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Abstract: In this article, a method for the moisture mapping of the soil surface of agrophytocenosis was 

proposed using neural network based on synchronized radar and multispectral optoelectronic data of Sentinel-

1,2. To verify the developed method, data from two experimental plots were used.  These plots were located 

two on irrigated soybean crops. The first of them was located on the right bank (1st plot) and the second one on 

the left bank (2nd plot) of the down part of Volga River. Two experimental soil moisture geo-datasets were done 

by measurements and geo-referencing points using gravimetric method (1st plot) and with proximal sensing 

method (2nd plot) using Soil Moisture Sensor ML3-KIT (THETAKIT, Delta). The soil moisture retrieval 

algorithm was based on the use of a neural network to predict reflection coefficient of an electromagnetic wave 

from the soil surface, followed by inversion into soil moisture using a dielectric model that takes into account 

the soil texture. The input parameter of the neural network was the ratio of the microwave radar vegetation 

index (calculated on the basis of Sentinel-1 data) to the index (calculated on the basis of data of multispectral 

optoelectronic channels 8 and 11 of Sentinel-2). Such way calculated index reveals showed a significantly 

greater dependence on soil moisture than on vegetation height that was been used in previous studies. The 

retrieved values of soil moisture were compared with the soil moisture measured in-situ. The proposed method 

with a determination coefficient of 0.44-0.65 and a standard deviation of 2.4%-4.2% for the 1st plot as well as 

with and of the same metrics for the 2nd allows predicting the soil moisture of both a test plots covered by 

soybean plants, relative to soil moisture measured in-situ. The conducted research created the scientific basis 

for a new technology for remote sensing the moisture content of the soil surface of agrophytocenosis as an 

element of the precision farming system and agroecology. 

Keywords: precision agriculture; agroecology; remote sensing; crop irrigation; soil moisture; 

vegetation indexes; Sentinel-1,2; neural network; dielectric permittivity 

 

1. Introduction 

The soil moisture content, as well as the characteristics of the crop cover, are the main parameters 

of irrigated agrophytocenoses, depicting their state, both in terms of the soil water regime and 

physiological development [1,2]. The assessment of these parameters at the level of agrophytocenosis 

and its parts is necessary for effective management, as well as for agro ecological control of the impact 

on environment [3, 4]. At the same time, the moisture content at the surface layer of the soil cover 

and the vegetation indices of the vegetation cover, measured remotely, along with the surface 

roughness of the soil cover of agrophytocenoses and the scattering elements of the vegetation cover, 

are the key factors affecting the value of the radar backscatter coefficient (RBC), measured by the 

radar of the Sentinel-1 satellite at a frequency of 5.4 GHz. The moisture content of the soil surface, 

reconstructed on the basis of the existing well-known scattering models of Ox [5], Duboa [6] and the 
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Fang integral equation method [7], as a rule, leads to a significant mismatch with respect to the values 

of this moisture measured by proximal methods on sub-satellite test plots [8, 9]. This is largely due 

to the variability of soil moisture and roughness that is dynamic in time and at different scales of 

agrophytocenosis, which causes significant difficulties in organizing periodic and highly detailed 

sub-satellite monitoring of these parameters over large areas. Indeed, in relation to the problem of 

restoring soil moisture according to [10], the standard deviation, the correlation length and the form 

of the autocorrelation function of the heights of irregularities depend not only on the degree level of 

surface roughness, but also on the length of the profile (0.5-25m), within which measurements are 

made. Because of this, difficulties arise when using the statistical characteristics of ground-based 

roughness measurements as input parameters of existing radar scatter models and using them in 

global algorithms for multi-scale satellite radar moisture sensing. Other directions for solving the 

problem of restoring soil moisture are based on the developed semi-empirical methods of integral 

equations. These methods make it possible to take into account the local features of the statistical 

characteristics of roughness. However, this requires calibrating the input parameter (correlation 

length) as a function of the root-mean-square deviations of the irregularity heights and the angle of 

incidence of the wave obtained in the study area for [11,12]. For this purpose, approaches based on 

neural network (NN) training using scattering models are widely used [13, 14]. In these NN, soil 

moisture acts as an output parameter, and as input parameters are combinations of backscattering 

cross sections measured at different polarizations, as well as soil surface roughness and sounding 

angle. At the same time, the achieved results of combining semi-empirical methods and NN, despite 

the laboriousness of solving inverse problems with large spatial arrays of radar data, indicate 

significant prospects for this direction in problems of restoring moisture [15, 16]. 

Note that a generalized model has not yet been created to solve the problem of radar scattering 

of electromagnetic waves on the elements of the vegetation cover. At the same time, extinction 

coefficient (EC) models have already been developed to describe the attenuation of electromagnetic 

waves in various types of vegetation [17, 18]. At the same time, it was shown that the EC is 

proportional not only to the volumetric water content in plants, but also to some empirical variable, 

for which only an approximate relationship with the frequency of the electromagnetic wave and the 

type of vegetation cover has been established so far [18, 19]. Recently, to describe the RBC of a soil 

surface covered with vegetation, an empirical model has been widely used that describes the 

attenuation and scattering of a wave in a layer represented by uniformly dispersed particles (“cloud” 

model) [20-24]. The parameters of this model (the effective scattering amplitude on particles, the 

effective value of the layer extinction coefficient, the proportionality coefficients are specific to a given 

plant type) are calibrated either using analytical models of scattering on vegetation cover elements 

[22], or more often on the basis of satellite parameters (vegetation indices, leaf area indices) and 

corresponding subsatellite (biomass and vegetation height) measurements [20-24]. However, to date, 

a generalized relationship between the parameters of the “cloud” model and various types of 

vegetation depending on the sounding wave frequency, altitude, and vegetation biomass has not 

been established. 

Due to the significant difficulties in calibrating existing scattering models for a wide variety of 

combinations of soil and vegetation covers, recently NN methods have been widely developed to 

predict the moisture content of soils covered with vegetation. In this case, either separately radar data 

(RBS at different polarizations) [15, 25] or in combination with multispectral optical data (vegetation 

indices, leaf surface indices) measured by various survey systems on space platforms are used as 

input parameters of the NN [26, 27]. In contrast to these approaches, in this work, at the first stage, 

the NN was used to predict the reflection coefficient of the soil cover. For this, as its input parameter, 

the ratio of the multispectral index of vegetation cover in the optical range to the microwave index of 

the same cover was used. At the second stage, based on the dielectric soil model [28], in the course of 

solving the inverse problem, the soil cover moisture was restored using the value of the reflection 

coefficient estimated using the NN. As a result of the proposed algorithm, it was possible to minimize 

the influence of vegetation cover on the restored value of soil cover moisture. 
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2. Test plots, ground based and satellite data 

With aim to test the proposed method, data sets of two test plots located in the south of the 

European part of Russia were used. The test plot No. 1 (44.1568 N, 48.6026 E) was located in one of 

the fields of the experimental production facility of the All-Russian Research Institute (VNIIOZ) (see 

Figure 1a). During the field measurements in the July 2020, at the field on which this test plot was 

located was sown with soybeans in the heading phase, irrigated with a Bayer frontal sprinkler 

machine. The test plot No. 2 (51.1258 N, 46.0001 E) was located on one of the agricultural fields of the 

Educational Research and Production Association “Povolgie” of the Saratov Agrarian University. 

N.I. Vavilov (SSAU) (see Figure 1b). During the test period in the second half of August 2022, the 

corresponding field with this test plot was sown with soybeans in the ripening phase, which was 

irrigated with a «Cascade» circular sprinkler. 

The soil cover of the test plot No. 1 was includes light chestnut irrigated alkaline calcareous soils 

on yellow-brown loams (according to the soil classification of the USSR). Soils are classified according 

to the WRB classification as Luvic Kastanozems (Loamic, Aric, Protosodic, Bathygypsic). The texture 

of the soil cover was determined using combination of sieve and pipette (Kaczynski version) analyses. 

The obtained results showed that the soil particle distribution was classified as silty loam (clay loam) 

according to FAO soil classification. 

The soil cover of the test plot No. 2 was represented by a complex of medium and thin dark 

chestnut soils of medium loamy and light loamy granulometric composition. The content of physical 

clay in the plow horizon is 36-38%. At the same time, the value of the volumetric mass of the arable 

layer is 1.34 g/cm3, and the density of the solid phase is in the range of 2.62-2.65 g/cm3. The 

corresponding value of the porosity of the arable layer lies in the range of 0.49-0.53 cm3/cm3 a, the 

value of the maximum field capacity (FC) is 0.25-0.27 cm3/cm3. 

 
(a) 

 
(b) 

Figure 1. Test plot No. 1, southwest of the Volgograd region (a) and test plot No. 2, southeast 

of the Saratov region (b). Images obtained from the Sentinel-2 satellite on 07/11/2020 and 

08/22/2022, respectively 

At the test plot No. 1, under-satellite monitoring included an areal survey of the moisture of a 

layer of 0-5 cm of soil cover, as well as a measurement of the height of soybean plants. Both types of 

measurements were carried out synchronously and corresponded to the time of the Sentinel-1 radar 

survey on two dates, July 9 and 21, 2020. At the same time, sub-satellite moisture monitoring 

consisted in the selection of undisturbed soil samples using a special sampler and the subsequent 

determination of their volumetric moisture content in laboratory conditions [29]. The selection of 

these samples on both marked dates was carried out at 45 points in the nodes of a uniform rectangular 

grid with a distance between nodes of about 10 m and an area of about 0.6 ha (see Figure 2a). 

At the test plot No. 2, sub-satellite monitoring included a one-time measurement of the 

volumetric soil moisture and the height of soybean plants at the time of the Sentinel-1 radar survey 

on 08/22/2022. These measurements were carried out at 201 points on one of the plots of irrigated 

soybean crops, the moisture content of which was formed during the irrigation of “Cascade” on 

21.08.2022. The geometric boundaries of this section began at the center of rotation of the “Cascade” 

and extended from this center in the north-west direction, where they protruded 25 meters beyond 

Test plot №2

Saratov 

Volgograd 

Vodny 

Test plot №1 
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the formed outer boundary. Within this section, two parallel routes were laid with transverse 

distances spaced from each other within 10-15 m. To measure the volumetric moisture content of the 

soil cover, an ML3-KIT (THETAKIT) device manufactured by the Delta company was used. Before 

its use, testing was carried out. At the same time, the average deviations of the moisture content 

obtained by this device from the moisture content obtained during the selection of soil samples 

corresponded to its technical characteristics and lay within 2%. Moisture monitoring in the second 

area was carried out approximately 24 hours after it was watered with “Cascad” with a norm of 17 

mm. 

To form a geodatabase of the measured values of soil moisture and heights corresponding to 

both test plots еthe mobile, freely distributed software application for smartphones GPS MapCamera, 

installed on the OS iPhone and Android platforms, was used. With its help, the necessary video 

images were obtained, which were used to form the corresponding layers of the geodatabase, 

including the date and time of measurements, the coordinates of the sampling/measurement plots 

and the plant height corresponding to this point, as well as the number of the sampling box or the 

measured moisture value [30]. At the same time, the measured volumetric soil moisture values at the 

test plot No. 1 varied from 6% to 26% (07/09/2020) and from 11% to 23% (07/21/2020), as well as, plant 

heights varied from 55cm to 80cm (July 9) and from 70cm to 110cm (July 21). The measured 

volumetric soil moisture in the test plot No. 2 on August 23, 2022 varied from 5.2% to 36.1%, and the 

plant height varied from 85 to 100 cm. 

Maps of the results of interpolation of the measured values of soil moisture, with the places of 

the measurements plotted on them, as well as maps of NDVI calculated from the results of the 

Sentinel-2 survey, of both test plots are shown in Figure 2. The variation of the NDVI indices for both 

plots was within close limits of 0.4–0.8 (see Figure 2). The Sentinel-1 satellite measured in the 

interferometric broadband mode (IW) the radar backscatter coefficients (RBC) at a frequency of 5.4 

GHz at VH and VV polarizations over the territory of the first (July 9 and 21, 2020) and the second 

(August 22, 2022, 7:06 local time, UTC+4) of both test plots. Using the ESA SNAP software, standard 

processing of Sentinel-1 data was carried out: the use of precision orbits, calibration, speckle noise 

filtering (successive application of two Gamma map filters 3x3 pixels in size). 

  
(a) (b) 

  
(c) (d) 

Figure 2. Location of soil and plant sampling/measurement points in the test plot No. 1, July 11, 

2020 (a, c) and the test plot No. 2, August 22, 2022 (b, d). Soil moisture interpolation map 

calculated by soil sampling of test plot No. 1 (a) and the test plot No. 2 (b) NDVI map calculated 

from Sentinel-2 data, July 11, 2020 (c) and August 22, 2022 (d). The dots in the both figures mark 

the places where samplings/measurements were taken out.  
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Normalization of RBC to one reference probing angle of 30° was carried out for both test plots 

according to the method [25]. Sentinel-2 (MSIL2A) multispectral survey data were taken on July 11 

and 21, 2020 for the test plot No. 1 and on August 22, 2022 (11:56 local time) for the test plot No. 2. For 

consistent processing, the Sentinel-2 multispectral survey data were recalculated using inverse 

distance-weighted interpolation on the Sentinel-1 radar data grid. (Note that the resolution of 

Sentinel-2 images was reduced to the resolution of channel 11 -20m.) 

3. Method for restoring the moisture content of soil covered by vegetation 

In the study, the created NN model was calibrated and verified according to the results obtained 

in the first test section, and its additional verification and prior to training of the NN were carried out 

according to the results obtained in the second test section. The values of the RBC, as well as the 

NDVI (normalized difference vegetation index), calculated, respectively, by data of Sentinel-1,2 

satellites for cover of the test plot No. 1 (see Figure 3). The Pearson correlation coefficient between 

RBC at vertical-vertical (σVV), vertical-horizontal (σVH) polarizations, and soil volumetric moisture 

is no more than 0.227 and 0.084, respectively (see Figure 3a). The Pearson correlation coefficient 

between the NDVI (Sentiel-2) and vegetation height was 0.297 (see Figure 3b). Due to the fact that 

RBC at cross polarization (σVH) is more susceptible to volume scattering by vegetation cover 

elements, the correlation between RBC at matched polarization σVV and soil volumetric moisture is 

stronger for cross polarization (see Figure Figure 3a). 

 
(a) 

 
(b) 

Figure 3. RBC calculated by data of Sentinel-1 at VV and VH polarizations as a function of soil 

volumetric moisture (a) and dependence of the NDVI on plant height (b) obtained in test plot 

No. 1 

The weak correlation between NDVI and vegetation height, hl, (see Figure 3b) is apparently due 

to the fact that the NDVI is more related to the reflective characteristics of the vegetation cover, which 

depends on its photosynthetic activity, than to the general the volume of biomass, with which the 

height of plants is associated. At the same time, we found a significantly greater correlation between 

the vegetation index (Sentinel-2) I0=(К8-К11)/(К8+К11), as well as the radar vegetation index 

RVI=4σVH/(σVH+σVV) and plant height in the test plot No. 1 (Sentinel-1) (see Figure 4). 
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(a) 

 
(b) 

Figure 4. Dependence of the multispectral index I0 calculated on the basis of Sentinel-2 

measurements on plant height (a) and dependence of the microwave plant index calculated on 

the basis of Sentinel-1 measurements on plant height (b), obtained for test plot No. 1. 

The Pearson correlation coefficient (0.798) between the multispectral vegetation index I0 and 

plant height hv is higher than between the microwave index RVI and hv (0.334), due to the fact that 

the multispectral index I0 contains information about the interaction of reflected solar radiation with 

the surface of the vegetation cover, and the microwave index RVI contains information about the 

interaction of an electromagnetic wave, with the reflectivity characteristics both of the vegetation 

cover, and of the soil surface cover. 

 
(a) 

 
(b) 

Figure 5. Ratio of multispectral optical index I0 to microwave index of vegetation versus 

volumetric soil moisture in test plot No. 1 (a) and ratio of multispectral optical index I0 to 

microwave index of vegetation versus plant height in test plot No. 1 (b). 

On Figure 6 shown a simple feed-forward NN with one hidden layer containing N neurons. 

 

Figure 6. Simple NN with one hidden L1N layer 

containing N neurons 

 

The input parameter of the used NN (see Figure 6) is the ratio ξin=RVI/I0. In contrast to existing 

approaches, not soil moisture was used as the output parameter, but the modulus of the Fresnel 

reflection coefficient of an electromagnetic wave with a flat front from the soil surface with a smooth 
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boundary ξout=|R0(εs)|, where εs is the complex dielectric permittivity (CDP) of soil. Using |R0(εs)| as 

the output value of NN allows not to train it every time for a new type of soil cover, but to use a 

dielectric model that takes into account the dependence of the CDP on the type of soil cover εs=εs(W, 

mc) [5, 24, 31], here W and mc are the volumetric soil moisture and the content of the clay fraction of 

the soil cover. 

Modeling of the NN was carried out by means of Matlab. A feed forward NN was used, 

consisting of one hidden layer, in which from 1 to 65 neurons were specified. The minimization of 

root-mean-square deviations between the output true values and the output values predicted by the 

NN during training was carried out on the basis of the Levenberg-Maquard algorithm. The result of 

NN training depending on the number of neurons is shown in Figure 7. When calculating the true 

values of the reflection coefficients, we used the dielectric model [24] and data from ground-based 

measurements of the volumetric soil moisture at the points of soil sampling in test plot No. 1 (see 

Figure 2a). 

 
(a) 

 
(b) 

Figure 7. Coefficient of determination (a) and RMSE (b) between true and predicted reflectance 

coefficient NN values depending on the number of neurons. 

Coefficient of determination, R2, standard deviation (RMS) between the predicted NN model |𝑅଴ே| and calculated |R0(εs)| values of the modulus of the reflection coefficient varies from R2=0.31, 

RMS=0.039 to R2=0.63, RMS=0.05 with an increase in the number of neurons from N=1 to N=65. Due 

to the fact that with an increase in the number of neurons, the values of R2 and RMS are more and 

more random, for further calculations, the number of neurons in the hidden layer was set equal to 

N=20. Further, volumetric soil moisture, 𝑊оц., can be determined in the course of minimizing the 

norm of the discrepancy between the informative features of the estimated reflection coefficient |𝑅( ௦(𝑊оц., 𝑚с))| and the value of |𝑅଴ே|, predicted by the NN model based on the observational data 

of the Sentinel-1,2 satellites. 𝑊௥௘௧௥ = 𝑚𝑖𝑛  𝐹 (𝑊௥௘௧௥), 𝐹(𝑊௥௘௧௥) = ∑ ቚ|ோబಿ |ି|ோ( ೞ(ௐೝ೐೟ೝ,௠с))|)|ோబಿ | ቚ௡ୀே೑௡ୀଵ .     (1) 

The minimization task in (1) was solved by a direct method by selecting 𝑊௥௘௧௥ from the range 

of 𝑊௥௘௧௥ ∈ [0%, 50%] with a step of 1% for the central coordinate of each pixel. 

4. Results and Discussion 

4.1. Results of Test Plot No. 1 

Soil moisture values restored from the combined radar and optical data of the Sentinel-1,2 

satellites relative to the moisture values measured on July 9 and 21, 2020. in the places where soil 

samples were taken on test plot No. 1, are shown in Figure 8. 
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Figure 8. Values of volumetric 

soil moisture reconstructed 

from Sentinel-1,2 satellites 

data and NN model 

depending on soil moisture 

measured in test No. 1 

(sampling plot, see Figure 2a). 

 

With the coefficient of determination and RMS equal to 0.435 and 2.4%, respectively, the 

reconstructed values of soil moisture from the results of remote sensing coincide with the soil 

moisture measured with sampling method in the 0-5 cm layer under the vegetation cover on test plot 

No. 1. Figures 9a and 9b show, as an example, maps of soil surface moisture built on the basis of the 

proposed method using Sentinel-1,2 satellite data, as well as similar maps built based on the results 

of measurements on July 9, 2020 at test plot No. 1. Comparison of the maps presented in Figure 9 

allows us to conclude that there is a fairly good agreement between the spatial variations in the 

measured and predicted soil moisture values in different local areas of the field. In this case, the 

standard deviation between the reconstructed and measured soil moisture values is about 2.4%, and 

the maximum and minimum absolute errors are +5.5% and -3.1%, respectively (see Figure 9c and 

Figure 9d). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Maps of soil surface moisture predicted by NN at test plot No. 1, July 9, 2020 and (b) July 

9, 2020 Absolute difference between the soil moisture values predicted by the NN and measured 

by the gravimetric method at the test site No. 1, (c) July 21 and (d) July 9, 2020 

The maximum and minimum absolute error of the reconstructed soil moisture values relative to 

the measured values on July 21, 2022 over the entire area of test area No. 1 was +1.9% and -2.7%, 

respectively. Maps presented in Figure 9 were built using inverse distance weighted interpolation of 

different-scale radar and ground data on a 9x17 sect within a rectangular area measuring 116m x 58m. 
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4.2. Results of Test Plot No. 2 

For soil moisture predictions in test plot No. 2, the pre-trained NN model obtained for test plot 

No. 1 was used (see Figure 6). For this, we used a sample containing 50% of the sub-satellite soil 

moisture content of test plot No. 2, obtained on August 22, 2022. In accordance with the proposed 

method (see paragraph 3), based on the measured values of RVI and I0 by the Sentinel-1,2 satellites, 

the modulus of the reflection coefficient was predicted using a pre-trained NN. Next, using the 

dielectric model [24], we solved the inverse problem (1) for restoring soil moisture. In addition, in 

order to explore the significance of each of the I0 and RVI parameters in the overall soil moisture 

prediction by NN, it was also pre-trained based on 50%, or just the I0 or RVI inputs. The result of 

restoration of soil moisture in the test plot No. 2 is shown in the cartograms (see Figure 10). Analysis 

of these maps shows that both of them, both built using the I0 index (see Figure 10a) and built using 

the RVI (see Figure 10b), are similar. The soil moisture map created using the I0 index (see Figure 10a) 

appears to be more detailed, contours and stops of the sprinkler are well identified. 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Soil moisture maps of test plot No. 2 

built on the basis of training the NN with the input 

parameters I0 (a), RVI (b) and the pre-trained NN 

model using the entire data set with the input 

parameter NN RVI/I0 (c) . The maps are built on 

the same interpolation grid (Sentinel-2, channel 

11) with a step of 20m. 

 

 

However, unlike the optical image (I0 index), the RVI radar image obtained using antenna 

aperture synthesis contains interference speckle noise, which explains the noisiness of the soil 

moisture map (see Figure 10b). In addition, after filtering the speckle noise, the effective resolution 

of the radar image decreased by a factor of 3 to 30mx30m. From the comparison of soil moisture maps 

(see Figure 10), it can be seen that the I0 index (see Figure 10a) to a greater extent has a corrective 

effect on the soil moisture map (see Figure 10c) constructed using the RVI/ I0 index ratio. At the same 

time, it can be seen that the values of soil moisture restored on the basis of the I0 index are somewhat 

“shielded” and fairly averaged (of the same color). The map built on the basis of the ratio of RVI/ I0 

indices is much more contrasting and reflects a larger range of soil moisture variations. (Note that 

the Sentinel-1 survey, 07:06, 08/23/2022, was made after the Sentinel-2 survey, 11:56, 08/22/2022 at 23 

hours, and the Sentinel-2 survey was made 4 hours after irrigation event at the location of test plot 

No. 2) Indeed, when comparing the reconstructed soil moisture values in three ways, with the soil 

moisture values measured in-situ, the wine shows that the highest coefficient of determination is 

observed precisely in the case of using the RVI/ I0 index as an input parameter of the NN (see Figure 

11). 
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(a) 

 
(b) 

 
(c) 

Figure 11. Correlation between measured soil 

moisture values of test plot No. 2 on 08/22/2022, 

with moisture reconstructed using various 

input parameters in pre-trained NN: I0 (a), RVI 

(b), and RVI\ I0 (c) (measurement locations, see 

Figure 2b). 

 

5. Conclusions 

The study shows the promise of using NN to build adaptive relationships between 

multispectral, microwave indices and reflective properties of the soil cover covered with vegetation 

in order to restore soil moisture. In this case, there is no need to calibrate the parameters of scattering 

models depending on the height (biomass) of the vegetation cover obtained using ground-based 

measurements. As a result of applying such a combined approach for training a NN, in addition to 

Sentinel-1 satellite radar polarimetric observations (radar backscatter cross sections on VV and VH 

polarizations), multispectral measurements of the Sentinel-2 satellite (channels 8-11), only ground-

based measurements of soil moisture are required. The disadvantage of the proposed approach is 

that it does not take into account the probing angle, the effect of which must be studied in detail in 

the future on test plots located at significant distances from each other. In addition, it is necessary to 

test the efficiency of the proposed approach to minimize the effect of vegetation cover by using the 

ratio of the multispectral optical and microwave plant indices for various types of irrigated crops 

growing on soils of different granulometric composition and organic content. It was shown that when 

restoring soil moisture in two test plots, the combined use of RVI and I0 is more informative, since 

their ratio led to a more linear relationship with the restored soil moisture values relative to the 

measured in-situ values. The use of the developed method made it possible to identify with high 

reliability the patterns with high and low soil moisture values formed within the boundaries of 

irrigation with the help of sprinkling machines, as well as patterns formed as a result of irrigation 

runoff beyond these boundaries, indicating a potential risks of negative environmental consequences. 

The proposed method can be used to monitor the progress and results of irrigation implemented 

using various technologies, including spatially differentiated irrigation technologies. 
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