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Abstract: Urban morphology exhibits fractal characteristics, which can be described by multifractal 

scaling. Multifractal parameters under positive moment orders primarily capture information about 

central areas with relatively stable growth, while those under negative moment orders mainly re-

flect information about marginal areas with more active growth. However, effectively utilizing mul-

tifractal spectrums to uncover the spatio-temporal variations of urban growth remains a challenge. 

To addresses this issue, this paper proposes a multifractal measurement by combining theoretical 

principles and empirical analysis. To capture the difference between growth stability in central areas 

and growth activity in marginal areas, an index based on generalized correlation dimension Dq is 

defined. This index takes the growth rate of Dq at extreme negative moment order as the numerator, 

and that at extreme positive moment order as the denominator. During the stable stage of urban 

growth, the index demonstrates a consistent pattern over time. While during the active stage, the 

index may exhibit abnormal fluctuations or even jumps. This indicates that the index can reveal 

spatio-temporal information about urban evolution that cannot be directly observed through mul-

tifractal spectrums alone. By integrating this index with multifractal spectrums, we can more com-

prehensively characterize the evolutionary characteristics of urban spatial structure. 

Keywords: multifractal spectrum; generalized correlation dimension; urban morphology; spatio-

temporal evolution; spatio-temporal variation; dynamics 

 

1. Introduction 

Multifractal method has become a crucial tool in urban geography research, as urban systems 

are complex systems that exhibit scaling symmetry. Traditional mathematical methods fail to capture 

this characteristic, which necessitates the use of scaling analysis tools like fractal geometry [1–3]. Ur-

ban fractal research can be broadly classified into two categories: monofractal analysis and multifrac-

tal analysis. Monofractal analysis assumes that there is only one scaling process in fractals, and the 

growth probability of each part is equal, leading to the use of a single fractal dimension for measure-

ment. Multifractal analysis, on the other hand, takes into account the multiple scaling processes in 

fractals, where the growth probabilities of different parts differ. Therefore, a set of multifractal pa-

rameters, known as the multifractal spectrum, is used to describe them. Since real fractals often have 

more than one scaling process, a single fractal dimension is insufficient to characterize them. A set of 

comparable parameters is required, which is provided by the multifractal spectrum [4]. 

The spatio-temporal evolution of urban morphology is a critical focus area within geography, 

but existing multifractal research is not extensive enough. Urban multifractal research can be classi-

fied into three spaces: real space, order space and phase space [4]. Real space corresponds to the 

spatial subdivision of urban land [5], transportation [6–8], population [9–12], and other elements [13]; 

Order space refers to the hierarchical subdivision of urban system [14,15]; And phase space corre-

sponds to the dynamic processes. However, compared to other fields such as finance, biology, mete-

orology and hydrology, multifractal research of phase space in urban geography is relatively lacking, 

which may be attributed to the lack of higher resolution time series data. On the other hand, in real 

space, while the spatial meaning of multifractal spectrums is clear, the temporal evolution of these 

spectrums still requires further investigation. At the spatial level, the spectrums under positive 
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moment orders correspond to central or high-density areas in a city, which are stable areas for urban 

development and are similar across different cities; The spectrums under negative moment orders, 

on the other hand, correspond to marginal or low-density areas in a city, which are the most dynamic 

areas for urban growth and exhibit significant differences between cities [16,17]. At the temporal 

level, the multifractal parameters in the mathematical world are continuous and stable. Nevertheless, 

the evolution of cities in the real world, as reflected in multifractal parameters, may exhibit local 

fluctuations. While many studies focus on seeking macroscopic patterns of urban evolution through 

spectrum comparison [7,18–23] or trend fitting [24], few studies delve into characterizing spatio-tem-

poral variations of urban evolution at a micro level. Hence, by combining the distinct growth charac-

teristics of multifractal parameters under positive and negative moment orders, we can expect to 

explore more detailed aspects of the spatio-temporal evolution process of urban morphology. This 

approach will deepen our understanding of the urban evolution process, providing insights into the 

intricate dynamics shaping cities. 

The current multifractal research that characterizes the spatio-temporal variations in the evolu-

tion of urban morphology at a micro level is scarce. Therefore, this paper aims to address this gap by 

introducing a new measurement, which captures the distinct growth characteristics of multifractal 

spectrums under positive and negative moment orders. The measurement is then used to analyze 

and characterize the detailed variations in the spatio-temporal evolution process of urban form. The 

effectiveness of the analysis is verified through case studies. The following is divided into four sec-

tions. Section 2 introduces the multifractal model and case studies used in this paper, which are the 

Pearl River Delta (PRD) and the Yangtze River Delta (YRD), the two largest Chinese urban agglom-

erations. In Section 3, the conventional multifractal spectrum analysis is combined with the newly 

proposed measurement to depict the macro laws and micro variations in the spatio-temporal evolu-

tion of urban morphology within the study areas. The findings are then compared with regional pol-

icies and spatial patterns to validate the effectiveness of the analysis. In Section 4, the achievements, 

novelties, and limitations of the research methods used in this paper are discussed. Finally, the main 

conclusions based on the research results and problem discussions are drawn. 

2. Materials and Methods 

2.1 Multifractal measures 

Before delving into the case analysis, let’s first introduce the multifractal measures used in this 
paper. Multifractals have two sets of parameters: global and local. Global parameters include gener-

alized correlation dimension Dq and mass exponent τq, while local parameters include singularity 

exponent α and local fractal dimension f(α). The calculation formula of generalized correlation di-

mension Dq is [25-26]: 
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When measuring fractal dimension using box-counting method, N(ε) in Equation (1) represents the 

number of non-empty boxes under box scale ε, while pi represents the probability measure, that is, 

the ratio of measure Mi in the ith box to total measure M. The moment order q functions like telescopes 

and microscopes, and is used to highlight either the central areas (if q > 1 and q→+∞) or the marginal 

areas (if q < 1 and q→-∞), thereby obtaining the corresponding global dimension Dq [5]. Plotting Dq 

for different moment orders q on the same graph results in the spectrum of generalized correlation 

dimension. The value of Dq monotonically decreases with q, and the height difference between the 

upper and lower spectrum is 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 June 2023                   doi:10.20944/preprints202306.2035.v1

https://doi.org/10.20944/preprints202306.2035.v1


 

∆D = D-∞ - D+∞, (2) 

representing the spatial heterogeneity and multifractality of the study area [27], with higher values 

indicating stronger spatial heterogeneity. Another important global parameter is mass exponent τq, 

which is related to generalized correlation dimension through the equation 

τq = (q - 1)Dq. (3) 

Since the two are somewhat equivalent, the analysis of global parameters mainly focuses on general-

ized correlation dimension. On the other hand, singularity exponent α of local parameters is defined 

based on the probability measure pi as well [28]: 

i
p 

, (4) 

which means boxes with different probability measures have varying singularity exponents. Lower 

singularity exponent α implies denser corresponding box, while higher value implies less density. 

The singularity exponent spectrum is generated by plotting different moment orders q and their cor-

responding α(q) on the same graph, and its variation trend is generally consistent with the Dq spec-

trum. Another important local parameter is the local dimension f(α), which represents the local fractal 

dimension of a subset of boxes with a given singularity exponent α. By plotting α and its correspond-

ing local fractal dimension f(α) on the same graph, we can generate the singularity spectrum. This 

curve is unimodal and provides important insights into the spatial characteristics of the research area. 

The singularity spectrum’s maximum value point α0, and its corresponding maximum value f(α0), are 

all related to the capacity dimension D0. D0 reflects the degree of spatial filling in the research area. A 

larger D0 indicates a higher level of spatial filling and a more complex spatial structure. The width of 

singularity spectrum, Δα = α-∞ - α+∞, represents the differences between high- and low-density areas 

and the spatial heterogeneity of the study area. The height difference between left and right side of 

the spectrum, Δf = f(α+∞) - f(α-∞), reflects the fractal growth pattern of the study area. If Δf > 0, high-

density areas dominate and fractal growth mainly extends outward. On the contrary, if Δf < 0, low-

density areas dominate and fractal growth is mainly centered [29]. Although global and local param-

eters are essentially equivalent and can be transformed into each other through Legendre transfor-

mations which are [30]: 

( ) ( )

d ( ) d ( ) d ( ) d ( )

d d d d

q q f

q q f q
q

q q q

  
   

 


= −

= + − =
. 

(5) 

They offer different perspectives for understanding the fractal characteristics of the study area. 

There are two approaches to estimate multifractal parameters. The first is a global-to-local ap-

proach, where global parameters are estimated using Equations (1) and (3), followed by estimation 

of local parameters using Legendre transformation, i.e., Equation (5). However, this method often 

incurs high errors due to the need for discretization in Legendre transformation of real data. The 

second approach is a local-to-global approach, where local parameters are calculated first, and then 

global parameters are inferred using Legendre transformation, i.e., Equation (5). This process does 

not require discretization and is therefore more accurate than the former approach. The widely used 

method for estimating local parameters is the normalized μ method [31]. The calculation steps are as 

follows. Firstly, define the normalized probability μ based on the probability measure pi: 
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then we can then estimate the singularity exponent α and its local fractal dimension f(α) using 
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The process of parameter estimation involves different measurement and estimation methods. 

The probability measure pi, as shown in Equations (1), (7) and (8), is typically obtained using box-

counting method. This method is widely used for calculating multifractal parameters, with functional 

box method being the most convenient form of this method [32,33]. To begin, the minimum area box 

of the study area is selected as the first level box. Subsequently, each box is divided into four and 

then sixteen, with the side length of box during each division corresponding to a specific scale ε. On 

the other hand, the limit condition in Equations (1), (7) and (8) is hard to meet, hence the parameter 

is usually approximated by the slope of the scatter plot. A variety of parameter estimation methods 

exist, including Ordinary Least Squares Method (OLS), Maximum Likelihood Method (MLM), etc. 

[16]. In this paper, we have chosen to use OLS and fix the intercept at 0 during regression [34]. 

2.2 Temporal evolution of multifractal measures 

The multifractal method provides a way to examine different density areas within a city, and 

the temporal evolution of multifractal parameters can reflect the growth characteristics of the city at 

multiple levels. Multifractal spectrums under positive moment orders correspond to central areas 

that are stable areas of urban development. They usually grow steadily over time [7,18], reflecting 

the stable filling of central areas. On the other hand, multifractal spectrums under negative moment 

orders correspond to marginal areas that are the most active areas of urban development. They usu-

ally change sharply over time, reflecting the dynamic expansion of marginal areas. The distinct evo-

lution of multifractal parameters under positive and negative moment orders leads to significant 

fluctuations in ΔD over time, as described in Equation (2), reflecting rich spatio-temporal infor-

mation. As D+∞ usually increases steadily over time, we can categorize the relative changes in D+∞ and 

D-∞ into three scenarios (Table 1). These scenarios can be summarized by introducing a new meas-

urement, that is named as Dimension Growth Rate Ratio (DGR) in this paper: 
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whose numerator and denominator represent the changes of D-∞ and D+∞ from time t-1 to time t, 

respectively. 

• If D+∞ rises faster than D-∞, then ΔD decreases and 0 < DGR < 1. This type of change 

indicates that the growth of built-up areas is primarily due to filling in central areas, 

leading to a decrease in spatial heterogeneity. This direction of urban evolution is 

commonly observed in empirical research. 

• If D-∞ rises faster than D+∞, then ΔD rises and DGR > 1. This type of change indicates 

that the growth of built-up areas is dominated by filling in marginal areas, leading 

to an increase in spatial heterogeneity. This marks the beginning of expansion of 

marginal areas, where the fractal dimension has rapidly increased. 

• If D-∞ decreases, then ΔD decreases and DGR < 0. This type of change indicates that 

the original low-density areas are rapidly filled into medium- to high-density areas, 

resulting in fewer new low-density areas, reduced dimensions and spatial heteroge-

neity. This marks the transformation of original marginal areas into new sub-central 

areas. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 June 2023                   doi:10.20944/preprints202306.2035.v1

https://doi.org/10.20944/preprints202306.2035.v1


 

It is evident that DGR can effectively detect the spatio-temporal evolution of urban mophorlogy. If 

DGR is greater than 1 or less than 0, it indicates that urban growth is primarily driven by expansion 

in marginal areas. Conversely, if DGR is between 0 and 1, it suggests that urban growth is predomi-

nantly focused on filling in central areas. The absolute value of DGR is directly proportional to the 

grwoth rate of D-∞, reflecting the intensity of the expansion process. A larger |DGR| signifies a faster 

change in D-∞ and a more significant expansion of marginal areas. To identify outliers in DGR, statis-

tical methods based on the mean and standard deviation can be employed. Specifically, if a value 

exceeds one-standard-deviation bands, there is a 68% confidence level for determining it as an outlier. 

Similarly, if a value surpasses two-standard-deviation bands, a 95% confidence level is used to iden-

tify it as an outlier. The numerical detection method (0 and 1) and the standard deviation detection 

method complement each other and provide valuable insights into the variation details of the spatio-

temporal evolution of urban morphology. However, it is important to note that the former leans more 

towards the theoretical interpretation of DGR, where different values of DGR reflect distinct charac-

teristics of urban morphology evolution. On the other hand, the standard deviation detection method 

leans more towards statistically testing DGR. When the index does not exhibit a clear trend or shows 

a weak trend, outliers can be intuitively identified using the mean and standard deviation, corre-

sponding to significant expansion in marginal areas. In summary, this paper utilizes various mul-

tifractal measurements, including multifractal spectrums and DGR, to comprehensively analyze the 

spatio-temporal evolution of urban morphology. These measurements are summarized in Table 2. 

Table 1. The classification of temporal evolution of generalized correlation dimension and related 

multifractal measurements. 

Change of Dq 
Change of related 

measurements 
Spatio-temporal information 

∆(D+∞)t > ∆(D-∞)t > 0 
ΔD decreases 

0 < DGR < 1 

Dominated by filling in central areas, spatial heterogene-

ity decreased: common direction of urban evolution. 

∆(D-∞)t > ∆(D+∞)t > 0 
ΔD rises 

DGR > 1 

Dominated by filling in marginal areas, spatial heteroge-

neity increased: the beginning of expansion of mar-

ginal areas. 

∆(D+∞)t > 0 > ∆(D-∞)t 
ΔD decreases 

DGR < 0 

The original low-density areas filled rapidly, new low-

density areas reduced and fractal dimension decreased, 

spatial heterogeneity decreased: the transformation of 

original marginal areas into new sub-central areas. 

Table 2. Main multifractal measurements used in this paper. 

Measurement Meaning in spectrum Spatio-temporal information 

ΔD = D-∞ –D +∞ 

Δα = α-∞ – α+∞ 

Height difference between 

the upper and lower Dq, 

α(q) spectrum. 

Differences between high- and low-density ar-

eas: the higher, the stronger spatial heterogene-

ity. 

f(α0) = D0 Maximum value of f(α). 

Degree of spatial filling: the larger, the higher 

level of spatial filling and the more complex spa-

tial structure. 

Δf = f(α+∞) - f(α-∞) 

Height difference between 

left and right side of f(α): 

>0, higher on the left; <0, 

higher on the right. 

Fractal growth pattern: >0, high-density areas 

dominate and fractal growth mainly extends 

outward; <0, low-density areas dominate and 

fractal growth is mainly centered. 

DGR = ∆(D-∞)t / ∆(D+∞) 

Ratio of growth rate of Dq 

at extreme positive and 

negative moment orders. 

Variation details in the spatio-temporal evolu-

tion of urban morphology: if the curve exhibits 

steadiness over time, central areas grow steadily; 

if the curve exhibits abnormal fluctuations, mar-

ginal areas expand actively. 
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2.3 Study area and data processing 

Based on multifractal spectrums and the newly defined DGR, the spatio-temporal evolution and 

variation details of urban morphology are studied below. The data used for analysis includes annual 

artificial impervious area from 1985 to 2018 [35] and urban boundaries every 5 years from 1990 to 

2018 [36]. In order to conduct the analysis, the impervious area is cropped using the urban boundaries 

from 2018, then multifractal spectrums and related multifractal measurements are calculated every 

year based on the minimum area box of the study area. The two largest Chinese urban agglomera-

tions, PRD and YRD, are selected as the research objects in empirical analysis, which are both com-

parable in terms of area size and both experienced rapid development from 1985 to 2018 (Figure 1 

and Table 3). PRD encompasses 10 prefecture cities with central cities being Guangzhou and Shen-

zhen. On the other hand, YRD includes Shanghai as its central city and six other prefecture cities. The 

historical background and development characteristics of the two regions make them suitable cases 

for studying the spatio-temporal evolution and variation details of urban morphology. The raw data 

is processed using ArcGIS 10.3 and ENVI 5.3, and the multifractal parameters are calculated using 

Python 3.8 for moment orders q ranging from -20 to 20. 

   

(a) (b)  

Figure 1. Study area of the research objects. (a) the Pearl River Delta (PRD); (b) the Yangtze River 

Delta (YRD). The two are the largest urban agglomerations in China. 

Table 3. Research objects: the Pearl River Delta (PRD) and the Yangtze River Delta (YRD). 

Research objects the Pearl River Delta (PRD) the Yangtze River Delta (YRD) 

Cities included 

10 prefecture cities: Guangzhou, 

Shenzhen, Foshan, Dongguan, 

Zhongshan, Zhuhai, Huizhou, Qing-

yuan, Jiangmen, Zhaoqing. 

1 municipality: Shanghai; 6 prefec-

ture cities: Suzhou, Wuxi, Jiaxing, 

Changzhou, Nantong, Zhenjiang. 

Area/ km2 10711.8 10480.2 

Historical background 

and development char-

acteristics 

The central cities, Guangzhou in PRD and Shanghai in YRD, have long 

histories. But the entire region only started to develop rapidly since the re-

form and opening up. The period between 1985 to 2018 was notable for its 

significant and speedy progress. 

3. Results 

Multifractal spectrums and related multifractal measurements of PRD and YRD are calculated 

from 1985 to 2018, respectively, and the results are shown in Figure 2, Figure 3 and Table S1. It was 

found that the multifractal spectrums of PRD in 1985 were significantly lower as shown in Figure 

2(a), (c), and this abnormal year has been excluded from subsequent analysis. 
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PRD YRD 

  

(a) (b) 

  

(c) (d) 

 

Figure 2. Multifractal spectrums every five years from 1985 to 2018 in PRD and YRD. (a) generalized 

correlation dimension spectrum Dq in PRD; (b) generalized correlation dimension spectrum Dq in 

YRD; (c) singularity spectrum f(α) in PRD; (d) singularity spectrum f(α) in YRD. 

PRD YRD 
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(c) (d) 

  

(e) (f) 

Figure 3. Temporal evolution of related multifractal measurements from 1985 to 2018 in PRD and 

YRD. (a) generalized correlation dimension Dq in PRD; (b) generalized correlation dimension Dq in 

YRD; (c) height difference ∆D in PRD; (d) height difference ∆D in YRD; (e) newly defined measure-

ment DGR in PRD; (f) newly defined measurement DGR in YRD. In subfigures (e) and (f), the light 

gray and medium gray bands represent the two-standard-deviation and one-standard-deviation 

bands, respectively. If a data point falls outside the bands, there is a 95% (light gray) or 68% (medium 

grey) confidence level for considering it as an outlier. The dark gray boundaries are set at 0 and 1. 

When a data point goes beyond these boundaries, it indicates that urban growth is mainly driven by 

expansion in marginal areas. On the contrary, it suggests that urban growth is dominated by filling 

in central areas. 

Table 4. Multifractal analysis results of the spatio-temporal evolution of urban morphology in PRD 

and YRD from 1985 to 2018. 

 
Temporal evolution of multifractal 

spectrums and related measurements 

Spatio-temporal information in the evo-

lution of urban morphology 

Mac-

ro-

scopic 

laws 

Dq rises, f(α0) = D0 increases. Increasing degree of spatial filling. 

When q→+∞, Dq converges rapidly, 

with an even faster convergence over 

time. While when q→-∞, Dq does not 

exhibit a clear convergence trend.  

Central areas have reached saturation in 

terms of development and filling, and 

there is still potential for expansion in 

marginal areas. 

When q→+∞, f(α) shows a rapid rise, 

while when q→-∞, f(α) experiences a 

gradual decline. 

Central areas were rapidly being filled, 

marginal areas were expanding and trans-

forming into new sub-centers, resulting in 

a relatively reduced dimension. 

In the early stages of the study, f(α-∞) 

for PRD and YRD are similar, but f(α+∞) 

for YRD is larger. By the end of the re-

search period, f(α+∞) for both regions 

The central areas in YRD developed ear-

lier compared to PRD, with a higher de-

gree of spatial filling and more advanced 

development. The expansion of marginal 

areas in YRD has been faster, leading to 
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become similar, but f(α-∞) for YRD is 

smaller. 

more new sub-centers formed during the 

research period. Although the central ar-

eas in PRD started their development 

later, they progressed rapidly and ap-

proached the filling degree observed in 

YRD by the end of the research period. 

ΔD and Δα decrease overall. A decreasing trend in spatial heterogene-

ity. 

Δf changed from negative to positive in 

2000 in PRD, and in 2001 in YRD. 

Fractal growth pattern shifted from con-

centration to deconcentration in 2000 in 

PRD, and in 2001 in YRD. 

Micro-

scopic 

varia-

tions 

Dq>0 increase steadily over time, stabi-

lize in the later stages, and exhibit sim-

ilarities between PRD and YRD. Dq<0 

generally increases, but fluctuates 

sometimes. 

Central areas were steadily filled and 

tended to saturation, marginal areas ex-

panded actively. 

DGR surpassing 0 or 1: 2005-2010, 

2013-2017 in PRD; 1994, 1997, 2013-

2016 in YRD. 

Marginal areas expanded actively in the 

corresponding years, leading to the inter-

connection of urban boundaries among 

multiple cities. 

DGR exceeds one-standard-deviation 

bands, the value is an outlier with a 

68% confidence level: 2009, 2010, 2013, 

2014, 2016, 2017 in PRD; 1994, 1997, 

2013, 2015, 2016 in YRD. 

The marginal areas witnessed substantial 

expansion during those specific years, 

which might be attributed to regional or 

national policies. YRD has started rapid 

growth in its marginal areas since 1994, 

whereas PRD encountered a similar situa-

tion only in 2009. The urban development 

in YRD generally preceded that of PRD. 

Despite PRD being known as a window 

for China's reform and opening up poli-

cies, YRD holds a longstanding position 

as an established economic region within 

China. 

DGR exceeds two-standard-deviation 

bands, the value is an outlier with a 

95% confidence level: 2009 and 2016 in 

PRD; 1997, 2015, 2016 in YRD. 

Based on the temporal evolution of multifractal spectrums (Figure 2), we can derive the macroscopic 

laws in the spatio-temporal evolution of urban morphology in the study areas (Table 4). The follow-

ing is a summary of these observed patterns: 

1. Generalized correlation dimension Dq, as shown in Figure 2(a), (b): 

• The spectrums continue to rise, indicating ongoing filling of PRD and YRD. 

• The right side of the spectrum (q→+∞) converges rapidly, with an even faster con-
vergence over time. While the left side of the spectrum (q→-∞) does not exhibit a 

clear convergence trend. This suggests that the central areas have reached a state of 

saturation in terms of development and filling, and there is still potential for expan-

sion in marginal areas. 

2. Singular spectrum f(α), as shown in Figure 2(c), (d): 

• The maximum value, f(α0) = D0, keeps increasing, signifying an increasing degree of 

spatial filling. 

• The left side of the spectrum (q→+∞) shows a rapid rise, while the right side (q→-∞) 

experiences a gradual decline. This implies that the central areas are rapidly being 

filled, the marginal areas are expanding and transforming into new sub-centers, re-

sulting in a relatively reduced dimension. 
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• In the early stages of the study, the heights of the right side of the spectrums for PRD 

and YRD are similar, but the left side of YRD is higher. By the end of the research 

period, the heights of the left side of the spectrums for both regions become similar, 

but the right side of YRD is lower. This indicates that the central areas in YRD devel-

oped earlier compared to PRD, with a higher degree of spatial filling and more ad-

vanced development. Moreover, the expansion of marginal areas in YRD has been 

faster, leading to a lower dimension and more new sub-centers formed during the 

research period. Although the central areas in PRD started their development later, 

they progressed rapidly and approached the filling degree observed in YRD by the 

end of the research period. 

• The height difference between the left and right side of the spectrum, Δf, changed 

from negative to positive in PRD and YRD in 2000 and 2001, respectively. This shift 

indicates that the fractal growth pattern of the study areas shifted from concentration 

to deconcentration during those corresponding years. 

By analyzing the temporal evolution of DGR (Figure 3), we can uncover the microscopic varia-

tions in the spatio-temporal development of urban morphology in the study areas (Table 4). The gen-

eralized correlation dimension Dq exhibits a steady increase under positive moment orders, eventu-

ally reaching a stabilized state in the later stages. Furthermore, there is no significant difference ob-

served between PRD and YRD. Under negative moment orders, Dq generally increases, but with no-

table fluctuations. Particularly significant fluctuations are observed in 2009 in PRD and in 1997 in 

YRD (Figure 3(a), (b)). The distinct evolution of Dq under positive and negative moment orders leads 

to significant fluctuations in ΔD (Figure 3(c), (d)). Overall, ΔD decreases, indicating a decreasing 

trend in spatial heterogeneity within the study areas. However, ΔD for PRD fluctuated significantly 

in 2009 and 2016, while those for YRD experienced significant fluctuations in 1997, 2015 and 2016, 

reflecting fluctuations in spatial heterogeneity during the respective years. The aforementioned spa-

tio-temporal variations in urban morphology evolution can be further highlighted by examining the 

temporal evolution of DGR, providing a more intuitive explanation (Figure 3(e), (f)). In most cases, 

DGR remains stable between 0 and 1, indicating a consistent filling of central areas. However, there 

are certain years where DGR shows abnormal fluctuations, surpassing 0 or 1, and even exhibiting 

sudden jumps. These abnormal fluctuations indicate active expansion in marginal areas. The abnor-

mal fluctuations in DGR can occur at a single point in time or over a period of time. The former marks 

an important node in the expansion of marginal areas, such as 1994 and 1997 in YRD. The latter marks 

a period of rapid expansion of marginal areas, namely, the expansion of marginal areas (DGR > 1) → 

the original marginal areas becoming new sub-central areas (DGR < 0) → the expansion of new mar-

ginal areas (DGR > 1) … This type of expansion is particularly evident during 2005 to 2010 and 2013 

to 2017 in PRD, as well as 2013 to 2016 in YRD. To detect outliers in DGR, statistical criteria can be 

established using standard-deviation bands. Applying one standard deviation, we can determine 

"abnormal" years in PRD as 2009, 2010, 2013, 2014, 2016 and 2017, and in YRD as 1994, 1997, 2013, 

2015 and 2016 at a 68% confidence level. Moreover, based on two standard deviations, "abnormal" 

years in PRD are 2009 and 2016, and in YRD are 1997, 2015 and 2016 at a 95% confidence level. This 

standard deviation detection method allows for the identification of outliers in DGR. 

The abnormal fluctuations in the DGR curve over time indicate active expansion of marginal 

areas in the study areas. The standard deviation detection reveals that YRD has started rapid growth 

in its marginal areas since 1994, whereas PRD encountered a similar situation only in 2009. This sug-

gests that the urban development in YRD generally preceded that of PRD, which is consistent with 

the results from multifractal spectrums. Despite PRD being known as a window for China's reform 

and opening up policies, YRD holds a longstanding position as an established economic region 

within China. The active expansion of marginal areas may be attributed to regional or national poli-

cies. In 2008, the Outline of the Plan for the Reform and Development of the Pearl River Delta (2008-2020) 

was approved, aiming to promote regional economic integration and deepen cooperation in the Pan-

PRD area. The provincial government aims to achieve A good start in one year, a great development in 
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four years, and a great leap in nine years, so 2009, 2013 and 2017 are key years for the expansion of PRD. 

In the case of YRD, the establishment of the Seminar on the Work of the Yangtze River Delta Political 

Consultative Conference in 1994 and the Inter-City Conference on Yangtze River Delta Economic Coordina-

tion in 1997 laid the foundation for political and economic cooperation in the region. And the estab-

lishment of the China (Shanghai) Pilot Free Trade Zone in 2013 provided further impetus for the inte-

gration of YRD. The integrated development of these regions also relies on the support of national 

policies. In 2016, the 13th Five-Year Plan, adopted during the Fourth Session of the 12th National Peo-

ple's Congress, aimed to optimize and enhance the urban agglomerations in the eastern region, in-

cluding the Beijing-Tianjin-Hebei, YRD, and PRD. It also emphasized the coordinated development 

of the upper, middle, and lower reaches of the Yangtze River and regional cooperation in the Pan-

PRD, supporting and facilitating further expansions of YRD and PRD. Therefore, the DGR of YRD 

and PRD both fluctuated significantly in 2016, corresponding to a significant expansion of marginal 

areas. As a result of the expansion in marginal areas, multiple cities have seen the interconnection of 

their urban boundaries. In PRD, the marginal areas of southern Guangzhou and western Dongguan 

expanded significantly from 2005 to 2010, leading to an interconnection of the urban boundaries of 

Guangzhou, Foshan, Dongguan and Shenzhen, forming an integrated spatial pattern (Figure 4(a)–
(b)). From 2010 to 2018, Zhongshan and Zhuhai also expanded and connected with the urban bound-

aries of these cities, further consolidating the integrated spatial pattern (Figure 4(b)–(c)). In YRD, the 

marginal areas of eastern Changzhou, northern Wuxi, Suzhou and Shanghai significantly expanded 

from 2010 to 2015, leading to an interconnection of urban boundaries of these cities for the first time. 

As a result, the integrated spatial pattern was initially formed (Figure 5(a)–(b)). From 2015 to 2018, 

the marginal areas of Shanghai continued to expand, further strengthening the integration pattern 

(Figure 5(b)–(c)). In summary, DGR can effectively reflect the spatio-temporal variation of urban evo-

lution. A DGR greater than 1 or less than 0 corresponds to active expansion of marginal areas. Ab-

normal fluctuations in DGR help capture the variation details in the spatio-temporal evolution of 

urban growth.  

   

 (a)  (b) (c) 

Figure 4. Temporal evolution of urban boundaries in PRD from 2005 to 2018. (a) urban boundaries in 

2005; (b) urban boundaries in 2010; (c) urban boundaries in 2018. 

   

(a) (b) (c) 

Figure 5. Temporal evolution of urban boundaries in YRD from 2010 to 2018. (a) urban boundaries in 

2010; (b) urban boundaries in 2015; (c) urban boundaries in 2018. 
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4. Discussion 

Multifractal method is a valuable approach for analyzing the spatio-temporal evolution of urban 

morphology. However, there is still a need to explore the specific details of urban evolution. There-

fore, this paper proposes a multifractal measurement called Dimension Growth Rate Ratio (DGR) to 

characterize the spatio-temporal variation of urban evolution, and it is validated using PRD and YRD 

as examples. Based on the above calculations and analysis, the research results can be summarized 

as follows. Firstly, the generalized correlation dimension (Dq) shows a steady increase under posi-

tive moment orders and significant fluctuations under negative moment orders. The differences 

between the two reflect rich spatio-temporal information. Dq under positive moment orders are 

similar among different cities, demonstrating a consistent increase over time and stabilization in later 

stages, indicating the stable filling of central areas. On the other hand, Dq under negative moment 

orders generally increase over time, but with notable fluctuations, reflecting the active expansion of 

marginal areas. Based on this, the spatio-temporal evolution pattern of urban morphology can be 

classified into three scenarios: 1) D+∞ rises faster than D-∞, indicating urban growth dominated by 

filling in central areas, corresponding to the common direction of urban evolution. 2) D-∞ rises faster 

than D+∞, indicating urban growth dominated by filling in marginal areas, corresponding to the be-

ginning of marginal area expansion. 3) D+∞ increases while D-∞ decreases, suggesting rapid filling of 

original low-density areas, resulting in fewer new low-density areas and a smaller fractal dimension. 

This corresponds to the transformation of the original marginal areas into new sub-central areas. 

Secondly, the spatio-temporal variation of urban evolution can be quantitatively detected using 

DGR. DGR represents the ratio of the growth rate between D-∞ and D+∞, can comprehensively reflects 

the evolution of both central and marginal areas. Normally, 0 < DGR < 1 indicates stable growth in 

central areas. Abnormal fluctuations in DGR reflect the expansion of marginal areas. DGR > 1 corre-

sponds to the beginning of expansion in marginal areas, while DGR < 0 corresponds to the transfor-

mation of original marginal areas into new sub-central areas. In some cases, DGR may even exhibit 

abrupt jumps. Larger |DGR| indicate more significant expansion, and can be tested using standard-

deviation bands. Thirdly, abnormal fluctuations in DGR can occur at a single time point or over a 

certain period of time. A single time point with abnormal fluctuation signifies a crucial node for 

marginal area expansion, while fluctuations over a period of time mark periods of rapid expansion. 

By combining the conventional multifractal spectrums with the proposed DGR measurement, 

important conclusions can be drawn regarding the spatio-temporal evolution patterns in PRD and 

YRD. Overall, from 1985 to 2018, both PRD and YRD experienced an increase in the degree of spatial 

filling and complexity. The central areas reached a saturation point, while there is still potential for 

expansion in marginal areas. Compared to PRD, the urban growth in YRD occurred earlier and was 

more developed. YRD exhibited a higher level of filling in its central areas and witnessed faster ex-

pansion in the marginal areas. Nevertheless, PRD demonstrated rapid development, and by 2018, the 

degree of filling in its central areas approached that of YRD. Moreover, in PRD, the pattern of fractal 

growth shifted from concentration to deconcentration in 2000. Marginal areas expanded rapidly from 

2005 to 2010 and from 2013 to 2017, with notable growth observed in 2009 and 2016, leading to the 

formation and strengthening of regional integration patterns. In YRD, significant expansion nodes 

occurred in 1994 and 1997, with policies laying political and economic foundation for regional inte-

gration. The pattern of fractal growth shifted from concentration to deconcentration in 2001. The pe-

riod from 2013 to 2016 has witnessed another rapid expansion in marginal areas, indicating the for-

mation and strengthening of regional integration patterns, with notable growth observed in 2015 and 

2016. The key nodes and periods in the evolution of urban form may be attributed to regional or 

national policies and are reflected in spatial patterns. 

The spatio-temporal evolution of urban systems is a crucial aspect of urban planning, and mul-

tifractal methodology offers an effective tool for studying this evolution. However, due to limited 

time series data, most studies have focused on comparing changes in multifractal spectrums to un-

derstand the general laws of urban development [7,18–23], or fitted the time series of Dq using logistic 

functions to reveal the spatial replacement dynamics of urban development. Based on logistic 
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functions, it is possible to determine the type of urban evolution, predict the time of maximum speed, 

and divide urban development stages macroscopically [24]. However, these studies have primarily 

remained at a macro-level analysis of urban evolution, with few exploring the micro-variations 

within the evolution process. Compared with previous research, this article introduces an innovative 

approach by employing a newly defined measurement called DGR to detect the detailed spatio-tem-

poral variations in urban evolution. The different values of DGR correspond to the expansion of cen-

tral or marginal areas, and abnormal fluctuations in these values indicate active expansion in mar-

ginal areas. The calculation of DGR is clear, concise, and useful for high temporal resolution data. It 

could serve as a supplement to previous macro analysis and provide more insights into the spatio-

temporal evolution patterns of urban morphology. 

This paper has several shortcomings that need to be addressed. Firstly, the algorithm is limited 

to OLS with a fixed intercept of 0, which might be not comprehensive enough. The parameter esti-

mation of mathematical models depends on algorithms, while the selection of algorithms is subjec-

tive. The commonly used algorithms for estimating regression parameters include OLS and MLM. 

Empirical study shows that when the observed data follows power law, the results of the two algo-

rithms are consistent; when the observation data does not obey power law, OLS gives an approximate 

value, while MLM gives outlier. Therefore, MLM can be used to detect power laws [16]. Furthermore, 

OLS for parameter estimation also has two possible scenarios: fixed intercept and unfixed intercept. 

Previous research indicates that the results from these two methods are consistent when the fractal 

structure of cities is well-developed. However, if the fractal structure of cities is not sufficiently de-

veloped, multifractal measurement depends on the selection of methods [34]. Therefore, integrating 

multiple algorithms and methods, including both OLS and MLM, fixed and unfixed intercept, can 

aid in understanding the evolution of urban fractal structure. Unfortunately, due to limited space, 

this paper only chose to utilize OLS with a fixed intercept for parameter estimation. Future compar-

ative analysis measuring DGR under different algorithms and methods may improve our under-

standing of urban evolution. Secondly, the research only covers a limited number of cities, the uni-

versality of the measurement DGR needs further verification, and the mechanism behind the spatio-

temporal variation in urban evolution still needs further exploration. 

5. Conclusions 

The classic theme in geography focuses on regional differentiation, and geographers are inter-

ested in understanding both spatial differences and their underlying similarities. Multifractal meth-

odology offers a way to unify regional differentiation and spatial similarities within a single descrip-

tive framework. When the moment order is greater than 0, the multifractal spectrum provides more 

information about central areas with high density and growth probability, as well as intra-area sta-

bility and inter-area similarity. On the other hand, when the moment order is less than 0, the mul-

tifractal spectrum captures more information about marginal areas with low density and growth 

probability, along with intra-area instability and inter-area differences. Based on these ideas, this ar-

ticle introduces an index using extreme values of generalized correlation dimension, named as DGR, 

to describe the spatio-temporal evolution characteristics of cities. This index combines two extremes 

and can effectively capture the detailed features of urban spatio-temporal evolution. Through calcu-

lations, analysis, and discussion of problems, the following main conclusions can be drawn. Firstly, 

the curve of the growth rate of the generalized correlation dimension under extreme positive and 

negative moment orders (DGR) over time reflects the variation characteristics of urban growth. 

Urban growth is more active in marginal areas and can be characterized by multifractal parameters 

under negative moment orders. Conversely, growth in urban central areas is relatively stable and can 

be characterized by multifractal parameters under positive moment orders. The ratio of the growth 

rate of the generalized correlation dimension between these two extreme cases reflects the growth 

rate of marginal areas relative to central areas. Unevenness in the DGR curve over time typically 

indicates a period of active growth in urban marginal areas. Secondly, the DGR curve serves as a 

complementary tool of multifractal analysis for urban morphology. In other words, combining the 

DGR curve with multifractal spectrums allows for a more comprehensive understanding of urban 
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growth. The generalized correlation dimension and related multifractal measurements can effectively 

reflect the spatio-temporal evolution patterns of urban morphology. The stable filling in central areas 

represents a normal situation, while expansion in marginal areas indicates an "abnormal" situation, 

which corresponds to sudden increases or decreases in parameters. The DGR curve captures these 

abnormal growth patterns and changes. By using various multifractal parameter curves, urban 

growth characteristics can be comprehensively analyzed from multiple perspectives and levels. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Table S1: Multifractal spectrums and related measurements in PRD and YRD from 1985 

to 2018; Algorithm S1: The main code to calculate multifractal parameters in Python. 
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