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Abstract: Despite being an abundant marine organism in Indonesia, black sea cucumber is still un-

derutilised due to its slightly bitter taste. Previous studies have hinted at the potential of black sea 

cucumber as an anti-cancer agent. However, specific identification of bioactive compounds that can 

interact with cancer proteins is still lacking. In the same place, cancer ranks third as Indonesia's 

leading cause of death. Therefore, this study aims to identify potential anti-cancer compounds from 

black sea cucumbers using a comprehensive in silico drug discovery approach. This research uses 

machine learning, molecular docking, and ADMET analysis to identify bioactive compounds that 

specifically interact with cancer proteins. A combination of the Cascade Deep Forest algorithm and 

ECFP-AAIndex1 feature combination proved to be the most effective in predicting these interac-

tions. Through molecular docking validation, four bioactive compounds with strong binding affin-

ity were identified: Afimoxifene, Danazol, Taxifolin, and Terfenadine. ADMET analysis highlighted 

Taxifolin as the most promising candidate, as it passed most ADMET parameters. Further wet la-

boratory studies are required to confirm the effects and potential of these compounds as anti-cancer 

agents. This study builds a foundation for future investigations into alternative cancer treatments 

using abundant natural resources. 

Keywords: bioactive compounds; black sea cucumbers; cancer; drug-target interactions; machine 

learning; molecular docking 

 

1. Introduction 

The black sea cucumber (Holothuria atra), a marine organism, has been traditionally used in med-

icine for various purposes with its potential medicinal properties [1]. Recent in vitro and in vivo stud-

ies have suggested that extracts from black sea cucumbers exhibit anti-cancer properties [2], [3]. How-

ever, it is crucial to conduct additional research to identify bioactive compounds in black sea cucum-

ber extracts that specifically target cancer-related proteins.  

The burden of cancer in Indonesia is considerable, with cervical cancer now holding the distress-

ing position of being the second-leading cause of death [4]. Between 2014 and 2018, the Indonesian 

government allocated Rp3.5 trillion to cancer-related expenditures. The top five cancers in terms of 

prevalence during this period were cervical, breast, lung, colorectal, and liver cancer [5]. Therefore, 
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it is crucial to explore innovative strategies beyond conventional medicines to improve patient out-

comes, overcome drug resistance, and address unmet medical needs associated with this devastating 

disease. 

The process of identifying new drugs has been transformed by introducing cutting-edge tech-

nologies, including machine learning, molecular docking, and ADMET prediction (Absorption, Dis-

tribution, Metabolism, Excretion, and Toxicity). These cutting-edge techniques have greatly im-

proved the discovery and development of prospective medicinal medicines [6]–[8].  

The bioactive compounds present in an organism, including black sea cucumbers, that may in-

teract with cancer-related proteins can be identified using drug-target interactions (DTI) [9]. Machine 

learning has recently become a potent and revolutionary tool in the field of drug discovery, particu-

larly for understanding and predicting drug-target interactions [10]. Machine learning algorithms 

can uncover complex patterns and correlations that control these interactions by examining large 

datasets that include molecular and protein structures [11]. 

Molecular docking is one of the most utilized approaches to validate machine learning predic-

tions in DTI. It is sophisticated in silico method essential for bridging the gap between computational 

predictions and experimental reality [12]. This method provides insights into the feasibility and 

strength of projected drug-target interactions [13]. It enables the determination of binding affinity 

and elucidation of interaction details between a drug and its target protein. 

Incorporating ADMET analysis is crucial for exploring the potential of the selected compounds 

from molecular docking [14]. ADMET analysis provides insights into a compound's pharmacokinetic 

properties and potential safety risks, aiding in identifying compounds with favorable ADMET pro-

files [15]. By considering the ADMET factors, researchers can prioritize compounds with a higher 

likelihood of successful translation into safe and effective therapies, ultimately enhancing the overall 

success rate of the drug discovery process. 

In recent years, in silico drug discovery encompassing drug-target interactions, molecular dock-

ing, and ADMET analysis has gained significant importance in developing innovative cancer thera-

pies. For instance, a study focusing on breast cancer utilized molecular docking and in vitro tech-

niques to expedite drug discovery, demonstrating a strong consistency between the two approaches 

[8]. Another research investigated the in silico drug design of anti-breast cancer agents, encompassing 

molecular docking studies, MD simulations, and ADMET prediction [16]. Another study has utilized 

molecular docking studies and ADMET screening, which has led to the synthesis of novel pharma-

ceuticals as highly effective anti-hepatic cancer medicines [17].  

In predicting DTI, numerous in silico approaches leverage the capabilities of machine learning 

algorithms. For example, [18] conducted a DTI study employing a newly developed algorithm based 

on chemogenomics feature space. In another study, [19] demonstrated that a general-purpose novel 

algorithm called Cascade Deep Forest (CDF) outperformed other state-of-the-art DTI algorithms. 

Other DTI studies also incorporated machine learning algorithmic options [20]–[23]. However, none 

have been found to continuously perform the three in silico approaches mentioned before to identify 

black sea cucumber’s bioactive compounds as a potential alternative cancer medicine. 
This study aims to identify bioactive compounds from black sea cucumbers with anti-cancer 

properties through an integrated approach of DTI predictions, molecular docking, and ADMET anal-

ysis. The research's significance lies in its ability to discover novel compounds, understand their in-

teractions with target proteins, and evaluate their pharmacokinetic properties and toxicity. The find-

ings can potentially contribute to developing effective anti-cancer therapies, expanding treatment 

options in cancer research. 

This research integrated DTI predictions, molecular docking, and ADMET analysis. Initially, 

DTI predictions were conducted to identify target proteins involved in cancer and its potential inhib-

itors. Subsequently, molecular docking was employed to evaluate the binding affinities and interac-

tion details between the bioactive compounds and target proteins. Furthermore, ADMET analysis 

was performed to assess the compounds' pharmacokinetic properties and potential toxicity. 
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This paper is structured into five sections. The introduction provides background information 

on the significance of identifying bioactive compounds from black sea cucumbers for anti-cancer pur-

poses. The results section presents the findings, including the identified compounds, their interac-

tions with target proteins, and their ADMET profiles. The discussion section analyzes and interprets 

the results, discussing their implications and potential applications. The materials and methods sec-

tion outlines the approach, including DTI predictions, molecular docking, and ADMET analysis. Fi-

nally, the conclusions section summarizes the essential findings and highlights the implications for 

developing anti-cancer therapies derived from black sea cucumbers. 

2. Results 

2.1. Data Acquisitions and Preprocessing 

A total of 550 unique cancer-related proteins were acquired from three databases: The Cancer 

Genome Atlas (TCGA) [24], The Human Protein Atlas (THPA) [25], and Ijah Analytics 

(http://ijah.apps.cs.ipb.ac.id/). These proteins are presented in Table S1 of supplementary materials. 

Querying the interactions of these 550 proteins in the BindingDB database resulted in 139,881 inter-

action data. Meanwhile, 86 unique bioactive compounds were obtained from previous research. 

These bioactive compounds are presented in Table S2 of supplementary materials. Negative interac-

tion samples were generated with a 1:1 ratio, resulting in 279,762 interaction data. The concatenated 

interaction data (positive and negative) is provided in CSV format in Spreadsheet S1 of supplemen-

tary materials. 

2.2, Feature Engineering and Data Sampling 

Five chemical features and four protein characteristics were combined to provide 20 feature 

space combinations. Two hundred datasets were produced by sampling each feature space combina-

tion ten times. Calculations revealed that the minimal sample size was 9,521. However, for conven-

ience, that number was rounded to 10,000. 

2.3. Machine Learning Modelling and Evaluation 

A total of 1,400 models were trained using seven machine learning algorithms, with each algo-

rithm trained on 20 different feature combinations. Each feature combination was sampled into ten 

different datasets, resulting in 1,400 trained models. A separate test dataset was used to evaluate the 

performance of these machine learning models. The evaluation results, measured in terms of perfor-

mance metrics, were recorded for each model. Since each feature combination had ten evaluation 

results, the average value of each performance metric was calculated. This comprehensive approach 

allows for a thorough assessment of the trained models and provides an overall understanding of 

their performances. 

The performance metrics indicated that CDF was outperformed in almost every metric, except 

for the recall value, which was surpassed by k-Nearest Neighbours (KNN). The highest performance 

was achieved by CDF, with an accuracy of 82.7%, an F1-score of 86.5%, an AUC score of 93.7%, a 

precision of 91.8%, and Cohen's Kappa of 74.9%. On the other hand, the highest recall value was 

obtained by KNN (87%), followed by LightGBM (86.2%) and CDF (86.1%). The recall value difference 

was not appreciably siginifcant, so CDF was still preferred. The selection of the machine learning 

algorithm for the prediction stage was based on comparing the AUC score, as it was deemed to rep-

resent the overall effectiveness of an algorithm [26]. The AUC scores are calculated from ROC curves, 

which are presented in Figure 1. 
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Figure 1. ROC Curve of each feature combination in multiple algorithms. Algorithm abbreviations 

are as follow: CDF: Cascade Deep Forest; RF: Random Forest; XGB: Xtreme Gradient Boosting; LGBM: 

Light Gradient Boosting Machine; KNN: K-Nearest Neighbours; LR: Logistic Regression; NN: Neural 

Networks (MLPNN). 

The highest AUC score of 93.7% was achieved by CDF using the ECFP-AAIndex1 feature com-

bination. CDF demonstrated this exceptional performance, further justifying the feature combination 

selection and the prediction stage's algorithm. By leveraging the ECFP-AAIndex1 feature space and 

employing CDF, reliable and robust results can be anticipated. 

2.4. Interaction Predictions 

The prediction was carried out using ten trained CDF models on a black sea cucumbers’ bioac-
tive compounds dataset comprising the ECFP-AAIndex1 feature combination. Subsequently, ten sets 

of prediction outcomes were obtained, necessitating the identification of common elements across 

these sets to determine the consensus among the models. This process identified seven compound-

protein pairs as the intersection of all ten prediction sets. In Table 1, these seven pairs are presented 

along with the average confidence score values, which reflect the degree of agreement among the 

models regarding the interaction of each pair. 
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Table 1. Common predictions from ten prediction sets yielded by ten trained CDF models. 

Compound Name 

(PubChem ID) 

Protein/Gene Name 

(Uniprot ID) 
Average Confidence Score 

Meclizine (4034) UBE2F (Q969M7) 0.8445 

Taxifolin (439533) PIK3CB (P42338) 0.790625 

Terfenadine (5405) UBE2F (Q969M7) 0.856 

Afimoxifene (449459) PIK3CB (P42338) 0.892125 

Selegiline (26757) UBE2F (Q969M7) 0.87525 

Phencyclidine (6468) UBE2F (Q969M7) 0.89625 

Danazol (28417) CYSLTR2 (Q9NS75) 0.80275 

 

2.5. Molecular Docking 

Seven compound-protein pairs that were previously obtained consisting of three types of pro-

teins: Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform (PIK3CB), 

NEDD8-conjugating enzyme (UBE2F), and Cysteinyl leukotriene receptor 2 (CYSLTR2). The 3D pro-

tein structures based on X-ray crystallography available in the Protein Data Bank (PDB) were only 

accessible for the UBE2F protein. However, for PIK3CB and CYSLTR2, only predicted structures ob-

tained from AlphaFold were available. AlphaFold provides reliable predictions of 3D protein struc-

tures, which can be utilized in the molecular docking process [27]. Additionally, the 3D structures of 

the seven compounds were obtained from PubChem and converted to the appropriate format using 

Open Babel [28]. Autodock Vina [29] simulated the docking of each pair in five poses, and the best 

binding affinities for each pair are presented in Table 2. The visualization of the bindings with the 

best binding affinity is shown in Figure 3, while Figure 4 provides a 2D visualization. 

Table 2. Best binding affinities of each seven pairs resulted from molecular docking 

Compound Name Protein/Gene Name Best Binding Affinity 

Afimoxifene PIK3CB -12.7 

Danazol CYSLTR2 -12.3 

Taxifolin PIK3CB -10.0 

Terfenadine UBE2F -6.6 

Phencyclidine UBE2F -4.6 

Meclizine UBE2F -4.3 

Selegiline UBE2F -3.4 

The Afimoxifene-PIK3CB pair exhibited the best binding affinity of -12.7 kcal/mol in the first 

pose. This pose revealed two types of bonds: hydrogen bonds and hydrophobic interactions. Hydro-

gen bonds formed between the compound and Ser636, while hydrophobic interactions were observed 

with Leu639, Phe673, Gly840, Cys841, Arg821, and Asn763. The 3D and 2D visualization of the best 

pose of the Afimoxifene-PIK3CB pair is presented in Figure 2. 
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Figure 2. Best docking pose of Afimoxifene-PIK3CB resulted in binding affinity of -12.7 kcal/mol. Left 

and right panels are described as follow: (a) A 3D docking pose depicting the Afimoxifene-PIK3CB 

complex forming a ligand-protein interaction; (b) A 2D visualization highlighting the detailed inter-

actions observed in the best pose. 

The Danazol-CYSLTR2 pair attained a binding affinity of -12.3 kcal/mol in its best pose. This 

pose displayed a single type of bond, specifically a hydrophobic interaction with Tyr127, His162, 

Leu165, His166, Val208, and Ser169. The 3D and 2D visualization of the best pose of the Danazol-

CYSLTR2 pair is presented in Figure 2. 

 

Figure 3. Best docking pose of Danazol-CYSLTR2 resulted in binding affinity of -12.3 kcal/mol. Left 

and right panels are described as follow: (a) A 3D docking pose depicting the Danazol-CYSLTR2 com-

plex forming a ligand-protein interaction; (b) A 2D visualization highlighting the detailed interactions 

observed in the best pose. 

Moreover, the Taxifolin-PIK3CB pair achieved the highest binding affinity of -10.0 kcal/mol in 

the first pose. Two hydrogen bonds were formed between the compound and Cys841, and an addi-

tional hydrogen bond was observed with Ser636. Furthermore, hydrophobic interactions occurred 

with Phe673, His677, Leu639, Gly840, and Arg821. The 3D and 2D visualization of the best pose of 

the Taxifolin-PIK3CB pair is presented in Figure 4. 
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Figure 4. Best docking pose of Taxifolin-PIK3CB resulted in binding affinity of -10.0 kcal/mol. Left 

and right panels are described as follow: (a) A 3D docking pose depicting the Taxifolin-PIK3CB com-

plex forming a ligand-protein interaction; (b) A 2D visualization highlighting the detailed interactions 

observed in the best pose. 

Lastly, the Terfenadine-UBE2F pair obtained a binding affinity of -6.6 kcal/mol in the first pose, 

where four hydrophobic interactions were observed between the compound and Lys9, Ala5, Leu4, 

and Leu9. The 3D and 2D visualization of the best pose of the Terfenadine-UBE2F pair is presented 

in Figure 5. The Phencyclidine-UBE2F, Meclizine-UBE2F, and Selegiline-UBE2F pairs exhibited bind-

ing affinities above -6.0 kcal/mol, hence they will not be further discussed or included in the subse-

quent analysis. 

 

Figure 5. Best docking pose of Terfenadine-UBE2F resulted in binding affinity of -6.6 kcal/mol. Left 

and right panels are described as follow: (a) A 3D docking pose depicting the Terfenadine-UBE2F 

complex forming a ligand-protein interaction; (b) A 2D visualization highlighting the detailed inter-

actions observed in the best pose. 

2.6. ADMET Analysis 

Four compound-protein pairs considered to have good binding during the docking process un-

derwent ADMET analysis. The results indicated that all four compounds (Afimoxifene, Danazol, 
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Taxifolin, and Terfenadine) passed the Lipinski rule-of-five test. Except for Taxifolin, all compounds 

passed the identification of PAINS, with one warning. Absorption profiles showed that all com-

pounds passed the MDCK permeability and intestinal absorption parameters. However, only 

Afimoxifene and Danazol passed the Caco-2 permeability parameter. Distribution profiles revealed 

that only Terfenadine passed the PPB parameter, while all compounds passed the VD parameter. 

Metabolism profiles indicated that Afimoxifene and Danazol acted as CYP1A2 inhibitors, whereas 

Taxifolin and Terfenadine did not. Excretion profiles showed that all compounds passed the CL pa-

rameter and had favorable T1/2 values.  

Lastly, toxicity profiles indicated that only Taxifolin was not an hERG blocker. All compounds 

passed the H-HT parameter except for Danazol. The AMES toxicity parameter revealed suboptimal 

results only for Taxifolin. Danazol showed indications of carcinogenic properties, while the others 

did not. None of the compounds exhibited corrosive properties towards the eyes, but only Taxifolin 

was considered safe for the respiratory system. The full results of the analysis are presented in Table 

2. 

Table 3. Complete results of ADMET analysis from ADMETLab 2.0 presented in the following order: 

compound name, molecular formula, druglikeliness, toxicology profiles, absorption profiles, distri-

bution profiles, metabolism profiles, and excretion profiles. 

Compound (Pub-

Chem ID) 

Afimoxifene 

(449459) 

Danazol 

(28417) 

Taxifolin 

(439533) 

Terfenadine 

(5405) 

Molecular Formula C26H29NO2 C22H27NO2 C15H12O7 C32H41NO2 

Lipinski rule-of-five Passed Passed Passed Passed 

hERG Blockers ++ +++ --- +++ 

H-HT - +++ --- -- 

AMES Toxicity --- --- + --- 

Rat Oral Acute Tox-

icity 
+ + -- --- 

Carcinogencity -- +++ --- --- 

Eye Corrossion --- --- --- --- 

Respiratory Toxicity ++ +++ --- +++ 

CaCO2 permeability -4,46 -4,88 -6,06 -5,274 

MDCK permeability 1,5 × 10−5 1,1 × 10−5 4,3 × 10−6 9,5 × 10−6 

Intestinal Absorption --- --- --- --- 

PPB 95,63% 98,46% 93,23% 74,04% 

VD 1,745 3,01 0,56 2,28 

CYP1A2 inhibitor ++ +++ - --- 

CL 10,08 5,265 12,29 5,11 

T1/2 0,108 0,12 0,76 0,005 

Legend: (---): suitable with a score of 0 - 0.3, (+)/(-): less suitable with a score of 0.3 - 0.7, (++)/(+++): not suitable 

with a score of 0.7 - 1.0. 

3. Discussion 

3.1. Machine Learning-Based DTI Analysis Reveals the Superiority of CDF Using ECFP-Aaindex1 as a Fea-

ture Combination 

This study employed seven machine learning algorithms, including CDF, random forest (RF), 

XGBoost, LightGBM, KNN, multi-layer perceptron neural networks (MLPNN), and logistic regres-

sion (LR). The selection of CDF was based on previous research findings that demonstrated its supe-

rior performance compared to other state-of-the-art algorithms commonly used for DTI prediction 

[19]. In this study, CDF exhibited the best performance among the evaluated algorithms. 
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CDF outperformed the other algorithms in most metrics, except for the recall value, where KNN 

had the highest ranking. However, the difference in recall values between CDF, KNN, and LightGBM 

in the first and second positions was insignificant (0.9% and 0.1% difference, respectively). Recall is 

a metric that measures the ratio of true positives (correct positive predictions) to all positive instances 

in the data [30]. A high recall value indicates that a model effectively identifies positive instances [31]. 

However, recall alone is not sufficient to fully describe the overall performance of a model, so com-

prehensive measures like the F1-Score, which is the harmonic mean of precision and recall, are com-

monly used. Regarding the F1-Score, CDF achieved the highest score (86.49%) compared to the other 

algorithms. 

The selection of the best algorithm for prediction was determined by comparing the AUC scores 

of each algorithm. The AUC score calculates the area under the ROC curve, which ranges from 0 to 

1, and indicates the model's reliability in distinguishing between positive and negative classes in bi-

nary classification [32]. An AUC value of 1 indicates that the model can ideally separate the positive 

and negative classes, while an AUC value of 0.5 indicates that the model is no better than random 

guessing [33]. CDF outperformed the other algorithms with an AUC score of 93.75%, indicating that 

it is the most effective algorithm compared to the others. This finding aligns with the study conducted 

by [19]. 

The CDF algorithm was developed by [34] to address various limitations of neural network-

based algorithms. This algorithm leverages the properties of neural networks, such as layer-by-layer 

learning, simultaneous feature transformation, and complex structure, to achieve comparable perfor-

mance. With similar reliability, this algorithm aims to overcome the dependence of neural networks 

on hyperparameter tuning, which is often done through trial and error and is inefficient. CDF is built 

using a layered structure like neural networks, but each node is replaced with ensemble learning 

techniques, such as RF. This design choice reduces the number of hyperparameters required for CDF. 

The complexity of the CDF structure can adapt to the complexity of the training data [34]. Unlike 

neural network, whose complexity is determined upfront, the number of layers in CDF depends on 

the data. The addition of layers in CDF is based on the evaluation of the previous layers, and the 

process will be stopped if there is no significant improvement in performance. Additionally, unlike 

neural networks, CDF does not require backpropagation, which means it does not rely on training 

with a large amount of labelled data to achieve good performance. Considering the characteristics of 

this algorithm, the superior performance of CDF in this study is not surprising. 

This study utilized five types of molecular fingerprints (ECFP, Morgan, PubChem, MACCS, and 

Klekota-Roth) and four types of protein descriptors (AAC, AAIndex1, PAAC, and ATC), resulting in 

twenty feature combinations. The combination of ECFP-AAIndex1 features with CDF showed con-

sistent performance, where CDF obtained the highest AUC and F1-Score using this feature combina-

tion. This consistency further strengthens the rationale for using the CDF algorithm and ECFP-AA-

Index1 combination in the interaction prediction stage. 

3.2. Molecular Docking Validates Predictions by CDF and Enhances Understanding of Compound-Protein 

Interaction Mechanisms 

In this study, molecular docking was used to validate the predicted interactions. The docking 

method employed was blind docking, which considers the entire surface area of the protein without 

specifying a specific binding site. The advantage of blind docking is that it can identify potential 

binding sites and predict the binding poses of compounds within those sites [35]. In the context of 

drug discovery, blind docking is essential as it does not require prior knowledge about the specific 

binding sites of the target protein [36], [37]. 

The docking results revealed four compound-protein pairs with good binding affinities (below 

-6.0 kcal/mol). The pair with the lowest binding affinity was Afimoxifene-PIK3CB (-12.7 kcal/mol). 

According to information from clinicaltrials.gov, Afimoxifene is being investigated for its potential 

as an anti-breast cancer agent (ID: NCT03063619). The study has been ongoing since 2017 and is cur-

rently in Phase 2 clinical trials [38]. A similar case can be observed for the pair with the second-best 
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binding affinity (Danazol-CYSLTR2), where Danazol has been found to effectively overcome multi-

drug resistance in cancer patients by inhibiting the STAT3 pathway [39]. 

Next, the pair with the third-best binding affinity was Taxifolin-PIK3CB (-10.0 kcal/mol). Taxi-

folin has been associated with various uses, including as an additive substance [40], an antioxidant, 

an enzyme inhibitor in diseases such as diabetes, Alzheimer's, and liver disorders [41]. One study 

demonstrated a strong correlation between Taxifolin and its antiproliferative effects on MCF-7 cells 

(breast cancer cells) [42]. 

Lastly, the pair Terfenadine-UBE2F achieved a binding affinity of -6.6 kcal/mol. Several studies 

have indicated that Terfenadine has inhibitory effects on various enzymes and pathways, such as 

CYP3A4, CaMKIID/CREB1, and CYP2J2, which are involved in drug metabolism and cancer cell re-

sistance (Racha et al., 2003; Wu et al., 2020; Huang et al., 2022) [43]–[45]. 

3.3. Enrichment Analysis of Validated Genes/Proteins Reveals Potential Biological Processes and Pathways 

in Cancer 

The protein/gene targets obtained from the validation results using docking present an exciting 

opportunity for further enrichment analysis since no previous study has linked the highlighted pairs 

in this study.. In this discussion, enrichment analysis was conducted on three proteins/genes: Phos-

phatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform (PIK3CB), NEDD8-conju-

gating enzyme (UBE2F), and Cysteinyl leukotriene receptor 2 (CYSLTR2). The analysis was per-

formed using Enrichr (https://maayanlab.cloud/Enrichr/), with Gene Ontology (GO) and Kyoto En-

cyclopedia of Genes and Genomes (KEGG) databases as the resources. The results were visualized 

using Cytoscape v3.9.1 [46]. Tables corresponding to the visualizations are presented in Table S3 and 

Table S4 of supplementary materials. Enrichment analysis explored biological processes and KEGG 

pathways associated with these proteins/genes. 

Enrichment analysis revealed that only two of the three proteins (PIK3CB and UBE2F) yielded 

significant results. It is important to emphasize that the absence of enrichment does not diminish the 

potential usefulness or significance of a gene for biological purposes. It may simply indicate that the 

available information and resources are currently insufficient to determine its functional role or in-

volvement in specific pathways [47]. Regarding the obtained results, a total of 20 cellular biological 

processes and 7 KEGG pathways were enriched by these two genes. The results are presented in 

Figure 6. 
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Figure 6. The enrichment analysis results demonstrated that PIK3CB and UBE2F exhibited significant 

enrichment in terms of GO biological processes and KEGG Pathways. The results are presented as 

follows: (a) Topological representation of enriched biological processes; (b) Ranking of biological pro-

cesses based on p-values (top 10); (c) Topological representation of enriched KEGG pathways; (d) 

Ranking of KEGG pathways based on p-values (top 10). 

The most enriched biological process identified was Positive Regulation Of the Myeloid Cell 

Apoptotic Process (GO:0033034, p-value = 0.001050), which involves enhancing anti-apoptotic mech-

anisms in myeloid cells and maintaining the balance between cell proliferation and apoptosis for 

normal tissue homeostasis [48], [49]. Apoptosis serves as a protective mechanism against cancer de-

velopment [48]. The most enriched pathway, Aldosterone-regulated sodium reabsorption, controls 

salt-water homeostasis through interaction with the mineralocorticoid receptor (MR) in renal epithe-

lial cells [50]. Recent research has suggested the potential involvement of the aldosterone-regulated 

epithelial sodium channel (ENaC) in cancer [51]. Although not enriched, CYSLTR2 has been impli-

cated in specific cancer types [52]–[55]. This enrichment analysis provides valuable insights into the 

biological processes and pathways associated with the selected genes, serving as a basis for further 

experimental studies to elucidate the underlying mechanisms between the identified anti-cancer can-

didates and cancer pathways in the human body. 

3.4. ADMET Analysis Reveals Insights into Druglikeliness and Bioavailability of Selected Bioactive Com-

pounds 

The bioactive compounds validated through docking were further subjected to ADMET analy-

sis. The analysis results indicated that all the compounds met the criteria of the Lipinski rule-of-five. 

This result suggests that the identified compounds possess favourable pharmacokinetic properties 
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for drug development and can be administered orally [56]. The Lipinski rule-of-five consists of five 

criteria, including a molecular weight of fewer than five hundred Daltons, no more than five hydro-

gen bond donors, no more than ten hydrogen bond acceptors, and a partition coefficient (LogP) of 

less than five [57]. Bioactive compounds that satisfy these criteria have a higher potential for further 

drug development [58]. 

The ADMET analysis extended to the perspective of toxicology and revealed exciting findings. 

Among the compounds analyzed, only Taxifolin did not act as an hERG blocker, which is significant 

because compounds that inhibit the human-Ether-a-go-go-Related Gene (hERG) can potentially in-

crease the risk of heart attacks [59]. However, it is important to note that not all hERG blockers exhibit 

the same level of toxicity. Factors such as the potency and selectivity of the inhibitor, dosage and 

treatment duration, and the patient's health condition play a role in determining the risk [60]. 

The results of the ADMET analysis also shed light on the compounds' hepatotoxicity, mutagen-

icity, and acute toxicity. Only Danazol did not meet the H-HT (human hepatotoxicity) parameter 

criteria, suggesting that the other three compounds undergo hepatic metabolism and can circulate 

throughout the body via the bloodstream [61]. In terms of mutagenicity, all compounds passed the 

AMES toxicity parameter except Taxifolin, which indicates that it may potentially cause mutations in 

bacteria [62]. Furthermore, Danazol and Afimoxifene received low scores (+: 0.3-0.7) in the Rat Oral 

Acute Toxicity parameter, which measures the potential of a compound to cause various effects, in-

cluding death, in rats when administered at high oral doses [63]. 

Regarding specific toxicological properties, the carcinogenicity parameter indicated that only 

Danazol potentially possesses such properties, while the respiratory toxicity parameter suggested 

that only Taxifolin is not potentially harmful to the respiratory system. None of the compounds ex-

hibited corrosive properties to the eyes, as per the eye corrosion parameter results. These findings 

from the ADMET analysis provide valuable insights into the potential safety and toxicity profiles of 

the compounds, highlighting the need for further research and evaluation in wet lab settings to con-

firm and expand upon these predictions. 

As previously described, the various parameters in the toxicological profile of the four selected 

compounds indicate that none passed all parameters. However, this does not automatically rule out 

the potential for these compounds to be developed as drugs, as the results are still predictions and 

further extensive studies are needed to confirm these findings. Nonetheless, Taxifolin demonstrates 

the safest toxicological profile among the compounds, as it only did not pass the AMES toxicity pa-

rameter but with a low score (+: 0.3-0.7). This information can serve as a basis for further research in 

the future. 

The next step in the ADMET analysis involves assessing the absorption profiles. The absorption 

profiles of the four compounds were evaluated, yielding interesting findings. Among these com-

pounds, only Afimoxifene and Danazol passed the Caco-2 permeability test, indicating their potential 

for absorption through the intestinal epithelium. However, contrasting results were obtained when 

testing the compounds using the MDCK permeability and HIA (human intestinal absorption) meth-

ods. In these tests, all compounds demonstrated favourable outcomes, suggesting their potential for 

good absorption within the human body. The inconsistency between the Caco-2 permeability test 

and the MDCK permeability and HIA results emphasizes the need for further investigation into the 

permeability characteristics of these compounds. Nevertheless, the consistent results obtained from 

the MDCK permeability and HIA testing indicate that all compounds are promising for oral drug 

development, as they have the potential for effective absorption by the body [64]. 

Continuing the analysis, the distribution profiles reveal that only Terfenadine does not bind to 

plasma proteins according to the PPB (plasma protein binding) test. However, all compounds exhibit 

good volume distribution based on the VD (volume distribution) test. This suggests that all com-

pounds can readily distribute throughout the body but may tend to bind to proteins in the blood, 

potentially reducing their therapeutic effects [65], [66]. 

The following analysis is focused on the metabolic profiles of the selected compounds. Notably, 

Afimoxifene and Danazol are identified as inhibitors of the CYP1A2 enzyme, while Taxifolin and 
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Terfenadine do not exhibit inhibitory effects. The CYP1A2 enzyme plays a crucial role in metabolising 

various drugs and toxins within the liver [67]. Compounds that act as inhibitors of this enzyme can 

significantly impact its activity, leading to potential alterations in the metabolism of other drugs typ-

ically metabolized by CYP1A2. This property, in turn, may result in reduced therapeutic efficacy or 

even drug-drug interactions [68]. Understanding these compounds' metabolic profiles and potential 

enzyme interactions becomes essential for further evaluation and development. 

In conclusion, this study employed a comprehensive in silico approach to identify several bio-

active compounds from sea cucumbers with potential anti-cancer properties. Combining machine 

learning predictions, molecular docking, and ADMET analysis provided valuable insights into these 

compounds' binding affinities, interaction with potential protein targets, pharmacokinetic properties, 

toxicity profiles, and metabolic characteristics. While each compound exhibited unique ADMET char-

acteristics, Taxifolin emerged as an up-and-coming candidate. However, further in vitro and in vivo 

studies are warranted to validate and explore specific aspects of these compounds' activities. The 

findings of this research lay the foundation for future extensive investigations, which have the po-

tential to lead to the development of novel anti-cancer therapeutics derived from sea cucumber bio-

active compounds. 

4. Materials and Methods 

4.1. Data Acquisition 

This study utilized cancer protein data from three databases: The Cancer Genome Atlas (TCGA) 

[24], Ijah Analytics (http://ijah.apps.cs.ipb.ac.id/), and The Human Protein Atlas (THPA) [25]. Queries 

were conducted using keywords representing the five most prevalent types of cancer in Indonesia, 

and the resulting data were downloaded. Additionally, bioactive compound data of black sea cu-

cumbers were obtained from a previous study [69]. Interactions between various cancer proteins and 

compounds were extracted from the BindingDB database leveraging API as a query tool and amino 

acid sequences as query parameters [70]. This interaction data was utilized for machine learning 

model training. 

4.2. Data Preprocessing 

The interaction data used in this study were obtained from BindingDB, which consists solely of 

positive interactions. To obtain the negative interaction data, random sampling was performed using 

compounds and proteins from the positive interaction dataset. This resulted in the creation of com-

pound-protein pairs that were absent from the original data and were then labeled as negative inter-

actions. To maintain a balanced dataset, the positive and negative labeled data were carefully bal-

anced to achieve a 1:1 ratio.  

Regarding cancer protein data, information was gathered from the three mentioned sources 

(THPA, TCGA, and Ijah Analytics) and subsequently merged. Redundant entries that occurred after 

the merging process were eliminated, ensuring a consolidated and nonrepetitive dataset for further 

analysis. 

4.3. Feature Engineering 

The chemogenomics feature space will be utilized for training the machine learning model. This 

feature space will be extracted from the amino acid sequence data of proteins and the chemical struc-

ture of compounds in FASTA and SMILES formats. The protein feature space will be extracted using 

protein descriptors. Similarly, the compound feature space will be extracted using molecular finger-

prints. The protein descriptors to be used will include amino acid compositions (AAC) [71], a physi-

cochemical feature named AAIndex1 [72], pseudo-amino acid compositions [73], and atomic and 

bond compositions (ATC) [74]. Additionally, the molecular fingerprints to be employed will consist 
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of Extended-Connectivity Fingerprints (ECFP) [75], Klekota-Roth Fingerprints [76], Molecular Access 

System (MACCS), Morgan Fingerprints [77], and PubChem Fingerprints [78]. 

4.4. Data Sampling 

The data size of compound-protein interactions is typically huge. This huge data size is further 

compounded by the generation of negative samples. The extensive data size can significantly increase 

the computational resource requirements. To prevent potential failures during the machine learning 

training process, researchers can anticipate by conducting sampling from the interaction data. Ten 

samples are drawn for each feature combination, resulting in two hundred data samples. The mini-

mum sample size for each sample was determined using an online calculator accessible at the follow-

ing address: https://www.calculator.net/sample-size-calculator.html. The calculator was employed 

with a margin of error of 0.01 and a confidence interval of 95%. 

4.5. Machine Learning Modelling 

The machine learning algorithms used in this study included CDF, extreme gradient boosting 

machine (XGBoost), light gradient boosting machine (LightGBM), logistic regression, multi-layer per-

ceptron neural networks (MLPNN), random forest, and k-nearest neighbors (KNN). The DF21 (pack-

age source code available here: https://github.com/LAMDA-NJU/Deep-Forest) package was utilized 

to implement the CDF algorithm, while the Scikit-Learn [79], XGBoost [80], and LightGBM [81] pack-

ages were used for the other algorithms. All algorithms were executed with default hyperparameter 

configurations. Considering the sample size of two hundred samples, two hundred models were 

trained for each algorithm. The modeling process employed 77% of the training data and 33% of the 

testing data, partitioned from the generated samples in the preceding stage. The project source code 

can be accessed via following link: https://github.com/TropBRC-BioinfoLab/black_sea_cucum-

bers_for_anti_cancers. 

4.6. Model Evaluations 

The various trained machine learning models from the previous stage were then tested using 

the training data partition. The testing results were presented in the form of performance metrics for 

each algorithm. These performance metrics included accuracy, precision, recall, F1-score, and AUC 

score. The performance metrics of each model (two hundred models) were averaged based on the 

feature combinations, resulting in a single value for each mentioned performance metric. This process 

aimed to evaluate which feature combination yielded the best model performance. Finally, the algo-

rithm performance was compared using AUC score. 

4.7. Interaction Predictions 

The best feature combination and algorithm from the previous stage were utilized for this stage. 

However, in this stage, the data from the black sea cucumber bioactive compounds were employed. 

These compounds were paired with each previously obtained cancer protein, forming the com-

pound-protein feature space as part of the feature engineering process. The data was then used as 

input for the model to predict their interactions. Since there were ten different models corresponding 

to the best feature combination from the previous sampling and training process, there would be ten 

different sets of prediction results. The intersection of positive predictions from these ten sets of in-

teraction predictions was extracted and used for the subsequent stage. 

4.8. Molecular Docking 

The compound-protein pairs, representing the intersection of the prediction sets obtained in the 

previous stage, underwent further analysis using molecular docking. The 3D structures of the com-

pounds were downloaded from PubChem (https://pubchem.ncbi.nlm.nih.gov/) in *.sdf format and 
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converted to *.pdb format using OpenBabel (O'Boyle et al., 2011). Meanwhile, the 3D structures of 

the proteins were obtained from the Protein Data Bank (https://www.rcsb.org/). The preparation of 

the protein 3D structures involved removing water molecules, adding charges, adding non-polar hy-

drogens, removing heteroatoms, and defining the search space configuration. AutoDock Tools [82] 

was used to perform these preparations. 

In this study, blind docking was conducted, considering the entire protein surface instead of 

specific binding sites. The compound structures were also prepared (converted from *.pdb to *.pdbqt) 

using AutoDock Tools. The subsequent docking process utilized the prepared *.pdbqt files of the 

compounds and proteins, along with the configuration *.txt file obtained from the previous search 

space configuration process. The docking was performed using the AutoDock Vina program [29]. 

The output of the docking process included *.pdbqt files containing the top ten poses and *.txt 

files containing the binding affinity information of the top five poses from the docking results. The 

results were visualized using the PyMol [83] and LigPlot programs [84]. 

4.9. Absorption, Distribution, Metabolism, dan Toxicity (ADMET) Analysis 

The compound-protein pairs with binding affinity ≤ -6.0 kcal/mol underwent ADMET analysis. 

Such compound-protein interactions with binding affinity in this range are considered to be genu-

inely binding and stable (Liu et al., 2021). The ADMET analysis was conducted using ADMETLab 

2.0, where the SMILES of the selected compounds were inputted (Xiong et al., 2021). The results of 

the ADMET analysis will help evaluate the feasibility of the compounds as drug candidates. 

The ADMET analysis will focus on several parameters, including (a) Absorption: CaCO2 per-

meability > -5.15 log cm/s, MDCK permeability (Papp) > 20×10^(-6) cm/s, and intestinal absorption > 

30%; (b) Distribution: plasma protein binding (PPB) ≤ 90% and volume distribution (VD) ranging 
from 0.04 to 20 L/kg; (c) Metabolism: acting as an inhibitor of CYP1A2 (increasing the compound 

concentration in plasma but may have negative implications in certain situations); (d) Excretion: drug 

clearance ≥ 5, compound half-life T1/2 ranging from 0 to 0.3; (e) Toxicology: including hERG blockers, 

human hepatotoxicity (H-HT), AMES Toxicity, Rat Oral Acute Toxicity, carcinogenicity, eye corro-

sion, and respiratory toxicity ranging from 0 to 0.3 [85]. Furthermore, drug-likeness parameters such 

as Lipinski rule-of-five and Pan-Assay Interference Compounds (PAINS) represent the potential of 

the compounds to have therapeutic effects based on their physicochemical characteristics. 

5. Conclusions 

This research successfully utilized in silico approaches, including machine learning, molecular 

docking, and ADMET analyses, to identify bioactive compounds from the black sea cucumber with 

potential anti-cancer properties. The results highlighted the effectiveness of the CDF algorithm and 

the ECFP-AAIndex1 feature combination in determining drug-target interactions. Through molecu-

lar docking validation, four promising bioactive compounds were identified: Afimoxifene, Danazol, 

Taxifolin, and Terfenadine. Subsequent ADME analysis provided valuable insights into these com-

pounds' absorption, distribution, metabolism, excretion, and toxicity characteristics. Among them, 

Taxifolin exhibited the most favourable results, passing the highest number of ADME parameters. 

These findings underscore the significance of the black sea cucumber as a valuable source of bioactive 

compounds, with Taxifolin showing promise as a lead compound for further development of anti-

cancer drugs. However, additional experimental validation is necessary to ascertain the efficacy and 

safety of these compounds, ultimately paving the way for potential therapeutic interventions against 

cancer. 

Supplementary Materials: Cancer-related proteins acquired from THPA, TCGA, and Ijah Analytics are pre-

sented in Table S1; Black Sea Cucumbers’ bioactive compounds are presented in Table S2; Enrichment analysis 

results in term of GO Biological Process and KEGG Pathways are presented in Table S3 and Table S4 respec-

tively; Complete interaction dataset is provided in Spreadsheet S1 in CSV format. 
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