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Abstract: It is well known that the strong-evidence foodborne outbreaks of human campylobacteriosis are
associated with the consumption of raw or incompletely thermally processed poultry meat, whereas broilers
act as the main reservoir for Campylobacter species. Campylobacter jejuni and Campylobacter coli are the two main
species of campylobacters detected in chicken meat, while they account for almost 90% of the reported cases of
campylobacteriosis in humans. Over 80% of these cases are attributed to C. jejuni and about 10% of them are
due to C. coli. Therefore, until recently the dominance of C. jejuni against all other Campylobacter spp. isolated
from chicken meat samples was well established and unquestionable. Lately, however, C. coli has been
increasingly recovered from chicken meat to such an extent that it is now evident that it often comprises the
dominant species among the identified campylobacters in the meat samples. This work attempts for the first
time a detailed review in the literature to deepen into this noteworthy epidemiological swift in the prevalence
of C. jejuni and C. coli, along with the distribution of Campylobacter spp. in chicken meat. Factors such as the
sampling method followed for screening campylobacters in broiler carcasses (e.g., swabs or carcass rinsates,
skinned or skinless meat excised samples) and part of the animal carcass from which the sample is obtained
(e.g., neck, breast, leg), seasonality of sampling (summer vs. winter) and environmental conditions (e.g.,
rainfall, relative humidity) at the farm level, the isolation procedure (enumeration or detection) and pathogen
identification (biochemical or molecular), the enrichment and plating isolation media (e.g., Bolton vs. Preston
broth, charcoal-based vs. chromogenic agars), as well as the biofilm-forming ability of different campylobacters,
highlight the multivariate dimension of the phenomenon and are thoroughly discussed in the present review.

Keywords: Campylobacter; chicken; epidemiology; meat; poultry

1. Introduction

According to the latest scientific report of the European Food Safety Authority (EFSA) and the
European Centre for Disease Prevention and Control (ECDC) on the trends and sources of zoonoses
and foodborne outbreaks in the European Union (EU), campylobacteriosis is the most commonly
reported foodborne gastrointestinal infection in humans in the EU and has been so since 2007 [1].
Estimates of the overall human health impact of bacterial agents transmitted commonly through
food, place Campylobacter as the first or second most common agent after nontyphoidal Salmonella in
Europe, North America, Australia, and Japan [2—4]. The notable absence of notified Campylobacter
outbreaks in China and some other populous countries, like India, could be attributed to the lack of
mandatory surveillance by the established foodborne disease surveillance system or to the
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underreporting (e.g., mild symptoms and a smaller number of cases seeking health care) and/or
underdiagnosis (e.g., lack of testing and diagnostic accuracy) of the disease, the lack of
epidemiological surveillance data connecting causative agents of outbreaks, and the different dietary
habits on those countries [5-7].

Major food categories of interest for Campylobacter occurrence include mostly meat and meat
products (i.e., animal carcasses and fresh/ready-to-eat (RTE), cooked and fermented products), as
well as milk and milk products (i.e., raw and pasteurized milk and dairy products including cheese)
[1], although the prevalence of the disease-causing Campylobacter spp. is significantly increased in
poultry meat samples compared to other types of meat or compared with milk and dairy products
[8-11]. The strong-evidence foodborne association of campylobacteriosis outbreaks with the
consumption of raw or incompletely thermally processed poultry meat is already well known and
has been emphatically documented nowadays [8,10,12], while the foodborne illness due to the
presence of Campylobacter spp. in poultry has been classified as the costliest pathogen-meat
combination from an economic perspective [13]. Regardless the fact today poultry is considered the
main reservoir for Campylobacter spp. (source of infection), latest epidemiological evidence suggests
pathogen transmission to humans through a pathway implicating cattle as the primary reservoir of
Campylobacter (source of contamination), infecting people via the fecal-oral route and the
consumption of contaminated chickens [14].

World poultry meat consumption refers to the consumption of meat from chickens (broilers),
turkey, and other avian species (e.g., ducks, geese). Available data compiled from the Food and
Agriculture Organization (FAO) of the United Nations (UN) reveal an increase in worldwide annual
poultry meat consumption per capita by more than 5.0 kg in the past 20 years; from 10.8 kg in 2000
to 16.2 kg in 2020 [15]. Chickens are by far the main protein source of animal origin for humans in
terms of livestock animals reared and slaughtered for their meat [15], so the previous rates represent
roughly the chicken meat being consumed on a global basis.

The different thermotolerant campylobacters validly described to date are summarized in
Supplementary Table S1. Of these, Campylobacter jejuni and C. coli are the two most important species
mainly detected in foods of animal origin [55], [56] (p. 1670). These two species account for almost
90% of the reported human campylobacteriosis cases, with over 80% of the occurring gastrointestinal
infections being attributable to C. jejuni and the rest about 10% of infections attributed to C. coli [56]
(pp- 1669-1670), [57]. Therefore, until recently it was well established and beyond any reasonable
question that C. jejuni is the dominant species among all other Campylobacter spp. isolated from
chicken meat samples. Lately, however, C. coli has been increasingly recovered from chicken samples
to such an extent that it is now obvious it many times comprises the dominant species among the
identified campylobacters in the meat samples [58-62]. To this end, in studies pertaining to the
metropolitan area of Athens, Greece, and its suburbs in the Attica region, Andritsos et al. [63]
reported isolation rates of 6% and 27% for C. jejuni and C. coli, respectively, during Campylobacter spp.
detection in chicken meat samples, whereas the strict majority (87.5%) of the recovered
campylobacters (16) from 830 fecal samples collected from five poultry farms by Marinou et al. [64]
were identified as C. coli, without any of the strains being identified as C. jejuni whatsoever. Taking
into account that in the latter case of Campylobacter presence in broilers’ litter, the positive predictive
value in terms of microorganism’s occurrence in carcass skin samples is much greater, unless the
pathogen cannot be detected in the intestinal content of the bird [65], C. coli dominance in the chicken
flocks should be taken for granted.

Considering all the above, the present work attempts for the first time, to the best of the authors’
knowledge, a detailed review in the literature in order to elucidate the underlying epidemiological
transition from C. jejuni to C. coli in chicken meat, along with the distribution of campylobacters in
poultry. Figure 1 outlines the factors affecting the occurrence of Campylobacter spp. in poultry meat
samples, while those factors are thoroughly being discussed below.

doi:10.20944/preprints202306.1775.v1
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Figure 1. Factors affecting the prevalence and distribution of Campylobacter spp. in poultry meat.
Factors that are related to each other are grouped together under the same color. As a result, distinct
groups of factors referring to sampling (light green), isolation procedure (light blue), confirmation
and/or identification (light purple), and biofilm production (light brown) for Campylobacter species
are presented. Created with BioRender.com.

2. Sampling of Poultry

2.1. Carcass Sampling

Campylobacter which is originally associated with the bird’s feathers and contaminates the
exterior of the animal might be transferred to the poultry skin during mechanical defeathering of
broiler carcasses in the slaughterhouse [66]. Thus, the meat sampled with skin from poultry is more
likely to contain the pathogen when compared to animal tissue samples obtained from broiler
carcasses without the skin. Furthermore, due to the favorable conditions of humidity and
temperature in the wings of poultry, there is a high Campylobacter load in the wings which could also
be attributed to imperfect scalding, post-scalding contamination or a combination of both [67]. Hence,
there is an increased prevalence of C. jejuni in the wings of sampled poultry [65,68-70]. Besides, an
initial high Campylobacter contamination of the neck skin may occur when water excess drips down
the carcass dragging along the bacteria during the slaughter line hanging (upside down) of carcasses
[71]. This may also explain the comparatively lower number of campylobacters found on the back,
breast and leg skin samples and other parts of the carcass than in the neck and wing skin samples
(Figure 2). Moreover, breast and wing skin sites when sampled show a higher correlation in
Campylobacter populations with the neck skin samples [71]. The variations in Campylobacter
concentrations between skin sites of individual carcasses are often reflected in the non-homogeneous
distribution of carcass contamination after post-chilling of broiler carcasses [71] (Figure 2).
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Figure 2. Sampling sites of a broiler carcass with variations in Campylobacter contamination depicted
with the relative concentration of campylobacters (green curved bacteria). Campylobacter
concentration in descending order from the more heavily contaminated site to the less contaminated
one, when sampled with skin, is as follows: (neck > wing > breast > leg) > (abdomen > back).
Parentheses designate the sites that are highly correlated to each other in terms of Campylobacter
concentration. Created with BioRender.com.

2.2. Sampling Method, Type of Product and Refrigerated Storage

The method of sampling plays an important role in determining the microbiological quality of
foods. Several non-destructive methods (e.g., surface swabs, contact plates, tissue excisions) are
suitable for estimating bacterial populations anticipated in relatively high concentrations on the
carcass, such as aerobic plate count (APC) and enterobacteria, while other —destructive in nature-
methods (e.g., sampling/cutting of parts of the carcass, whole carcass rinses) are more suitable for
detecting the presence of pathogens that may be more unevenly distributed and in low population
on the carcass [72,73]. The former are fast and simple methods that can be used for comparative
purposes, sanitation verification procedures, and shelf-life prediction, whereas the latter are time-
consuming and labor-intensive methods preferable when the microbiological safety is of outmost
importance. For instance, a sample area of at least 100 cm? is swabbed for APC and Enterobacteriaceae
enumeration in a cattle carcass after dressing but before chilling and a pooled neck skin sample is
recommended for detecting Salmonella and enumerating Campylobacter in poultry carcasses after
chilling [74,75]. In the case of broiler carcasses, counts for APC and hygiene indicators (total coliforms,
Escherichia coli) from the microbiological analysis of swabs were generally more than 0.5 log units
lower than the smallest values obtained through tissue excisions and carcass rinses [76].

The type of product or its preparation also affect Campylobacter incidence. Statistical analysis in
a survey of Campylobacter spp. contamination in chicken meat preparations in Belgium indicated that
the odds of Campylobacter presence are lower in minced meat than in portioned or cut meat and an
unpredicted bias into prevalence and enumeration results could be plausible, unless proper sampling
and a balanced selection of product types takes place [67]. Progressive increase of product’s surface
through mincing, apart from increased levels of pathogen contamination, implies also increased
microbial exposure to the air. For microaerophilic Campylobacter spp. this exposure to aerobic
conditions could prove lethal since the degree of processing leads to an ever-increasing decrease in
the number of campylobacters encountered in the products [55,68,77,78]. Finally, storage of product
at refrigeration temperature may reduce Campylobacter count, as revealed by culturing methods
during storage of refrigerated broiler breast and thigh meat at 4°C, packaged under aerobic, modified
atmosphere packaging (MAP) or vacuum conditions [79,80]. Interestingly, the succession of
Campylobacter species or strains, with a special emphasis on C. jejuni and C. coli, during refrigerated
storage of artificially contaminated chicken meat packaged samples could be the subject of future
research, as in the case of Listeria monocytogenes [81].
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2.3. Seasonality of Sampling and Environmental Conditions

The seasonality of sampling and the effect environmental conditions may have on the recovery
of Campylobacter spp. from broiler carcasses or chicken meat has been the subject of dozens of research
papers, which present conflicting results as far as the effect of seasonality on Campylobacter prevalence
is concerned and fail to reach an agreement on the matter. In this context, a large number of studies
have indicated a significant seasonal increase in the prevalence of Campylobacter in broiler carcasses
or in poultry meat during the hot summer months [10,68,82-85], even in tropical countries without
marked seasons where other climatic conditions though, like increased rainfall and relative humidity,
possibly reflect to the pathogen’s potential to colonize its host (e.g., chicken broilers) [86,87]. The
seasonal effect on Campylobacter prevalence is inferred either by the increased number of reported
campylobacteriosis cases during the summer months [10,82] or the increased fly activity [88] and the
presence of flies in the summer, which play the role of the bacterial vector (mechanical/transport host)
in the warm months [83]. In addition, the aforementioned increase in prevalence could reflect the
level of environmental contamination due to more regular ventilation of the poultry houses in
summer, resulting in increased contact of birds with the external environment [89,90]. To this end,
higher wind speeds and the geographical location of the farm, surrounded by a more agricultural
landscape, may also contribute to the extent of contamination in the poultry flock [84,91]. Wind may
introduce contaminated material (e.g., soil, dried fecal particles) to the poultry house, which is more
likely to exist in the rural setting, exposing the flock to Campylobacter spp. among other fecal
pathogens, if birds have access to the external environment [91]. Biosecurity measures at the farm
level greatly contribute towards prevention of Campylobacter colonization and reduce prevalence of
the pathogen in broiler flocks [90,92].

On the other hand, several papers highlight the non-statistically significant effect of seasonality
on Campylobacter populations from broiler carcasses or chicken meat [61,63,90,93], where especially
in the warmer countries of southern Europe, like the Mediterranean countries, a higher prevalence
of Campylobacter spp. is reported in broiler flocks throughout the year compared to the colder
northern European countries with the more pronounced and obvious seasonality in their bacterial
recoveries of the pathogen [90,92]. Moreover, many times the inability to ascertain the degree of
influence of the seasonality on the recovery rate of Campylobacter spp. is even related to the small
number of samples analyzed which does not allow safe conclusions to be drawn [61,63].

Regarding the distribution of different Campylobacter species in poultry carcasses, Manfreda et
al. [59] reported higher recovery rates for C. jejuni (75.2%) against C. coli (24.8%) in winter (i.e.,
December—March) for chicken carcasses sampled from a single slaughterhouse in Italy, which were
processed from broilers coming from a dozen of different chicken farms, compared to other seasons
where C. jejuni was either absent (in autumn), marginally (in spring) or slightly (in summer)
dominant over C. coli. In contrast, in a retrospective study conducted in Poland for the five-year
period 2014-2018, Wieczorek et al. [61] showed that the peak in the distribution of C. coli was clearly
placed to the autumn-winter months (i.e., October—February).

3. Isolation of Campylobacter spp.

3.1. Detection and/or Enumeration Procedure

The choice of microbiological method that can be used to isolate campylobacters from a food
commodity can significantly affect the prevalence or even the estimated concentration of the
pathogen in food [73,94-101], and therefore the distribution of different Campylobacter species
recovered from food during the microorganism’s detection or enumeration procedure followed. C.
jejuni was mainly isolated during pathogen enumeration procedure, while C. coli was the
predominant species recovered from all plating culture media following enrichment in Bolton broth
during the detection of Campylobacter in chicken meat [63,98].

The possibility of combining different enrichment broths (e.g., Bolton broth or Preston broth)
with different selective and/or differential (i.e., chromogenic) solid culture media (i.e., agars) (e.g.,
modified charcoal-cefoperazone-deoxycholate agar; mCCDA, Preston agar) could be utilized as an
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alternative to the standard ISO 10272-1 protocol [102] used for the detection of Campylobacter in food
[103-105]. For pathogen enumeration, different agars than mCCDA proposed by ISO 10272-2
enumeration method [107], either selective (e.g., Preston agar or Karmali agar) or chromogenic (e.g.,
Campylobacter selective agar; CASA®, Brilliance™ Campy count agar, BCCA) which have been found
to perform equally well to the recommended mCCDA in enumerating colonies of Campylobacter spp.
[63,96,108-112], could be used after the initial dilution of the food sample. After all, the colored
colonies of Campylobacter on chromogenic agars are easier to record and count than those on the
charcoal-based agars, such as mCCDA.

Enrichment of chicken meat samples in Preston broth for 24 h followed by plating on mCCDA
performed better than 48 h enrichment in Bolton broth and plating on mCCDA [96], while this
alternative enrichment and plating combination was taken into account in the revised ISO method
for Campylobacter spp. detection (i.e., procedure B in the ISO 10272-1 protocol) [102]. Furthermore, the
parallel use of the detection and enumeration procedures improves the recovery of Campylobacter
spp., whereas chromogenic agars, like CASA and BCCA, should be considered as secondary plating
media for simultaneous or optional use together with the ISO recommended mCCDA and/or even as
suitable alternatives to the latter selective agar [63]. In any case, it has been proved that the previously
mentioned enrichment and/or plating alternatives can significantly affect the recovery of
Campylobacter strains from food [73,94-101].

3.1.1. Composition of Culture Media for Detection/Enumeration

In food samples with an expected low number of Campylobacter spp. and low concentration
levels of accompanying (background) microbiota and/or stressed campylobacters (e.g., cooked or
frozen samples), the enrichment in Bolton broth is highly recommended for pathogen detection,
whereas for samples with high concentration levels of background microbiota other than
Campylobacter spp. (e.g., raw meats including poultry or raw milk), the use of Preston broth as a
sample enrichment medium is suggested [96,102].

The reduced recovery of campylobacters from raw chicken meat after sample enrichment in
Bolton broth compared to direct plating from the initial dilution of the food sample, is likely
attributable to the presence of cefoperazone in the liquid medium. The latter is a third generation {3-
lactam antibiotic which is supplemented into Bolton enrichment broth, as well as in mCCDA plates
utilized for pathogen isolation. Foods containing microbiota resistant to third generation (-lactams,
including cefoperazone, such as raw chicken containing {-lactam-degrading E. coli, namely
extended-spectrum (-lactamase-producing; ESBL-producing E. coli, may lead to the overgrowth of
the accompanying flora during the enrichment procedure in Bolton broth, which in turns leads to the
suppression of Campylobacter spp. rendering them non detectable following the subculturing on agar
plates. Limited growth of Campylobacter co-cultured with ESBL-producing E. coli in Bolton broth is
hypothesized to be due to oxygen availability during the growth of Campylobacter in the medium
[113]. In such a case, different enrichment broth and plating agar combinations, based on different
principles of selectivity (e.g., Preston broth combined with Preston agar), are considered more
suitable for combating this type of resistant microbiota and allowing for better detection of
Campylobacter spp. in chicken meat [96,102,103,105]. Alternatively, restoring the selectivity of Bolton
broth and mCCDA can be achieved by supplementation of these media with -lactamase inhibitors
or inhibitory bacterial growth agents (e.g., antibiotics) to overcome the problem of ESBL-producing
E. coli [114-121].

4. Confirmation and Identification of Campylobacter spp.

Using conventional microbiological methods and following the enrichment of food sample or
direct plating from the initial dilution of the food sample and isolation of Campylobacter spp. on
selective plating media, there is a need to confirm the presence of Campylobacter and then to proceed,
if necessary, with the identification of Campylobacter species [102,107]. Biochemical tests are routinely
used for confirmation and identification purposes, even though molecular methods, such as
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polymerase chain reaction (PCR) techniques (e.g., multiplex or quantitative PCR), are gaining more
and more ground lately.

4.1. Biochemical Differentiation of Campylobacter species

Among the Campylobacter spp. present in food, the most frequently encountered species, as
already highlighted, are C. jejuni and C. coli. However, other species have been described (e.g., C. lari,
C. upsaliensis; Supplementary Table S1), some key characteristics of which permit their differentiation
(Table 1) [102,107].

With a closer look, Table 1 reveals that the only biochemical test that can distinguish between C.
jejuni and C. coli is hippurate hydrolysis, with the former species showing a positive reaction
compared to the latter species which give a negative reaction to the presence of hippurate. Thence,
this test is typically used to differentiate C. jejuni and C. coli. Nevertheless, given the fact that some
hippurate-negative C. jejuni strains have been reported [122,123], hippurate hydrolysis is not a robust
criterion for differentiating thermotolerant Campylobacter species.

Table 1. Key biochemical characteristics of Campylobacter species encountered in foods.

Characteristic C. jejuni C. coli C. lari C. upsaliensis
Catalase activity +1 + + -2 or weak
Hippurate hydrolysis +3 - - -
Indoxyl acetate hydrolysis + + - +

I +: positive reaction. 2 -: negative reaction. > Some hippurate-negative C. jejuni strains have been reported
[122,123].

4.2. Molecular Methods for Differentiating Campylobacter species

The inherent disadvantage that biochemical differentiation of C. jejuni and C. coli has because of
the low specificity (ca. 20%) hippurate hydrolysis exhibits to some hippurate-negative strains of C.
jejuni [122,123], together with the laborious and time-consuming character of biochemical
identification tests, stimulated the development of molecular diagnostic methods and techniques as
alternatives to the classical culture-dependent approach to differentiation of Campylobacter species.

Serological methods (i.e., immunoassays) (e.g., enzyme-linked immunosorbent assay; ELISA)
[124-128], biosensors for the on-site detection of foodborne pathogens [129,130], DNA hybridization
techniques (e.g., loop-mediated isothermal amplification; LAMP) [126,131,132], DNA fingerprinting
techniques (e.g., multilocus sequence typing; MLST) [133-135] and above all PCR-based method and
techniques (e.g., multiplex PCR; mPCR, quantitative or real time PCR; qPCR/rt-PCR), have been
developed for the fastest and most efficient identification and differentiation of Campylobacter species
among other foodborne pathogens. It should be noted though that some DNA fingerprinting
techniques are more sophisticated (e.g., pulsed-field gel electrophoresis; PFGE, whole-genome
sequencing; WGS) and require well-trained personnel with a know-how-to conduct the technique
and interpret the data. Due to their enormous discriminatory power these molecular typing methods
are preferable tools in outbreak investigations rather than the routine monitoring of pathogens [136—
140]. For this reason, PCR techniques are the method of choice for Campylobacter differentiation
during laboratory screening for the pathogen.

4.2.1. PCR-Based Methods and Techniques

The technique of mPRC has been widely studied by several researchers in an effort to find a fast
and at the same time reliable means of identifying isolated Campylobacter species [141-143]. The
combination of food sample enrichment with multiplex real-time PCR (mrt-PCR) results in a more
rapid detection and identification of Campylobacter spp. isolated from food [144], compared to the
standard ISO method utilizing the biochemical identification of the isolates [102]. Nevertheless, the
enrichment of the food sample as well as the initial Campylobacter load in the matrix significantly
affect the isolation frequency and the recovery rate of different subtypes of C. jejuni [145] and of many

doi:10.20944/preprints202306.1775.v1
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Campylobacter species. In such a case, combining mPCR with the pre-enrichment in Brucella broth
and further enrichment in Preston broth of chicken meat samples led to the identification of the
majority of isolated campylobacters as C. coli (53%) than C. jejuni (47%) [146].

The quantitative determination of Campylobacter spp. in contaminated foods and generally in the
food chain is crucial, among others in order to comply with imposed EU microbiological criteria for
Campylobacter in broiler carcasses [147]. Quantitative molecular PCR-based methods, such as rt-PCR
techniques, have been developed for such quantification purposes [148-151], although currently only
the culture-based ISO method is officially approved for pathogen enumeration [104]. Nonetheless,
PCR-based methods suffer from the inability to differentiate between live and dead cells of the target
microorganism and the apparent PCR signal that may occur from DNA originating from those dead
cells. Therefore, quantitative viability rt-PCR assays have been proposed to normalize on the one
hand the underestimation of Campylobacter spp. recovered from different food matrices, on the other
to allow for reliable differentiation between live and dead Campylobacter and thus accurate
estimations of pathogen concentration in foods [79,152-155].

5. Biofilm-forming ability of Campylobacter spp.

The survival of campylobacter in the food chain remains a paradox since the bacterium is a
fastidious organism with characteristic special growth requirements for successful subculturing in
the laboratory (e.g., heat-resistant, microaerophilic organism requiring the presence of blood in its
culture medium). Recently, biofilm formation has been proposed as the main mechanism of
maintenance and transmission for the pathogen from animals to humans [156]. In general, the
biofilm-forming ability of Campylobacter is strain-dependent and varies among organism’s isolated
strains [157,158], as well as between different Campylobacter spp. [159-161], while it is also affected by
the presence of other bacterial species [162-167]. Regarding the biofilm-forming ability of C. jejuni
and C. coli, the latter isolates seem able to form biofilms significantly better compared to C. jejuni
isolates (p < 0.05) [157,160] and that could be another reason for the increased prevalence of C. coli
against C. jejuni in the chicken meat samples.

The ability of C. jejuni to form a biofilm is highly dependent on the strain and the type of abiotic
surface on which it is found [159]. Teh et al. [165] concluded that C. jejuni exhibits a much weaker
biofilm-forming ability compared to other bacteria, such as Pseudomonas spp., Staphylococcus aureus,
Salmonella spp., and E. coli. However, in controlled mixed-microbial populations of a specific C. jejuni
strain (sequence type; ST-474) with Enterococcus faecalis and/or Staphylococcus sp., optical intense
biofilms for the two species were developed when they were grown with C. jejuni, while C. jejuni cells
were recovered from most of the biofilms containing E. faecalis and/or Staphylococcus sp. [165]. That
was the case and in the studies of Ica et al. [166] and Sternisa et al. [167], where the co-cultivation of
C. jejuni with P.aeruginosa and P. fragi, respectively, resulted in the increased determined number of
culturable biofilm C. jejuni cells. In contrast to monoculture biofilms, the mixed-culture biofilms of C.
jejuni with pseudomonads had significantly enhanced mechanical strength [166]. Enhanced biofilm
formation was also observed for C. jejuni and C. coli in the presence of S. aureus, with increased
aerotolerance and survivability in parallel for the Campylobacter strains [162].

5. Conclusions

The prevalence and distribution of Campylobacter spp. in raw poultry meat from broiler carcasses
depends on a variety of factors, such as the sampling method, part of the animal carcass from which
the meat sample is obtained, seasonality of sampling, the isolation procedure followed with the
different enrichment and plating media utilized for pathogen isolation along with the methods and
techniques used for Campylobacter spp. differentiation, as well as the biofilm-forming ability of the
isolated Campylobacter strains with regards to their co-culture with other bacterial species. All these
factors should be considered when conducting field surveys or monitoring for Campylobacter presence
in naturally contaminated poultry meat samples. At the same time, the indicated number of factors
highlights the multifactorial dimension and complexity of the phenomenon when interpreting results
for the recovery of Campylobacter spp. from poultry meat. Thus, the noticed epidemiological transition
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from the established predominance of C. jejuni to the ever-increasing recovery of C. coli in raw chicken
meat could be the result of such a versatile effect. The present review attempted for the first time to
elucidate the causes of this noteworthy epidemiological swift in prevalence and distribution of
Campylobacter species on the food matrix itself, without extending to the interaction between
pathogen and human host.
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