Pre prints.org

Article Not peer-reviewed version

A Novel Machine Learning Model
for Predicting Orthodontic
Treatment Duration

James Volovic , Sarkhan Badirli, Sunna Ahmad , Landon Leavitt , Taylor Mason, Surya Sruthi Bhamidipalli ,
George Eckert , David Albright , Hakan Turkkahraman :

Posted Date: 29 June 2023
doi: 10.20944/preprints202306.2096.v1

Keywords: Orthodontics; Treatment duration; Machine learning; Artificial intelligence

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/2875475
https://sciprofiles.com/profile/2763373

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 June 2023 doi:10.20944/preprints202306.2096.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
A Novel Machine Learning Model for Predicting
Orthodontic Treatment Duration

James Volovic 1, Sarkhan Badirli 2, Sunna Ahmad 3, Landon Leavitt ¢, Taylor Mason 5,
Surya Sruthi Bhamidipalli ¢, George Eckert 7, David Albright 8 and Hakan Turkkahraman °*

1 Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry,
Indianapolis, IN, USA; jvolovic@iu.edu

2 Eli Lilly and Company, Indianapolis, IN, USA; s.badirli@gmail.com

3 Indiana University School of Dentistry, Indianapolis, IN, USA; siahmad@iu.edu

4 Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry,
Indianapolis, IN, USA; lanleavi@iu.edu

5 Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry,
Indianapolis, IN, USA; taymason@iu.edu

¢ Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis,
IN, USA; sbhamid@iu.edu

7 Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis,
IN, USA; geckert@iu.edu

8 Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry,
Indianapolis, IN, USA; daalbri@iu.edu

° Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry,
Indianapolis, IN, USA

* Correspondence: haturk@iu.edu

Abstract: In the field of orthodontics, providing patients with accurate treatment time estimates is of utmost
importance. As orthodontic practices continue to evolve and embrace new advancements, incorporating
machine learning (ML) methods becomes increasingly valuable in improving orthodontic diagnosis and
treatment planning. This study aimed to develop a novel ML model capable of predicting the orthodontic
treatment duration based on essential pre-treatment variables. Patients who completed comprehensive
orthodontic treatment at the Indiana University School of Dentistry were included in this retrospective study.
Fifty-seven pre-treatment variables were collected and used to train and test 9 different ML models. The
performance of each model was assessed using descriptive statistics, intraclass correlation coefficients, and
one-way analysis of variance tests. Random Forest, Lasso, and Elastic Net were found to be the most accurate,
with a mean absolute error of 7.27 months in predicting treatment duration. Extraction decision, COVID,
intermaxillary relationship, lower incisor position, and additional appliances were identified as important
predictors of treatment duration. Overall, this study demonstrates the potential of ML in predicting orthodontic
treatment duration using pre-treatment variables.

Keywords: orthodontics; treatment duration; machine learning; artificial intelligence

1. Introduction

Orthodontic malocclusion is a common dental condition that has persisted throughout history,
encompassing various forms of dental deformities, such as crowded teeth and dysfunctional
occlusion [1]. The field of orthodontics comprises trained specialists who specialize in the diagnosis
and treatment of individuals with dental malocclusions. Prior to commencing orthodontic treatment,
a clinician must accurately diagnose the patient and devise a customized treatment plan. This plan
involves the formulation of objectives aimed at attaining the highest standards of esthetics, occlusion,
and long-term stability. Once these steps are completed by the orthodontist, the treatment plan is
presented to the patient. In delivering the treatment plan, there is an inevitable question that comes
to the patient’'s mind: “How long will the braces take?” The duration of the treatment is a critical
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piece of information that is often most valued by the patient. Providing a credible and realistic
estimate of treatment duration is of great importance, as it forms a key component of the orthodontic
informed consent process, payments plan, and significantly influences patient satisfaction [2,3].

Establishing an estimate of the orthodontic treatment duration begins when diagnostic records
are obtained from the patient [4]. These records include dental models, photographs, and radiographs
such as cephalometric and panoramic radiographs [5]. A wide range of quantitative measurements
are obtained from these records such as cephalometric values, tooth-size-arch-length discrepancy
(TSALD), molar classification, etc. Seasoned orthodontists have years-worth of expertise allowing
them to plan and predict orthodontic treatment duration confidently and efficiently. However,
orthodontic residents and recently certified orthodontists do not have this advantage. Although they
are prepared with the technical skills to do so, it requires more time and experience.

Several studies have been developed to identify certain pre-treatment factors and their effects
on orthodontic treatment duration. Aljehani et al. conducted a study that assessed the effectiveness
of the American Board of Orthodontics Discrepancy Index (DI) in predicting duration of orthodontic
treatment [6]. The DI form was used to quantitatively define the complexity of an orthodontic case.
They concluded that there is a positive weak correlation between DI and treatment time. Vu et al.
performed a similar study that evaluated the effectiveness of the DI and the treatment complexity
index (TCI), created for patients treated with fixed edgewise appliances, in predicting orthodontic
treatment duration [7]. They found that the average treatment time at an orthodontic clinic was 29.10
months. It was concluded that increases in TCI or DI were significantly associated with longer
treatment durations. For instance, a higher TCI score was associated with the use of headgear therapy
and resulted in an average increase in 6.10 months in treatment length [7]. Finally, Mavreas et al.
conducted a systematic review to investigate various factors that can affect duration of orthodontic
therapy [8]. A total of 41 articles were included in the study. They concluded that certain treatment
complexities such as extractions, impacted maxillary canines, and compliance of patients contribute
to an increase length of orthodontic therapy. Each article reviewed in this study focused specifically
on comparing a specific treatment complexity to a control. For example, Vig et al. collected data to
compare mean treatment duration of extraction versus non-extraction cases. The results showed a 5-
month average increase in treatment duration in extraction cases [9]. It can be concluded from these
studies that in order to predict duration of orthodontic therapy, accurate and complete pre-treatment
data is required.

Recent advancements in the field of artificial intelligence (Al) and machine learning (ML) offer
clinicians a supplemental tool to aid in predicting orthodontic treatment duration. Al is a broad term
for the technological systems that gather large data samples and exports information that is used to
help or improve a human’s decision-making process. Over the last few years, there has been a rapid
emergence of Al and ML systems [10]. Various algorithms of ML systems have been developed that
include but not limited to artificial neural networks (ANNs), ML, convolutional neural networks
(CNNs), and deep learning (DL) [4,11-14]. These studies have focused on utilizing ML algorithms to
predict extraction vs non-extraction treatment, extraction pattern, and anchorage planning [15,16].
These studies have shown ML systems can determine extraction treatment (>90%) and extraction
patterns (>84%) with reasonably high accuracy [14,15]. Dharmasena et al. conducted a study that
utilized two ML algorithms (Naive Bayes and Random Forest) to predict the continuation or
discontinuation of orthodontic treatment [17]. They analyzed a total of 310 records and concluded
that the Random Forest algorithm had highest accuracy in predicting continuation or discontinuation
of orthodontic treatment. The variable duration of active treatment (>5 years) was concluded to be
the main factor in discontinuation of treatment.

Perhaps the most relevant study to ours examined the implementation of a ML algorithm to
predict orthodontic treatment duration [18]. This study evaluated the accuracy and comparison of
ML algorithms in predicting orthodontic treatment duration. It included 9 different ML algorithms
and 8 pre-treatment variables. The study concluded that decision tree models outperformed other
methods (mean square error of 54.08) and revealed that age, malocclusion, and crowding were the
most influential predictors. However, this study and other existing studies on this topic have relied
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on a limited number of independent variables, such as DI or specific questionnaires. In contrast, our
study is unique in its incorporation of cephalometric data for the purpose of predicting orthodontic
treatment duration and represents a novel contribution to the field. We hypothesize that ML
algorithms have the capacity to predict orthodontic treatment duration in a manner comparable to
that of clinicians.

2. Materials and Methods

2.1. Study Sample

The data for this retrospective study consisted of 478 patients who received orthodontic
treatment at Indiana University School of Dentistry (IUSD) Graduate Orthodontic Clinic. Inclusion
criteria consisted of patients who: (1) received and completed comprehensive orthodontic treatment
at IUSD, (2) presented with a first molar to first molar permanent dentition, and (3) had complete
pretreatment and posttreatment records. Exclusion criteria consisted of: (1) non-IUSD patients, (2)
limited care treatments, (3) interdisciplinary cases, (4) early debonds, (5) phase I treatments, and (6)
orthognathic surgery patients. The patient sample included 315 (66%) females and 163 (34%) males.
49% of the patients were treated without any extraction, while 51% were treated with extractions.
There was a total of 119 (25%) patients that received treatment during the COVID pandemic. Molar
classification consisted of 181 (38%) Class I, 217 (45%) Class 11, and 80 (17%) Class III patients.

2.2. Data Collection

An experienced orthodontic faculty member (HT) and three orthodontic residents (JV, TM, LL)
attended three calibration sessions prior to reviewing and tracing the cephalometric radiographs. A
total of 31 cephalometric landmarks were identified using Dolphin Imaging Software (Patterson
Dental, Saint Paul, MN) (Figure 1). These cephalometric landmarks were used to generate a
cephalometric analysis that included 46 linear and angular measurements (Table 1). Demographic
and treatment information including age, gender, race, ethnicity, actual treatment time, additional
appliances, and COVID factor were gathered from the IUSD electronic practice management software
(Axium, Exan Software, Las Vegas, NV). Additional appliances factor included impacted canines,
expanders, and headgear. COVID factor was included if patient was being treated during the
pandemic when IUSD limited elective dental appointments (March 2020 - June 2020).
Maxillary/mandibular TSALD and molar classifications were collected by utilizing pretreatment
photographs and digital casts. TSALD was categorized into no crowding/spacing (<1mm), mild
crowding/spacing (1-3mm), moderate crowding/spacing (4-7mm), and severe crowding/spacing
(>8mm).
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Figure 1. Cephalometric landmarks used in this study. 1: Nasion (N), 2: Soft tissue nasion (N’), 3:
Orbitale (Or), 4: Sella (S), 5: Porion (Po), 6: Basion (Ba), 7: Condylion (Co), 8: Articulare (Ar), 9: Gonion
(Go), 10: Menton (Me), 11: Pogonion (Pog), 12: Gnathion (Gn), 13: B point (B), 14: A point (A), 15:
Anterior nasal spine (ANS), 16: Posterior nasal spine (PNS), 17: Distal of upper first molar (U6d), 18:
Mesial of upper first molar (Uém), 19: Mesial of lower first molar (L6ém), 20: Lower incisor root apex
(L1a), 21: Lower incisor incisal edge (L1i), 22: Upper incisor incisal edge (U1i), 23: Upper incisor root
apex (Ula), 24: Soft tissue pogonion (Pog’), 25: Soft tissue B point (B’), 26: Lower lip (Li), 27: Upper
lip (Ls), 28: Soft tissue A point (A’), 29: Subnasale (Sn), 30: Pronasale (Pn), 31: Soft tissue menton (Me”).

Table 1. Cephalometric variables and their definitions.

Category Measurements Definitions
SNA (°) The angle formed by connecting sella, nasion, and A-point
Maxilla to Cranial Base The angle formed from the intersection of sella-nasion line and a

SN-Palatal Plane (°
O line drawn connecting anterior nasal spine to posterior nasal spine

SN-Occlusal Plane (°) The angle formed from sella-nasion and occlusal plane
A-N Perpendicular (mm)  The linear distance from A point to the nasion perpendicular.
SNB (") The angle formed by connecting sella, nasion, and B-point
SNPg () The angle formed by connecting sella, naison, and pogonion

The angle formed from the intersection of porion-orbitale line and
a line drawn connecting gonion to gnathion
The angle formed from the intersection of sella-nasion line and a

FMA: MP-FH ()

Mandible to Cranial SN-MP () line drawn connecting gonion to gnathion
Base Mandibular Plane to The angle formed by mandibular plane and occlusal plane
Occlusal Plane (°) & y p p
B-N Perpendicular (mm) The linear distance from B point to nasion perpendicular
Pog-N P icul
og-N (T;Frf;l dicular The linear distance from pogonion to nasion perpendicular
Y-Axis: SGn-SN (°) The angle formed by connecting nasion, sella, and gnathion
ANB (") The difference between SNA and SNB

Maxilla to Mandible Palatal-Mandibular Angle

(PP-MP) () The angle formed from palatal plane and mandibular plane
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The distance between A point to Occlusal plane and B point to

Wits Appraisal (mm) Occlusal plane
Maxillary Length: ANS- The linear measurement between anterior nasal spine and
PNS (mm) posterior nasal spine
Mandibular Length: Co-
andibular Length: Co The linear measurement between condylion and gnathion
Gn (mm)

Cranial Base Ciﬁ;ii?gz?slfﬁ)gre The angle formed by connecting basion, sella, and nasion

The angle formed from a line connecting sella to nasion and a line

ULSN O connecting the upper incisor incisal tip to the root apex
Upper Incisors to UI-NA () The angle formed from a line connecting nasion to A-point and a
Maxilla line connecting the upper incisor incisal tip to the root apex
UI-NA (mm) The lin.ear. measurem.ent from th.e labiall surface of t.he upper
incisor to the line connecting nasion to A-point
Ul-Palatal Plane () The angle formed by the position of maxillary incisor to palatal
plane
Ul Protrusion (U1-APo) The distance from maxillary incisor to the A point-pogonion
(mm) reference line
L1-MP () The angle formed from a line connecting the lower incisor incisal
tip to the root apex and a line connecting gonion to gnathion
Lower Incisors to L1-NB () The angle formed from a line connecting the lower incisor incisal
Mandible tip to the root apex and a line connecting nasion to B-point
The linear measurement from the labial surface of the lower incisor
L1-NB (mm)

incisal to the line connecting nasion to B-point
L1 Protrusion (L1-Apo)  The distance from mandibular incisor to the A point-pogonion
(mm) reference line

The angle formed from a line connecting the lower incisor incisal
Incisors to Each Other  Interincisal Angle (°) tip to the apex and a line connecting the upper incisor incisal tip to
the root apex
. The horizontal distance from maxillary incisor tip to mandibular
Overjet (mm) o .
incisor tip
The vertical distance from maxillary incisor tip to mandibular

Overbite (mm) incisor tip

Upper Lip to E-Plane  The linear distance from upper lip to a line connecting soft tissue

(mm) pogonion and pronasale
Lower Lip to E-Plane  The linear distance from lower lip to a line connecting soft tissue
(mm) pogonion and pronasale
ILG (HP) (mm) The vertical distance from stomion superius to stomion inferius
Nasolablziljf)r?)l e (Pn-Sn- The angle formed by pronasale, subnasale, and upper lip
H-Angle (Pg’'UL-Pg’'Na’) The angle formed by soft tissue pogonion-upper lip to soft tissue
) pogonion-soft tissue nasion
Soft Tissue Facial Height (Na’-Me’)  The linear measurement from soft tissue nasion and soft tissue
(mm) menton
Soft Tissue Upper Face The linear measurement between soft tissue glabella and soft tissue
Height: G'-5n' (mm) subnasale
Soft Tissue Lower Face  The linear measurement between soft tissue subnasale and soft
Height: Sn'-Me' (mm) tissue pogonion
Hard Tissue Upper Face

The linear measurement between nasion and anterior nasal spine
Height: N-ANS (mm) p

Hard Tissue Lower Face

The linear measurement between anterior nasal spine and menton
Height: ANS-Me (mm) P
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UFH (N-ANS/(N-

ANS+ANS-Me)) (%)

LFH (ANS-Me/(N-

ANS+ANS-Me)) (%)
Posterior Face Height: Ar-

Go (mm)
PFH:AFH (Co-Go:N-Me)
(%)

Convexity: NA-APo ()  The angle formed by connecting nasion, A-point, and pogonion

The ratio of the upper face height to facial height
The ratio of lower face heigh to facial height
The linear measurement between articulare and gonion

The ratio of posterior facial height to anterior facial height

Profile Facial Angle: FH-NPo (") The angle forméd from a 1i1:1€ Coanecting porioTl to orbitale and a
line connecting nasion to pogonion

2.3. Reliability Assessment

In order to evaluate the agreement among examiners, as well as the repeatability within
examiners, a total of twenty patient records were randomly selected for each resident. These records
were subsequently retraced to assess intra-examiner repeatability and inter-examiner agreement by
using the intraclass correlation coefficient (ICCs).

2.4. Training and testing the models

Following the data collection, the statistician randomly distributed the patient sample into a
training set, which comprised of two-thirds of the total sample, and a test set, which constituted one-
third of the total sample. The aforementioned training and test sets were used to both train and test
each of the designated ML algorithms.

A total of 8 traditional regression models and a small multilayer perceptron (MLP), namely a
neural network, were used to predict the orthodontic treatment duration. The implemented models
include 4 linear models (Linear regression, Lasso, Ridge, and Elastic Net), 2 tree-based models
(XGBoost and Random Forest), 2 kernel-based models (Support Vector Machine (SVM) and Gaussian
Process Regression), and a neural network (MLP Regressor). Since the dataset contains both numeric
and categorical values with different feature scales, tree-based methods are a natural choice. To
explore both linear and non-linear relationship between covariate and treatment months, we
extended ML methods to linear and kernel-based methods. For the sake of completeness, we added
a small neural network to the pack although the size of the dataset is quite small for this data hungry
approach. Finally, we performed automated hyperparameter tuning using python Hyperopt package
for each model.

Due to the number of numerical features in this study, it was determined to test and train the
ML methods utilizing both the raw data and normalized data set. Normalization is an important step
when training traditional ML methods. It is particularly important for kernel-based methods like
SVM as they are sensitive to outliers, and normalization mitigates the effect of outliers. Linear models
also benefit from normalization and the model interpretability becomes easier as the features now
reside in common scale. Normalization makes sure the variance and scale in some features do not
overshadow the relative importance from other features. For these reasons we determined to employ
min-max normalization on the data and the raw data, separately.

2.5. Statistical Analysis

Descriptive statistics were provided for normalized and raw data groups for both true and
absolute differences. For both normalized and scaling analyses, means with 95% confidence intervals
were provided for differences between the actual, and each initial measurement were provided for
both true and absolute differences. Mean absolute error (MAE), root mean square error (RMSE), and
mean error (ME) were calculated to further evaluate the accuracy of the ML algorithms. One-sample
t-test was used to test for the difference from zero. One-way analysis of variance (ANOVA) with a
random effect was used to test for the differences between the 9 methods for both normalized and
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raw data groups. For both groups, intraclass correlation coefficients (ICCs) and Bland Altman plots
were used to measure the agreement between actual and final measurements. All the tests were
conducted at 5% significance level. All the analyses were done using SAS 9.4 software (SAS Institute
Inc., Cary, NC).

3. Results

3.1. Reliability Analysis

The reliability analysis conducted in this study assessed the repeatability and agreement of 50
measurable pre-diagnostic variables and the results were given in Table 2. The findings indicate that
80% of these variables demonstrated excellent (ICCs>0.90) or good (0.75<ICCs<0.90) intra-examiner
repeatability, highlighting the consistent and reliable nature of the measurements performed by the
same examiner [19]. Furthermore, inter-examiner agreement was evaluated, with 86% of the variables
showing excellent or good agreement between different examiners. These results provide evidence
of the robustness and consistency of the measurements, supporting the reliability of the data used in

doi:10.20944/preprints202306.2096.v1

the study.

Table 2. The results of the reliability analyses.

Threshold Agreement Quantity Percent
0 <ICCs <0.50 Poor 3 6%
Intra-examiner repeatability 0.50 <ICCs <0.75 Moderate 7 14%
0.75<ICCs <0.90 Good 14 28%
ICCs>0.9 Excellent 26 52%
0 <ICCs <0.50 Poor 1 2%
Inter-examiner agreement 0.50 <ICCs <0.75 Moderate 12%
0.75 <ICCs <0.90 Good 27 54%
ICCs>0.9 Excellent 16 32%

3.2. Descriptive Statistics

The study encompassed a sample population with a mean age of 16.00 + 9.32 years. The average
duration of treatment was found to be 30.12 + 9.32 months. Moreover, the mean ANB value for the
sample was determined to be 3.29° + 2.06, while the average SN-MP measurement stood at 32.66° +
5.98. Furthermore, a comparative analysis revealed that the average treatment time for cases
involving extraction was 33.46 + 8.94 months, whereas non-extraction cases exhibited an average
treatment time of 26.58 + 8.38 months. Table 3 provides the complete results for the descriptive
statistics including mean, standard deviation, minimum and maximum values.

Table 3. Descriptive statistics for the pre-treatment variables.

Variable Mean SD Min Max
Treatment Time (Months) 30.12 9.32 11.37 51.80
Age (Years) 16.00 5.61 9.00 50.00

SNA (°) 82.55 4.14 71.00 94.90
SN-Palatal Plane (°) 7.52 3.71 -2.80 19.20
SN-Occlusal Plane (°) 15.62 4.85 -1.50 29.00
A-N Perpendicular (mm) 0.49 3.72 -9.60 12.00
SNB (°) 79.25 4.14 67.40 92.90

SNPg (°) 79.78 4.18 66.50 93.00

FMA (MP-FH) (°) 27.28 5.54 11.00 45.50

SN - MP (°) 32.66 5.98 14.80 51.70
Mandibular Plane to Occlusal Plane (°) 18.25 4.52 4.80 35.10

B-N Perpendicular (mm) -4.36 6.09 -22.10 13.20
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Pog-N Perpendicular (mm) -4.09 701  -2480 15.70
Y-Axis (SGn-SN) (°) 67.84 427 56.20 83.90

ANB (°) 3.29 2.06 -3.70 11.10
Palatal-Mandibular Plane Angle (PP-MP) (°) 26.35 6.08 2.10 43.10
Wits Appraisal (mm) -0.15 3.06 -9.50 8.90
Maxillary length (ANS-PNS) (mm) 49.47 3.85 38.20 65.40

Mandibular length (Co-Gn) (mm) 113.10  8.20 9340  158.40

Ba-5-N (°) 13091 571 11430 153.90

U1 -SN (°) 107.44  9.60 67.30  134.50

Ul-NA (°) 24.89 8.80  -1410  51.50

Ul - NA (mm) 5.55 3.22 -7.50 17.70

Ul - Palatal Plane (°) 11496  8.82 80.40  140.50

U1 Protrusion (U1-APo) (mm) 7.74 3.74 -2.40 20.90

L1-MP (°) 92.19 7.70 65.50  112.80

L1-NB(°) 26.70 8.35 4.80 51.30

L1 - NB (mm) 5.60 3.21 -1.30 17.10

L1 Protrusion (L1-APo) (mm) 3.35 341 -5.20 13.60

Interincisal Angle (U1-L1) (°) 12512 1453  89.50  171.60
Upper Lip to E-Plane (mm) -1.60 312 -12.90 8.50
Lower Lip to E-Plane (mm) 0.37 3.64 -9.80 13.80
Interlabial gap (HP) (mm) 1.19 1.40 -1.10 8.80

Nasolabial Angle (Col-Sn-UL) (°) 106.58 11.27  68.00  132.60
Holdaway Angle (Pg'UL-Pg'Na’) (°) 17.34 491 0.60 36.70

Facial height (Na'-Me') (mm) 11297  7.60 7990  137.20

Soft tissue Upper Facial Height (G'-Sn') (mm) 63.96 4.82 49.60 76.80
Soft tissue Lower Facial Height (Sn'-Me') (mm) 69.64 6.18 53.60 87.10

Upper Face Height (N-ANS) (mm) 49.13 341 38.50 59.60
Lower Face Height (ANS-Me) (mm) 63.37 6.34 44.90 94.20
UFH (N-ANS/(N-ANS+ANS-Me)) (%) 43.75 2.56 36.40 50.10
LFH (ANS-Me/(N-ANS+ANS-Me)) (%) 56.25 2.56 49.90 63.60
Posterior Face Height (Ar-Go) (mm) 42.89 5.24 29.70 62.70
PFH:AFH (Co-Go : N-Me) (%) 51.74 4.84 37.40 67.30
Convexity (NA-APo) (°) 5.65 5.30 -8.20 26.30

Facial Angle (FH-NPo) (°) 87.76 3.83 75.30 98.20
Overjet (mm) 4.48 2.33 -2.30 18.20

Overbite (mm) 2.17 2.19 -6.30 10.20

SD: Standard deviation, Min: minimum, Max: maximum.

3.2. Performance of ML Models

The performance of the ML models including MAE, RMSE, ME, and ICCs is presented in Table
4. Bland-Altman plots showing the agreement between actual and predicted treatment durations
using raw and normalized data were presented in Figures S1 and S2. MAE was selected as the
preferred accuracy metric, as it provides a reliable measure of the ML performance in predicting
orthodontic treatment duration. The results highlight the consistent performance of the linear models
in our study. This observation may be attributed to two factors: either the available data does not
contain enough information to capture non-linear relationships, or the data itself inherently follows
a linear trend. Also, the impact of data normalization on gaussian regression is evident, as it
significantly influenced the results.

Table 4. Results for the ML predictions and performance assessments.

Raw Data Normalized Data

MAE RMSE ME ICC MAE RMSE ME

ICC
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XGBoost 8.70 10.56 -0.29 0.97 8.43 10.40 -0.45 0.97
Random Forest 7.75 9.63 -0.65 0.97 7.27 8.79 -0.46 0.96
Lasso 7.27 8.73 -0.13 0.96 7.27 8.73 -0.13 0.96
Ridge 7.30 8.76 -0.29 0.96 7.29 8.73 -0.16 0.96
Linear Regression 7.30 8.76 -0.29 0.96 7.31 8.77 -0.36 0.96
Elastic Net 7.27 8.73 -0.13 0.96 7.27 8.73 -0.13 0.96
Gaussian Process 29.77 31.27 29.77 0.99 8.62 11.02 3.42 0.98
Support Vector 7.66 9.13 1.18 0.96 10.24 12.47 0.07 0.98
MLP Regressor 13.04 15.69 12.63 0.99 8.52 10.57 -3.20 0.97

MAE: Mean absolute error; RMSE: Root mean square error; ME: Mean error, ICC: Intra-class
correlation coefficient.

Figure 2 provides the actual vs predicted treatment times for the two most accurate ML methods
for the raw data set and two most accurate ML models for the normalized data set. The graphs reveal
that the ML methods appear to overestimate the prediction for the shorter actual treatment times and
underestimate the prediction for the longer treatment times. Figure 3 represents 51 samples of the
Random Forest test set compared to the expert estimate provided to the patient prior to treatment.
The expert estimate was determined by IUSD orthodontic residents and faculty members. The actual
treatment time was organized chronologically which is the reason for the upward trend.
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Figure 2. Actual treatment time vs ML predictions for the test set.
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Random Forest Prediction vs. Expert Estimate
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Figure 3. Comparison of expert estimate, RF prediction, and actual treatment duration.

3.3. Predictive Features

Figure 4 shows the most predictive features picked up by the top performing ML models: Elastic
net, Random Forest, and Lasso. Extraction decision, the impact of COVID-19, and the utilization of
additional appliances consistently emerged as the most influential features in predicting orthodontic
treatment duration. These features exhibited notable consistency in their appearance across multiple
ML models, reinforcing their significance in accurately estimating treatment duration.
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Figure 4. Most predictive features picked up by the top performing ML methods.

3.4. Method comparison

Table 5 represents the ANOVA comparing performance of the tested models in predicting the
actual orthodontic treatment duration. A significant difference exists between Gaussian process,
SVM, and MLP regressor when compared to the remaining ML algorithms. This disparity suggests
notable variations in their predictive capabilities or performance outcomes.

Table 5. ANOVA comparison for the ML models performance.

Methods Estimate Standard Error P-value
Elastic < Gaussian -1.35 047 <0.01
Elastic & Lasso 0.00 047 1.00
Elastic & Linear -0.03 0.47 0.94
Elastic < MLP -1.25 047 0.01
Elastic & Random 0.00 047 1.00
Elastic & Ridge -0.01 047 0.97
Flastic < SVM -2.96 047 <0.01
Elastic < XGBoost -1.16 047 0.01
Gaussian > Lasso 1.35 0.47 <0.01
Gaussian > Linear 1.31 0.47 0.01
Gaussian & MLP 0.10 047 0.83
Gaussian > Random 1.35 047 <0.01
Gaussian > Ridge 1.33 0.47 <0.01
Gaussian < SVM -1.62 047 <0.01
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Gaussian & XGBoost 0.19 0.47 0.68
Lasso & Linear -0.03 0.47 0.94
Lasso < MLP -1.25 0.47 0.01
Lasso & Random 0.00 0.47 1.00
Lasso & Ridge -0.01 0.47 0.97
Lasso < SVM -2.96 0.47 <0.01
Lasso < XGBoost -1.16 0.47 0.01
Linear < MLP -1.21 0.47 0.01
Linear & Random 0.03 0.47 0.94
Linear & Ridge 0.02 0.47 0.97
Linear < SVM -2.93 047 <0.01
Linear < XGBoost -1.12 0.47 0.02
MLP > Random 1.25 0.47 0.01
MLP > Ridge 1.23 047 0.01
MLP < SVM -1.72 0.47 <0.01
MLP & XGBoost 0.09 0.47 0.85
Random & Ridge -0.01 0.47 0.97
Random < SVM -2.96 0.47 <0.01
Random < XGBoost -1.16 0.47 0.01
Ridge <SVM -2.95 047 <0.01
Ridge < XGBoost -1.14 0.47 0.01
SVM > XGBoost 1.81 0.47 <0.01

4. Discussion

The study aimed to assess and analyze the feasibility of developing a reasonably accurate ML
model for predicting orthodontic treatment duration based on pretreatment diagnostic variables.
Estimating treatment duration in orthodontics requires extensive expertise and discipline-specific
knowledge. The development of such a model holds significant potential in optimizing treatment
planning and facilitating effective communication between orthodontists and patients. By offering a
ML model that can provide reliable predictions, informed consent for patients can be enhanced,
leading to increased levels of patient satisfaction. In addition to providing precise treatment
estimates, it is equally essential to establish an accurate range.

The present study revealed a mean treatment duration of 30.12 + 9.32 months. Notably, Vu et al.
reported comparable treatment durations of 29.10 + 10.99 months within an orthodontic department
[7]. Specifically, extraction cases exhibited an average treatment time of 33.15 months, whereas non-
extraction cases had an average treatment time of 26.90 months. Similar trends were observed in the
investigation conducted by Holman et al., wherein extraction cases had an extended average
treatment time of 30 months, while non-extraction cases exhibited a shorter average treatment
duration of 26 months [20]. Moreover, patients undergoing orthodontic treatment during the COVID
pandemic experienced an average treatment time increase of 3 months. This finding aligns with the
study conducted by Morosan, which reported a comparable treatment delay of 2 months [21].

A comprehensive evaluation was conducted in this study to assess the performance of different
ML models in predicting orthodontic treatment duration. ML models were able to predict the actual
orthodontic treatment duration within + 7.27 months. A consistent pattern was observed among the
ML models, with a tendency to overestimate shorter treatment times while underestimating longer
treatment times. This behavior may stem from the algorithms' inclination to converge treatment time
predictions towards the average total treatment duration of the patient sample. In order to evaluate
the clinical performance of the ML models, it is essential to establish a benchmark against which their
predictive accuracy can be evaluated. The benchmark was established from a subset of 148 patients
that had received expert-estimated treatment time prior to commencing orthodontic treatment. The
analysis of expert predictions against the actual treatment time revealed a MAE of + 9.66 months.
Notably, the expert predictions demonstrated a 25% decrease in accuracy compared to the best ML
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models. This emphasizes the fact that predicting orthodontic treatment duration is a challenging task
for both ML models and clinicians.

The ML models employed in this study were evaluated to identify the most influential
features for treatment duration prediction. The analysis of the best performing ML models revealed
that extraction decision, COVID-19 impact, additional appliances, intermaxillary relationship, lower
incisor position, and vertical skeletal pattern were the features accorded the highest weights in
treatment time prediction. This observation aligns with the findings of Fisher et al., who also
identified extraction decision, lower incisor position, and vertical skeletal pattern as significant
factors impacting orthodontic treatment duration [22]. Similarly, Mavreas et al. reported an extended
treatment duration associated with additional appliances and extraction treatment. Interestingly, our
study and that of Mavreas both indicated that molar classification and age did not exert significant
effects on treatment time [8]. The inclusion criteria encompassed all patients with permanent
dentition, potentially diminishing the influence of age when the ML models assigned importance to
specific features. Moreover, the majority of patients in our sample shared a similar age range.
Regarding molar classification, its impact may have been limited due to the absence of malocclusion
severity among the pre-treatment variables. For example, patients classified as a quarter-step Class
II received equivalent weight as those classified as a full-step Class II.

Our findings revealed notable variations in the performance of the methods, with Elastic Net,
Lasso, and Random Forest models emerging as the top performers. Conversely, the MLP regressor,
Gaussian process, and SVM models exhibited comparatively poorer predictive capabilities. Notably,
linear regression and tree-based models exhibited superior performance, while kernel-based and
deep learning models yielded slightly less accurate predictions. Several factors, including sample
size, feature selection, and regularization techniques, likely contributed to these disparities. In the
context of limited sample sizes, the simplicity and reduced risk of overfitting in linear models make
them more likely to outperform non-linear models. This advantage stems from the stable and reliable
estimations of variable relationships that linear models can provide.

It is essential to recognize that orthodontic treatment duration is influenced by various factors,
encompassing both pre-diagnostic measurable data and factors that arise during the course of
treatment. The pre-diagnostic data, obtained through clinical examinations and cephalometric
analyses, contribute to the complexity of each case, ultimately impacting the duration of treatment.
This study primarily focuses on analyzing these pre-diagnostic variables. However, it is crucial to
acknowledge that additional factors that arise during treatment, such as patient compliance,
treatment-related emergencies, and missed appointments, can significantly influence the overall
treatment duration. Beckwith’s study found that factors such as broken brackets, poor oral hygiene,
and missed appointments had a significant increase in orthodontic treatment duration [23].
Furthermore, the MAE values obtained in this study may provide insight into the extent to which
these treatment-related factors can affect the treatment duration. By examining the MAE values, we
can gain a better understanding of the interplay between pre-diagnostic factors and the additional
factors that emerge during treatment, contributing to a comprehensive assessment of orthodontic
treatment duration.

This study is limited by its inability to account for these factors. Furthermore, the sample size
represents another limitation, as ML methods tend to exhibit improved performance when provided
with larger datasets. Future investigations should prioritize enlarging the sample size and exploring
the potential benefits of incorporating image detection of cephalometric radiographs, which could
mitigate concerns regarding intra-examiner reliability and inter-examiner agreement.

5. Conclusions

All tested ML models were able to predict orthodontic treatment duration within a clinically
acceptable range. Although ML models had similar accuracy, linear models and Random Forest were
the most predictive models, while SVM regressor and Gaussian process regression were the least.
Extraction decision, COVID factor, intermaxillary relationship, lower incisor position and additional
appliances were found to be the most predictive features in determining treatment time.
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Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org., Figure S1: Bland-Altman plots showing the agreement between actual and
predicted treatment durations using raw data. Figure S2: Bland-Altman plots showing the agreement between
actual and predicted treatment durations using normalized data.
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