logistic regression, Random forest, 
Light gradient‐boosting machine 

(LightGBM), Ensemble 

Classificati
on 

4G and 5G services  ‐ 

Compared to previously analyzed published research papers, the following five contributions 
stand out as the main improvements and novelties presented in this paper: 

 Network delay is investigated by observing a real geospatial and LTE network segment as very 
important factors affecting KPIs; 

 The  number  of  predictors  in  LTE  delay  examination  is  optimized  for  the  first  time 
simultaneously using three approaches for predictive modeling of delays in the LTE network; 

 A  complete  set  of  17  independent/input  research  variables  is  used  and  Dimensionality 
Reduction is explained in detail; 

 The  original  indirect  method  of  assessment  and  calculation  of  the  values  of  the 
dependent/output variable is applied;   

 The optimization of the set of input variables is modeled with Feature Selection techniques and 
the  Pareto  80/20  rule,  and  the  obtained  results  are  compared  according  to  the  criteria  of 
prediction accuracy and complexity/interpretability of the model. 

3. Materials and Methods 

The research process in this paper was completed through several successive steps: 
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1. Analysis of a real geospatial and network research segment in the case study; 
2. Data collection and analysis of independent research variables;   
3. Calculation of dependent variable values; 
4. Structuring data into input/output vectors; 
5. Optimization of a set of  independent variables by Feature Selection techniques: RReliefF and 

Backward selection via the recursive feature elimination algorithms;     
6. Optimization of a set of independent variables by the Pareto 80/20 rule; 
7. Training and testing of predictive delay models over an optimized set of independent variables; 
8. Comparative analysis of prediction results and selection of the final model. 

3.1. Geospatial and network research segment – a case study 

For the case study in this paper, a three‐segment road connected by a geodesic line, in the geo‐
space of RS, BiH, between the cities of BL and Db, consisting of the following road segments, was 
chosen:   

1. A segment of the Motorway 9th January (M9J), 72 km long, between the Jakupovci toll station, 
near the city of BL, and the Kladari toll station, near the town of Db; 

2. A segment of the M16 Main Road, about 6 km long, on the route Jakupovci – entrance to the city 
of BL; 

3. A segment of the M17 trunk road, about 10 km long, located between the Kladari toll station and 
the town of Db.   

In  the  observed  geo‐space,  the  research  focus  is  on  the  fourth  generation  (4G) 
telecommunications network based on LTE network technology, managed by the M:tel BL provider 
[1,2]. Figure 1 shows a part of the geographical map (Google Earth) of the RS and BiH with marked 
areas of road segments, where the area marked in blue is covered by LTE Carrier Aggregation (CA), 
and the area in green is covered by LTE Frequency Division Duplexing (FDD) technology. 

 
Figure 1. Geographical area of research. 

LTE CA  is one of  the key  technologies used  to achieve very high data  transfer speeds  in 4G 
networks. The principle is based on combining more than one signal carrier (in the same or different 
bands), to increase the bandwidth and channel capacity. In the observed case study, out of the total 
geographical area, 14.75% is covered by LTE CA technology, and 85.25% by LTE FDD technology, 
which enables duplex communication between eNB and UE and is based on paired spectrums with 
sufficient spacing between frequency domains to enable simultaneous sending and receiving of data. 
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3.2. Analysis of independent research variables and data collection 

In this research, the following 17 independent variables or predictors selected from the set of 
research data provided by the M:tel operator are observed: 1) Cell; 2) Downlink (DL) PRB Usage Rate; 
3) Average CQI; 4) DL ReTrans Rate; 5) UL ReTrans Rate; 6) DL IBLER; 7) UL IBLER; 8) Cell Traffic 
Volume DL; 9) Cell Traffic Volume UL; 10) Cell Downlink Average Throughput; 11) Cell Uplink 
Average Throughput; 12) Average DL User Throughput; 13) Average UL User Throughput; 14) UL 
Average  Interference;  15)  DL.QPSK.TB.Retrans;  16)  DL.16QAM.TB.Retrans;  17) 
DL.64QAM.TB.Retrans.     

The M:tel BL mobile operator provided the collected data for research purposes based on the 
official Request, which specified the necessary variables related to KPIs, radio channel properties, 
utilization of physical  resources, number of users,  eNodeB parameters,  cell parameters, network 
topology and signal parameters in the observed research geo‐space [19]. From the obtained database, 
for the purposes of this research, the values of the variables for the period of data collection between 
January 1, 2021 and January 15, 2021 and with a one‐hour sampling frequency were extracted. After 
filtering missing  and unusual values,  a  final database was  formed  consisting of  a  total of  31143 
measurements structured in an Excel file, for each of the observed independent variables. 

1) Cell 
The access LTE network of the M:tel operator in the area of the observed three‐segment road 

consists of a large number of eNodeBs that provide the connection of the UE with the rest of the 4G 
network. Their  locations are  represented by  red squares  in Figure 2. According  to  the number of 
mobile users, it is obvious that the highest density of eNodeB deployment is in the vicinity of BL city 
[19]. Also, in Figure 2, based on the colors, and according to the map  legend, areas with different 
levels of signal attenuation can be identified, namely areas between ‐126 dB and ‐90 dB, and areas 
between ‐90 dB and 0 dB. Each of the eNodeBs covers one or more cells with a signal, and a total of 
87 cells can be identified in the observed area. 

 
Figure 2. Layout of eNodeB locations with marked signal propagation in the research area. 

2) DL PRB Usage Rate 
In LTE networks, the smallest unit of radio resources that can be allocated to a user is a Physical 

Resource Block (PRB) consisting of 84 resource elements (7 symbols of 0.5 ms duration × 12 subs of 
15 kHz each). When available but unused PRBs are not sufficient to serve all active users, it can cause 
the degradation of quality of service (QoS). DL PRB Usage Rate represents the ratio of the average 
number of used physical blocks  in the Physical Downlink Shared Channel (PDSCH) and the total 
number of DL PRB available, multiplied by 100. PDSCH represents a DL physical shared channel 
whose priority function is the transmission of user data, but also the transmission of data essential 
for control, and DL system information [19]. 
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3) Average CQI 
The Channel Quality Indicator (CQI) can have a numerical value between 1 and 15, which the 

mobile device sends over the uplink connection to the eNodeB. Based on the received CQI value, the 
eNodeB selects the appropriate Modulation and Coding Scheme (MCS), thereby defining the data 
transmission rate in the communication channel. The Signal to Interference & Noise Ratio (SINR) and 
the  characteristics of  the mobile device determine  the CQI value,  such  that  the Block Error Rate 
(BLER)  does  not  exceed  10%.  This means  that  each  CQI  value  is mapped  to  a  specific MCS: 
Quadrature  Phase  Shift  Keying  (QPSK),  Quadrature  Amplitude  Modulation  (QAM,  16QAM, 
64QAM). Each MCS corresponds to a specific Code Rate and number of bits per symbol [19,20]. 

4) DL ReTrans Rate & 5) UL ReTrans Rate 
When the communication between the eNodeB and the user equipment is not established on the 

first  or  any  subsequent  attempt, data  resending  or  retransmission  is  performed. Data  is  sent  in 
packets, i.e. in a Transport Block (TB) within one Transmission Time Interval (TTI) with its duration 
of 1 ms. The DL/UL retransmission rate can be defined as the ratio of retransmitted packets (packets 
sent with retransmission) to all packets sent via the transport DL/UL SCH [19]. 

6) DL IBLER & 7) UL IBLER 
Block Error Rate (BLER) is defined as the ratio between the total number of blocks transmitted 

in a message and the number of blocks in the same message received with an error. This ratio is a 
measure of the quality of a data transmission and is expressed as a percentage. On the receiving side 
of the telecommunications system, detection of such transmission errors is performed by the Cyclic 
Redundancy Check  (CRC)  technique. The  Initial Block Error Rate  (IBLER)  is an  indicator used  to 
evaluate network performance and which shows the relationship between the number of blocks with 
initial transmission errors and the total number of initially transmitted TBs in the DL and UL direction 
[19]. 

8) Cell Traffic Volume DL & 9) Cell Traffic Volume UL 
Cell Traffic Volume DL/UL represents the total aggregated DL/UL traffic in the cell in a period 

of one hour expressed in Gbit. In LTE networks, the total aggregated traffic represents the sum of 
traffic in 9 classes, which are identified by the QoS Class Identifier (QCI) [19]. The classes marked 
with QCI 1, QCI 2, QCI 3 and QCI 4 are characterized by a defined and guaranteed throughput of 
Guaranteed Bit Rate (GBR), and examples of services that belong to them are QCI 1 ‐ Conversational 
Voice; QCI 2 – Conversational Video (Live Streaming); QCI 3 – Real Time Gaming; QCI 4 – Non‐
Conversational Video (Buffered Streaming). Non‐GBR classes are marked with QCI 5, QCI 6, QCI 7, 
QCI 8, QCI 9 and imply a certain risk of packet loss, especially in conditions of network congestion. 
Examples  of  services  belonging  to  them  are QCI  5  –  IMS  Signalling; QCI  6  ‐  Video  (Buffered 
Streaming), TCP‐based  (www, e‐mail, chat,  ftp, p2p  file sharing, progressive video, etc.); QCI 7 – 
Voice, Video (Live Streaming), Interactive Gaming; QCI 8 and QCI 9 ‐ Video (Buffered Streaming), 
TCP‐based (www, e‐mail, chat, ftp, p2p file sharing, progressive video, etc.). 

10) Cell Downlink Average Throughput & 11) Cell Uplink Average Throughput 
One of  the most  important  indicators of network performance  is Throughput, which  can be 

defined as the ratio of the amount of data transferred and the time for which the transfer is made. 
The  variable  Cell  Downlink/Uplink  Average  Throughput  represents  the  average  value  of  this 
indicator for a period of one hour, at the level of one cell in the DL and UL direction. The average 
throughput value can be determined not only geographically (per spatial unit‐cell), but also logically 
(per service) [19]. 

12) Average DL User Throughput & 13) Average UL User Throughput 
The average value of Throughput at the user level in the LTE network, in the observed space in 

the DL  and UL  direction,  is  determined  by  the  value  of  the Average DL/UL User  Throughput 
variable. Also, this value is calculated for a period of one hour [19]. 

14) UL Average Interference 
The total power of the noise floor and the  interference of neighboring cells, received by each 

PRB,  is measured during one TTI  in the UL direction. The eNodeB divides the total power of the 
noise floor and the interference of neighboring cells by the number of PRBs, and the resulting value 
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is used as the sampling result. At the end of the one‐hour measurement period, the average of these 
sampling results expressed in dBm is used as the value of the UL Average Interference variable [21]. 

15) DL.QPSK.TB.Retrans, 16) DL.16QAM.TB.Retrans & 17) DL.64QAM.TB.Retrans 
The  variables  DL.QPSK.TB.Retrans,  DL.16QAM.TB.Retrans  and  DL.64QAM.TB.Retrans  are 

related  to  the variable DL ReTrans Rate and  refer  to  retransmission  rates  for  certain modulation 
schemes. Their meaning is as follows: 

15) DL.QPSK.TB.Retrans ‐ Number of retransmitted TBs in DL SCH at Quadrature Phase Shift Keying 
(QPSK) modulation; 
16) DL.16QAM.TB.Retrans  ‐ Number of  retransmitted TBs  in DL SCH at Quadrature Amplitude 
Modulation (QAM) with 16 carrier states (16QAM); 
17) DL.64QAM.TB.Retrans ‐ Number of retransmitted TBs in DL SCH at QAM with 64 carrier states 
(64QAM). 

3.3. Calculation of dependent variable values 

End‐to‐end  delay  (DEtoE)  consists  of  the  sum  of  the  delay  at  the Medium Access Control 
(MAC)/Radio Link Control (RLC) layer, which makes up the largest part of DEtoE, then of the delay 
due to signal propagation at the physical level and the transmission delay between the eNodeB and 
UE  [22].  Therefore,  the  delay  in  this  case  implies  ʺthe  time  duration  that  starts when  a  flow  is 
generated by a  traffic source,  transmitted  through  the communication system, until  it reaches  the 
application layer of the userʹs device ‐ UEʺ [22]. 

The values of the variable DEtoE were collected by estimation and calculation based on the results 
presented in the paper [22]. In this paper, Madi et al. (2018) used a simulation method to measure the 
end‐to‐end delay for VoIP traffic depending on the number of active UEs in the cell, at mobile user 
speeds of 3 km/h and 120 km/h  for each of the  four observed scheduling algorithms: Exponential 
Rule (EXP‐RULE), Exponential‐Proportional Fair (EXP‐PF), PPM and Delay–based and QoS–Aware 
Scheduling (DQAS). Based on graphically presented simulation results in [22] (Fig. 7 Average DE2E on 
RT VoIP flows), for an interval from 10 to 100 active UEs in a cell with a step of 10 and for a speed of 
120 km/h, average values of the estimated delays for the four observed scheduling algorithms are 
calculated in this paper. The values calculated in this way are shown by points in Figure 3, where the 
regression curve that best describes the functional dependence of the average delay on the number 
of UEs is given. 
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Figure 3. Average values of end‐to‐end delay of VoIP services calculated  for EXP‐RULE, EXP‐PF, 
PPM and DQAS scheduling algorithms and for mobile user movement speed of 120 km/h. 

The curve shown in Figure 3 has a polynomial form of the second degree and can be represented 
by a quadratic equation as follows: 𝐷𝑒𝑙𝑎𝑦 ൌ 0.0003 ∙ 𝑈𝐸ଶ ൅ 0.1197 ∙ 𝑈𝐸 ൅ 1.8071  (1)

As an indicator of the quality of this model, a very high coefficient of determination (R2), which is 
R2=0.9941, appears. Considering  that  the database obtained  from  the M:tel operator, among other 
things,  provided  the  values  of  the  average  number  of  active  UEs  in  the  cells  of  the  observed 
geographical area, the DEtoE values were obtained indirectly, by calculation based on the model given 
by Eq. (1), which is shown graphically in Figure 4. 

 

Figure 4. Method of calculating the values of the dependent variable DEtoE. 

Descriptive statistics for the dependent variable are given in Table 2, and the histogram of the 
DEtoE variable is shown in Figure 5. 

Table 2. Descriptive statistics for the dependent variable DEtoE 

Mean  StDev  Var  Min  Median  Max  Skewness  Kurtosis 
4.1503  2.6520  7.0329  1.8081  3.2516  25.8282  2.81  10.17 

 

 
Figure 5. Histogram of the dependent variable DEtoE. 
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By  a more detailed  analysis of  the histogram  shown  in Figure  5  (in Minitab  software),  it  is 
concluded that DEtoE values in the range between 2.375 ms and 2.625 ms have the highest frequency 
of 3477 repetitions. The arithmetic mean of the delay values is 4.1503 ms, and of the median is 3.2516 
ms. 

3.4. Structuring data into input/output vectors 

Considering that data processing in this research is performed by ML techniques, it is necessary 
to  structure  the  values  of  independent  variables  and  the  values  of  the  dependent  variable  into 
input/output vectors [9]. This kind of data structure enables the training of the ML model according 
to the supervised learning paradigm, where the independent variables have the role of inputs to the 
model, and the dependent variable has a function of an output from the model. One input‐output 
vector,  in  this case, represents a one‐dimensional array, where  the  first 17 numbers represent  the 
values of the independent/input variable (input vector), and the last number refers to the value of the 
dependent/output variable DEtoE. In the IBM SPSS Statistics Data file, a total of 31143 input‐output 
vectors are structured as described, and out of them, in this paper, 70% are used for training and 30% 
for model testing. 

3.5. Optimization of a set of independent variables by Feature Selection techniques 

A  large  number  of  inputs  or  predictors  can  make  the  ML  model  very  complex,  which 
complicates its interpretability, requires increased memory space in the system, and also increases 
the chances of overfitting to training data. However, the problem of poor accuracy of prediction and 
classification is often solved precisely by including additional parameters or variables, which means 
that  achieving  a  compromise  (optimum)  between  simplicity  and  accuracy  is  one  of  the  most 
important goals when creating an ML model [23,24].     

In many  cases, more  inputs  to  the model does not mean better model performance. Feature 
Selection  represents  one  of  the  techniques  for  reducing  the  dimensionality  of  a  data  set 
(Dimensionality Reduction) by filtering certain predictors that are redundant or not relevant in the 
ML  model.  By  excluding  such  independent  variables,  the  prediction  accuracy  or  classification 
performance of the model can be significantly improved [25]. For this purpose, three basic variants 
of the Feature Selection technique are available: 

 Filter technique ‐ It is based on measuring the importance of variables based on features such as 
variance and relevance to the output variable. Predictors are selected according to the desired 
level of importance or relevance, after which an ML model is created using the selected set of 
inputs [26]. 

 Wrapper  technique  – Model  training  is performed using  a  selected  subset or  the  entire  set of 
independent variables, and then individual predictors are added or removed based on a certain 
criterion  that measures  the  change  in model  performance. Model  training  and  testing  are 
repeated until predefined stopping criteria are met [26]. 

 Embedded technique – Assessing the importance of the predictor is in this case an integral part of 
a model training process. 

3.5.1. RRelieff algorithm 

The RRelieff algorithm belongs to the Filter technique for optimizing a set of variables. Relief 
(Kira and Rendell, 1992 [27,28]) and its extension ReliefF (Kononenko, 1994 [29]) are ʺcontext‐awareʺ 
algorithms that assess the quality of model variables for solving classification problems where there 
is strong  interdependence among predictors  [30]. Unlike the previous two, the Regression ReliefF 
(RReliefF) algorithm  is not  limited  to category dependent variables only.  It  is used  for regression 
tasks in which it ʺpenalizesʺ predictors that give different prediction values for adjacent observations 
with the same values of the dependent variable. In this case, the observation represents one row in 
the input data matrix, i.e. one input vector. On the other hand, this algorithm ʺrewardsʺ predictors 
that give different prediction values for neighboring observations with different output values [31]. 
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RReliefF uses intermediate weights to calculate the final predictor weight coefficients, and if the two 
nearest neighbors are taken into account, the following notation is used: 

 Wj is the weighting coefficient of the predictor Fj; 
 Wdy is the weighting coefficient for different values of the dependent variable y; 
 Wdj is the weighting coefficient for different predictor values Fj; 
 Wdy∧dj is the weighting coefficient for different values of y and different values of the predictor Fj 

[31]. 

The weighting coefficients, Wdy, Wdj, Wdy∧dj and Wj ,    are equal  to zero at  the beginning of  the 
algorithm. The algorithm iteratively selects a random observation xr and a k‐nearest observation for 
xr. For each nearest neighbor xq, intermediate weights are updated as follows [31]: 

1 ( , )i i

dy dy y r q rqW W x x d      (2)

1 ( , )i i

dj dj j r q rqW W x x d      (3)

1 ( , ) ( , )i i

dy dj dy dj y r q j r q rqW W x x x x d
        (4)

In the mathematical expressions (2), (3) and (4), i and i‐1 denote the ordinal numbers of a total of m 
specified  iterations. The  expression  ∆y (xr, xq)  represents  the difference between  the values of  the 
dependent variable for observations xr and xq and can be calculated as follows [31]: 

( , )
max( ) min( )

r q

y r q

y y
x x

y y


 


  (5)

where yr and yq are the values of the dependent variable for observations xr and xq, respectively. The 
difference of the values of the predictor Fj for the observations xr and xq is defined by the expression 
∆j (xr, xq) [31]. When xrj represents the value of the j‐th predictor for the observation xr, and xqj is the 
value of the j‐th predictor for the observation xq, then 

( , )
max( ) min( )

rj qj

j r q

j j

x x
x x

F F


 


  (6)

After updating all intermediate weights, RreliefF calculates the weighting coefficients of the predictor 
Wj according to Eq. [31]: 

dy dj dj dy dj

j

dy dy

W W W
W

W m W

 
 


  (7)

In order to select the optimal set of predictors in the model, in addition to the values of weighting 
coefficients, it is necessary to define the Relevance Threshold (RT), as the limit of the significance of 
independent variables  [32]. According  to  the  criterion  set  in  this way,  all predictors with Wj≥RT 
participate in the creation of the model. Generally, that threshold has a value in the interval between 
0 and 1, and more precisely, its value is calculated according to the following expression based on 
Chebyshevʹs inequality [32]: 

1
0 RT

t
 


  (8)

where α is the probability of accepting an insignificant feature as significant (type I errors or first type 
error), and t is the number of training observations for updating Wj, out of a total of n observations. 
Within  the  stated  limits,  the  selection of RT  is arbitrary, where  there  is a probability  that not all 
variables  with  Wj  above  the  defined  threshold  will  necessarily  be  significant  because  some 
unimportant variables are expected to have a positive weighting coefficient by chance [32]. 
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3.5.2. Backward selection via the recursive feature elimination algorithm 

The application of the Wrapper technique for the selection of an optimal set of input variables 
in this research is based on the Backward selection via the recursive feature elimination algorithm, 
which was presented in [33]. In Figure 6, this algorithm is graphically represented by a flowchart. In 
the initial step, all 17 independent variables are used as inputs to the ML model, after which multiple 
predictive  models  are  trained  and  tested.  At  the  same  time,  it  is  necessary  to  determine  the 
importance or influence of each predictor on the prediction results. In the next step, the input variable 
of least importance is eliminated, and the training and testing procedure is repeated over the subset 
obtained  in  this way, as well as  the performance analysis of  the solutions created. As  long as  the 
current  subset  of  input  variables  consists  of more  than  two  inputs,  it  is  necessary  to  eliminate 
individually each input variable with the next lowest importance from the ranked list, and so on. The 
elimination procedure  is  shown  in  a  loop  in Figure  6. When  the  input  subset  is  reduced  to  two 
predictors,  the  performance  of  the  created models  is  compared  for  each  subset.  Finally,  for  the 
optimal solution, the subset of inputs over which the most accurate predictive models were created 
is selected. 

 

Figure 6. Backward selection via the recursive feature elimination algorithm to optimize the number 
of predictors. 

The  performance  of  predictive models  is measured with  the Relative  Error  (RE)  prediction 
criterion, for quality assessment and selection of the most accurate model. RE is calculated as the ratio 
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of the sum of error squares of the dependent variable DEtoE and the sum of error squares of the null 
or intercept model: 
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  (9)

where: 

‐DEtoEi is a calculated end‐to‐end delay value for the i‐th input/output vector,   
‐DPREDi is a prediction value of DEtoEi, and   
‐DAVGi is the arithmetic mean of the variable DEtoEi. 

3.6. Optimization of a set of independent variables by the Pareto 80/20 rule 

Another applied approach to optimization within the dimensionality reduction technique is the 
Pareto principle. Since optimality means the best combination of relevant factors, the Pareto principle 
is based on the strategic assumption that 80% of problems or effects in solutions come from 20% of 
causes. This  is why  it  is often  referred  to as  the  ʺ80/20  ruleʺ. The Pareto principle has proven  its 
applicability in various fields, even though it has its roots in economics [34,35]. In this paper, on the 
basis of the created Pareto diagram, the optimal number of  input variables  is chosen so that their 
cumulative PI value is equal to or greater than 0.8 or 80%. For all alternative actions in predictive 
decision‐making, available relevant information is used, and possible solutions for selecting one of 
the alternatives can be presented in matrix form. Machine learning is viewed as a multi‐objective task. 
However, most often only one goal is observed ‐ cost function optimization, or multiple objectives 
are aggregated into a scalar cost function. Using the Pareto principle to solve multi‐objective tasks 
has  proven  to  be  one  of  the most  effective  approaches.  In  the  Pareto‐based  approach  to multi‐
objective optimization, the objective function is not a scalar value, but a vector. Therefore, several 
Pareto‐optimal solutions are created instead of one, which can significantly improve the predictive 
performance of a model [36]. 

3.7. Creating predictive models using the ML method of automatic modeling 

In the IBM SPSS Modeler software environment, optimized sets of predictors are brought to the 
input of the Auto Numeric node. Auto Numeric represents a method for automatic modeling where 
training and testing of multiple models  is performed  in  just one step on the basis of different ML 
techniques: NN, classification and regression trees (C&R Tree), Chi Squared Automatic Interaction 
Detection (CHAID), linear regression, generalized linear regression, SVM [9]. As a result, the software 
analyzes the performance, ranks and offers the user the best solutions, and sorts  the  independent 
variables according to the importance of influence on the prediction results. Based on the aims and 
objectives of this research, three machine learning techniques are in focus: NN, k‐NN and SVM [9,37]. 

3.8. Comparative analysis of prediction results and selection of the final model 

The comparative analysis of the prediction results and the selection of the final model represents 
the  last step  in  the  research process. Based on  the prediction performance expressed  through  the 
relative error criterion, one of the most accurate models  is selected for each of the  three observed 
approaches to optimizing the set of  input variables. The main goal of this procedure  is to test the 
statistical  significance  of  the differences  in  prediction  results  for  three ML models,  i.e.  for  three 
approaches to predictor set optimization. Given that the same data set is used for testing in all three 
cases,  the  prediction  results  are  compared  using  statistical methods,  by  the  ANOVA  test with 
Repeated Measures and the Friedman test.   

In  addition  to  relative  error, as one of  the key  indicators of prediction performance,  special 
attention is paid to its complexity and interpretability when selecting an ML model [5]. Studies have 
shown  that  models  with  more  complex  ML  algorithms  are  more  difficult  to  interpret.  The 
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dimensionality of the space of input variables, and the complexity of the functions that the models 
need to learn, in addition to the algorithms, can affect the complexity of the model [5]. Figure 7 shows 
the methodological steps, from the optimization of the set of  independent variables  in each of the 
three investigated predictive models to the comparative analysis and selection of the final ML model. 

According to the results of numerous studies, priority is given to simpler, more interpretable 
solutions, although complex predictive models usually provide better performance [38–40]. In the 
paper [39], several definitions of the concept of interpretability are listed, among which the following 
stands out:  ʺinterpretability  in ML  is  a degree  to which  a human  can understand  the  cause of a 
decision from an ML modelʺ. For this reason,  in recent years, a relatively new  field,  Interpretable 
Machine Learning (IML), has appeared. Within it, methods are investigated to transform ML models, 
the so‐called black boxes, into white box models [5,39,41]. Figure 8 shows common models ranked 
according to accuracy and interpretability in relatively recent published research papers [42–46]. In 
the figure, the accuracy from the lowest to the highest value is given in a down‐up orientation, while 
the interpretability with a growing trend is oriented in the Top‐down direction. 

 
Figure 7. Steps of the methodological procedure from the optimization of the set of predictors to the 
selection of the final model 

 
Figure 8. ML models ranked by accuracy and interpretability in various published research papers. 
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4. Results and Discussion 

4.1. Predictive ML models created over a set of predictors optimized by the RReliefF algorithm 

The  optimization  results  of  the  set  of  independent  variables  by  the RReliefF  algorithm  for 
different values of k‐Nearest Neighbors are shown in Table 3. For k=10, k=15 and k=20, the algorithm 
ranked the independent variables by weighting coefficients in the same tanking. The most influential 
predictor for all three cases is DL.16QAM.TB.Retrans, while Average_DL_User_Throughput is in last 
place with a negative weighting coefficient for each k. 

Table 3. Optimization results of the set of independent variables by the RReliefF algorithm 

Rank  Independent variable or Predictor 
Predictor weighting coefficients for 

individual values of k 
k=10  k=15  k=20 

1  DL.16QAM.TB.Retrans  0.0061  0.0065  0.007 
2  DL.QPSK.TB.Retrans  0.006  0.0064  0.0067 
3  Cell_Traffic_Volume_UL  0.0041  0.0044  0.0045 
4  DL_PRB_Usage_Rate  0.0037  0.004  0.0043 
5  Cell_Traffic_Volume_DL  0.0033  0.0035  0.0038 
6  UL_Average_Interference  0.0028  0.0031  0.0033 
7  DL.64QAM.TB.Retrans  0.0027  0.0028  0.0029 
8  Cell  0.0024  0.0025  0.0027 
9  UL_IBLER  0.001  0.001  0.0012 
10  UL_ReTrans_Rate  0.0009  0.001  0.0011 
11  Cell_Uplink_Average_Throughput  0.0006  0.0006  0.0007 
12  Average_UL_User_Throughput  0.0001  0.0001  0.0001 
13  Average_CQI  ‐0.0008  ‐0.0008  ‐0.0009 
14  DL_ReTrans_Rate  ‐0.0013  ‐0.0013  ‐0.0014 
15  DL_IBLER  ‐0.0015  ‐0.0016  ‐0.0017 
16  Cell_Downlink_Average_Throughput  ‐0.0019  ‐0.002  ‐0.0021 
17  Average_DL_User_Throughput  ‐0.0027  ‐0.0029  ‐0.003 

According to expression (8), with the conventional value α=0.05 and the default value m=31143, 
the RT value is selected in the interval 0<RT<0.025. However, in practice, instead of a certain value of 
RT, and  in accordance with  the  limitations, a few of  the most  important predictors that affect  the 
prediction of the dependent variable are often chosen. Considering that,  in the observed case, the 
number  of variables with weighting  coefficients  greater  than  0  is  equal  to  12,  the  first  6  ranked 
predictors, according to Table 3, are selected as the final number of inputs. The RT threshold value 
that  can  be  set  hypothetically,  and which  can  correspond  to  this  selection  of  the  optimal  set  of 
variables is RT=0.0028. 

Table  4  shows  the  ranked RE values  and  correlations  for  the  three  tested models  that were 
created over the data set optimized by the RReliefF algorithm. 

Table 4. Results of testing the models created over the data set optimized by the RReliefF algorithm. 

Model  RE  Correlation 
1. k‐NN  0.109  0.944 
2. NN  0.159  0.917 
3. SVM  0.205  0.893 

According to Table 4, the best predictive performance is shown by the model based on k‐NN 
which has RE=0.109 and correlation coefficient equal to 0.944. That is why this model is selected as 
the best solution in the approach to predictor set optimization with the RReliefF algorithm. The SVM 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2023                   doi:10.20944/preprints202306.2178.v1

https://doi.org/10.20944/preprints202306.2178.v1


  16 

 

model has the highest relative error, which is RE=0.205, but also the lowest correlation value, which 
is equal to 0.893. 

4.2. ML predictive models created over a set of predictors optimized by the Backward selection via the 
recursive feature elimination algorithm 

In accordance with the first step of the algorithm shown in Figure 6, all 17 independent variables 
are used as inputs to the ML models. Automatic training and testing of predictive models based on 
NN, SVM and k‐NN techniques is performed using the Auto Numeric method in one pass through 
the modeling process. As one of the results of this step, Figure 9 shows the input variables ranked by 
PI value [47]. 

 
Figure 9. Independent variables ranked by PI. 

By multiple execution of the loop of the algorithm given in Figure 6, the RE values of the model 
testing  are  obtained,  as  shown  in  Figure  10.  From  the  figure,  it  can  be  concluded  that  the  best 
predictive performance is shown by the model based on k‐NN, which has the smallest relative error 
(RE=0.04) for the five most influential  input variables sorted according to Figure 10. Nevertheless, 
due  to  less complexity,  the k‐NN model with  four  inputs  is  selected as  the best  solution, and  its 
relative  error  is  slightly  higher  and  amounts  to RE=0.041. Also,  it  is  evident  that  the  prediction 
performance decreases drastically with a further reduction in the number of inputs to three and two 
variables. 
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Figure 10. Relative error of ML models testing. 

The performance of the tested predictive models, in addition to the relative error, can also be 
expressed by correlation, which is shown in Figure 11. It is concluded that the values of the Pearson 
correlation coefficients of the prediction results with the real data from the test set are ʺinverseʺ in 
relation to the RE values shown in Figure 10. Accordingly, the model with five inputs has the highest 
correlation coefficient  (0.98), but due  to  the reasons mentioned above,  the k‐NN model with  four 
inputs whose correlation coefficient is equal to 0.979 was selected as the best solution. 

 
Figure 11. Correlation of ML models prediction results with data test set. 

4.3. Predictive ML models created over a set of predictors optimized by the Pareto 80/20 rule 

Figure 12 shows a Pareto diagram where the observed input variables are ordered according to 
the value of PI, from the highest to the lowest, by the ranking shown in Figure 9 [48]. The value of 
the  cumulative  curve  for  any  input  variable  is  equal  to  the  sum  of  the  PI  values  of  individual 
predictors  up  to  the  observed  variable, moving  from  the  left  to  the  right  side  of  the  diagram. 
According to the Pareto 80/20 rule, the goal is to find the first point on the curve with a cumulative 
value equal to or greater than 80%. This optimal point is marked in Figure 12, and the cumulative 
percentage in it is 81.34% for 11 input variables. According to the results shown in Figure 10, the k‐
NN model is selected as the best solution in this optimization approach, whose relative error at that 
point is RE=0.049, while the correlation is equal to 0.975 (Figure 11). 
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Figure 12. Pareto diagram for predictor set optimization. 

4.4. Comparative analysis of results using statistical methods and selection of the final model 

Comparative analysis compares the delay prediction results of three ML models, each of which 
was selected as the best solution in one of the three observed approaches to optimizing the input set 
of variables. The main goal is to determine the statistical significance of the differences between the 
prediction results, which is the reason for testing the null hypothesis: 

 H0: μ1 = μ2 = μ3, where μ1, μ2 and μ3 are the arithmetic means of delay prediction values for k‐NN 
models selected as the best solutions in the approach based on the RRelieff algorithm, Backward 
selection via the recursive feature elimination algorithm, and the Pareto 80/20 rule, respectively. 
In other words, this hypothesis represents the assumption that there are no significant statistical 
differences in the arithmetic means of the delay prediction results for the three observed models.   
In contrast, the alternative hypothesis can be stated as follows: 

 H1: There are significant statistical differences  in  the prediction  results between at  least  two 
models, i.e. two optimization approaches. 

The parametric statistical test that tests the null hypothesis  is ANOVA with Repeated Measures 
[49]. However, it is first necessary to test one of the basic conditions for the application of this test, 
which  is  the normality of  the distribution of  the dependent variable  in groups. The results of  the 
Kolmogorov‐Smirnov normality test for the observed models are given in Table 5. 

Table 5. Tests of Normality with summarized optimization and prediction results. 

An approach to optimization of a 
set of input variables 

ML model 
selected 

Number 
of inputs 

RE 
Kolmogorov‐Smirnov 
Statistic  df  Sig. 

RReliefF algorithm  k‐NN  6  0.109  0.188  31143  0.000 
Backward selection via the 
recursive feature elimination 

algorithm 
k‐NN  4  0.041  0.191  31143  0.000 

Pareto 80/20 rule  k‐NN  11  0.049  0.189  31143  0.000 

The obtained significance value of the Sig. test for all three cases has the same value (Sig.=0.000). 
It means that the assumption about the normality of the distribution of the dependent variable  in 
groups can be rejected. This conclusion can be confirmed graphically on the basis of the Q‐Q plots 
shown in Figure 13. On the diagrams, it is obvious that there are significant deviations of the points 
from the line representing the normal distribution. 
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Figure 13. Normality tests of delay prediction results: a) RReliefF algorithm; b) Backward selection 
via the recursive feature elimination algorithm; c) Pareto 80/20 rule. 

Given  the non‐fulfillment of  the conditions  from  the aspect of normality of distribution,  it  is 
necessary  to  test  the hypotheses with  the Friedman  test, which  is a non‐parametric alternative  to 
ANOVA with Repeated Measures. Table 6 shows the results of the Friedman test performed in IBM 
SPSS  Statistics  [50].  In  addition  to  the  sample  size  (N),  the  test  statistic  (Chi‐Square),  degree  of 
freedom (df) and significance level (Asymp. Sig.) are given in the table. Based on the value of Asymp. 
Sig.,  which  is  less  than  the  α=0.05  level,  it  is  concluded  that  there  are  statistically  significant 
differences in the prediction results for the three models, i.e. for three approaches to optimizing the 
set of input variables. 

Table 6. Results of the Friedman test. 

N  31143 
Chi‐Square  268.019 

df  2 
Asymp. Sig.  0.000 

The  results  given  in  Table  6  do  not  show  the  information  for  which  pair  of  combined 
optimization  techniques  there  is a  significant  statistical difference. The answer  to  this question  is 
obtained with a Post Hoc statistical test. Table 7 shows the results of the Wilcoxon signed‐rank post 
hoc test with the value of Z and Asymp. Sig. for each of the three combinations of approaches. 

Table 7. Wilcoxon signed‐rank post hoc test results. 

 

Pairs for comparison 

RReliefF ‐ Pareto 
80/20 rule 

Backward selection via the 
recursive feature elimination ‐ 

RReliefF 

Backward selection via the 
recursive feature elimination ‐ 

Pareto 80/20 rule 
Z  ‐3.077  ‐7.848  ‐18.727 

Asymp. Sig. (2‐
tailed) 

0.002  0.000  0.000 

In order to interpret the results obtained, it is necessary to calculate the adjusted Bonferroni level 
of significance as the ratio of level α=0.05 and the number of pairs being compared, which as a result 
provides a value of 0.017. Given that Asymp. Sig.<0.017 applies to all combinations, it is concluded 
that there are statistically significant differences among the delay prediction results for all three pairs 
of approaches to optimizing the input set of variables. 
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5. Conclusions 

For a long period of time, not only the amount of data, called BD, but also the number of users 
of network services and the range of user requests for higher QoS has been increasing drastically. 
Telecommunications operators face increasingly complex technical and technological problems in a 
domain of network traffic management, adequate planning and modern design of all dimensions of 
the  quality  of  network  resources,  their  allocation  and  performance  ‐  KPI,  which  is  especially 
important for services such as VoIP and traffic streaming. Predictive modeling of required solutions 
currently is most often based on the techniques of the ML method. Numerous studies of different 
approaches to certain solutions for indicated problems are analyzed in this paper and presented in 
Section 2. Using the above and other experiences and theoretical findings of more comprehensive 
studies,  the paper presents original approaches  to predictive modeling of  end‐end delay of data 
packets through a real 4G LTE network in geo‐space covered by the M:tel BL mobile operator with a 
focus on the area of a three‐segment road in the road network of RS, BiH. In the LTE architecture, a 
total  of  87  cells  are  located  in  the  observed  area, which  provide  users with  a  continuous  and 
permanent network connection. 

The paper has realized the aims and objectives of the research, from reducing the dimensionality 
of the space of input variables in the optimization model with Feature Selection techniques (RReliefF 
and Backward selection via the recursive feature elimination algorithms) and the Pareto 80/20 rule, 
through training and testing of ML models with NN, SVM and k‐NN techniques with the selection 
of  the  best  delay  prediction  model  in  the  LTE  network  according  to  criteria  of  accuracy  and 
complexity/interpretability to the implementation of a unique methodology of indirect assessment 
and calculation of dependent variable values based on  the average number of active users  in  the 
network. At the same time, a universally applicable predictive model of delay in the LTE network, 
based on research  in  the real space of Big Data  (BD) with  input‐output vectors, was created. The 
presented approaches to the optimization of the number of predictors by end‐end delay modeling 
ML  techniques  in LTE networks by  reducing  the dimensions of BD and  connecting  independent 
variables in pairs with the calculation of KPI with the methodology of presenting and interpreting 
textual,  algorithmic,  graphic,  photo‐documentation,  mathematical  and  computer‐generated 
solutions, is in the opinion of the team of authors, a particularly important innovative contribution 
to the research of telecommunications traffic given  in this paper. An optimal explanatory strategy 
was also used in creating a system of clarification of the presented methodology and results referring 
to similarities in the structure of what is being investigated in this paper with already known facts 
that, among other things, were published in cited papers and other authorsʹ solutions. Also, familiar 
systems of relations that are used as models which can be useful to understand the new experience 
in  the systematic scientific  research of  telecommunications  traffic are  taken  into account, and  the 
similarities  created  in  analogies  and  hypotheses  have  led  to  the  proven  quality  of  the  results 
presented.   

The research results show that  in all three approaches  to the optimization of  the  input set of 
variables, the k‐NN model is selected as the best solution. For the RReliefF optimization algorithm, 
the best model has 6 inputs and RE=0.109; for Backward selection via the recursive feature elimination 
algorithm, the best model has 4 inputs and RE=0.041; and for the Pareto 80/20 rule, the best model 
has 11 inputs and RE= 0.049. The comparative analysis of the results concludes that according to both 
observed criteria for the selection of the final model, the best solution is an approach to optimizing 
the  number  of  predictors  based  on  the Backward  selection  via  the  recursive  feature  elimination 
algorithm. In other words, the k‐NN model created within this approach has the lowest RE value and 
the lowest number of input variables of all tested. 

Author Contributions: Conceptualization, M.K.B., M.S. and M.V.; methodology, M.K.B. and M.S.; software, M.S. 
and M.V.; validation, M.K.B., D.N. and A.S.; formal analysis, M.K.B., D.N., M.S. and A.S.; investigation, M.K.B., 
M.S. and M.V.; resources, M.K.B., M.S., A.S., D.D. and G.P.; data curation, M.K.B., M.S., M.V. and D.D.; writing—
original draft preparation, M.K.B. and M.S.; writing—review and editing, M.K.B., M.S. and M.V.; visualization, 
M.K.B., M.S., D.D. and G.P.; supervision, M.K.B. and M.S.; project administration, D.D, D.N., G.P. and M.V.; 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2023                   doi:10.20944/preprints202306.2178.v1

https://doi.org/10.20944/preprints202306.2178.v1


  21 

 

funding acquisition, D.D., G.P., A.S., D.N. and M.V. All authors have read and agreed to the published version 
of the manuscript.   

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The dataset is available upon request. 

Acknowledgments: The authors gratefully acknowledge the mobile operator M:tel Banja Luka for their support 
by providing research data. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Banjanin, M.K.; Maričić, G.; Stojčić, M. Multifactor Influences on the Quality of Experience Service Users of 
Telecommunication Providers in the Republic of Srpska, Bosnia and Herzegovina. International Journal for 
Quality Research 2022, 17(2), 369–386. doi: 10.24874/IJQR17.02‐05 

2. Banjanin, M.K.; Stojčić, M.; Danilović, D.; Ćurguz, Z.; Vasiljević, M.; Puzić, G. Classification and Prediction 
of  Sustainable  Quality  of  Experience  of  Telecommunication  Service  Users  Using Machine  Learning 
Models. Sustainability 2022, 14(24), 17053. doi: https://doi.org/10.3390/su142417053 

3. Mesbahi, N.; Dahmouni, H. Delay and jitter analysis in LTE networks. In 2016 International Conference on 
Wireless Networks and Mobile Communications (WINCOM), Fez, Morocco, 26‐29 October 2016; pp. 122‐
126. IEEE. doi: 10.1109/WINCOM.2016.7777202 

4. Yaqoob, J.I.A.Y.; Pang, W.L.; Wong, S.K.; Chan, K.Y. Enhanced exponential rule scheduling algorithm for 
real‐time  traffic  in  LTE  network. International  Journal  of  Electrical  and  Computer  Engineering  (IJECE) 
2020, 10(2), 1993‐2002. doi: 10.11591/ijece.v10i2.pp1993‐2002 

5. Stojčić, M.; Banjanin, M.K.; Vasiljević, M.; Stjepanović, A.; Ćurguz, Z. PCA modeling of extraction and 
selection of variables  influencing LTE network delay  in urban mobility  conditions. Paper presented at 
International Conference on Advances in Traffic and Communication Technologies ATCT 2023, 11‐12 May 
2023, Sarajevo, Bosnia and Herzegovina 

6. ETSI  TS  123  107  v12.0.0.  Digital  cellular  telecommunications  system  (Phase  2+);  Universal  Mobile 
Telecommunications System (UMTS); LTE; Quality of Service (QoS) concept and architecture. European 
Telecommunications  Standards  Institute:  Sophia  Antipolis  Cedex,  France,  2014.  Available  online: 
https://www.etsi.org/deliver/etsi_ts/123100_123199/123107/12.00.00_60/ts_123107v120000p.pdf    (accessed 
on 26 June 2023). 

7. Kumar,  V.;  Minz,  S.  Feature  selection:  a  literature  review. SmartCR  2014, 4(3),  211‐229.  doi: 
10.6029/smartcr.2014.03.007 

8. Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 
2018, 300, 70‐79. doi: https://doi.org/10.1016/j.neucom.2017.11.077 

9. Đukić, A.; Bjelošević, R.;  Stojčić, M.; Banjanin, M.K. Network Model of Multiagent Communication of 
Traffic Inspection for Supervision and Control of Passenger Transportation  in Road and City Traffic. In 
Proceedings of Croatian Society for Information, Communication and Electronic Technology – MIPRO 2023 
46th (Hybrid) Convention, Opatija, Croatia, 22‐26 May 2023; pp. 1352‐1357 

10. Torres‐Figueroa, L.; Schepker, H.F.;  Jiru,  J. QoS evaluation and prediction  for C‐V2X communication  in 
commercially‐deployed  LTE  and  mobile  edge  networks.  (2020,  May).  In 2020  IEEE  91st  Vehicular 
Technology  Conference  (VTC2020‐Spring),  Antwerp,  Belgium,  25‐28  May  2020;  pp.  1‐7.  IEEE.  doi: 
10.1109/VTC2020‐Spring48590.2020.9129382 

11. Zhang, W.; Feng, M.; Krunz, M.; Volos, H. Latency prediction for delay‐sensitive v2x applications in mobile 
cloud/edge  computing  systems.  In GLOBECOM  2020‐2020  IEEE  Global  Communications  Conference, 
Taipei, Taiwan, 07‐11 December 2020; pp. 1‐6. IEEE. doi: 10.1109/GLOBECOM42002.2020.9348104 

12. Brown, J.; Khan, J.Y. A predictive resource allocation algorithm in the LTE uplink for event based M2M 
applications. IEEE Transactions on Mobile Computing 2015, 14(12), 2433‐2446. doi: 10.1109/TMC.2015.2398447 

13. Khatouni, A.S.; Soro, F.; Giordano, D. (2019, April). A machine learning application for latency prediction 
in  operational  4g  networks.  In 2019  IFIP/IEEE  Symposium  on  Integrated  Network  and  Service 
Management (IM), Arlington, VA, USA, 08‐12 April 2019; pp. 71‐74. IEEE.   

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2023                   doi:10.20944/preprints202306.2178.v1

https://doi.org/10.20944/preprints202306.2178.v1


  22 

 

14. Zhohov, R.; Minovski, D.; Johansson, P.; Andersson, K. Real‐time performance evaluation of LTE for IIoT. 
In 2018 IEEE 43rd Conference on Local Computer Networks (LCN), Chicago, IL, USA, 01‐04 October 2018; pp. 
623‐631. IEEE. doi: 10.1109/LCN.2018.8638081 

15. Lai, W.K.;  Tang,  C.  L. QoS‐aware  downlink  packet  scheduling  for  LTE  networks. Computer Networks 
2013, 57(7), 1689‐1698. doi: https://doi.org/10.1016/j.comnet.2013.02.017 

16. Lai, W.K.; Hsu, C.W.; Kuo, T.H.; Lin, M.T. A LTE downlink scheduling mechanism with the prediction of 
packet delay.  In 2015 Seventh  International Conference on Ubiquitous and Future Networks, Sapporo, 
Japan, 07‐10 July 2015; pp. 257‐262. IEEE. doi: 10.1109/ICUFN.2015.7182546 

17. Nasri, M.; Hamdi, M. LTE QoS  parameters  prediction  using multivariate  linear  regression  algorithm. 
In 2019 22nd  conference on  innovation  in  clouds,  internet and networks and workshops  (ICIN), Paris, 
France, 19‐21 February 2019; pp. 145‐150. IEEE. doi: 10.1109/ICIN.2019.8685914 

18. Ahmed, A.H.; Hicks,  S.; Riegler, M. A.; Elmokashfi, A.  Predicting High Delays  in Mobile  Broadband 
Networks. IEEE Access 2021, 9, 168999‐169013. doi: 10.1109/ACCESS.2021.3138695 

19. Banjanin, M.K.; Stojčić, M.; Drajić, D.; Ćurguz, Z.; Milanović, Z.; Stjepanović, A. Adaptive Modeling of 
Prediction  of  Telecommunications  Network  Throughput  Performances  in  the  Domain  of Motorway 
Coverage. Applied Sciences 2021, 11(8), 3559. https://doi.org/10.3390/app11083559 

20. Loshakov, V.A.; Al‐Janabi, H.D.; Al‐Zayadi, H.K. Adaptive control signal parameters in LTE technology 
with  MIMO.  Telecommunications  Problems  2012,  2(7),  78‐90.  UDC  621.396 
http://openarchive.nure.ua/handle/document/430 

21. Ren,  J.;  Zhang,  X.;  Xin,  Y.  Using  Deep  Convolutional  Neural  Network  to  Recognize  LTE  Uplink 
Interference.  In 2019  IEEE Wireless Communications and Networking Conference  (WCNC), Marrakesh, 
Morocco, 15‐18 April 2019; pp. 1‐6. IEEE. DOI: 10.1109/WCNC.2019.8885870 

22. Madi, N.K.; Hanapi, Z.M.; Othman, M.; Subramaniam, S.K. Delay‐based and QoS‐aware packet scheduling 
for  RT  and  NRT  multimedia  services  in  LTE  downlink  systems. EURASIP  Journal  on  Wireless 
Communications and Networking 2018, 180(2018), 1‐21. doi: https://doi.org/10.1186/s13638‐018‐1185‐3 

23. Kuhn, M.; Johnson, K. Feature Engineering and Selection: A Practical Approach for Predictive Models, 1st edition; 
Chapman and Hall/CRC: Boca Raton, Florida, 2019; ISBN: 978‐1‐13‐807922‐9.   

24. Li,  J.;  Cheng,  K.; Wang,  S.; Morstatter,  F.;  Trevino,  R.P.;  Tang,  J.;  Liu,  H.  Feature  selection:  A  data 
perspective. ACM computing surveys (CSUR) 2017, 50(6), 1‐45. doi: https://doi.org/10.1145/3136625 

25. Wah, Y.B.; Ibrahim, N.; Hamid, H.A.; Abdul‐Rahman, S.; Fong, S. Feature Selection Methods: Case of Filter 
and Wrapper Approaches for Maximising Classification Accuracy. Pertanika Journal of Science & Technology 
2018, 26(1), 329 – 340. Article ID: JST‐S0296‐2017 

26. MathWorks.  Introduction  to  Feature  Selection.  Available  online:   
https://www.mathworks.com/help/stats/feature‐selection.html (accessed on 27 March 2023) 

27. Kira,  K.;  Rendell,  L.A.  A  practical  approach  to  feature  selection.  In Machine  learning  proceedings, 
Aberdeen, Scotland, 1‐3 July 1992; pp. 249‐256. doi: https://doi.org/10.1016/B978‐1‐55860‐247‐2.50037‐1 

28. Kira,  K.;  Rendell,  L.A.  The  feature  selection  problem:  Traditional methods  and  a  new  algorithm.  In 
Proceedings of the tenth national conference on Artificial intelligence ‐ AAAI ’92, San Jose, California, 12‐
16 July 1992; pp. 129‐134. https://cdn.aaai.org/AAAI/1992/AAAI92‐020.pdf 

29. Kononenko, I. Estimating Attributes: Analysis and extensions of RELIEF. In Machine Learning: ECML‐94; 
Bergadano,  F.,  De  Raedt,  L.,  Eds.;  Springer,  Berlin,  Heidelberg,  Germany,  1994;  Volume  784,  doi: 
https://doi.org/10.1007/3‐540‐57868‐4_57 

30. Robnik‐Šikonja, M.; Kononenko, I. An adaptation of Relief for attribute estimation in regression. In Machine 
learning: Proceedings of the fourteenth international conference (ICML’97), Nashville, Tennessee, USA, 8‐12 July 
1997; pp. 296‐304. 

31. MathWorks. Relief. Available online: https://www.mathworks.com/help/stats/relieff.html (accessed on 24 
April 2023) 

32. Urbanowicz,  R.J.; Meeker, M.;  La  Cava, W.;  Olson,  R.S.; Moore,  J.H.  Relief‐based  feature  selection: 
Introduction  and  review. Journal  of  biomedical  informatics  2018, 85,  189‐203.  doi: 
https://doi.org/10.1016/j.jbi.2018.07.014 

33. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector 
machines. Machine learning 2002, 46(1), 389‐422. doi: https://doi.org/10.1023/A:1012487302797 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2023                   doi:10.20944/preprints202306.2178.v1

https://doi.org/10.20944/preprints202306.2178.v1


  23 

 

34. Okorie, O.; Salonitis, K.; Charnley, F.; Turner, C. A systems dynamics enabled real‐time efficiency for fuel 
cell  data‐driven  remanufacturing. Journal  of Manufacturing  and Materials  Processing  2018, 2(4),  77.  doi: 
https://doi.org/10.3390/jmmp2040077 

35. Hugh,  J.  Engineering  Design,  Planning,  and  Management,  2nd  edition;  Academic  Press:  Cambridge, 
Massachusetts, United States, 2021. ISBN 978‐0‐12‐821055‐0 

36. Jin, Y.; Sendhoff, B. Pareto‐based multiobjective machine  learning: An overview and case studies. IEEE 
Transactions  on Systems, Man,  and Cybernetics, Part C  (Applications  and Reviews) 2008, 38(3), 397‐415. doi: 
10.1109/TSMCC.2008.919172 

37. Lee, S. H.; Mazumder, J.; Park, J.; Kim, S. Ranked feature‐based laser material processing monitoring and 
defect  diagnosis  using  k‐NN  and  SVM. Journal  of  Manufacturing  Processes  2020, 55,  307‐316.  doi: 
https://doi.org/10.1016/j.jmapro.2020.04.015 

38. Ahmad, M.A.; Eckert, C.; Teredesai, A. Interpretable machine learning in healthcare. In Proceedings of the 
2018 ACM  international  conference  on  bioinformatics,  computational  biology,  and  health  informatics, 
Washington DC, USA, 29 August 2018‐1 September 2018; pp. 559‐560. 

39. Abdullah, T.A.; Zahid, M.S.M.; Ali, W. A review of interpretable ML in healthcare: taxonomy, applications, 
challenges, and future directions. Symmetry 2021, 13(12), 2439. doi: https://doi.org/10.3390/sym13122439 

40. Dherin,  B.; Munn, M.;  Rosca, M.;  Barrett,  D. Why  neural  networks  find  simple  solutions:  the many 
regularizers of geometric complexity. In Proceedings of Thirty‐sixth Conference on Neural  Information 
Processing Systems‐NeurIPS, New Orleans Convention Center, USA, 28 November 9 December 2022, 35; 
pp. 2333‐2349.   

41. Stiglic, G.; Kocbek, P.; Fijacko, N.; Zitnik, M.; Verbert, K.; Cilar, L. Interpretability of machine  learning‐
based prediction models in healthcare. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 
2020, 10(5), e1379. doi: https://doi.org/10.1002/widm.1379 

42. Morocho‐Cayamcela,  M.E.;  Lee,  H.;  Lim,  W.  Machine  learning  for  5G/B5G  mobile  and  wireless 
communications:  Potential,  limitations,  and  future  directions. IEEE  access  2019, 7,  137184‐137206.  doi: 
10.1109/ACCESS.2019.2942390 

43. Yang,  Y.J.;  Bang,  C.  S.  Application  of  artificial  intelligence  in  gastroenterology. World  journal  of 
gastroenterology 2019, 25(14), 1666. doi: 10.3748/wjg.v25.i14.1666 

44. Pichler, M.; Hartig, F. Machine learning and deep learning—A review for ecologists. Methods in Ecology and 
Evolution 2023, 14(4), 994‐1016. doi: https://doi.org/10.1111/2041‐210X.14061 

45. Guo, M.; Zhang, Q.; Liao, X.; Chen, Y. An interpretable machine learning framework for modelling human 
decision behavior. arXiv preprint 2019, arXiv:1906.01233. 

46. Nesvijevskaia, A.; Ouillade, S.; Guilmin, P.; Zucker, J. D. The accuracy versus interpretability trade‐off in 
fraud detection model. Data & Policy 2021, 3, e12. doi: https://doi.org/10.1017/dap.2021.3 

47. Chowdhury, M.Z.I.;  Turin,  T.C. Variable  selection  strategies  and  its  importance  in  clinical  prediction 
modelling. Family medicine and community health 2020, 8(1), e000262. doi: 10.1136/fmch‐2019‐000262 

48. Wang, J.; Jiang, C.; Zhang, H.; Ren, Y.; Chen, K. C.; Hanzo, L. Thirty years of machine learning: The road 
to Pareto‐optimal wireless networks. IEEE Communications Surveys & Tutorials 2020, 22(3), 1472‐1514. doi: 
10.1109/COMST.2020.2965856 

49. Yu, Z.; Guindani, M.; Grieco, S.F.; Chen, L.; Holmes, T.C.; Xu, X. Beyond t test and ANOVA: applications 
of mixed‐effects models for more rigorous statistical analysis in neuroscience research. Neuron 2022, 110(1), 
21‐35. doi: https://doi.org/10.1016/j.neuron.2021.10.030 

50. Balali, A.;  Valipour, A.  Identification  and  selection  of  building  façadeʹs  smart materials  according  to 
sustainable  development  goals. Sustainable  Materials  and  Technologies  2020, 26,  e00213.  doi: 
https://doi.org/10.1016/j.susmat.2020.e00213 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 
products referred to in the content. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2023                   doi:10.20944/preprints202306.2178.v1

https://doi.org/10.20944/preprints202306.2178.v1

