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Abstract: In this paper, a new multi parameter iterative algorithm is proposed to address the

PageRank problem based on the multi-splitting iteration method described by Gu et al [8]. The

proposed method in each iteration needs to solve two linear subsystems by splitting the coefficient

matrix, therefore, we consider inner and outer iteration to find the approximate solutions of these

linear subsystems. It can be shown that the iterative sequence generated by the multi parameter

iterative algorithm finally converges to the PageRank vector when the parameters satisfy the certain

conditions. Numerical experiments show that the proposed algorithm has better convergence and

numerical stability than the existing algorithms.
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1. Introduction

Consider the following linear equation systems:

Ax = x, (1.1)

with A is a convex combination Google matrix composed of matrix P and matrix E, and A = αP +

(1− α)E, where α ∈ (0, 1) denotes the damping factor that determines the weight given to the web link

graph, and E = veT , e = (1, 1, · · · , 1)T ∈ Rn, and v =
e

n
is a personalization vector or a teleportation

vector. n is the dimension of P, and x is our desired eigenvector.

The system of linear equations in (1.1) above is what we refer to as the PageRank problem. Google’s

PageRank algorithm has grown to be one of the most well-known algorithms in online search engines

thanks to the rapid development of the internet, link analysis method called PageRank is used to

rank online pages and assess their significance in relation to the link structure of Web, calculating

the primary eigenvectors of the Google matrix, forms the basis of the PageRank algorithm. Although

Google’s exact ranking technology and calculation techniques have gradually improved, the PageRank

problem is still a major concern and has recently gained a lot of attention in the world of scientific and

engineering computation.

To solve the PageRank problem, the power method is easy to calculate and the most classical

algorithm, while all other eigenvalues of matrix A aside from the principal eigenvalues are simply

scalar times the corresponding eigenvalues of matrix P. As a result, the power approach converges

very slowly when the primary eigenvalue of matrix A is closely related to other eigenvalues, or when

the damping factor is close to 1. The power method is not the ideal way to solve this problem, but

a quicker and more logical way to solve the principal eigenvectors of the Google matrix is required

to speed up the calculation of PageRank. The network graph is extremely large, with 1 billion or

even 10 billion web page nodes. Additionally, a good search algorithm should minimize the lag time,
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which is the time from the search target proposed to the search result feedback to the web browser. In

recent years, numerous researchers have proposed various methods to speed up the calculation of

PageRank, among them, the design of power function method and its variant method for accelerating

the solution of PageRank problem are favored by many researchers. For instance, Gleich et al. [4]

proposed an inner outer iteration method combined with Richardson iteration, in which each iteration

needs to solve a linear system whose algebraic structure is similar to the original system; Gu and Xie [5]

proposed the PIO iteration algorithm, which combines the power method and the inner-outer iteration

method, after that, Ma et al. [11] suggested a relaxed two-step splitting iteration strategy to address the

PageRank problem based on [4] and [5], adding a new relaxation parameter; Gu et al. [8] introduced

a two parameter iteration approach based on multiplicative splitting iteration in order to increase

the possibility of optimizing the iterative process; based on the iteration framework [7] and relaxed

two-step splitting (RTSS) iteration method [11], Two relaxed iteration techniques are presented by Tian

et al. [12] for resolving the PageRank issue. Additionally, the PageRank problem can be solved by

using Krylov subspace methods, which is a problem of solving linear equations. For instance, Wu and

Wei propose a hybrid algorithm, power-Arnoldi algorithm [14], which combines its power technique

and thick restart Arnoldi algorithm; as well as the Arnoldi-extrapolation method [26] and speeding

the Arnoldi-type algorithm [23]. We cite [7–29] for a more in-depth theoretical study.

The structure of this essay is as follows: we briefly introduce the inner-outer iterative PageRank

problem techniques in Section 2. In Section 3, we first examine the theoretical foundations of the

multiplicative splitting iterative method before introducing our brand-new approach, the parameterized

MSI iteration method. Section 4 reports on numerical testing and comparisons. Finally, Section 5

provides a few succinct closing notes.

2. The inner-outer method

First, we provide a brief summary of the methodological inside-out iteration procedure proposed

by Gleich et al. [4], for computing the inside-out iteration of PageRank. It is clear that linear systems

can be used to rewrite the eigenvector problem (1.1).

(I − αP)x = (1 − α)v, (2.1)

since eTx = 1.

We observe that when the damping vector is small, it is simpler to solve the PageRank problem,

Gleich et al. defined the outer iteration with a smaller damping factor β (0 < β < α), rather than

immediately resolving the equation (1.1). Therefore, the equations below are used to rewrite the linear

system (1.1).

(I − βP)x = (α − β)Px + (1 − α)v. (2.2)

So the stationary outer iteration scheme

(I − βP)x(k+1) = (α − β)Px(k) + (1 − α)v, k = 0, 1, 2, . . . , (2.3)

For computing x(k+1), define the inner linear system as

(I − βP)y = f , (2.4)

where f = (α − β)Px(k) + (1 − α)v, and compute x(k+1) via the Richardson inner iteration

y(j+1) = βPy(j) + (α − β)Px(k) + (1 − α)v, j = 0, 1, 2, ..., l − 1, (2.5)
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where y(0) = x(k), The l-th step inner solution y(l) is assigned to be the next new x(k+1). The stopping

criteria are given as follows, The outer iteration (2.1) terminates if

‖(1 − α)v − (I − αP)x(k+1)‖2 < τ, (2.6)

while the inner iteration (2.5) terminates if

‖ f − (I − βP)y(j+1)‖ < η, j = 0, 1, 2, ..., l − 1, (2.7)

where η and τ are the inner and outer tolerances respectively.

The MSI iteration method

Gu et al. suggested the MSI approach in [8] to expedite the PageRank vector calculation. Here is a

quick overview of the MSI approach, the MSI approach entails writing I − αP as

I − αP = (I − β1P)− (α − β1)P = (I − β2P)− (α − β2)P,

here 0 < β1 < α, 0 < β2 < α, given an initial vector x(0), for k = 0, 1, 2, · · · , perform the following

two-step iteration {
(I − β1P)u(k+1) = (α − β1)Px(k) + (1 − α)v,

(I − β2P)x(k+1) = (α − β2)Pu(k+1) + (1 − α)v.
(2.8)

until the sequence {x(k)} converges to the exact solution x∗.

Theorem 2.1 ([8]). Let α be the damping factor in the PageRank linear system, and let Mi = I − βiP,

Ni = (α − βi)P, (i = 1, 2) are the two splittings of the matrix I − αP. Then the iterative matrix H̃MSI(β1, β2)

of the MSI method for PageRank computation is given by

H̃MSI(β1, β2) = (I − β2P)−1(α − β2)P(I − β1P)−1(α − β1)P, (2.9)

and its spectral radius ρ(H̃MSI(β1, β2)) is bounded by

σ(β1, β2) ≡
(α − β2)(α − β1)

(1 − β2)(1 − β1)
, (2.10)

therefore, it holds that

ρ(H̃MSI(β1, β2)) ≤ σ(β1, β2) < 1, ∀ 0 ≤ β1 < α, 0 ≤ β2 < α. (2.11)

the multiplicative splitting iteration method for PageRank computation converges to the unique solution x∗ ∈ Cn

of the linear system of equations.

3. The parameterized MSI iteration method

The PageRank problem model is presented in this section, and it illustrates how the problem

can be solved more simply by choosing a smaller damping factor α. We introduce a parameter ω based

on the MSI method in order to further control the range of α, reduce the spectral radius, and speed

up convergence, this results in a new iterative algorithm, denoted as the PMSI method below, that is

described as follows.

The PMSI iteration method

{
(I − β1P)u(k+1) = (ωα − β1)Px(k) + (1 − ω)x(k) + ω(1 − α)v,

(I − β2P)x(k+1) = (ωα − β2)Pu(k+1) + (1 − ω)u(k+1) + ω(1 − α)v.
(3.1)
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with ω > 0 and 0 < β1 < α < 1, 0 < β2 < α < 1. If ω = 1, then the PMSI iteration method becomes

the MSI iteration method.

Algorithm 1 PMSI method

Input: Parameters P, q, v, α, τ, η;
1:

Output: x
2:
3: x ⇐ ν, y ⇐ Px
4:
5: if ‖(1 − α)v + αy − x‖1 ≥ τ then
6:
7: f1 = (ωα − β1)y + (1 − ω)x + ω(1 − α)v;
8:
9: repeat

10:
11: x = β1y + f1;
12:
13: y = Px;
14:
15: until ‖ f1 + αy − x‖1 < η
16:
17: f2 = (ωα − β2)y + (1 − ω)x + ω(1 − α)v;
18:
19: repeat
20:
21: x = β2y + f2;
22:
23: y = Px;
24:
25: until ‖ f2 + αy − x‖1 < η
26:
27: x = β2y + f2;
28:
29: y = Px;
30:
31: end if
32:
33: x = αy + (1 − α)v.

Remark 3.1. The computational cost of the PMSI iteration approach is somewhat higher than that of (2.8)

since it simply requires an additional saxpy operation, (1 − ω)u(k+1) Vector addition and the price (ωα −

β1)Pu(k+1) + (1 − ω)u(k+1) each iteration of with o(n) flops.

In the sequel, we will analyze the convergence property of the parameterized MSI iteration

method.

Lemma 3.1 ([8]). Let A ∈ Cn×n, A = Mi − Ni (i = 1, 2) be two splittings of the matrix A, and let x(0) ∈ Cn

be a given initial vector. If x(k) is a two-step iteration sequence

{
M1x(k+

1
2 ) = N1x(k) + b,

M2x(k+1) = N2x(k+
1
2 ) + b,

(3.2)

then

xk+1 = M−1
2 N2M−1

1 N1xk + M−1
2 (I + N2M−1

1 )b, k = 0, 1, 2, . . . (3.3)

Moreover, if the spectral radius ρ(M−1
2 N2M−1

1 N1) is less than 1, then the iteration sequence x(k) converges to

the unique solution x∗ ∈ Cn×n of the system of linear equation (2.1) for all initial vectors x(0) ∈ Cn.

The multiplicative splitting iteration method for (2.1) is obviously related with the splitting of

the coefficient matrix I − αP, and we will subsequently demonstrate that there exists a plausible

convergent domain of two-parameters for the parameterized method.

I − αP = Mi − Ni (i = 1, 2),

M1 = I − β1P, N1 = (ωα − β1)P + (1 − ω)I,

M2 = I − β2P, N2 = (ωα − β2)P + (1 − ω)I.
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according to (3.1), The two-step iterative matrix corresponding to the multiplication split iterative

method is as follows

G̃PMSI(β1, β2) = M−1
2 N2M−1

1 N1 =(I − β2P)−1
(
(ωα − β2)P + (1 − ω)I

)

(I − β1P)−1
(
(ωα − β1)P + (1 − ω)I

)
,

(3.4)

Now, we examine the convergence property of the multiplicative-splitting iterative method. By

applying Lemma 3.1, we can obtain the following main theorem..

Theorem 3.1. Let α be the damping factor in the PageRank linear system, and let Mi = I − βiP, Ni =

(α − β2)P + (1 − ω) (i = 1, 2) are the two splittings of the matrix I − αP. Then the iterative matrix

G̃PMSI(β1, β2) of the PMSI method for PageRank computation is given by

G̃PMSI(β1, β2) =(I − β2P)−1
(
(ωα − β2)P + (1 − ω)I

)

(I − β1P)−1
(
(ωα − β1)P + (1 − ω)I

)
,

(3.5)

and its spectral radius ρ(G̃PMSI(β1, β2)) is bounded by

ψ(β1, β2) ≡ 1 −
(1 − α)ω[2 + ω(1 − α)− β2 − β1]

(1 − β1)(1 − β2)
, (3.6)

therefore, it holds that

ρ
(
G̃PMSI(β1, β2)

)
≤ ψ(β1, β2) < 1, ∀0 ≤ β1 < α, 0 ≤ β2 < α. (3.7)

the multiplicative splitting iteration method for PageRank computation converges to the unique solution x∗ ∈ Cn

of the linear system of equations.

Proof. From Lemma 3.1 we can obtain the iterative matrix of the PMSI method for PageRank

computation Eq. (3.5)).

Let β = min{β1, β2}, since eT P = eT ,
β
α ≤ ω ≤ 1, then the matrix (ωα − βi)P + (1− ω)I (i = 1, 2)

is a nonnegative matrix and the matrix G̃k is also nonnegative.

In addition, from (3.5) it turns out that

eTG̃PMSI(β1, β2) =eT
[
(I − β2P)−1

(
(ωα − β2)P + (1 − ω)I

)

(I − β1P)−1
(
(ωα − β1)P + (1 − ω)I

)]
,

(3.8)

if λi is an eigenvalue of P, The spectral radius of G̃PMSI(β1, β2) are

ρ(G̃PMSI(β1, β2)) =

(
(ωα − β2) + (1 − ω)

)(
(ωα − β1) + (1 − ω)

)

(1 − β1)(1 − β2)
, (3.9)

for

(
(ωα − β2) + (1 − ω)

)(
(ωα − β1) + (1 − ω)

)

=
(
ω(α − 1) + 1 − β2

)(
ω(α − 1) + 1 − β1

)

=
[
(ω(α − 1))2 + ω(α − 1)(2 − β2 − β1)

]
+ (1 − β2)(1 − β1)

= (1 − β2)(1 − β1)− (1 − α)ω[2 + ω(1 − α)− β2 − β1].

(3.10)

Since (2 + ω(1 − α)− β2 − β1) > 0, combining the above relations (3.9) and (3.10), we can get

ρ(G̃PMSI(β1, β2)) < 1 −
(1 − α)ω[2 + ω(1 − α)− β2 − β1]

(1 − β1)(1 − β2)
< 1. (3.11)
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So for any given constants β1 and β2, 0 ≤ β1 < α, 0 ≤ β2 < α. The PMSI method converges to a unique

solution to the linear system (2.1), the PageRank vector.

Since 0 < βi < α < 1 (i = 1, 2), then
β
α < ω < 1. Immediately, a comparison result is obtained for

the parameterized MSI iteration method compared with the MSI iteration method.

Theorem 3.2. Let 0 < βi < α < 1 (i = 1, 2), β = min{β1, β2}, If
β
α < ω < 1, then the parameterized MSI

iteration method converges faster than the MSI iteration method.

Proof. From Eq (3.9), it follows that the spectral radius of the parameterized MSI iteration method

is

ρ(G̃PMSI(β1, β2)) =

(
(ωα − β2) + (1 − ω)

)(
(ωα − β1) + (1 − ω)

)

(1 − β1)(1 − β2)
. (3.12)

Let ω = 1 in (3.12), then we obtain the spectral radius of the MSI iteration method as follows:

ρ(H̃MSI(β1, β2)) =
(α − β2)(α − β1)

(1 − β1)(1 − β2)
. (3.13)

For 0 < βi < α < 1,
βi
α < ω < 1 (i = 1, 2), from (3.12)-(3.13), it is clear that

ρ(G̃PMSI(β1, β2)) =

(
(ωα − β2) + (1 − ω)

)(
(ωα − β1) + (1 − ω)

)

(1 − β1)(1 − β2)

=
(ωα − β2)(ωα − β1)(1 − ω)2

(1 − β1)(1 − β2)

<
(ωα − β2)(ωα − β1)

(1 − β1)(1 − β2)

<
(α − β2)(α − β1)

(1 − β1)(1 − β2)

=ρ(H̃MSI(β1, β2)).

(3.14)

It is obvious that ρ(G̃PMSI(β1, β2)) < ρ(H̃MSI(β1, β2)), and the proof is completed.

Corollary 3.1. In the range of
β
α < ω < 1, β = min{β1, β2}, 0 < βi < 1 (i = 1, 2), when ω increases

gradually within the value range, the smaller the iterative spectral radius of the PMSI algorithm, the faster the

convergence speed.

Proof. According to Equation (3.9), we know that

ρ(G̃PMSI(β1, β2)) =

(
(ωα − β2) + (1 − ω)

)(
(ωα − β1) + (1 − ω)

)

(1 − β1)(1 − β2)
.

Let

f̃ (ω) =

(
(ωα − β2) + (1 − ω)

)(
(ωα − β1) + (1 − ω)

)

(1 − β1)(1 − β2)

=

(
ω(α − 1) + 1 − β2

)(
ω(α − 1) + 1 − β1

)

(1 − β1)(1 − β2)

=
(ω(α − 1))2 + ω(α − 1)(2 − β1 +−β2) + (1 − β1)(1 − β2)

(1 − β1)(1 − β2)
.
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It is easy one can obtain from above relation

f̃ ′(ω) =

(
2ω(α − 1) + (α − 1)(2 − β1 − β2)

)(
(1 − β1)(1 − β2)

)
(
(1 − β1)(1 − β2)

)2

=
2ω(α − 1) + (α − 1)(2 − β1 − β2)

(1 − β1)(1 − β2)

=
(α − 1)(2ω + 2 − β1 − β2)

(1 − β1)(1 − β2)
.

since
β
α < ω < 1, 0 < βi < α < 1 (i = 1, 2), so we have (2ω + 2 − β1 − β2)) > 0. we can get f̃ ′(ω) < 0,

we can see the PMSI iterative method may be more efficient when ω is large, the conclusion is proved.

4. Numerical results

In this section, we compare the performance of the parameterized multisplitting (PMSI)

iteration method to that of the inner-outer (IO) and multi-splitting (MSI) iteration methods, respectively.

On dual-core processing, numerical experiments are carried out in Matlab R2018a (2.30 GHz, 8GB

RAM). Four iteration parameters, the number of matrix vectors (denoted as MV), the iteration step size

(denoted as IT), the calculation time in seconds (denoted as CPU), and the relative residual (denoted as

res(k)) are used to test these iterative approaches, defined

res(k) =
‖rk‖2

‖(1 − α)ν‖2

, k = 0, 1, . . . .

where rk =
(1 − α)v

(I − αP)xk
.

Table 1 lists the properties of the test matrices P, where average non-zero refers to each row of

non-zero elements, and

ρden =
nnz

n × n
× 100.

All test matrices can be downloaded from https://www.cise.ufl.edu/research/sparse/matrices/

list_by_id.htmlget. For the interest of fairness, we assume that the transfer vector x(0) = v(0) =
e

n
(e = (1, 1, . . . , 1)T) is the initial guess for each test matrix. In all numerical tests, the damping factors

are assumed to be α = 0.98,0.99, 0.995,0.997, 0.998. The residual specification η = 0.01, τ < 10−8

determines when all algorithms end.

Table 1. properties of test matrices

Size nnnz ρden

wb-cs-stanford 9914×9914 2 312 497 0.291×10−2

amazon0312 400,727×400,727 3200,440 1.993×10−3

Example 4.1. In this example, we compare the PMSI iteration method with the MSI iteration method. The test

matrices are the wb-cs-stanford, and amazon0312 matrices, respectively. In order to verify the efficiency of the

PMSI iteration method, we use

SPMSI =
CPUMSI − CPUPMSI

CPUMSI

to describe the speedups of the PMSI iteration compared with the MSI iteration associated with CPU time.

The numerical outcomes of the MSI and PMSI iterative procedures, where ω = 0.9 and β1 = 0.9 and

β2 = 0.8, are displayed in Tables 2 and 3. Tables 2 and 3 shows that the PMSI iterative technique performs better
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than the MSI iterative method in terms of IT, MV, and CPU time, especially for bigger α, such the α = 0.998 in

Tables 2 and 3. As can be observed, most SPMSI values are more than 20%, sometimes even reaching 50%.

Table 2. Test results for the wb-cs-stanford matrix

α IO MSI PMSI Spt

IT(MV) 536 270(541) 228(457)
0.98 CPU 0.1261 0.1268 0.1079 14.90%

IT(MV) 1096 537(1075) 417(835)
0.99 CPU 0.2151 0.2274 0.1648 27.52%

IT(MV) 2168 1095(2191) 962(1525)
0.995 CPU 0.7280 0.3819 0.2942 22.96%

IT(MV) 3577 1806(3613 ) 1213(2427)
0.997 CPU 0.6380 0.5954 0.4350 26.93%

IT(MV) 5450 2698(5397) 1663(3327)
0.998 CPU 0.9354 0.8669 0.5862 32.37%

Table 3. Test results for the amazon0312 matrix

α IO MSI PMSI Spt

IT(MV) 367 178(357) 170(341)
0.98 CPU 7.3867 6.8073 6.5658 3.54%

IT(MV) 733 363(727) 292(585)
0.99 CPU 15.7108 14.1045 12.0670 14.44%

IT(MV) 1436 723(1447) 5110(1021)
0.995 CPU 30.1137 29.4107 21.2650 27.69%

IT(MV) 2507 1164(2329) 717(1435)
0.997 CPU 30.1137 48.6659 27.8410 42.79%

IT(MV) 3630 1863(3727) 911(1823)
0.998 CPU 90.7846 75.3888 37.6927 50.00%

Example 4.2. With the test matrices being the wb-cs-stanford and amazon0312 matrix with various ω

parameters, we will further examine the convergence performance of the PMSI iterative method in this example.

We have set the ω value range to 0.4 − 0.9. The numerical outcomes are shown in Figure 3, where β1 = 0.9 and

β2 = 0.8. According to the findings, the number of repetitions constantly lowers as ω rises. Because of this, we

used ω = 0.9 in our studies, which is consistent with the finding in Corollary 3.1.

Example 4.3. Theorem 3.1 states that the PMSI method converges for any value of β1 and β2, satisfying the

conditions of 0 ≤ β1 < α and 0 ≤ β2 < α. This is what we take into consideration in this example. For two

matrices, wb-cs-stanford and amazon0312, Tables 4 and 5 display the number of iterations of the PMSI approach.

The values of β1 and β2 change from 0.1 to 0.9 and 0.1 to 0.9, respectively, when α = 0.99. From Tables 4 and 5,

it can be inferred that, once one of the parameters β1 and β2 is determined, the number of iteration steps typically

decreases first before increasing as more parameters are added. For instance, in Table 3, β2 increased from β2

of 0.8 to β2 of 0.9. The number of iteration steps first declines, and then β1 takes 0.1 to 0.5, and the number

of iteration steps continues to rise. Finding an explicit link between β1 and β2, or the ideal β1 and β2, for the

universal PageRank matrix, is quite difficult. Our considerable experience has shown that selecting β1=0.9 and

β2=0.8 usually results in good performance. For this reason, in our studies, we used β1=0.9 and β2=0.8 in the

PMSI approach.
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Figure 1. Convergence effect of three algorithms for wb-cs-stanford matrix, τ = 10−8

Figure 2. Convergence effect of three algorithms for amazon0312 matrix, τ = 10−8
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Figure 3. Numerical results for the wb-cs-stanford matrix in Example 4.2

Figure 4. Numerical results for the amazon0312 matrix in Example 4.2
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Table 4. Numerical results for the wb-cs-stanford matrix in Example 4.3

β2\β1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 418(837) 410(821) 419(839) 419(839) 414(829) 422(845) 415(831) 417(835) 415(831)
0.3 416(833) 415(831) 418(837) 417(835) 420(841) 415(831) 426(853) 422(845) 417(835)
0.5 412(825) 420(841) 415(831) 416(833) 425(851) 411(823) 426(853) 424(569) 418(837)
0.7 418(837) 414(829) 417(837) 414(829) 419(839) 416(833) 412(825) 419(839) 417(835)
0.9 420(841) 422(845) 428(857) 420(841) 424(849) 422(845) 416(833) 417(835) 412(825)

Table 5. Numerical results for the amazon0312 matrix in Example 4.3

β2\β1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 293(587) 275(551) 262(525) 302(605) 284(569) 269(539) 275(551) 277(555) 262(525)
0.3 262(525) 265(531) 294(589) 262(525) 263(527) 303(607) 271(543) 269(539) 258(517)
0.5 281(563) 257(535) 269(539) 308(617) 256(513) 276(553) 303(607) 284(569) 278(557)
0.7 322(665) 275(551) 303(607) 255(511) 301(603) 272(545) 269(539) 314(629) 264(529)
0.9 259(517) 276(553) 274(549) 270(541) 251(503) 274(549) 272(545) 272(545) 255(511)

5. Conclusions

In this paper, in order to further improve the two-step splitting iterative method, we propose

a parameterized multisplitting iterative method to solve the PageRank problem by introducing a

relaxation parameter ω, when ω = 1, the PMSI method reduces to the MSI method. Numerical

experiments show that the sequence of iterations generated by the PMSI method converges to the

PageRank vector when the parameters ω, β1, and β2 satisfy specific requirements. The proposed

method also has better convergence performance than IO and MSI methods. Since the new algorithms

are parameter-dependent, how to obtain the optimal parameters in the general case remains to be

studied.
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