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Multiplicity Analysis of a Thermistor Problem

Rizos N. Krikkis

Institute of Thermal Research, 2 Kanigos Str, PO Box 106 77, Athens, Greece; rkrik@uth.gr

Abstract: In the present study a numerical bifurcation analysis of a thermistor problem is carried out,
considering a realistic heat dissipation mechanism due to conduction, nonlinear temperature
dependent natural convection and radiation. The electric conductivity is modeled as a strongly
nonlinear and smooth function of the temperature between two limiting values, based on
measurements. The problem formulated in this way admits multiple steady state solutions that do
not depend on the external circuit. The analysis reveals that the conduction-convection parameter
and the type of the boundary conditions have a profound effect on the solution structure and the
temperature profiles. Depending on the boundary conditions the complex multiplicity pattern
appears either as a series of nested cusp points or as enclosed branches emanating from pitchfork
bifurcation points.

Keywords: thermistor; Joule heating; conduction; natural convection

Introduction

Thermistors are thermally sensitive resistors and have either a negative (NTC) or positive (PTC)
resistance/temperature coefficient; we will discuss only the later. Its characteristic feature is the
strongly dependent electric conductivity. PTCs are manufactured from silicon, barium, lead and
strontium titanates with the addition of yttrium, manganese, tantalium and silica [1-3]. PTC
thermistors are widely used as current limiting devices, that is as nondestructible (resettable) fuses
for electric circuit protection, sensing excessive currents. They can also be encountered as a micro
self-heating thermostat for microelectronic, biomedical and chemical applications. Common
geometrical configurations are the washer, the disk and the rod type [1-3]. Although PTCs and in
general electroceramics are in principle loaded electrically a significant number of mechanical failures
is being recorded annually. This may be explained on the basis of the Joule self-heating effect which
causes temperature differences, thermal strains and excessive thermo-mechanical stresses that may
cause failure of the device. As the current technological trends point towards greater device
miniaturization while operating at higher power densities there is an increasing demand for
thorough analysis and understanding of the underlying coupled electrothermal phenomena in
electroceramic devices, Dewitte et al. [Error! Reference source not found.], Supancic [Error!
Reference source not found.].

The thermistor as a coupled thermo-electric problem has attracted significant attention. An early
result (1900) due to Diesselhorst [Error! Reference source not found.] for the steady state problem
shows that the temperature may be expressed as a function of the electric potential provided that
certain types of boundary conditions are imposed. Cimmati [Error! Reference source not found.]
extended the result of Diesselhorst to obtain existence and uniqueness conditions for the steady state
problem. Further results on existence and uniqueness we obtained by Cimatti [Error! Reference
source not found.], Cimatti and Prodi [Error! Reference source not found.], Xie and Allegretto
[Error! Reference source not found.] and Antontsev and Chipot [Error! Reference source not
found.]. Bahadir [12,13] and Catal [Error! Reference source not found.] employed finite element
numerical techniques to solve the thermistor problem assuming a step electric conductivity function.
Kutluay et al. [Error! Reference source not found.] obtained a heat balance integral solution of the
same problem considering a modified electric conductivity function. Ammi and Torres [Error!
Reference source not found.] solved numerically a nonlocal parabolic equation in time and space
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domains resulting form the thermistor problem. Golosnoy and Sykulski [Error! Reference source not
found.] compared various computational techniques for coupled nonlinear thermo-electric
problems. The thermistor problem was used as a test case with an electric conductivity being a
nonlinear function of the temperature and the electric field intensity. Karpov [Error! Reference
source not found.] demonstrated the bistability conditions, the switching autowave properties and
the emergence of dissipative structures of essentially a thermistor problem. Apart from the
temperature depended electric conductivity, convective heat dissipation with a constant heat transfer
coefficient through the device lateral surface was assumed. It is worth noticing that the thermistor
problem is closely associated with the flash sintering of ceramics [Error! Reference source not
found.], as for instance yttria stabilized zirconia, magnesia doped alumina and strontium titanate
among others [Error! Reference source not found.]. The essence of the process is that when an
operating parameter such as the furnance temperature exceeds the corresponding limit point,
established by the applied voltage that separates the stable from the unstable steady states the Joule
heating greatly exceeds the heat dissipation mechanism due to radiation and the temperature blows
up. The process controller is then switching from voltage control to current control to maintain the
temperature within the specified limits [21,22].

From the literature review above it appears that the thermistor problem has been studied with
various assumptions and/or restrictions related primarily with the form of the electric conductivity,
the heat dissipation mechanism and in certain cases with the influence of the external electric circuit.
The later is also associated with the existence of multiple steady state solutions, up to three, as
determined from the number of the intersection points between the current-voltage characteristic
curves of the external (linear) circuit and the thermistor, Fowler et al. [Error! Reference source not
found.], Howison et al. [Error! Reference source not found.], Zhou and Westbrook [Error! Reference
source not found.], Cimatti [Error! Reference source not found.]. In the present study a numerical
bifurcation analysis of a thermistor problem is carried out, considering a realistic heat dissipation
mechanism due to conduction, nonlinear temperature dependent natural convection and radiation.
The electric conductivity is modeled as a strongly nonlinear and smooth function of the temperature
between two limiting values, based on measurements. The problem formulated in this way admits
multiple steady state solutions that do not depend on the external circuit. The analysis reveals that
the conduction-convection parameter and the type of the boundary conditions have a profound effect
on the solution structure and the temperature profiles. Depending on the boundary conditions the
complex multiplicity pattern appears either as a series of nested cusp points or as enclosed branches
emanating from pitchfork bifurcation points.

1. Analysis
1.2. Energy Balance

Consider a horizontal cylindrical segment of a conductor of uniform material density y with
constant thermal conductivity k. The segment has diameter D and length L as it is schematically
shown in Error! Reference source not found.. Heat is being dissipated by conduction through the
core of the device and by natural convection and radiation through the lateral surface area, in an
ambient environment of constant temperature 7. . An energy balance along the longitudinal

direction X yields the following differential equation for the device temperature T:
T 2

a ox

oTY P
(ka?]—g[hc(T—TmHga(T“ -7 |+EJ 1)

In the equation above, C is the specific heat capacity, A is the cross sectional area, P is the

perimeter, /. is the convective heat transfer coefficient, ¢ is the surface emissivity, o is the Stefan-

c

Boltzmann constant, E is the electric field intensity and | is the current density through the device.
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Figure 1. Conductor geometry and energy balance.

1.3. Electric Resistivity

A characteristic feature of a ceramic PTC device is the strongly non-linear dependence of its
resistivity with respect to temperature. Driven by a transition of the ferroelectric PTC material the
resistance increases several orders of magnitude in a relatively small temperature interval, for
instance between 100°C and 200°C. The same smooth curve with continuous derivatives, with respect
to temperature for the subsequent numerical bifurcation analysis has been adopted from Karpov
[Error! Reference source not found.], which represents a barium titanate (BaTiOs) based device:

R R 1
T)=p +
A o B+ expl-0.12(T~95)

where P, =2Qmand p, = 10* Qm are the asymptotic resistivity values corresponding to the low

@)

and high operating temperatures respectively. The temperature of 95°C signifies the onset of the
transition from the low to the high resistivity value as the contribution of the exponential term in
Equation (Error! Reference source not found.) becomes significant. The form of Equation (Error!
Reference source not found.) is supported by a significant volume of measurements as for instance
reported by Brzozowski and Castro [Error! Reference source not found.], Wang ef al. [Error!
Reference source not found.], Wang et al. [Error! Reference source not found.], Luo et al. [Error!
Reference source not found.], Takeda et al. [Error! Reference source not found.], Rowlands and
Vaidhyanathan [Error! Reference source not found.].

1.4. Heat Transfer Model

The heat generated in the device due to the current flow (Joule heating, Metaxas [Error!
Reference source not found.], Lupi [Error! Reference source not found.], Lupi ef al. [Error! Reference
source not found.]) is dissipated to the surrounding environment through natural convection and
radiation exchange. For the circumferential average Nusselt number Nu, the correlation of Churchill
and Chu [Error! Reference source not found.] is employed:
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Nu=0.36+0.518 , f(Pr)= 1+('—) ®3)
f(Pr) Pr

where f(Pr) is a weak function of the Prandtl number Pr. Equation (Error! Reference source not
found.) covers a very wide range of Rayleigh numbers namely in the range from 10 to 10°, while it
maintains a simple and compact mathematical form. Equation (Error! Reference source not found.)
is applied locally in the evaluation of the convective heat transfer coefficient along the device axis, in
a similar manner as it was utilized by Faghri and Sparrow [Error! Reference source not found.].
Consequently the local Rayleigh number Ra is evaluated from the local temperature difference as:

Ra=gBD[T(X)-T.]/av )

where g is the acceleration due to gravity, f is the thermal expansivity, D is the device diameter, « is
the thermal diffusivity and v is the kinematic viscosity.

1.5. Boundary Conditions. Problems P1 and P2.

As it will be described in the next paragraphs the boundary conditions have a profound effect
on the bifurcation structure in general and on the temperature distribution in particular. Thus for
problem P1 the edges of the device are considered adiabatic:

or| _or

oy
x|, ox ©)

X=L

whereas for problem P2 the imposed boundary conditions are:

T| :Ta—T

e Tl 5 =0 ©6)

X=L/2

1.6. The Electrothermal Model in Dimensionless Form

Considering a constant (dc) current flowing through the device, the electric field intensity is
related to the current density through Ohm’s law, E = p(T)J, Metaxas [Error! Reference source

not found.], Lupi [Error! Reference source not found.], Lupi et al. [Error! Reference source not
found.]. Introducing dimensionless variables

x=X/L, t=at/L’, O=T/T., p=pfkp. )
the temperature distribution along the device takes the form:
00 9’0 ,

—= —u’ | Nu(@-1)+C, (0" -1)-* 8)

o= 0 [Nu@-D+C,(0' -~ p |

In the above equation, the conduction- convection parameter (CCP) is defined as:
h L
2 ref

u =t 9
k(A/P) ©)

where the reference heat transfer coefficient /4 is defined through the Nusselt number:

h h

j— c C

u=—=—=
koo/D href

In terms of the dimensionless variables defined above the local Rayleigh number becomes:

doi:10.20944/preprints202306.2055.v1
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5
DT,
Ra=Ra_(®-1), Ra_= —g,B =
av
The current density parameter is related to the current density as below
5 _JHAIP)( P
PIRAC )(3) 10)
Toe h ref

and C, is the ratio of the radiative heat transfer coefficient to the reference heat transfer coefficient

el h

ref ref

Ch

Under steady state conditions the partial differential equation Equation (Error! Reference source
not found.) reduces to a two point boundary value problem for the device temperature ©(x)

0" -’ [ Nu@-1)+C,(0' -1 j’p|=0 0<x<I (12)
with boundary conditions
O(x=0)=0"(x=1)=0 (13)
for problem P1 and
O(x=1)=0,, O'(x=05)=0 (14)

for problem P2.

1.7. Stability
The stability of a certain steady state ©_(x) to small perturbations X(x) ie.
O(x,7) = O, (x)+ ¥(x)e’” (15)

is determined by the eigenvalues A of the corresponding Sturm-Liouville problem, after substituting
Equation (Error! Reference source not found.) into the original partial differential equation, Equation
(Error! Reference source not found.),

& —[’AQy+A]9=0, 0<x<l (16)
where
d .
AQ =55 Nu©O-D+C,(0' =)= /PO,

The corresponding boundary conditions for problem P1are #¥(0)=¥(1)=0 and for problem
P2 are 1¥(0.5) = 2%1) = 0. During branch tracing, for every steady state that has been calculated

from Equation (12), the associated eigenvalue problem, Equation (Error! Reference source not
found.), is subsequently numerically solved and a sufficient number of eigenvalues is determined.
Stable solutions are characterized by negative eigenvalues whereas positive ones correspond to
unstable temperature distributions.

2. Results and Discussion

The second order, two-point boundary value problem described by Equation (Error! Reference
source not found.) is transformed into a system of first order equations through the transformation

©,=0, 0, =0" and solved numerically. In order to ensure an accurate and reliable numerical

doi:10.20944/preprints202306.2055.v1
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solution, two different methods have been employed resulting in identical results under the strict
tolerances imposed. The first one utilizes a multi-shooting Runge-Kutta formula pair of order 8(7),
Hairer et al. [Error! Reference source not found.] and the second one a spline collocation method
described by Ascher et al. Error! Reference source not found.. Continuation along the various
branches has been carried out along the lines suggested by Seydel [Error! Reference source not
found.]. For the computation of the singular points an extended problem is being formed from the
partial derivatives of Equation (Error! Reference source not found.) with respect to the parameters,
according to Witmer et al. [Error! Reference source not found.].

Before we analyze the complete numerical solution, it is instructive to discuss first the uniform
solutions of Equation (Error! Reference source not found.), which reduces to an algebraic one for a
constant temperature profile:

Nu(@-1)+C, (0 -1)-j*p(©)=0 17)

A geometrical (graphical) solution is depicted in Error! Reference source not found. where the
heat generation and the heat dissipation curves are being plotted for a variety of current parameters
J ? and reference Rayleigh numbers Ra_ (Error! Reference source not found.a). In Error!
Reference source not found.b the effect of radiation through C, on the heat rejection rate is

demonstrated. Depending on the combination of j*, Ra_ and C, up to three solutions of

Equation (Error! Reference source not found.) may be obtained from the number of the intersection
points.
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Figure 2. Uniform solutions and energy balance on the device. (a) heat dissipation by primarily natural convection and (b) by combined natural convection and radiation.

5
i)
=3
2
0
s
s
=
T
=
(]
O
=
=
=3
w
o
=
S
<
o
—
)
m
m
0
)
m
=
m
=
m
O
)
(]
(7]
=3
1]
=
N
©
[
[=
=2
(1}
N
(=]
N
w

IA°GG02°90€¢0¢siuLIdald/y1602 01 10P



https://doi.org/10.20944/preprints202306.2055.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 June 2023 doi:10.20944/preprints202306.2055.v1

2.1. Problem P1

Interestingly, when the conduction term and the associated conduction-convection parameter u
is taken into consideration, a far more complicated solution structure and multiplicity pattern
emerges as it is shown in Error! Reference source not found. where the edge temperature

@, =0(0) is plotted against . For lower values of the conduction-convection parameter (u = 1)

the three uniform solutions of Equation (Error! Reference source not found.) are being recovered
(Error! Reference source not found.a). As u increases the number of solutions increases as well. Five
for u =2 in Error! Reference source not found.b, seven for # =3 in Error! Reference source not
found.c and eleven for u# =5 in Error! Reference source not found.d. The corresponding
temperature profiles are shown in Error! Reference source not found. (a to d). In every case the
solution structure is consisting of the three uniform solutions, one stable “cold”, one stable “hot” and
one unstable at an intermediate temperature. Additional unstable solutions emerge in the form of
standing waves as u gradually increases. It is worth pointing out that the solution obtained by
imposing boundary conditions Equation (Error! Reference source not found.) have two salient
features. The first one is that as long as the nonuniform solutions are unstable only the uniform ones
are physically encountered, the “cold” one being far more preferable from the operating point of view
since it results in reduced thermal stresses and thermal loading (reduced fracture probability) of the
device. The second one stems from the first and the associated stability analysis, namely the
temperature profiles may be obtained from the solution of the simpler algebraic Equation (Error!
Reference source not found.) instead of solving the complete boundary value problem, Equation
(Exror! Reference source not found.). In other words effective control of the boundary conditions
(and the edge temperature, say through the application of an insulating layer) appears to have a
profound effect on the operating and performance characteristics of the device.
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2.2. Problem P2

For the case where the edge temperature is fixed, the bifurcation analysis reveals a rich and
interesting pattern, shown in Error! Reference source not found.. Selecting the center temperature

0, =0(0.5) as the bifurcation parameter, the projection of the limit points on the (@, j*) plane

forms a pattern of nested cusp points (C,C,C;...) in Error! Reference source not found.a, where

the regions with unique, three, five, seven (and so on) solutions are designated. For a better
understanding of the complexity of the solution structure and the clarity of the exposition a
geometrical perspective of the nested cusps is depicted in Error! Reference source not found.. Again
the CCP has a profound effect on the solution structure since the number of the steady states
calculated depend on its magnitude. Indeed starting from # =0.5 and a unique solution in Error!
Reference source not found.b, three solutions emerge for u =1 in Error! Reference source not
found.c, five for u =1.5 in Error! Reference source not found.d and seven in Error! Reference
source not found.e for u = 2. The temperature profiles for problem P2 are symmetrical with respect
to the center of the device. For the unique solution calculated in Error! Reference source not found.a
the center is maintained at a lower temperature, while it increases towards the edge (0, <©,).

When the CCP increases and three solutions are present as in Error! Reference source not found.b,
for the same edge temperature ©, two stable solutions exist one “cold” (@, <©®,) and one “hot”

(©,>0,).In contrast to the “cold” solution described earlier, the peak temperature for the “hot”
one now appears around the center and gradually decreases to ©,. As CCP further increases more

solutions emerge, five in Error! Reference source not found.c for # =1.5 and seven in Error!
Reference source not found.d when u =2. Yet the stable ones remain the “cold” and “hot” set
described earlier whereas the ones appearing as standing waves are unstable. In other words the
bistability is retained as the CCP increases and several solutions emerge. Furthermore, as u increases
a temperature plateau around the center is being formed and the temperature gradient along the
device although it cannot be entirely eliminated as it was the case in problem P1, it is definitely
reduced. It is worth pointing out that a multiplicity structure consisting of nested cusps is not a
unique feature of this particular electrothermal problem. Aris [Error! Reference source not found.]
was the first to publish imbedded cusps in the study of first order reaction in spherical pellet. The
same solution structure emerged in the analysis of another chemical reacting system, namely an
isothermal Langmuir-Hinshelwood reaction in a cylindrical or spherical pellet, Witmer et al. [Error!
Reference source not found.]. Another example of similar multiplicity behavior is encountered when
the three boiling modes (nucleate, transition and film) are being excited by a uniform heat generating
source along a non-isothermal extended surface immersed in a boiling liquid, Krikkis [Error!
Reference source not found.].
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Figure 7. Solution structure for Problem P2, corresponding to multiplicity pattern in Error! Reference source not found.. (a) three (3) uniform solutions, # =1. (b) five (5) solutions,
u =2, (c) seven (7) solutions, u =3, (d) eleven (11) solutions, # = 5. Solid line: stable, dashed line: unstable.
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3. Conclusions

An electrothermal model for a barium titanate based thermistor has been set up, featuring a
nonlinear temperature dependent natural convection combined with radiation heat rejection
mechanism through the device lateral surface. A smooth and strongly temperature dependent electric
conductivity function based on experimental data has been adopted. As a result the problem
formulated in this way admits multiple steady state solutions which do not depend on the external
circuit.

Important findings are the profound effect of the conduction-convection parameter and of the
boundary conditions on the multiplicity structure. Regardless of the type of the boundary conditions
imposed, the number of the multiple steady states depends on the magnitude of the conduction-
convection parameter, as for instance up to eleven solutions have been calculated when the edges of
the device are insulated (problem P1) and up to seven when the edge temperature is being fixed
(problem P2). The stability analysis reveals that for problem P1 only the uniform solutions are stable,
namely one “cold” and one “hot”. Therefore, control and effective reduction of the heat transmitted
through the edges results in a reduced thermal loading of the device both in the steady state operation
and during transients since the temperature gradient across the device is vanishing.

Nomenclature
A cross sectional area [m?]
C specific heat capacity [J/(kgK)]
D device diameter [m]
E electric field intensity [V/m]
function of Prandtl number in Equation (Error! Reference
f source not found.) [l
g acceleration due to gravity [-]
h, convective heat transfer coefficient [W/(m2K)]
h, (¢0T’) radiative heat transfer coefficient [W/(m2K)]
i current density parameter [-]
] current density [A/m?]
k thermal conductivity [W/(mK)]
L device length [m]
Nu Nusselt number, Equation (Error! Reference source not found.) [-]
P perimetry [m]
Pr Prandtl number, Equation (Error! Reference source not found.) [-]
Ra Rayleigh number, Equation (Error! Reference source not (]
found.)
t time [sec]
T temperature K]
u conduction-convection parameter [-]
x (X/L) dimensionless distance [-]
X longitudinal distance along device [m]
Greek Symbols
o thermal diffusivity [m?/s]
B thermal expansivity [K1]
14 material density [kg/m?3]
£ emissivity [-]
e (T/T.) dimensionless temperature -]
A eigenvalue [-]
% kinematic viscosity [m?/s]
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P (P/P,;) reduced electric resistivity [-]
Yo, electric resistivity [Qm]
o Stefan-Boltzmann constant [Wm2K+4]
T dimensionless time [-]
Subscripts
c position at x =0.5
e positionat x =0
ref reference value
s steady state
oo ambient environment
Superscripts
( ’) derivative with respect to x
Abbreviations
CCP Conduction-Convection Parameter
NTC Negative Temperature Coefficient
PTC Positive Temperature Coefficient
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