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Multiplicity Analysis of a Thermistor Problem 

Rizos N. Krikkis 

Institute of Thermal Research, 2 Kanigos Str, PO Box 106 77, Athens, Greece; rkrik@uth.gr  

Abstract: In the present study a numerical bifurcation analysis of a thermistor problem is carried out, 

considering a realistic heat dissipation mechanism due to conduction, nonlinear temperature 

dependent natural convection and radiation. The electric conductivity is modeled as a strongly 

nonlinear and smooth function of the temperature between two limiting values, based on 

measurements. The problem formulated in this way admits multiple steady state solutions that do 

not depend on the external circuit. The analysis reveals that the conduction-convection parameter 

and the type of the boundary conditions have a profound effect on the solution structure and the 

temperature profiles. Depending on the boundary conditions the complex multiplicity pattern 

appears either as a series of nested cusp points or as enclosed branches emanating from pitchfork 

bifurcation points. 

Keywords: thermistor; Joule heating; conduction; natural convection 

Introduction 

Thermistors are thermally sensitive resistors and have either a negative (NTC) or positive (PTC) 

resistance/temperature coefficient; we will discuss only the later. Its characteristic feature is the 

strongly dependent electric conductivity. PTCs are manufactured from silicon, barium, lead and 

strontium titanates with the addition of yttrium, manganese, tantalium and silica [1–3]. PTC 

thermistors are widely used as current limiting devices, that is as nondestructible (resettable) fuses 

for electric circuit protection, sensing excessive currents. They can also be encountered as a micro 

self-heating thermostat for microelectronic, biomedical and chemical applications. Common 

geometrical configurations are the washer, the disk and the rod type [1–3]. Although PTCs and in 

general electroceramics are in principle loaded electrically a significant number of mechanical failures 

is being recorded annually. This may be explained on the basis of the Joule self-heating effect which 

causes temperature differences, thermal strains and excessive thermo-mechanical stresses that may 

cause failure of the device. As the current technological trends point towards greater device 

miniaturization while operating at higher power densities there is an increasing demand for 

thorough analysis and understanding of the underlying coupled electrothermal phenomena in 

electroceramic devices, Dewitte et al. [Error! Reference source not found.], Supancic [Error! 

Reference source not found.]. 

The thermistor as a coupled thermo-electric problem has attracted significant attention. An early 

result (1900) due to Diesselhorst [Error! Reference source not found.] for the steady state problem 

shows that the temperature may be expressed as a function of the electric potential provided that 

certain types of boundary conditions are imposed. Cimmati [Error! Reference source not found.] 

extended the result of Diesselhorst to obtain existence and uniqueness conditions for the steady state 

problem. Further results on existence and uniqueness we obtained by Cimatti [Error! Reference 

source not found.], Cimatti and Prodi [Error! Reference source not found.], Xie and Allegretto 

[Error! Reference source not found.] and Antontsev and Chipot [Error! Reference source not 

found.]. Bahadir [12,13] and Çatal [Error! Reference source not found.] employed finite element 

numerical techniques to solve the thermistor problem assuming a step electric conductivity function. 

Kutluay et al. [Error! Reference source not found.] obtained a heat balance integral solution of the 

same problem considering a modified electric conductivity function. Ammi and Torres [Error! 

Reference source not found.] solved numerically a nonlocal parabolic equation in time and space 
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domains resulting form the thermistor problem. Golosnoy and Sykulski [Error! Reference source not 

found.] compared various computational techniques for coupled nonlinear thermo-electric 

problems. The thermistor problem was used as a test case with an electric conductivity being a 

nonlinear function of the temperature and the electric field intensity. Karpov [Error! Reference 

source not found.] demonstrated the bistability conditions, the switching autowave properties and 

the emergence of dissipative structures of essentially a thermistor problem. Apart from the 

temperature depended electric conductivity, convective heat dissipation with a constant heat transfer 

coefficient through the device lateral surface was assumed. It is worth noticing that the thermistor 

problem is closely associated with the flash sintering of ceramics [Error! Reference source not 

found.], as for instance yttria stabilized zirconia, magnesia doped alumina and strontium titanate 

among others [Error! Reference source not found.]. The essence of the process is that when an 

operating parameter such as the furnance temperature exceeds the corresponding limit point, 

established by the applied voltage that separates the stable from the unstable steady states the Joule 

heating greatly exceeds the heat dissipation mechanism due to radiation and the temperature blows 

up. The process controller is then switching from voltage control to current control to maintain the 

temperature within the specified limits [21,22]. 

From the literature review above it appears that the thermistor problem has been studied with 

various assumptions and/or restrictions related primarily with the form of the electric conductivity, 

the heat dissipation mechanism and in certain cases with the influence of the external electric circuit. 

The later is also associated with the existence of multiple steady state solutions, up to three, as 

determined from the number of the intersection points between the current-voltage characteristic 

curves of the external (linear) circuit and the thermistor, Fowler et al. [Error! Reference source not 

found.], Howison et al. [Error! Reference source not found.], Zhou and Westbrook [Error! Reference 

source not found.], Cimatti [Error! Reference source not found.]. In the present study a numerical 

bifurcation analysis of a thermistor problem is carried out, considering a realistic heat dissipation 

mechanism due to conduction, nonlinear temperature dependent natural convection and radiation. 

The electric conductivity is modeled as a strongly nonlinear and smooth function of the temperature 

between two limiting values, based on measurements. The problem formulated in this way admits 

multiple steady state solutions that do not depend on the external circuit. The analysis reveals that 

the conduction-convection parameter and the type of the boundary conditions have a profound effect 

on the solution structure and the temperature profiles. Depending on the boundary conditions the 

complex multiplicity pattern appears either as a series of nested cusp points or as enclosed branches 

emanating from pitchfork bifurcation points. 

1. Analysis 

1.2. Energy Balance 

Consider a horizontal cylindrical segment of a conductor of uniform material density γ with 

constant thermal conductivity k. The segment has diameter D and length L as it is schematically 

shown in Error! Reference source not found.. Heat is being dissipated by conduction through the 

core of the device and by natural convection and radiation through the lateral surface area, in an 

ambient environment of constant temperature T∞ . An energy balance along the longitudinal 

direction X yields the following differential equation for the device temperature T: 

4 4( ) ( )c

T T P
C k h T T T T EJ

t X X A
γ εσ∞ ∞

∂ ∂ ∂   = − − + − +   ∂ ∂ ∂ 
 (1)

In the equation above, C is the specific heat capacity, A is the cross sectional area, P is the 

perimeter, ch  is the convective heat transfer coefficient, ε is the surface emissivity, σ is the Stefan-

Boltzmann constant, E is the electric field intensity and J is the current density through the device. 
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Figure 1. Conductor geometry and energy balance. 

1.3. Electric Resistivity 

A characteristic feature of a ceramic PTC device is the strongly non-linear dependence of its 

resistivity with respect to temperature. Driven by a transition of the ferroelectric PTC material the 

resistance increases several orders of magnitude in a relatively small temperature interval, for 

instance between 100°C and 200°C. The same smooth curve with continuous derivatives, with respect 

to temperature for the subsequent numerical bifurcation analysis has been adopted from Karpov 

[Error! Reference source not found.], which represents a barium titanate (BaTiO3) based device: 

1
1ˆ ˆ( )

ˆ ˆ( ) exp[ 0.12( 95)]l

h l

T
T

ρ ρ
ρ ρ −

= +
− + − −

 (2)

where ˆ 2lρ = Ωm and 
4ˆ 10hρ = Ωm are the asymptotic resistivity values corresponding to the low 

and high operating temperatures respectively. The temperature of 95°C signifies the onset of the 

transition from the low to the high resistivity value as the contribution of the exponential term in 

Equation (Error! Reference source not found.) becomes significant. The form of Equation (Error! 

Reference source not found.) is supported by a significant volume of measurements as for instance 

reported by Brzozowski and Castro [Error! Reference source not found.], Wang et al. [Error! 

Reference source not found.], Wang et al. [Error! Reference source not found.], Luo et al. [Error! 

Reference source not found.], Takeda et al. [Error! Reference source not found.], Rowlands and 

Vaidhyanathan [Error! Reference source not found.]. 

1.4. Heat Transfer Model 

The heat generated in the device due to the current flow (Joule heating, Metaxas [Error! 

Reference source not found.], Lupi [Error! Reference source not found.], Lupi et al. [Error! Reference 

source not found.]) is dissipated to the surrounding environment through natural convection and 

radiation exchange. For the circumferential average Nusselt number Nu, the correlation of Churchill 

and Chu [Error! Reference source not found.] is employed: 
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4 99 161 4Ra 0.559Nu 0.36 0.518 , (Pr) 1
(Pr) Pr

f
f

  
= + = +  

   
 (3)

where (Pr)f  is a weak function of the Prandtl number Pr. Equation (Error! Reference source not 

found.) covers a very wide range of Rayleigh numbers namely in the range from 10-6 to 109, while it 

maintains a simple and compact mathematical form. Equation (Error! Reference source not found.) 

is applied locally in the evaluation of the convective heat transfer coefficient along the device axis, in 

a similar manner as it was utilized by Faghri and Sparrow [Error! Reference source not found.]. 

Consequently the local Rayleigh number Ra is evaluated from the local temperature difference as: 

3Ra [ ( ) ]g D T X Tβ αν∞= −  (4)

where g is the acceleration due to gravity, β is the thermal expansivity, D is the device diameter, α is 

the thermal diffusivity and ν is the kinematic viscosity. 

1.5. Boundary Conditions. Problems P1 and P2. 

As it will be described in the next paragraphs the boundary conditions have a profound effect 

on the bifurcation structure in general and on the temperature distribution in particular. Thus for 

problem P1 the edges of the device are considered adiabatic: 

0

0
X X L

T T

X X= =

∂ ∂
= =

∂ ∂
 (5)

whereas for problem P2 the imposed boundary conditions are: 

2

, 0eX L
X L

T
T T

X=
=

∂
= =

∂
 (6)

1.6. The Electrothermal Model in Dimensionless Form 

Considering a constant (dc) current flowing through the device, the electric field intensity is 

related to the current density through Ohm’s law, ˆ( )E T Jρ= , Metaxas [Error! Reference source 

not found.], Lupi [Error! Reference source not found.], Lupi et al. [Error! Reference source not 

found.]. Introducing dimensionless variables 

2
ref垐, , ,x X L t L T Tτ α ρ ρ ρ∞= = Θ = =  (7)

the temperature distribution along the device takes the form: 

2
2 4 2

2 Nu( 1) ( 1)hu C j
x

ρ
τ

∂Θ ∂ Θ  = − Θ − + Θ − − ∂ ∂
 (8)

In the above equation, the conduction- convection parameter (CCP) is defined as: 

2
2 ref

( )
h L

u
k A P

=  (9)

where the reference heat transfer coefficient refh  is defined through the Nusselt number: 

ref

Nu c ch h

k D h∞

= =  

In terms of the dimensionless variables defined above the local Rayleigh number becomes: 
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3

Ra Ra ( 1), Ra g D Tβ

αν
∞

∞ ∞= Θ − =  

The current density parameter is related to the current density as below 

2
2

ref

ˆ( )J A P
j

T h

ρ

∞

 
=  

 
 (10)

and hC  is the ratio of the radiative heat transfer coefficient to the reference heat transfer coefficient 

3

ref ref

r
h

T h
C

h h

εσ ∞= =  (11)

Under steady state conditions the partial differential equation Equation (Error! Reference source 

not found.) reduces to a two point boundary value problem for the device temperature ( )xΘ  

2 4 2Nu( 1) ( 1) 0 0 1hu C j xρ′′  Θ − Θ − + Θ − − = < <   (12)

with boundary conditions  

( 0) ( 1) 0x x′ ′Θ = = Θ = =  (13)

for problem P1 and  

( 1) , ( 0.5) 0ex x′Θ = = Θ Θ = =  (14)

for problem P2. 

1.7. Stability 

The stability of a certain steady state ( )s xΘ  to small perturbations ( )xϑ  i.e. 

( , ) ( ) ( )sx x x eλττ ϑΘ = Θ +  (15)

is determined by the eigenvalues λ of the corresponding Sturm-Liouville problem, after substituting 

Equation (Error! Reference source not found.) into the original partial differential equation, Equation 

(Error! Reference source not found.),  

2 0, 0 1u Q xϑ λ ϑΘ
′′  − Δ + = < <   (16)

where 

4 2Nu( 1) ( 1) ( )
s

hQ C j ρΘ Θ=Θ

∂  Δ = Θ − + Θ − − Θ ∂Θ
 

The corresponding boundary conditions for problem P1 are (0) (1) 0ϑ ϑ′ ′= =  and for problem 

P2 are (0.5) (1) 0ϑ ϑ′ = = . During branch tracing, for every steady state that has been calculated 

from Equation (12), the associated eigenvalue problem, Equation (Error! Reference source not 

found.), is subsequently numerically solved and a sufficient number of eigenvalues is determined. 

Stable solutions are characterized by negative eigenvalues whereas positive ones correspond to 

unstable temperature distributions. 

2. Results and Discussion 

The second order, two-point boundary value problem described by Equation (Error! Reference 

source not found.) is transformed into a system of first order equations through the transformation 

1Θ = Θ , 2 ′Θ = Θ  and solved numerically. In order to ensure an accurate and reliable numerical 
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solution, two different methods have been employed resulting in identical results under the strict 

tolerances imposed. The first one utilizes a multi-shooting Runge-Kutta formula pair of order 8(7), 

Hairer et al. [Error! Reference source not found.] and the second one a spline collocation method 

described by Ascher et al. Error! Reference source not found.. Continuation along the various 

branches has been carried out along the lines suggested by Seydel [Error! Reference source not 

found.]. For the computation of the singular points an extended problem is being formed from the 

partial derivatives of Equation (Error! Reference source not found.) with respect to the parameters, 

according to Witmer et al. [Error! Reference source not found.]. 

Before we analyze the complete numerical solution, it is instructive to discuss first the uniform 

solutions of Equation (Error! Reference source not found.), which reduces to an algebraic one for a 

constant temperature profile: 

4 2Nu( 1) ( 1) ( ) 0hC j ρΘ − + Θ − − Θ =  (17)

A geometrical (graphical) solution is depicted in Error! Reference source not found. where the 

heat generation and the heat dissipation curves are being plotted for a variety of current parameters 
2j  and reference Rayleigh numbers Ra∞  (Error! Reference source not found.a). In Error! 

Reference source not found.b the effect of radiation through hC  on the heat rejection rate is 

demonstrated. Depending on the combination of 
2j , Ra∞  and hC  up to three solutions of 

Equation (Error! Reference source not found.) may be obtained from the number of the intersection 

points. 
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Figure 2. Uniform solutions and energy balance on the device. (a) heat dissipation by primarily natural convection and (b) by combined natural convection and radiation.
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2.1. Problem P1 

Interestingly, when the conduction term and the associated conduction-convection parameter u 

is taken into consideration, a far more complicated solution structure and multiplicity pattern 

emerges as it is shown in Error! Reference source not found., where the edge temperature 

(0)eΘ = Θ  is plotted against 
2j . For lower values of the conduction-convection parameter ( 1)u =  

the three uniform solutions of Equation (Error! Reference source not found.) are being recovered 

(Error! Reference source not found.a). As u increases the number of solutions increases as well. Five 

for 2u =  in Error! Reference source not found.b, seven for 3u =  in Error! Reference source not 

found.c and eleven for 5u =  in Error! Reference source not found.d. The corresponding 

temperature profiles are shown in Error! Reference source not found. (a to d). In every case the 

solution structure is consisting of the three uniform solutions, one stable “cold”, one stable “hot” and 

one unstable at an intermediate temperature. Additional unstable solutions emerge in the form of 

standing waves as u gradually increases. It is worth pointing out that the solution obtained by 

imposing boundary conditions Equation (Error! Reference source not found.) have two salient 

features. The first one is that as long as the nonuniform solutions are unstable only the uniform ones 

are physically encountered, the “cold” one being far more preferable from the operating point of view 

since it results in reduced thermal stresses and thermal loading (reduced fracture probability) of the 

device. The second one stems from the first and the associated stability analysis, namely the 

temperature profiles may be obtained from the solution of the simpler algebraic Equation (Error! 

Reference source not found.) instead of solving the complete boundary value problem, Equation 

(Error! Reference source not found.). In other words effective control of the boundary conditions 

(and the edge temperature, say through the application of an insulating layer) appears to have a 

profound effect on the operating and performance characteristics of the device. 
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Figure 3. Multiplicity pattern for Problem P1. (a) three (3) uniform solutions, 1u = . (b) five (5) solutions, 2u = , (c) seven (7) solutions, 3u = , (d) eleven (11) solutions, 5u = . Solid 

line: stable, dashed line: unstable. 
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Figure 4. Solution structure for Problem P1, corresponding to multiplicity pattern in Error! Reference source not found.. (a) three (3) uniform solutions, 1u = . (b) five (5) solutions, 

2u = , (c) seven (7) solutions, 3u = , (d) eleven (11) solutions, 5u = . Solid line: stable, dashed line: unstable. 
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2.2. Problem P2 

For the case where the edge temperature is fixed, the bifurcation analysis reveals a rich and 

interesting pattern, shown in Error! Reference source not found.. Selecting the center temperature 

(0.5)cΘ = Θ  as the bifurcation parameter, the projection of the limit points on the 
2( , )c jΘ  plane 

forms a pattern of nested cusp points 1 2 3( ...)C C C  in Error! Reference source not found.a, where 

the regions with unique, three, five, seven (and so on) solutions are designated. For a better 

understanding of the complexity of the solution structure and the clarity of the exposition a 

geometrical perspective of the nested cusps is depicted in Error! Reference source not found.. Again 

the CCP has a profound effect on the solution structure since the number of the steady states 

calculated depend on its magnitude. Indeed starting from 0.5u =  and a unique solution in Error! 

Reference source not found.b, three solutions emerge for 1u =  in Error! Reference source not 

found.c, five for 1.5u =  in Error! Reference source not found.d and seven in Error! Reference 

source not found.e for 2u = . The temperature profiles for problem P2 are symmetrical with respect 

to the center of the device. For the unique solution calculated in Error! Reference source not found.a 

the center is maintained at a lower temperature, while it increases towards the edge ( )c eΘ < Θ . 

When the CCP increases and three solutions are present as in Error! Reference source not found.b, 

for the same edge temperature eΘ  two stable solutions exist one “cold” ( )c eΘ < Θ  and one “hot” 

( )c eΘ > Θ . In contrast to the “cold” solution described earlier, the peak temperature for the “hot” 

one now appears around the center and gradually decreases to eΘ . As CCP further increases more 

solutions emerge, five in Error! Reference source not found.c for 1.5u =  and seven in Error! 

Reference source not found.d when 2u = . Yet the stable ones remain the “cold” and “hot” set 

described earlier whereas the ones appearing as standing waves are unstable. In other words the 

bistability is retained as the CCP increases and several solutions emerge. Furthermore, as u increases 

a temperature plateau around the center is being formed and the temperature gradient along the 

device although it cannot be entirely eliminated as it was the case in problem P1, it is definitely 

reduced. It is worth pointing out that a multiplicity structure consisting of nested cusps is not a 

unique feature of this particular electrothermal problem. Aris [Error! Reference source not found.] 

was the first to publish imbedded cusps in the study of first order reaction in spherical pellet. The 

same solution structure emerged in the analysis of another chemical reacting system, namely an 

isothermal Langmuir-Hinshelwood reaction in a cylindrical or spherical pellet, Witmer et al. [Error! 

Reference source not found.]. Another example of similar multiplicity behavior is encountered when 

the three boiling modes (nucleate, transition and film) are being excited by a uniform heat generating 

source along a non-isothermal extended surface immersed in a boiling liquid, Krikkis [Error! 

Reference source not found.]. 
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Figure 6. Geometrical perspective of nested cusps. 
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3. Conclusions 

An electrothermal model for a barium titanate based thermistor has been set up, featuring a 

nonlinear temperature dependent natural convection combined with radiation heat rejection 

mechanism through the device lateral surface. A smooth and strongly temperature dependent electric 

conductivity function based on experimental data has been adopted. As a result the problem 

formulated in this way admits multiple steady state solutions which do not depend on the external 

circuit. 

Important findings are the profound effect of the conduction-convection parameter and of the 

boundary conditions on the multiplicity structure. Regardless of the type of the boundary conditions 

imposed, the number of the multiple steady states depends on the magnitude of the conduction-

convection parameter, as for instance up to eleven solutions have been calculated when the edges of 

the device are insulated (problem P1) and up to seven when the edge temperature is being fixed 

(problem P2). The stability analysis reveals that for problem P1 only the uniform solutions are stable, 

namely one “cold” and one “hot”. Therefore, control and effective reduction of the heat transmitted 

through the edges results in a reduced thermal loading of the device both in the steady state operation 

and during transients since the temperature gradient across the device is vanishing. 

Nomenclature 

A cross sectional area [m2] 

C specific heat capacity [J/(kgK)] 

D device diameter [m] 

E electric field intensity [V/m] 

f 
function of Prandtl number in Equation (Error! Reference 

source not found.) 
[-] 

g acceleration due to gravity [-] 

ch  convective heat transfer coefficient [W/(m2K)] 

rh  3( )Tεσ ∞  radiative heat transfer coefficient [W/(m2K)] 

j current density parameter [-] 

J current density [A/m2] 

k thermal conductivity [W/(mK)] 

L device length [m] 

Nu Nusselt number, Equation (Error! Reference source not found.) [-] 

P perimetry [m] 

Pr Prandtl number, Equation (Error! Reference source not found.) [-] 

Ra 
Rayleigh number, Equation (Error! Reference source not 

found.) 
[-] 

t time [sec] 

T temperature [K] 

u conduction-convection parameter [-] 

x )( LX  dimensionless distance [-] 

X longitudinal distance along device [m] 

Greek Symbols 

α thermal diffusivity [m2/s] 

β thermal expansivity [K-1] 

γ material density [kg/m3] 

ε emissivity [-] 

Θ ( )T T∞  dimensionless temperature [-] 

λ eigenvalue [-] 

ν kinematic viscosity [m2/s] 
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ρ refˆ ˆ( )ρ ρ  reduced electric resistivity [-] 

ρ̂  electric resistivity [Ω m] 

σ Stefan-Boltzmann constant [Wm-2K-4] 

τ dimensionless time [-] 

Subscripts 

c position at 0.5x =  

e position at 0x =  

ref reference value 

s steady state 

∞ ambient environment 

Superscripts 

( )′  derivative with respect to x  

Abbreviations 

CCP Conduction-Convection Parameter 

NTC Negative Temperature Coefficient 

PTC Positive Temperature Coefficient 
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