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Abstract: In this paper, a new multi parameter iterative algorithm is proposed to address the
PageRank problem based on the multi-splitting iteration method described by Gu et al [8]. The
proposed method in each iteration needs to solve two linear subsystems by splitting the coefficient
matrix, therefore, we consider inner and outer iteration to find the approximate solutions of these
linear subsystems. It can be shown that the iterative sequence generated by the multi parameter
iterative algorithm finally converges to the PageRank vector when the parameters satisfy the certain
conditions. Numerical experiments show that the proposed algorithm has better convergence and
numerical stability than the existing algorithms.
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1. Introduction

Consider the following linear equation systems:
Ax = x, (1.1)

with A is a convex combination Google matrix composed of matrix P and matrix E, and A = aP +
(1 —a)E, where a € (0,1) denotes the damping factor that determines the weight given to the web link
graph, and E = vel e = (1,1,---, 1)T € R", and v = % is a personalization vector or a teleportation
vector. 7 is the dimension of P, and x is our desired eigenvector.

The system of linear equations in (1.1) above is what we refer to as the PageRank problem. Google’s
PageRank algorithm has grown to be one of the most well-known algorithms in online search engines
thanks to the rapid development of the internet, link analysis method called PageRank is used to
rank online pages and assess their significance in relation to the link structure of Web, calculating
the primary eigenvectors of the Google matrix, forms the basis of the PageRank algorithm. Although
Google’s exact ranking technology and calculation techniques have gradually improved, the PageRank
problem is still a major concern and has recently gained a lot of attention in the world of scientific and
engineering computation.

To solve the PageRank problem, the power method is easy to calculate and the most classical
algorithm, while all other eigenvalues of matrix .4 aside from the principal eigenvalues are simply
scalar times the corresponding eigenvalues of matrix P. As a result, the power approach converges
very slowly when the primary eigenvalue of matrix A is closely related to other eigenvalues, or when
the damping factor is close to 1. The power method is not the ideal way to solve this problem, but
a quicker and more logical way to solve the principal eigenvectors of the Google matrix is required
to speed up the calculation of PageRank. The network graph is extremely large, with 1 billion or
even 10 billion web page nodes. Additionally, a good search algorithm should minimize the lag time,
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which is the time from the search target proposed to the search result feedback to the web browser. In
recent years, numerous researchers have proposed various methods to speed up the calculation of
PageRank, among them, the design of power function method and its variant method for accelerating
the solution of PageRank problem are favored by many researchers. For instance, Gleich et al. [4]
proposed an inner outer iteration method combined with Richardson iteration, in which each iteration
needs to solve a linear system whose algebraic structure is similar to the original system; Gu and Xie [5]
proposed the PIO iteration algorithm, which combines the power method and the inner-outer iteration
method, after that, Ma et al. [11] suggested a relaxed two-step splitting iteration strategy to address the
PageRank problem based on [4] and [5], adding a new relaxation parameter; Gu et al. [8] introduced
a two parameter iteration approach based on multiplicative splitting iteration in order to increase
the possibility of optimizing the iterative process; based on the iteration framework [7] and relaxed
two-step splitting (RTSS) iteration method [11], Two relaxed iteration techniques are presented by Tian
et al. [12] for resolving the PageRank issue. Additionally, the PageRank problem can be solved by
using Krylov subspace methods, which is a problem of solving linear equations. For instance, Wu and
Wei propose a hybrid algorithm, power-Arnoldi algorithm [14], which combines its power technique
and thick restart Arnoldi algorithm; as well as the Arnoldi-extrapolation method [26] and speeding
the Arnoldi-type algorithm [23]. We cite [7-29] for a more in-depth theoretical study.

The structure of this essay is as follows: we briefly introduce the inner-outer iterative PageRank
problem techniques in Section 2. In Section 3, we first examine the theoretical foundations of the
multiplicative splitting iterative method before introducing our brand-new approach, the parameterized
MSI iteration method. Section 4 reports on numerical testing and comparisons. Finally, Section 5
provides a few succinct closing notes.

2. The inner-outer method

First, we provide a brief summary of the methodological inside-out iteration procedure proposed
by Gleich et al. [4], for computing the inside-out iteration of PageRank. It is clear that linear systems
can be used to rewrite the eigenvector problem (1.1).

(I—aP)x=(1—-a)y, (2.1)

since eTx = 1.

We observe that when the damping vector is small, it is simpler to solve the PageRank problem,
Gleich et al. defined the outer iteration with a smaller damping factor g (0 < B < a), rather than
immediately resolving the equation (1.1). Therefore, the equations below are used to rewrite the linear
system (1.1).

(I—BP)x = (a — B)Px+ (1 —a)o. (2.2)

So the stationary outer iteration scheme
(1 —gP)x* V) = (a — B)PxM) + (1 — )0, k=0,1,2,..., (2.3)
For computing x; 1), define the inner linear system as
(I-BPly =, (24)
where f = (« — B)Px®) + (1 — &), and compute x(**1) via the Richardson inner iteration

yU* = gPyY) 4+ (a — B)PxP) + (1 —a)o, j=0,1,2,..,1 -1, (2.5)
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where y(©) = x(K), The I-th step inner solution y(!) is assigned to be the next new x+1) The stopping
criteria are given as follows, The outer iteration (2.1) terminates if
1(1 - a)o — (I —aP)xFD |, < 1, (2.6)
while the inner iteration (2.5) terminates if
If = (I=BP)yyY V| <9, j=0,12.,1-1, 2.7)

where 77 and T are the inner and outer tolerances respectively.
The MSI iteration method

Gu et al. suggested the MSI approach in [8] to expedite the PageRank vector calculation. Here is a
quick overview of the MSI approach, the MSI approach entails writing I — aP as

I—aP = (I—B1P)— (a — B1)P = (I — B2P) — (« — B2)P,

here 0 < B1 < &, 0 < B2 < a, given an initial vector x© fork=0,1,2,--, perform the following
two-step iteration

{ (I =B P)ulD = (a — 1) Px® + (1 - ), 2.8)

(I — BoP)x** 1) = (& — Bo) Pu**V) 4 (1 — a)o.
until the sequence {x(X)} converges to the exact solution x*.

Theorem 2.1 ([8]). Let a be the damping factor in the PageRank linear system, and let M; = I — B;P,
N; = (& — B;)P, (i = 1,2) are the two splittings of the matrix I — «P. Then the iterative matrix Hys;(B1, B2)
of the MISI method for PageRank computation is given by

Hysi(B1,B2) = (I — B2P) (= B2)P(I — B1P) ' (a — B1)P, (2.9

and its spectral radius p(Hps;(B1, B2)) is bounded by

_ (a—pB2)(a—p1)
TP = ) 210
therefore, it holds that
o(Hmsi(B1,B2)) < o(Br, Ba) <1, V0 < B1 < a,0 < By < . 2.11)

the multiplicative splitting iteration method for PageRank computation converges to the unique solution x* € C"
of the linear system of equations.

3. The parameterized MSI iteration method

The PageRank problem model is presented in this section, and it illustrates how the problem
can be solved more simply by choosing a smaller damping factor a. We introduce a parameter w based
on the MSI method in order to further control the range of «, reduce the spectral radius, and speed
up convergence, this results in a new iterative algorithm, denoted as the PMSI method below, that is
described as follows.

The PMSI iteration method

{ (I— ,Blp)“(kﬂ) = (wa — /31)Px(k) +(1- w)x(k) +w(l—a)y, (3.1)

(I — BoP)x D) = (wa — Bo) Puk+D) (1 — w)u™) + w(1 — a)o.
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withw >0and 0 < 1 <a < 1,0 < B2 < a < 1. If w =1, then the PMSI iteration method becomes
the MSI iteration method.

Algorithm 1 PMSI method

Input: Parameters P, q, v, &, T, ;

O}ltput: x
2 X <v,y< Px
g if [|(1—a)v+ay — x||; > 7 then
L fi=(en Byt (- w)x el -
9: repeat

10:

1L x = pry+ fi;

13: y = Px;

14: 5

15 until || +ay —x|l1 <7

2 o= (wn—pa)y+ (1-w)r +w(1- 2o
19:  repeat

20:

2L: X = Boy + fo;

23: y = Px;

24: !

2 until ||, +ay —x|l1 <7

27 x=Ppy+fo

R y=pn

31: end if

32:

33 x =ay+ (1 —a)o.

Remark 3.1. The computational cost of the PMSI iteration approach is somewhat higher than that of (2.8)
since it simply requires an additional saxpy operation, (1 — w)u**1) Vector addition and the price (wa —
B1)Pulkt) (1 — w)u®k+Y) each iteration of with o(n) flops.

In the sequel, we will analyze the convergence property of the parameterized MSI iteration
method.

Lemma 3.1 ([8]). Let A € C"*", A= M; — N; (i = 1,2) be two splittings of the matrix A, and let x(°) € C"
be a given initial vector. If x\*) is a two-step iteration sequence

Mlx(”%) = le(k) +0, 3.0
sz(kJrl) = Nzx(k+%) +b, 42

then
X1 = My "NaMT Ny + My Y (T 4+ NoM Db,k =10,1,2, .. (3.3)

Moreover, if the spectral radius p( M, 1N2M1_ UNy ) is less than 1, then the iteration sequence x%) converges to
the unique solution x* € C"*" of the system of linear equation (2.1) for all initial vectors x(©) € C™.

The multiplicative splitting iteration method for (2.1) is obviously related with the splitting of
the coefficient matrix I — aP, and we will subsequently demonstrate that there exists a plausible
convergent domain of two-parameters for the parameterized method.

I—aP=M—N; (i=1,2),
Ml = I—,Blp,Nl = ((,LJIX—,Bl)P"F (1 —w)I,
M, = I_’BZP,NZ = (wa—ﬁz)P+ (1 —w)I.
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according to (3.1), The two-step iterative matrix corresponding to the multiplication split iterative
method is as follows

Gpumsi(B1,B2) = My 'NaM;INy =(I — BaP) " ((wa — B2)P + (1 — w)I)

(I - ﬁlp)_l((wa — ,Bl)P+ (1 _ CU)I), (3.4)

Now, we examine the convergence property of the multiplicative-splitting iterative method. By
applying Lemma 3.1, we can obtain the following main theorem..

Theorem 3.1. Let a be the damping factor in the PageRank linear system, and let M; = I — B;P, N; =
(0 — B2)P + (1 —w) (i = 1,2) are the two splittings of the matrix I — aP. Then the iterative matrix
Gpmsi(B1, B2) of the PMSI method for PageRank computation is given by

Gpumsi(B1,B2) =(I— B2P) ! ((wa — B2)P + (1 — w)I)

3.5
(I—ﬁlP)_l((wa—,Bl)P—l—(l—w)I), -5
and its spectral radius p(Gpprsi(B1, B2)) is bounded by
_q U-weRtod—a) —pr—p]
¥(B1,B2) =1 1= F (=6 (3.6)
therefore, it holds that
0(Gpumsi(Br B2)) < 9(B1,B2) <1,V0 < By <a,0< B <. (3.7)

the multiplicative splitting iteration method for PageRank computation converges to the unique solution x* € C"
of the linear system of equations.

Proof. From Lemma 3.1 we can obtain the iterative matrix of the PMSI method for PageRank
computation Eq. (3.5)).

Let B = min{By, B2}, sincee’ P = eT, g < w < 1, then the matrix (wa — B;))P+ (1 —w)I (i =1,2)
is a nonnegative matrix and the matrix Gy is also nonnegative.

In addition, from (3.5) it turns out that

eTGppmsr(B1,82) =e™ [(I — BaP)~ ((wa — B2)P + (1 — w)I)

(I—ﬁlP)_l((wa—,Bl)P—l—(l—w)l)], 68)
if A; is an eigenvalue of P, The spectral radius of Gpys;(B1, B2) are
~ ~ ((wa=B2) + (1~ w)) ((wa = B1) + (1 - w))
p(Gpmsi(B1,B2)) = A=) —F) , (3.9)
for
((wa = B2) + (1 - w)) ((wa = p1) + (1 - w))
= (w(x—1) —1—1—/32)( (x—1)+1—p) (310)
= [(w(@—=1)) +w(@—1)(2~ p2 — p1)] + (1 = p2)(1 — p1)
=1 =p2)(1=p1) - (1 -a)w2+w(l —a) = pa— pi].
Since (2+ w(1 —a) — B2 — B1) > 0, combining the above relations (3.9) and (3.10), we can get
0(Gpumsi(B1,B2)) <1— Q-ooltol o) —pr=f] (3.11)

(1=p1)(1=p2)
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So for any given constants 81 and B2, 0 < 1 < &,0 < By < a. The PMSI method converges to a unique
solution to the linear system (2.1), the PageRank vector. O

Since 0 < B; < a <1 (i =1,2), then g < w < 1. Immedjiately, a comparison result is obtained for
the parameterized MSI iteration method compared with the MSI iteration method.

Theorem 3.2. Let0 < B; <a <1 (i=1,2), p = min{B1, B2}, Ifg < w < 1, then the parameterized MSI
iteration method converges faster than the MSI iteration method.

Proof. From Eq (3.9), it follows that the spectral radius of the parameterized MSI iteration method

(wa — B2) + (1 — w)) ((wa — B1) + (1 — w))
(1-pB1)(1—B2) '

Let w = 11in (3.12), then we obtain the spectral radius of the MSI iteration method as follows:

(& — 2) (o~ B1)
1B p) 3.13)

For0 < B <a <1,B < w <1 (i =1,2), from (3.12)-(3.13), it is clear that

~ ((wa —B2) + (1 - w)) ((wa — B1) + (1 — w))
0(Gpmsi(B1,B2)) = 01— B p)
_(wa— o) (wa — B1)(1 — w)?
(1-p1)(1—pB2)
(wa — Bo) (wa — B1) (3.14)
(1-B1)(1—B2)
(“ —B2) (e —B1)
(1 —B1)(1—B2)
=p(Hms1(B1,B2)).

is

o(Gpusi(B1,B2)) = (3.12)

o(Husi (B, B2)) =

<

It is obvious that p(Gpasy (81, 82)) < p(Humsi(B1,B2)), and the proof is completed. O
Corollary 3.1. In the range ofg <w <1, B=min{B1, B2}, 0 < B; <1 (i =1,2), when w increases
gradually within the value range, the smaller the iterative spectral radius of the PMSI algorithm, the faster the

convergence speed.

Proof. According to Equation (3.9), we know that

((wa = B2) + (1 — w)) ((wa = B1) + (1 — w))
: .

o(Gpmsi(B1,B2)) =

(1—B1)(1—pB2)
Let
= (e =)+ (1—w)) ((wa — 1) + (1 - w))
flw) = (Hﬁ)( p2)
C(w(@=1)+1-p2) (w(a—1)+1—py)

(1—=p1)(1 = p2)
_(w=1))P+w@-1)2=p1+—p2) +(1=B1)(1 = o)
(1—=p1)(1=p2) '
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It is easy one can obtain from above relation

Plw) = 2w(e—=1) + (a =1)(2 = 1 — B2)) (1 = B1)(1 = B2))
(1= p1)(1—p2))
2w(e—1)+ (« —1)(2—B1 — B2)
(1-p1)(1—B2)
(a =1)2w+2—B1 — B2)
(1—-p1)(1—pB2)

sinceg <w<1,0<Bi<a<1(i=1,2),s0wehave (2w +2— B — B2)) > 0. we can get f'(w) < 0,
we can see the PMSI iterative method may be more efficient when w is large, the conclusion is proved.
O

4. Numerical results

In this section, we compare the performance of the parameterized multisplitting (PMSI)
iteration method to that of the inner-outer (I0) and multi-splitting (MSI) iteration methods, respectively.
On dual-core processing, numerical experiments are carried out in Matlab R2018a (2.30 GHz, 8GB
RAM). Four iteration parameters, the number of matrix vectors (denoted as MV), the iteration step size
(denoted as IT), the calculation time in seconds (denoted as CPU), and the relative residual (denoted as
res(k)) are used to test these iterative approaches, defined

7kl
res(k) = ———2—,k=0,1,....
1A= a)vl,
(1-a)
(I —aP)x;
Table 1 lists the properties of the test matrices P, where average non-zero refers to each row of
non-zero elements, and

where 7, =

- nnz
Oden 1 X n

x 100.

All test matrices can be downloaded from https://www.cise.ufl.edu/research/sparse/matrices/
e
list_by_id.htmlget. For the interest of fairness, we assume that the transfer vector 10 = 50 = ”

(e=(1,1,...,1)T) is the initial guess for each test matrix. In all numerical tests, the damping factors
are assumed to be &« = 0.98,0.99, 0.995,0.997, 0.998. The residual specification 7 = 0.01, T < 10-8
determines when all algorithms end.

Table 1. properties of test matrices

Size Nynz Oden

wb-cs-stanford 9914 x9914 2312497 0.291x102
amazon(0312 400,727 x400,727  3200,440 1.993x 103

Example 4.1. In this example, we compare the PMSI iteration method with the MSI iteration method. The test
matrices are the wb-cs-stanford, and amazon0312 matrices, respectively. In order to verify the efficiency of the

PMSI iteration method, we use
CPUpst — CPUppmst

Spmsi = CPUnier

to describe the speedups of the PMSI iteration compared with the MSI iteration associated with CPU time.
The numerical outcomes of the MISI and PMSI iterative procedures, where w = 0.9 and B = 0.9 and
B2 = 0.8, are displayed in Tables 2 and 3. Tables 2 and 3 shows that the PMSI iterative technique performs better
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than the MSI iterative method in terms of IT, MV, and CPU time, especially for bigger a, such the x = 0.998 in
Tables 2 and 3. As can be observed, most Sppsy values are more than 20%, sometimes even reaching 50%.

Table 2. Test results for the wb-cs-stanford matrix

P 10 MSI PMSI Spr

ITMV) 536 270(541)  228(457)

098 CPU 01261  0.1268 01079  14.90%
ITMV) 1096  537(1075)  417(835)

099 CPU 02151  0.2274 0.1648  27.52%
ITMV) 2168  1095(2191)  962(1525)

0995 CPU 07280  0.3819 02942  22.96%
ITMV) 3577  1806(3613) 1213(2427)

0997 CPU 06380  0.5954 04350  26.93%
ITMV) 5450  2698(5397)  1663(3327)

0998 CPU 09354  0.8669 05862  32.37%

Table 3. Test results for the amazon0312 matrix

w 10 MSI PMSI Spr
ITMV) 367 178(357)  170(341)
098 CPU 7387  6.8073 6.5658 3.54%

ITMV) 733 363(727)  292(585)

099 CPU 157108  14.1045 12.0670  14.44%
ITMV) 1436 723(1447)  5110(1021)

0995 CPU  30.1137  29.4107 212650  27.69%
ITMV) 2507  1164(2329)  717(1435)

0997 CPU  30.1137  48.6659 278410  42.79%
ITMV) 3630  1863(3727)  911(1823)

0998 CPU  90.7846  75.3888 376927 50.00%

Example 4.2. With the test matrices being the wb-cs-stanford and amazon0312 matrix with various w
parameters, we will further examine the convergence performance of the PMSI iterative method in this example.
We have set the w value range to 0.4 — 0.9. The numerical outcomes are shown in Figure 3, where B1 = 0.9 and
B2 = 0.8. According to the findings, the number of repetitions constantly lowers as w rises. Because of this, we
used w = 0.9 in our studies, which is consistent with the finding in Corollary 3.1.

Example 4.3. Theorem 3.1 states that the PMSI method converges for any value of B1 and By, satisfying the
conditions of 0 < B < w and 0 < By < a. This is what we take into consideration in this example. For two
matrices, wb-cs-stanford and amazon0312, Tables 4 and 5 display the number of iterations of the PMSI approach.
The values of By and By change from 0.1 to 0.9 and 0.1 to 0.9, respectively, when « = 0.99. From Tables 4 and 5,
it can be inferred that, once one of the parameters B1 and By is determined, the number of iteration steps typically
decreases first before increasing as more parameters are added. For instance, in Table 3, By increased from By
of 0.8 to By of 0.9. The number of iteration steps first declines, and then B takes 0.1 to 0.5, and the number
of iteration steps continues to rise. Finding an explicit link between B1 and By, or the ideal 51 and B, for the
universal PageRank matrix, is quite difficult. Our considerable experience has shown that selecting 1=0.9 and
B2=0.8 usually results in good performance. For this reason, in our studies, we used 31=0.9 and $,=0.8 in the
PMSI approach.
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@=0.99 =0.995
102 - - - - - 102 - - - -
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10 - __PmsI PMSI|

res(k)
res(k)

10°® L : : S
a 500 1000 1500 2000 2500
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«=0.998
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— — —Ms|

10°F - PMSI| ]

res(k)
res(k)
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res(k)

.9 . . N . -9 . . . . . .
10 10’
o 500 1000 1500 2000 2500 o 500 1000 1500 2000 2500 3000 3500 4000

IT IT

Figure 2. Convergence effect of three algorithms for amazon0312 matrix, T = 108
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Table 4. Numerical results for the wb-cs-stanford matrix in Example 4.3

B2\B1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1  418(837) 410(821) 419(839) 419(839) 414(829) 422(845) 415(831) 417(835) 415(831)
03  416(833) 415(831) 418(837) 417(835) 420(841) 415(831) 426(853) 422(845) 417(835)
05  412(825) 420(841) 415(831) 416(833) 425(851) 411(823) 426(853) 424(569) 418(837)
)
)

07  418(837) 414(829) 417(837) 414(829) 419(839) 416(833) 412(825) 419(839) 417(835)
09  420(841) 422(845) 428(857) 420(841) 424(849) 422(845) 416(833) 417(835) 412(825)

Table 5. Numerical results for the amazon0312 matrix in Example 4.3

B2\B1 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9

0.1  293(587) 275(551) 262(525) 302(605) 284(569) 269(539) 275(551) 277(555) 262(525)
03  262(525) 265(531) 294(589) 262(525) 263(527) 303(607) 271(543) 269(539) 258(517)
05  281(563) 257(535) 269(539) 308(617) 256(513) 276(553) 303(607) 284(569) 278(557)
)
)

07  322(665) 275(551) 303(607) 255(511) 301(603) 272(545) 269(539) 314(629) 264(529)
09  259(517) 276(553) 274(549) 270(541) 251(503) 274(549) 272(545) 272(545) 255(511)

5. Conclusions

In this paper, in order to further improve the two-step splitting iterative method, we propose
a parameterized multisplitting iterative method to solve the PageRank problem by introducing a
relaxation parameter w, when w = 1, the PMSI method reduces to the MSI method. Numerical
experiments show that the sequence of iterations generated by the PMSI method converges to the
PageRank vector when the parameters w, 1, and ; satisfy specific requirements. The proposed
method also has better convergence performance than 10 and MSI methods. Since the new algorithms
are parameter-dependent, how to obtain the optimal parameters in the general case remains to be
studied.
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