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Abstract: In this article, a method for the moisture mapping of the soil surface of agrophytocenosis was
proposed using neural network based on synchronized radar and multispectral optoelectronic data of Sentinel-
1,2. To verify the developed method, data from two experimental plots were used. These plots were located
two on irrigated soybean crops. The first of them was located on the right bank (1 plot) and the second one on
the left bank (2" plot) of the down part of Volga River. Two experimental soil moisture geo-datasets were done
by measurements and geo-referencing points using gravimetric method (1% plot) and with proximal sensing
method (2 plot) using Soil Moisture Sensor ML3-KIT (THETAKIT, Delta). The soil moisture retrieval
algorithm was based on the use of a neural network to predict reflection coefficient of an electromagnetic wave
from the soil surface, followed by inversion into soil moisture using a dielectric model that takes into account
the soil texture. The input parameter of the neural network was the ratio of the microwave radar vegetation
index (calculated on the basis of Sentinel-1 data) to the index (calculated on the basis of data of multispectral
optoelectronic channels 8 and 11 of Sentinel-2). Such way calculated index reveals showed a significantly
greater dependence on soil moisture than on vegetation height that was been used in previous studies. The
retrieved values of soil moisture were compared with the soil moisture measured in-situ. The proposed method
with a determination coefficient of 0.44-0.65 and a standard deviation of 2.4%-4.2% for the 1st plot as well as
with and of the same metrics for the 2nd allows predicting the soil moisture of both a test plots covered by
soybean plants, relative to soil moisture measured in-situ. The conducted research created the scientific basis
for a new technology for remote sensing the moisture content of the soil surface of agrophytocenosis as an
element of the precision farming system and agroecology.

Keywords: precision agriculture; agroecology; remote sensing; crop irrigation; soil moisture;
vegetation indexes; Sentinel-1,2; neural network; dielectric permittivity

1. Introduction

The soil moisture content, as well as the characteristics of the crop cover, are the main parameters
of irrigated agrophytocenoses, depicting their state, both in terms of the soil water regime and
physiological development [1,2]. The assessment of these parameters at the level of agrophytocenosis
and its parts is necessary for effective management, as well as for agro ecological control of the impact
on environment [3, 4]. At the same time, the moisture content at the surface layer of the soil cover
and the vegetation indices of the vegetation cover, measured remotely, along with the surface
roughness of the soil cover of agrophytocenoses and the scattering elements of the vegetation cover,
are the key factors affecting the value of the radar backscatter coefficient (RBC), measured by the
radar of the Sentinel-1 satellite at a frequency of 5.4 GHz. The moisture content of the soil surface,
reconstructed on the basis of the existing well-known scattering models of Ox [5], Duboa [6] and the
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Fang integral equation method [7], as a rule, leads to a significant mismatch with respect to the values
of this moisture measured by proximal methods on sub-satellite test plots [8, 9]. This is largely due
to the variability of soil moisture and roughness that is dynamic in time and at different scales of
agrophytocenosis, which causes significant difficulties in organizing periodic and highly detailed
sub-satellite monitoring of these parameters over large areas. Indeed, in relation to the problem of
restoring soil moisture according to [10], the standard deviation, the correlation length and the form
of the autocorrelation function of the heights of irregularities depend not only on the degree level of
surface roughness, but also on the length of the profile (0.5-25m), within which measurements are
made. Because of this, difficulties arise when using the statistical characteristics of ground-based
roughness measurements as input parameters of existing radar scatter models and using them in
global algorithms for multi-scale satellite radar moisture sensing. Other directions for solving the
problem of restoring soil moisture are based on the developed semi-empirical methods of integral
equations. These methods make it possible to take into account the local features of the statistical
characteristics of roughness. However, this requires calibrating the input parameter (correlation
length) as a function of the root-mean-square deviations of the irregularity heights and the angle of
incidence of the wave obtained in the study area for [11,12]. For this purpose, approaches based on
neural network (NN) training using scattering models are widely used [13, 14]. In these NN, soil
moisture acts as an output parameter, and as input parameters are combinations of backscattering
cross sections measured at different polarizations, as well as soil surface roughness and sounding
angle. At the same time, the achieved results of combining semi-empirical methods and NN, despite
the laboriousness of solving inverse problems with large spatial arrays of radar data, indicate
significant prospects for this direction in problems of restoring moisture [15, 16].

Note that a generalized model has not yet been created to solve the problem of radar scattering
of electromagnetic waves on the elements of the vegetation cover. At the same time, extinction
coefficient (EC) models have already been developed to describe the attenuation of electromagnetic
waves in various types of vegetation [17, 18]. At the same time, it was shown that the EC is
proportional not only to the volumetric water content in plants, but also to some empirical variable,
for which only an approximate relationship with the frequency of the electromagnetic wave and the
type of vegetation cover has been established so far [18, 19]. Recently, to describe the RBC of a soil
surface covered with vegetation, an empirical model has been widely used that describes the
attenuation and scattering of a wave in a layer represented by uniformly dispersed particles (“cloud”
model) [20-24]. The parameters of this model (the effective scattering amplitude on particles, the
effective value of the layer extinction coefficient, the proportionality coefficients are specific to a given
plant type) are calibrated either using analytical models of scattering on vegetation cover elements
[22], or more often on the basis of satellite parameters (vegetation indices, leaf area indices) and
corresponding subsatellite (biomass and vegetation height) measurements [20-24]. However, to date,
a generalized relationship between the parameters of the “cloud” model and various types of
vegetation depending on the sounding wave frequency, altitude, and vegetation biomass has not
been established.

Due to the significant difficulties in calibrating existing scattering models for a wide variety of
combinations of soil and vegetation covers, recently NN methods have been widely developed to
predict the moisture content of soils covered with vegetation. In this case, either separately radar data
(RBS at different polarizations) [15, 25] or in combination with multispectral optical data (vegetation
indices, leaf surface indices) measured by various survey systems on space platforms are used as
input parameters of the NN [26, 27]. In contrast to these approaches, in this work, at the first stage,
the NN was used to predict the reflection coefficient of the soil cover. For this, as its input parameter,
the ratio of the multispectral index of vegetation cover in the optical range to the microwave index of
the same cover was used. At the second stage, based on the dielectric soil model [28], in the course of
solving the inverse problem, the soil cover moisture was restored using the value of the reflection
coefficient estimated using the NN. As a result of the proposed algorithm, it was possible to minimize
the influence of vegetation cover on the restored value of soil cover moisture.
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2. Test plots, ground based and satellite data

With aim to test the proposed method, data sets of two test plots located in the south of the
European part of Russia were used. The test plot No. 1 (44.1568 N, 48.6026 E) was located in one of
the fields of the experimental production facility of the All-Russian Research Institute (VNIIOZ) (see
Figure 1a). During the field measurements in the July 2020, at the field on which this test plot was
located was sown with soybeans in the heading phase, irrigated with a Bayer frontal sprinkler
machine. The test plot No. 2 (51.1258 N, 46.0001 E) was located on one of the agricultural fields of the
Educational Research and Production Association “Povolgie” of the Saratov Agrarian University.
N.L. Vavilov (SSAU) (see Figure 1b). During the test period in the second half of August 2022, the
corresponding field with this test plot was sown with soybeans in the ripening phase, which was
irrigated with a «Cascade» circular sprinkler.

The soil cover of the test plot No. 1 was includes light chestnut irrigated alkaline calcareous soils
on yellow-brown loams (according to the soil classification of the USSR). Soils are classified according
to the WRB classification as Luvic Kastanozems (Loamic, Aric, Protosodic, Bathygypsic). The texture
of the soil cover was determined using combination of sieve and pipette (Kaczynski version) analyses.
The obtained results showed that the soil particle distribution was classified as silty loam (clay loam)
according to FAO soil classification.

The soil cover of the test plot No. 2 was represented by a complex of medium and thin dark
chestnut soils of medium loamy and light loamy granulometric composition. The content of physical
clay in the plow horizon is 36-38%. At the same time, the value of the volumetric mass of the arable
layer is 1.34 g/cm3, and the density of the solid phase is in the range of 2.62-2.65 g/cm3. The
corresponding value of the porosity of the arable layer lies in the range of 0.49-0.53 cm3/cm3 a, the
value of the maximum field capacity (FC) is 0.25-0.27 cm3/cm3.

Figure 1. Test plot No. 1, southwest of the Volgograd region (a) and test plot No. 2, southeast
of the Saratov region (b). Images obtained from the Sentinel-2 satellite on 07/11/2020 and
08/22/2022, respectively

At the test plot No. 1, under-satellite monitoring included an areal survey of the moisture of a
layer of 0-5 cm of soil cover, as well as a measurement of the height of soybean plants. Both types of
measurements were carried out synchronously and corresponded to the time of the Sentinel-1 radar
survey on two dates, July 9 and 21, 2020. At the same time, sub-satellite moisture monitoring
consisted in the selection of undisturbed soil samples using a special sampler and the subsequent
determination of their volumetric moisture content in laboratory conditions [29]. The selection of
these samples on both marked dates was carried out at 45 points in the nodes of a uniform rectangular
grid with a distance between nodes of about 10 m and an area of about 0.6 ha (see Figure 2a).

At the test plot No. 2, sub-satellite monitoring included a one-time measurement of the
volumetric soil moisture and the height of soybean plants at the time of the Sentinel-1 radar survey
on 08/22/2022. These measurements were carried out at 201 points on one of the plots of irrigated
soybean crops, the moisture content of which was formed during the irrigation of “Cascade” on
21.08.2022. The geometric boundaries of this section began at the center of rotation of the “Cascade”
and extended from this center in the north-west direction, where they protruded 25 meters beyond
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the formed outer boundary. Within this section, two parallel routes were laid with transverse
distances spaced from each other within 10-15 m. To measure the volumetric moisture content of the
soil cover, an ML3-KIT (THETAKIT) device manufactured by the Delta company was used. Before
its use, testing was carried out. At the same time, the average deviations of the moisture content
obtained by this device from the moisture content obtained during the selection of soil samples
corresponded to its technical characteristics and lay within 2%. Moisture monitoring in the second
area was carried out approximately 24 hours after it was watered with “Cascad” with a norm of 17
mm.

To form a geodatabase of the measured values of soil moisture and heights corresponding to
both test plots ethe mobile, freely distributed software application for smartphones GPS MapCamera,
installed on the OS iPhone and Android platforms, was used. With its help, the necessary video
images were obtained, which were used to form the corresponding layers of the geodatabase,
including the date and time of measurements, the coordinates of the sampling/measurement plots
and the plant height corresponding to this point, as well as the number of the sampling box or the
measured moisture value [30]. At the same time, the measured volumetric soil moisture values at the
test plot No. 1 varied from 6% to 26% (07/09/2020) and from 11% to 23% (07/21/2020), as well as, plant
heights varied from 55cm to 80cm (July 9) and from 70cm to 110cm (July 21). The measured
volumetric soil moisture in the test plot No. 2 on August 23, 2022 varied from 5.2% to 36.1%, and the
plant height varied from 85 to 100 cm.

Maps of the results of interpolation of the measured values of soil moisture, with the places of
the measurements plotted on them, as well as maps of NDVI calculated from the results of the
Sentinel-2 survey, of both test plots are shown in Figure 2. The variation of the NDVI indices for both
plots was within close limits of 0.4-0.8 (see Figure 2). The Sentinel-1 satellite measured in the
interferometric broadband mode (IW) the radar backscatter coefficients (RBC) at a frequency of 5.4
GHz at VH and VV polarizations over the territory of the first (July 9 and 21, 2020) and the second
(August 22, 2022, 7:06 local time, UTC+4) of both test plots. Using the ESA SNAP software, standard
processing of Sentinel-1 data was carried out: the use of precision orbits, calibration, speckle noise
filtering (successive application of two Gamma map filters 3x3 pixels in size).

44°9.39" . 45°59.64"  45°59.82'  46°0.00 46°0.18" 46°0.36"

(©) (d)
Figure 2. Location of soil and plant sampling/measurement points in the test plot No. 1, July 11,
2020 (a, c) and the test plot No. 2, August 22, 2022 (b, d). Soil moisture interpolation map
calculated by soil sampling of test plot No. 1 (a) and the test plot No. 2 (b) NDVI map calculated
from Sentinel-2 data, July 11, 2020 (c) and August 22, 2022 (d). The dots in the both figures mark
the places where samplings/measurements were taken out.
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Normalization of RBC to one reference probing angle of 30° was carried out for both test plots
according to the method [25]. Sentinel-2 (MSIL2A) multispectral survey data were taken on July 11
and 21, 2020 for the test plot No. 1 and on August 22, 2022 (11:56 local time) for the test plot No. 2. For
consistent processing, the Sentinel-2 multispectral survey data were recalculated using inverse
distance-weighted interpolation on the Sentinel-1 radar data grid. (Note that the resolution of
Sentinel-2 images was reduced to the resolution of channel 11 -20m.)

3. Method for restoring the moisture content of soil covered by vegetation

In the study, the created NN model was calibrated and verified according to the results obtained
in the first test section, and its additional verification and prior to training of the NN were carried out
according to the results obtained in the second test section. The values of the RBC, as well as the
NDVI (normalized difference vegetation index), calculated, respectively, by data of Sentinel-1,2
satellites for cover of the test plot No. 1 (see Figure 3). The Pearson correlation coefficient between
RBC at vertical-vertical (6VV), vertical-horizontal (6VH) polarizations, and soil volumetric moisture
is no more than 0.227 and 0.084, respectively (see Figure 3a). The Pearson correlation coefficient
between the NDVI (Sentiel-2) and vegetation height was 0.297 (see Figure 3b). Due to the fact that
RBC at cross polarization (6VH) is more susceptible to volume scattering by vegetation cover
elements, the correlation between RBC at matched polarization 6VV and soil volumetric moisture is
stronger for cross polarization (see Figure Figure 3a).
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Figure 3. RBC calculated by data of Sentinel-1 at VV and VH polarizations as a function of soil

volumetric moisture (a) and dependence of the NDVI on plant height (b) obtained in test plot
No.1

The weak correlation between NDVI and vegetation height, /i, (see Figure 3b) is apparently due
to the fact that the NDVIis more related to the reflective characteristics of the vegetation cover, which
depends on its photosynthetic activity, than to the general the volume of biomass, with which the
height of plants is associated. At the same time, we found a significantly greater correlation between
the vegetation index (Sentinel-2) Ilo=(Ks-Ki1)/(Ks+Ku), as well as the radar vegetation index
RVI=4cvu/(ovutovy) and plant height in the test plot No. 1 (Sentinel-1) (see Figure 4).
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Figure 4. Dependence of the multispectral index Io calculated on the basis of Sentinel-2
measurements on plant height (a) and dependence of the microwave plant index calculated on
the basis of Sentinel-1 measurements on plant height (b), obtained for test plot No. 1.

The Pearson correlation coefficient (0.798) between the multispectral vegetation index Io and
plant height kv is higher than between the microwave index RVI and kv (0.334), due to the fact that
the multispectral index Io contains information about the interaction of reflected solar radiation with
the surface of the vegetation cover, and the microwave index RVI contains information about the
interaction of an electromagnetic wave, with the reflectivity characteristics both of the vegetation
cover, and of the soil surface cover.
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Figure 5. Ratio of multispectral optical index Io to microwave index of vegetation versus
volumetric soil moisture in test plot No. 1 (a) and ratio of multispectral optical index Io to
microwave index of vegetation versus plant height in test plot No. 1 (b).

On Figure 6 shown a simple feed-forward NN with one hidden layer containing N neurons.

NN

§"= RVIL, Ll °“‘:|R0(W1 Figure 6. Simple NN with one hidden L:¥ layer
containing N neurons

The input parameter of the used NN (see Figure 6) is the ratio &»=RVI/Io. In contrast to existing
approaches, not soil moisture was used as the output parameter, but the modulus of the Fresnel
reflection coefficient of an electromagnetic wave with a flat front from the soil surface with a smooth
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boundary &eut=1Ro(es) |, where & is the complex dielectric permittivity (CDP) of soil. Using | Ro(es) | as
the output value of NN allows not to train it every time for a new type of soil cover, but to use a
dielectric model that takes into account the dependence of the CDP on the type of soil cover es=es(W,
me) [5, 24, 31], here W and m. are the volumetric soil moisture and the content of the clay fraction of
the soil cover.

Modeling of the NN was carried out by means of Matlab. A feed forward NN was used,
consisting of one hidden layer, in which from 1 to 65 neurons were specified. The minimization of
root-mean-square deviations between the output true values and the output values predicted by the
NN during training was carried out on the basis of the Levenberg-Maquard algorithm. The result of
NN training depending on the number of neurons is shown in Figure 7. When calculating the true
values of the reflection coefficients, we used the dielectric model [24] and data from ground-based
measurements of the volumetric soil moisture at the points of soil sampling in test plot No. 1 (see

Figure 2a).
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Figure 7. Coefficient of determination (a) and RMSE (b) between true and predicted reflectance
coefficient NN values depending on the number of neurons.

Coefficient of determination, R? standard deviation (RMS) between the predicted NN model
|RY| and calculated |Ro(es)| values of the modulus of the reflection coefficient varies from R>=0.31,
RMS=0.039 to R2=0.63, RMS=0.05 with an increase in the number of neurons from N=1 to N=65. Due
to the fact that with an increase in the number of neurons, the values of R2 and RMS are more and
more random, for further calculations, the number of neurons in the hidden layer was set equal to
N=20. Further, volumetric soil moisture, W}, can be determined in the course of minimizing the
norm of the discrepancy between the informative features of the estimated reflection coefficient
IR(es(Wpy, m))| and the value of |R{|, predicted by the NN model based on the observational data
of the Sentinel-1,2 satellites.

Wieer = min F (Wyeer),
F(W,yp) = X7 [IREI-IRCesWareermodD) D

n=1 |R(I)V|

The minimization task in (1) was solved by a direct method by selecting W, from the range
of Wyerr € [0%, 50%] with a step of 1% for the central coordinate of each pixel.

4. Results and Discussion

4.1. Results of Test Plot No. 1

Soil moisture values restored from the combined radar and optical data of the Sentinel-1,2
satellites relative to the moisture values measured on July 9 and 21, 2020. in the places where soil
samples were taken on test plot No. 1, are shown in Figure 8.
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R*=0.435
RUSE=24% Figure 8. Values of volumetric
= soil moisture reconstructed
from Sentinel-1,2 satellites
data and NN model
depending on soil moisture
measured in test No. 1

(sampling plot, see Figure 2a).

W 6]

With the coefficient of determination and RMS equal to 0.435 and 2.4%, respectively, the
reconstructed values of soil moisture from the results of remote sensing coincide with the soil
moisture measured with sampling method in the 0-5 cm layer under the vegetation cover on test plot
No. 1. Figures 9a and 9b show, as an example, maps of soil surface moisture built on the basis of the
proposed method using Sentinel-1,2 satellite data, as well as similar maps built based on the results
of measurements on July 9, 2020 at test plot No. 1. Comparison of the maps presented in Figure 9
allows us to conclude that there is a fairly good agreement between the spatial variations in the
measured and predicted soil moisture values in different local areas of the field. In this case, the
standard deviation between the reconstructed and measured soil moisture values is about 2.4%, and
the maximum and minimum absolute errors are +5.5% and -3.1%, respectively (see Figure 9c and
Figure 9d).

(b)

44°9.36" 44°9.39 44°9 42" 44°9.45

48°36.18"

48°36.15"
48°36.15'

48236.12"

44°9,36" 44°9,39" 44°9,42" 44°9,45"
© (d)

Figure 9. Maps of soil surface moisture predicted by NN at test plot No. 1, July 9, 2020 and (b) July

9, 2020 Absolute difference between the soil moisture values predicted by the NN and measured

by the gravimetric method at the test site No. 1, (c) July 21 and (d) July 9, 2020

ETE—T S ——
44°9.36" 44°9.397 44°9.42° 4479.45

The maximum and minimum absolute error of the reconstructed soil moisture values relative to
the measured values on July 21, 2022 over the entire area of test area No. 1 was +1.9% and -2.7%,
respectively. Maps presented in Figure 9 were built using inverse distance weighted interpolation of
different-scale radar and ground data on a 9x17 sect within a rectangular area measuring 116m x 58m.
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4.2. Results of Test Plot No. 2

For soil moisture predictions in test plot No. 2, the pre-trained NN model obtained for test plot
No. 1 was used (see Figure 6). For this, we used a sample containing 50% of the sub-satellite soil
moisture content of test plot No. 2, obtained on August 22, 2022. In accordance with the proposed
method (see paragraph 3), based on the measured values of RVI and Io by the Sentinel-1,2 satellites,
the modulus of the reflection coefficient was predicted using a pre-trained NN. Next, using the
dielectric model [24], we solved the inverse problem (1) for restoring soil moisture. In addition, in
order to explore the significance of each of the Io and RVI parameters in the overall soil moisture
prediction by NN, it was also pre-trained based on 50%, or just the lo or RVI inputs. The result of
restoration of soil moisture in the test plot No. 2 is shown in the cartograms (see Figure 10). Analysis
of these maps shows that both of them, both built using the Io index (see Figure 10a) and built using
the RVI (see Figure 10b), are similar. The soil moisture map created using the lo index (see Figure 10a)
appears to be more detailed, contours and stops of the sprinkler are well identified.
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However, unlike the optical image (lo index), the RVI radar image obtained using antenna
aperture synthesis contains interference speckle noise, which explains the noisiness of the soil
moisture map (see Figure 10b). In addition, after filtering the speckle noise, the effective resolution
of the radar image decreased by a factor of 3 to 30mx30m. From the comparison of soil moisture maps
(see Figure 10), it can be seen that the Io index (see Figure 10a) to a greater extent has a corrective
effect on the soil moisture map (see Figure 10c) constructed using the RVI/ Io index ratio. At the same
time, it can be seen that the values of soil moisture restored on the basis of the 10 index are somewhat
“shielded” and fairly averaged (of the same color). The map built on the basis of the ratio of RVI/ Io
indices is much more contrasting and reflects a larger range of soil moisture variations. (Note that
the Sentinel-1 survey, 07:06, 08/23/2022, was made after the Sentinel-2 survey, 11:56, 08/22/2022 at 23
hours, and the Sentinel-2 survey was made 4 hours after irrigation event at the location of test plot
No. 2) Indeed, when comparing the reconstructed soil moisture values in three ways, with the soil
moisture values measured in-situ, the wine shows that the highest coefficient of determination is
observed precisely in the case of using the RVI/ Io index as an input parameter of the NN (see Figure
11).
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5. Conclusions

The study shows the promise of using NN to build adaptive relationships between
multispectral, microwave indices and reflective properties of the soil cover covered with vegetation
in order to restore soil moisture. In this case, there is no need to calibrate the parameters of scattering
models depending on the height (biomass) of the vegetation cover obtained using ground-based
measurements. As a result of applying such a combined approach for training a NN, in addition to
Sentinel-1 satellite radar polarimetric observations (radar backscatter cross sections on VV and VH
polarizations), multispectral measurements of the Sentinel-2 satellite (channels 8-11), only ground-
based measurements of soil moisture are required. The disadvantage of the proposed approach is
that it does not take into account the probing angle, the effect of which must be studied in detail in
the future on test plots located at significant distances from each other. In addition, it is necessary to
test the efficiency of the proposed approach to minimize the effect of vegetation cover by using the
ratio of the multispectral optical and microwave plant indices for various types of irrigated crops
growing on soils of different granulometric composition and organic content. It was shown that when
restoring soil moisture in two test plots, the combined use of RVI and Iv is more informative, since
their ratio led to a more linear relationship with the restored soil moisture values relative to the
measured in-situ values. The use of the developed method made it possible to identify with high
reliability the patterns with high and low soil moisture values formed within the boundaries of
irrigation with the help of sprinkling machines, as well as patterns formed as a result of irrigation
runoff beyond these boundaries, indicating a potential risks of negative environmental consequences.
The proposed method can be used to monitor the progress and results of irrigation implemented
using various technologies, including spatially differentiated irrigation technologies.
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