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Abstract: The (numerical) solution of Ordinary Differential Equations (ODEs) problems is of
paramount relevance, ODEs system being an ubiquitous mathematical formulation of many physical
phenomena (such as those involved in fluid dynamics, chemistry, biology, evolutionary-anthropology,
. . . ): almost every dynamici phenomenon can be modeled by means of an ODEs system. The present
paper is the first manifesto of FOODIE, a library aimed to numerically solve ODEs problems by means
of a clear, concise and efficient abstract interface. FOODIE, meaning Fortran Object oriented Ordinary
Differential Equations integration library, has manifolds aims: to provide a set to built-in numerical
schemes that are accurate, robust, validated and efficient and to allow easy application of these
schemes to (almost) all ODEs problems by means of an effective Abstract Calculus Pattern. The key
idea is to allow the same solver-implementation to be applied to all ODEs problems thus avoiding
the re-implementation of the ODEs solver for each different ODEs problem: code re-usability is
consequently maximized, FOODIE being a general robust framework. Besides, the same framework
also allows rapid development of new ODEs solvers due to the high abstraction level of the library
itself. The present paper is the first announcement of FOODIE project: the current implementation is
extensively discussed and its capabilities are proved by means of tests and examples.

Keywords: Ordinary Differential Equations (ODE); Partial Differential Equations (PDE); Object
Oriented Programming (OOP); Abstract Calculus Pattern (ACP); Fortran

1. Introduction

1.1. Background

Initial Value Problem (IVP, or Cauchy problem, see [1]) constitutes a class of mathematical models
of paramount relevance, it being applied to the modelling of a wide range of dynamic phenomena.
Briefly, an IVP is an Ordinary Differential Equations system (ODE) coupled with specified initial values
of the unknown state variables, the solution of which are searched at a given time after the initial time
considered.

The prototype of IVP can be expressed as:

Ut = R(t, U)

U0 = U(t0)
(1)

where U(t) is the vector of state variables being a function of the time-like independent variable t,
Ut =

dU
dt = R(t, U) is the (vectorial) residuals function and U(t0) is the (vectorial) initial conditions,

namely the state variables function evaluated at the initial time t0. In general, the residuals function R
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is a function of the state variable U through which it is a function of time, but it can be also a direct
function of time, thus in general R = R(t, U(t)) holds.

The problem prototype (1) is ubiquitous in the mathematical modelling of physical problems:
essentially whenever an evolutionary (i.e. dyanamic) phenomenon is considered the prevision
(simulation) of the future solutions involves the solution of an IVP. As a matter of facts, many physical
problems (fluid dynamics, chemistry, biology, evolutionary-anthropology, . . . ) are described by means
of an IVP.

It is worth noting that the state vector variables U and its corresponding residuals function
Ut =

dU
dt = R(t, U) are problem dependent: the number and the meaning of the state variables as well as

the equations governing their evolution (that are embedded into the residuals function) are different
for the Navier-Stokes conservation laws with respect the Burgers one, as an example. Nevertheless,
the solvers used for the prediction of the Navier-Stokes equations evolution (hereafter the solution) are
the same that are used for Burgers equations time-integration. As a consequence, the solution of the
IVP model prototype can be generalized, allowing the application of the same solver to many different
problems, thus eliminating the necessity to re-implement the same solver for each different problem.

In this work we presents the FOODIE library: it is designed for solving the generalized IVP (1), it
being completely unaware of the actual problem’s definition. FOODIE library provides a high-level,
well-documented, simple Application Program Interface (API) for many well-known ODE integration
solvers, its aims being twofold:

• provide a robust set of ODE solvers ready to be applied to a wide range of different problems;
• provide a simple framework for the rapid development of new ODE solvers.

1.2. Related Works

There are many ODE solvers described in literature. In [2] SODES (Stepwise Ordinary Differential
Equations Solver) is presented: the authors describe an ODE solver able to provide a step by step ODE
solution exploiting a Computer Algebra System (CAS) written in Python programming language. In
the framework of Computational Fluid Dynamics (CFD) and in particular for solving detailed chemical
kinetics problems, in Owoyele and Pal [3] a novel neural ODE solver, ChemNODE, is presented:
exploiting the neural networks, the chemical source terms are predicted and integrated and networks
itself is adjusted during the training to minimize errors. In Nagy et al. [4] the problem of ODE solving
is considered with respect of the computational efficiency point of view: the authors analyze the
performance of three different solvers written in C++ and Julia programming languages on both CPU
and GPU architectures with a special focus on the parallel optimization of the ODE solving algorithms.
Finally, in Nascimento et al. [5] the Python framework TensorFlow is exploited to implement a neural
network based ODE solver: their approach if hybrid in the sense that the neural model combines both
physics-informed and data-driven kernel in order to improve the accuracy of ODE solutions.

The ODE framework solver presented in this work has different aims, as explained in the following
subsection.

1.3. Motivations and Aims

FOODIE library is a free software1 and is designed with the following specifications:

• be written in modern Fortran (standard 2008 or newer);
• be written by means of Object Oriented Programming (OOP) paradigm;
• be well documented;
• be Tests Driven Developed (TDD);
• be collaboratively developed;

1 FOODIE can be downloaded at https://github.com/Fortran-FOSS-Programmers/FOODIE.
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• be free.

FOODIE, meaning Fortran Object oriented Ordinary Differential Equations integration library,
has been developed with the aim to satisfy the above specifications. The present paper is its first
comprehensive presentation.

The Fortran (Formula Translator, [6,7]) programming language is the de facto standard into
computer science field: it strongly facilitates the effective and efficient translation of (even complex)
mathematical and numerical models into an operative software without compromise on computations
speed and accuracy. Moreover, its simple syntax is suitable for scientific researchers that are interested
(and skilled) in the physical aspects of the numerical computations rather than computer technicians.
Consequently, we develop FOODIE using Fortran language: FOODIE is written by research scientists
for research scientists.

One key-point of the FOODIE development is the problem generalization: the problem solved
must be the IVP (1) rather than any of its actual definitions. Consequently, we must rely on a generic

implementation of the solvers. To this aim, OOP is very useful (see [8]): it allows to express IVP (1) in
a very concise and clear formulation that is really generic. In particular, our implementation is based
on Abstract Calculus Pattern (ACP) concept.

The Abstract Calculus Pattern

The abstract calculus pattern provides a simple solution for the connection between the very
high-level expression of IVP (1) and the eventual concrete (low-level) implementation of the ODE
problem being solved. ACP essentially constitutes a contract based on an Abstract Data Type (ADT):
we specify an ADT supporting a certain set of mathematical operators (differential and integral ones)
and implement FOODIE solvers only on the basis of this ADT. FOODIE clients must formulate the
ODE problem under integration defining their own concrete extensions of our ADT (implementing all
the deferred operators). Such an approach defines the abstract calculus pattern: FOODIE solvers are
aware of only the ADT, while FOODIE clients extend the ADT for defining the concrete ODE problem.

Is is worth noting that this ACP emancipates the solvers implementations from any low-level
problem-dependent details: the ODE solvers developed with this pattern are extremely concise, clear,
maintainable and less errors-prone with respect a low-level (non abstract) pattern. Moreover, the
FOODIE clients can use solvers being extremely robust: as a matter of facts, FOODIE solvers are
expressed in a formulation very close to the mathematical one and are tested on an extremely varying
family of problems. As shown in the following, such a great flexibility does not compromise the
computational efficiency.

The present paper is organized as following: in section 2 a brief description of the mathematical
and numerical methods currently implemented into FOODIE is presented; in section 3 a detailed
discussion on the implementation specifications is provided by means of an analytical code-listings
review; in section 4 a verification analysis on the results of FOODIE applications is presented; section 5
provides an analysis of FOODIE performances under parallel frameworks scenario like the OpenMP
and MPI paradigms; finally, in section 6 concluding remarks and perspectives are depicted.

2. Mathematical and Numerical Models

In many (most) circumstances, the solution of equation (1) cannot be computed in a closed, exact
form (even if it exists and is unique) due to the complexity and nature of the residuals functions, that
is often non linear. Consequently, the problem is often solved relying on a numerical approach: the
solution of system (1) at a time tn, namely U(tn), is approximated by a subsequent time-marching
approximations U0 = u0 → u1 → u2 → ... → uN ≈ U(tn) where the relation ui → ui+1 implies a
stepping, numerical integration from the time ti to time ti+1 and N is the total number of numerical
time steps necessary to evolve the initial conditions toward the searched solution U(tn). To this aim,
many numerical schemes have been devised. Notably, the numerical schemes of practical usefulness
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must posses some necessary proprieties such as consistency and stability to ensure that the numerical
approximation converges to the exact solution as the numerical time step tends to zero. A detailed
discussion of these details is out the scope of the present work and is omitted. Here, we briefly recall
some classifications necessary to introduce the schemes implemented into the FOODIE library.

A non comprehensive classification of the most widely used schemes could distinguish between
multi-step versus one-step schemes and between explicit versus implicit schemes.

Essentially, the multi-step schemes have been developed to obtain an accurate approximation
of the subsequent numerical steps using the informations contained into the previously computed
steps, thus this approach relates the next step approximation to a set of the previously computed
steps. On the contrary, a one-step scheme evolves the solution toward the next step using only the
information coming from the current time approximation. In the framework of one-step schemes
family an equivalent accurate approximation can be obtained by means of a multi-stage approach as
the one due to Runge-Kutta. The current version of FOODIE provides schemes belonging to both these
families.

The other ODE solvers classification concerns with explicit or implicit nature of the schemes
employed. Briefly, an explicit scheme computes the next step approximation using the previously
computed steps at most to the current time, whereas an implicit scheme uses also the next step
approximation (that is the unknown), thus it requires extra computations. The implicit approach is of
practical use for stiff systems where the usage of explicit schemes could require an extremely small
time step to evolve in a stable way the solution. Mixing together explicit and implicit schemes it is
possible to build a family of predictor-corrector methods: using an explicit scheme to predict a guess for
the next step approximation it is possible to use an implicit method for correcting this guess. Currently,
FOODIE provides explicit solvers and predictor-correct ones.

FOODIE currently implements the following ODE schemes:

• one-step schemes:

– explicit forward Euler scheme, it being 1st order accurate;
– explicit Runge-Kutta schemes (see [9,10]):

* TVD/SSP Runge-Kutta schemes:

· 2-stages, it being 2nd order accurate;
· 3-stages, it being 3rd order accurate;
· 5-stages, it being 4th order accurate;

* low storage Runge-Kutta schemes:

· 5-stages 2N registers schemes, it being 4th order accurate;
· 6-stages 2N registers schemes, it being 4th order accurate;
· 7-stages 2N registers schemes, it being 4th order accurate;
· 12-stages 2N registers schemes, it being 4th order accurate;
· 13-stages 2N registers schemes, it being 4th order accurate;
· 14-stages 2N registers schemes, it being 4th order accurate;

• multi-step schemes (see [11]):

– explicit Adams-Bashforth schemes:

* 2-steps, it being 2nd order accurate;
* 3-steps, it being 3rd order accurate;
* 4-steps, it being 4th order accurate;

– implicit Adams-Moulton schemes:

* 1-step, it being 2nd order accurate;
* 2-steps, it being 3rd order accurate;
* 3-steps, it being 4th order accurate;

– predictor-corrector Adams-Bashforth-Moulton schemes:

* 1-step, it being 2nd order accurate;
* 2-steps, it being 3rd order accurate;
* 3-steps, it being 4th order accurate;
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– explicit Leapfrog schemes2:

* 2-steps unfiltered, it being 2nd order accurate, but mostly unstable;
* 2-steps Robert-Asselin filtered, it being 1st order accurate (on amplitude error);
* 2-steps Robert-Asselin-Williams filtered, it being 3rd order accurate (on amplitude error);

2.1. The explicit forward Euler scheme

The explicit forward Euler scheme for ODE integration is probably the simplest solver ever
devised. Considering the system (1), the solution (approximation) of the state vector U at the time
tn+1 = tn + ∆t assuming to known the solution at time tn is:

U
(

tn+1
)

= U (tn) + ∆t · R [tn, U (tn)] (2)

where the solution at the new time step is computed by means of only the current time solution, thus
this is an explicit scheme. The solution is an approximation of 1st order, the local truncation error being
O(Dt2). As well known, this scheme has an absolute (linear) stability locus equals to |1 + ∆tλ| ≤ 1
where λ contains the eigenvalues of the linear (or linearized) Jacobian matrix of the system.

This scheme is Total Variation Diminishing (TVD), thus satisfies the maximum principle (or the
equivalent positivity preserving property, see [12]).

2.2. The explicit TVD/SSP Runge-Kutta class of schemes

Runge-Kutta methods belong to the more general multi-stage family of schemes. This kind of
schemes has been designed to achieve a more accurate solution than the 1st Euler scheme, but without
increasing the number of time steps used, as it is done with the multi-step schemes, see [10]. Essentially,
the high order of accuracy is obtained by means of intermediate values (the stages) of the solution and
its derivative are generated and used within a single time step. This commonly implies the allocation
of some auxiliary memory registers for storing the intermediate stages.

Notably, the multi-stage schemes class has the attractive property to be self-starting: the high
order accurate solution can be obtained directly from the previous one, without the necessity to
compute before a certain number of previous steps, as it happens for the multi-step schemes. Moreover,
one-step multi-stage methods are suitable for adaptively-varying time-step size (that is also possible
for multi-step schemes, but at a cost of more complexity) and for discontinuous solutions, namely
discontinued solutions happening at a certain time t∗ (that in a multi-step framework can involve an
overall accuracy degradation).

In general, the TVD/SSP Runge-Kutta schemes provided by FOODIE library are written by means
of the following algorithm:

Un+1 = Un + ∆t ·
Ns

∑
s=1

βsKs (3)

where Ns is the number of Runge-Kutta stages used and Ks is the sth stage defined as:

Ks = R

(

tn + γs∆t, Un + ∆t
s−1

∑
l=1

αs,lKl

)

(4)

It is worth noting that the equations (3) and (4) contain also implicit schemes. A scheme belonging to
this family is operative once the coefficients α, β, γ are provided. We represent these coefficients using

2 Leapfrog method is a 2-steps solver being, in general 2nd order accurate, but mostly unstable. It is well suited for
periodic/oscillatory problems, thus the error is generally categorized accordingly to the phase and amplitude errors:
the unfiltered scheme provides a 2nd order error on phase approximation while the amplitude error is null. However, the
unfiltered scheme is mostly unstable, thus many filters have been devised. In general, the filters retain the accuracy on the
phase error, while affect the amplitude one.
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the Butcher’s table, that for an explicit scheme where γ1 = α1,∗ = αi,i = 0 has the form reported in
Table 1.

Table 1. Butcher’s table for explicit Runge-Kutta schemes.

γ2 α2,1
γ3 α3,1 α3,2
...

...
. . .

γNs
αNs ,1 αNs ,2 · · · αNs ,Ns−1

β1 β2 · · · βNs−1 βNs

The equations (3) and (4) show that Runge-Kutta methods do not require any additional
differentiations of the ODE system for achieving high order accuracy, rather they require additional
evaluations of the residuals function R.

The nature of the scheme and the properties of the solutions obtained depend on the number
of stages and on the value of the coefficients selected. Currently, FOODIE provides 3 Runge-Kutta
schemes having TVD or Strong Stability Preserving (SSP) propriety (thus they being suitable for ODE
systems involving rapidly changing non linear dynamics) the Butcher’s coefficients of which are
reported in Tables 2–4.

Table 2. Butcher’s table of 2 stages, 2nd order, Runge-Kutta TVD scheme.

1 1 0
1/2 1/2

Table 3. Butcher’s table of 3 stages, 3rd order, Runge-Kutta SSP scheme.

1 1
1/2 1/4 1/4

1/6 1/6 2/3

Table 4. Butcher’s table of 5 stages, 4th order accurate, Runge-Kutta SSP scheme.

0.39175222700392 0.39175222700392
0.58607968896779 0.21766909633821 0.36841059262959
0.47454236302687 0.08269208670950 0.13995850206999 0.25189177424738
0.93501063100924 0.06796628370320 0.11503469844438 0.20703489864929 0.54497475021237

0.14681187618661 0.24848290924556 0.10425883036650 0.27443890091960 0.22600748319395

The absolute stability locus depends on the coefficients selected, however, as a general principle,
we can assume that greater is the stages number and wider is the stability locus on equal accuracy
orders.

It is worth noting that FODDiE also provides a one-stage TVD Runge-Kutta solver that reverts
back to the explicit forward Euler scheme: it can be used, for example, into a Recursive Order Reduction
(ROR) framework that automatically checks some properties of the solution and, in case, reduces the
order of the Runge-Kutta solver until those properties are obtained.

2.3. The explicit low storage Runge-Kutta class of schemes

As aforementioned, standard Runge-Kutta schemes have the drawback to require NS auxiliary
memory registers to store the necessary stages data. In order to make an efficient use of the available
limited computer memory, the class of low storage Runge-Kutta scheme was devised. Essentially, the
standard Runge-Kutta class (under some specific conditions) can be reformulated allowing a more
efficient memory management. Currently FOODIE provides a class of 2N registers storage Runge-Kutta
schemes, meaning that the storage of all stages requires only 2 registers of memory with a word length
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N (namely the length of the state vector) in contrast to the standard formulation where Ns registers of
the same length N are required. This is a dramatic improvement of memory efficiency especially for
schemes using a high number of stages (Ns ≥ 4) where the memory necessary is an half with respect
the original formulation. Unfortunately, not all standard Runge-Kutta schemes can be reformulated as
a low storage one.

Following the Williamson’s approach (see [13–16]) the standard coefficients are reformulated to
the coefficients vectors A, B and C and the Runge-Kutta algorithm becomes:

K1 = U (tn)

K2 = 0

K2 = AsK2 + ∆t · R (tn + Cs∆t, K1)

K1 = K1 + BsK2

}

s = 1, 2, ...Ns

U
(

tn+1) = K1

(5)

Currently FOODIE provides 5/6/7/12/13/14 stages, all 4th order, 2N registers explicit schemes,
the coefficients of which are listed in Table 5.

Table 5. Williamson’s table of low storage Runge-Kutta schemes.

(a) 5 stages, 4th order

Stage A B C

1 0 1432997174477
9575080441755 0

2 − 567301805773
1357537059087

5161836677717
13612068292357

1432997174477
9575080441755

3 − 2404267990393
2016746695238

1720146321549
2090206949498

2526269341429
6820363962896

4 − 3550918686646
2091501179385

3134564353537
4481467310338

2006345519317
3224310063776

5 − 1275806237668
842570457699

2277821191437
14882151754819

2802321613138
2924317926251

(b) 6 stages, 4th order

Stage A B C

1 0 0.122000000000 0
2 −0.691750960670 0.477263056358 0.122000000000
3 −1.727127405211 0.381941220320 0.269115878630
4 −0.694890150986 0.447757195744 0.447717183551
5 −1.039942756197 0.498614246822 0.749979795490
6 −1.531977447611 0.186648570846 0.898555413085

(c) 7 stages, 4th order

Stage A B C

1 0.000000000000 0.117322146869 0.000000000000
2 −0.647900745934 0.503270262127 0.117322146869
3 −2.704760863204 0.233663281658 0.294523230758
4 −0.460080550118 0.283419634625 0.305658622131
5 −0.500581787785 0.540367414023 0.582864148403
6 −1.906532255913 0.371499414620 0.858664273599
7 −1.450000000000 0.136670099385 0.868664273599

(d) 12 stages, 4th order

Stage A B C

1 0.0000000000000000 0.0650008435125904 0.0000000000000000
2 −0.0923311242368072 0.0161459902249842 0.0650008435125904
3 −0.9441056581158819 0.5758627178358159 0.0796560563081853
4 −4.3271273247576394 0.1649758848361671 0.1620416710085376
5 −2.1557771329026072 0.3934619494248182 0.2248877362907778
6 −0.9770727190189062 0.0443509641602719 0.2952293985641261
7 −0.7581835342571139 0.2074504268408778 0.3318332506149405
8 −1.7977525470825499 0.6914247433015102 0.4094724050198658
9 −2.6915667972700770 0.3766646883450449 0.6356954475753369
10 −4.6466798960268143 0.0757190350155483 0.6806551557645497
11 −0.1539613783825189 0.2027862031054088 0.7143773712418350
12 −0.5943293901830616 0.2167029365631842 0.9032588871651854

(e) 13 stages, 4th order

Stage A B C

1 0.0000000000000000 0.0271990297818803 0.0000000000000000
2 −0.6160178650170565 0.1772488819905108 0.0271990297818803
3 −0.4449487060774118 0.0378528418949694 0.0952594339119365
4 −1.0952033345276178 0.6086431830142991 0.1266450286591127
5 −1.2256030785959187 0.2154313974316100 0.1825883045699772
6 −0.2740182222332805 0.2066152563885843 0.3737511439063931
7 −0.0411952089052647 0.0415864076069797 0.5301279418422206
8 −0.1797084899153560 0.0219891884310925 0.5704177433952291
9 −1.1771530652064288 0.9893081222650993 0.5885784947099155

10 −0.4078831463120878 0.0063199019859826 0.6160769826246714
11 −0.8295636426191777 0.3749640721105318 0.6223252334314046
12 −4.7895970584252288 1.6080235151003195 0.6897593128753419
13 −0.6606671432964504 0.0961209123818189 0.9126827615920843

(f) 14 stages, 4th order

Stage A B C

1 0.0000000000000000 0.0367762454319673 0.0000000000000000
2 −0.7188012108672410 0.3136296607553959 0.0367762454319673
3 −0.7785331173421570 0.1531848691869027 0.1249685262725025
4 −0.0053282796654044 0.0030097086818182 0.2446177702277698
5 −0.8552979934029281 0.3326293790646110 0.2476149531070420
6 −3.9564138245774565 0.2440251405350864 0.2969311120382472
7 −1.5780575380587385 0.3718879239592277 0.3978149645802642
8 −2.0837094552574054 0.6204126221582444 0.5270854589440328
9 −0.7483334182761610 0.1524043173028741 0.6981269994175695
10 −0.7032861106563359 0.0760894927419266 0.8190890835352128
11 0.0013917096117681 0.0077604214040978 0.8527059887098624
12 −0.0932075369637460 0.0024647284755382 0.8604711817462826
13 −0.9514200470875948 0.0780348340049386 0.8627060376969976
14 −7.1151571693922548 5.5059777270269628 0.8734213127600976

Similarly to the TVD/SSP Runge-Kutta class, the low storage class also provides a fail-safe
one-stage solver reverting back to the explicit forward Euler solver, that is useful for ROR-like
frameworks.

2.4. The explicit Adams-Bashforth class of schemes

Adams-Bashforth methods belong to the more general (linear) explicit multi-step family of
schemes. This kind of schemes has been designed to achieve a more accurate solution than the 1st

Euler scheme using the information coming from the solutions already computed at previous time
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steps. Typically only one new residuals function R evaluation is required at each time step, whereas
Runge-Kutta schemes require many of them.

In general, the Adams-Bashforth schemes provided by FOODIE library are written by means of
the following algorithm (for only explicit schemes):

U
(

tn+Ns

)

= U
(

tn+Ns−1
)

+ ∆t
n+Ns

∑
s=1

bs · R
[

tn+s−1, U
(

tn+s−1
)]

(6)

where Ns is the number of time steps considered and bs are the linear coefficients selected.
Currently FOODIE provides 2, 3, and 4 steps schemes having 2nd, 3rd and 4th formal order of

accuracy, respectively. The bs coefficients are reported in Table 6.

Table 6. Explicit Adams-Bashforth coefficients.

Ns b1 b2 b3 b4
2 − 1

2
3
2 / /

3 5
12 − 16

12
23
12 /

4 − 9
24

37
24 − 59

24
55
24

Similarly to the Runge-Kutta classes, the Adams-Bashforth class also provides a fail-safe one-step
solver reverting back to the explicit forward Euler solver, that is useful for ROR-like frameworks.

It is worth noting that for Ns > 1 the Adams-Bashforth class of solvers is not self-starting: the
values of U

(

t1), U
(

t2), . . . , U
(

tNs−1) must be provided. To this aim, a lower order multi-step scheme
or an equivalent order one-step multi-stage scheme can be used.

2.5. The implicit Adams-Moulton class of schemes

Adams-Moulton methods belong to the more general (linear) implicit multi-step family of schemes.
This kind of schemes has been designed to achieve a more accurate solution than the 1st Euler scheme
using the information coming from the solutions already computed at previous time steps. Typically
only one new residuals function R evaluation is required at each time step, whereas Runge-Kutta
schemes require many of them.

In general, the Adams-Moulton schemes provided by FOODIE library are written by means of
the following algorithm (for only implicit schemes):

U
(

tn+Ns

)

= U
(

tn+Ns−1
)

+ ∆t
n+Ns−1

∑
s=0

bs · R
[

tn+s, U
(

tn+s
)]

+ bNs · R
[

tn+Ns , U
(

tn+Ns

)]

(7)

where Ns is the number of time steps considered and bs are the linear coefficients selected.
Currently FOODIE provides 1, 2, and 3 steps schemes having 2nd, 3rd and 4th formal order of

accuracy, respectively. The bs coefficients are reported in Table 7.

Table 7. Implicit Adams-Moulton coefficients

Ns b0 b1 b2 b3

1 1
2

1
2 / /

2 − 1
12

8
12

5
12 /

3 1
24 − 5

24
19
24

9
24

Similarly to the Runge-Kutta and Adams-Bashforth classes, the Adams-Moulton class also
provides a fail-safe zero-step solver reverting back to the implicit backward Euler solver, that is
useful for ROR-like frameworks.
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It is worth noting that for Ns > 1 the Adams-Moulton class of solvers is not self-starting: the
values of U

(

t1), U
(

t2), . . . , U
(

tNs−1) must be provided. To this aim, a lower order multi-step scheme
or an equivalent order one-step multi-stage scheme can be used.

2.6. The predictor-corrector Adams-Bashforth-Moulton class of schemes

Adams-Bashforth-Moulton methods belong to the more general (linear) predictor-corrector
multi-step family of schemes. This kind of schemes has been designed to achieve a more accurate
solution than the 1st Euler scheme using the information coming from the solutions already computed
at previous time steps. Typically only one new residuals function R evaluation is required at each time
step, whereas Runge-Kutta schemes require many of them.

In general, the Adams-Bashforth-Moulton schemes provided by FOODIE library are written by
means of the following algorithm:

U
(

tn+N
p
s

)

p
= U

(

tn+N
p
s −1
)

+ ∆t ∑
n+N

p
s

s=1 b
p
s · R

[

tn+s−1, U
(

tn+s−1)]

U
(

tn+Nc
s

)

c
= U

(

tn+Nc
s −1
)

+ ∆t ∑
n+Nc

s −1
s=0 bc

s · R [tn+s, U (tn+s)] + bc
Nc

s
· R

[

tn+N
p
s , U

(

tn+N
p
s

)

p

] (8)

where N
p,c
s is the number of time steps considered for the Adams-Bashforth predictor/Adams-Moulton

corrector (respectively) and b
p,c
s are the corresponding linear coefficients selected. Essentially, the

Adams-Bashforth prediction U
(

tn+N
p
s

)

p
is corrected by means of the Adams-Moulton correction

resulting in U
(

tn+Nc
s

)

c
. In order to preserve the formal order of accuracy the relation N

p
s = Nc

s + 1

always holds.
Currently FOODIE provides Nc

s = 1, 2, 3 → Nc
s = 2, 3, 4 steps schemes having 2nd, 3rd and 4th

formal order of accuracy, respectively. The b
p,c
s coefficients are those reported in Tables 6 and 7.

2.7. The leapfrog solver

The leapfrog scheme belongs to the multi-step family, it being formally a centered second order
approximation in time, see [17–19]. The leapfrog method (in its original formulation) is mostly unstable,
however it is well suited for periodic-oscillatory problems providing a null error on the amplitude
value and a formal second order error on the phase one, under the satisfaction of the time-step size
stable limit. Commonly, the leapfrog methods are said to provide a 2∆t computational mode that can
generate unphysical, unstable solutions. As consequence, the original leapfrog scheme is generally
filtered in order to suppress these computational modes.

The unfiltered leapfrog scheme provided by FOODIE is:

U
(

tn+2
)

= U (tn) + 2∆t · R
[

tn+1, U
(

tn+1
)]

(9)

FOODIE provides, in a seamless API, also filtered leapfrog schemes. A widely used filter is
due to Robert and Asselin, that suppress the computational modes at the cost of accuracy reduction
resulting into a 1st order error in amplitude value. A more accurate filter, able to provide a 3rd

order error on amplitude, is a modification of the Robert-Asselin filter due to Williams known as
Robert-Asselin-Williams (RAW) filter, that filters the approximation of U

(

tn+1) and U
(

tn+2) by the
following scalar coefficient:

U
(

tn+1) = U
(

tn+1)+ ∆ ∗ α

U
(

tn+2) = U
(

tn+2)+ ∆ ∗ (α − 1)
where

∆ = ν
2 (U

n − 2Un+1 + Un+2)

(10)
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The filter coefficients should be taken as ν ∈ (0, 1] and α ∈ (0.5, 1]. If α = 0.5 the filters of time
tn+1 and tn+2 have the same amplitude and opposite sign thus allowing to the optimal 3rd order error
on amplitude. The default values of the FOODIE provided scheme are ν = 0.01 α = 0.53, but they can
be customized at runtime.

3. Application Program Interface

In this section we review the FOODIE API providing a detailed discussion of the implementation
choices.

As aforementioned, the programming language used is the Fortran 2008 standard, that is a minor
revision of the previous Fortran 2003 standard. Such a new Fortran idioms provide (among other
useful features) an almost complete support for OOP, in particular for ADT concept. Fortran 2003
has introduced the abstract derived type: it is a derived type suitable to serve as contract for concrete
type-extensions that has not any actual implementations, rather it provides a well-defined set of type
bound procedures interfaces, that in Fortran nomenclature are called deferred procedures. Using such
an abstract definition, we can implement algorithms operating on only this abstract type and on all its

concrete extensions. This is the key feature of FOODIE library: all the above described ODE solvers are
implemented on the knowledge of only one abstract type, allowing an implementation-style based on a
very high-level syntax. In the meanwhile, client codes must implement their own IVPs extending only
one simple abstract type.

In the subsection 3.1 a review of the FOODIE main ADT, the integrand type, is provided, while
subsections 3.2, 3.3, 3.4, 3.5 and 3.8 cover the API of the currently implemented solvers.

It is worth noting that all FOODIE public entities (ADT and solvers) must be accessed by the
FOODIE module, see Listing 1 for an example on how access to all public FOODIE entities.

use foodie , only : integrand , &
adams_bashforth_integrator , &
adams_moulton_integrator , &
adams_bashforth_moulton_integrator , &
e u l e r _ e x p l i c i t _ i n t e g r a t o r , &
l e a p f r o g _ i n t e g r a t o r , &
l s _ r u n g e _ k u t t a _ i n t e g r a t o r , &
tvd_runge_kut ta_ integra tor

! or simply
use foodie

Listing 1: usage example importing all public entities of FOODIE main module

3.1. The main FOODIE Abstract Data Type: the integrand type

The implemented ACP is based on one main ADT, the integrand type, the definition of which is
shown in Listing 2.

type , a b s t r a c t : : integrand
! < Abstract type for building FOODIE ODE integrators.
conta ins

! public deferred procedures that concrete integrand-field must implement
procedure ( t i m e _ d e r i v a t i v e ) , pass ( s e l f ) , deferred , publ ic : : t
! operators
procedure ( symmetric_operator ) , pass ( l h s ) , deferred , publ ic : : integrand_mult iply_integrand
procedure ( integrand_op_real ) , pass ( l h s ) , deferred , publ ic : : in tegrand_mul t ip ly_rea l
procedure ( rea l_op_integrand ) , pass ( rhs ) , deferred , publ ic : : r ea l_mul t ip ly_ in tegrand
procedure ( symmetric_operator ) , pass ( l h s ) , deferred , publ ic : : add
procedure ( symmetric_operator ) , pass ( l h s ) , deferred , publ ic : : sub
procedure ( assignment_integrand ) , pass ( l h s ) , deferred , publ ic : : ass ign_integrand
! operators overloading
generic , publ ic : : operator ( + ) => add
generic , publ ic : : operator ( −) => sub
generic , publ ic : : operator ( * ) => integrand_mult iply_integrand , &

rea l_mul t ip ly_ integrand , &
integrand_mul t ip ly_rea l

generic , publ ic : : assignment ( = ) => ass ign_integrand
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endtype integrand

Listing 2: integrand type definition

The integrand type does not implement any actual integrand field, it being and abstract type. It
only specifies which deferred procedures are necessary for implementing an actual concrete integrand
type that can use a FOODIE solver.

As shown in listing 2, the number of the deferred type bound procedures that clients must
implement into their own concrete extension of the integrand ADT is very limited: essentially, there are
1 ODE-specific procedure plus some operators definition constituted by symmetric operators between
2 integrand objects, asymmetric operators between integrand and real numbers (and viceversa) and an
assignment statement for the creation of new integrand objects. These procedures are analyzed in the
following paragraphs.

3.1.1. Time derivative procedure, the residuals function

The abstract interface of the time derivative procedure t is shown in Listing 3.

func t ion t i m e _ d e r i v a t i v e ( s e l f , t ) r e s u l t ( dSta te_dt )
import : : integrand , R_P , I_P
c l a s s ( integrand ) , i n t e n t ( IN ) : : s e l f ! < Integrand field.
r e a l ( R_P ) , opt ional , i n t e n t ( IN ) : : t ! < Time.
c l a s s ( integrand ) , a l l o c a t a b l e : : dSta te_dt ! < Result of the time derivative function of integrand field.
endfunction t i m e _ d e r i v a t i v e

Listing 3: time derivative procedure interface

This procedure-function takes two arguments, the first passed as a type bounded argument, while
the latter is optional, and it returns an integrand object. The passed dummy argument, self, is a
polymorphic argument that could be any extensions of the integrand ADT. The optional argument t is
the time at which the residuals function must be computed: it can be omitted in the case the residuals
function does not depend directly on time.

Commonly, into the concrete implementation of this deferred abstract procedure clients embed
the actual ODE equations being solved. As an example, for the Burgers equation, that is a Partial
Differential Equations (PDE) system involving also a boundary value problem, this procedure embeds
the spatial operator that convert the PDE to a system of algebraic ODE. As a consequence, the eventual
concrete implementation of this procedure can be very complex and errors-prone. Nevertheless, the
FOODIE solvers are implemented only on the above abstract interface, thus emancipating the solvers
implementation from any concrete complexity.

Add citations to Burgers, Adams-Bashfort, leapfrog references.

3.1.2. Symmetric operators procedures

The abstract interface of symmetric procedures is shown in Listing 4.

func t ion symmetric_operator ( lhs , rhs ) r e s u l t ( o p e r a t o r _ r e s u l t )
import : : integrand
c l a s s ( integrand ) , i n t e n t ( IN ) : : l h s ! < Left hand side.
c l a s s ( integrand ) , i n t e n t ( IN ) : : rhs ! < Right hand side.
c l a s s ( integrand ) , a l l o c a t a b l e : : o p e r a t o r _ r e s u l t ! < Operator result.
endfunction symmetric_operator

Listing 4: symmetric operator procedure interface

This interface defines a class of procedures operating on 2 integrand objects, namely it is used for
the definition of the operators multiplication, summation and subtraction of integrand objects. These
operators are used into the above described ODE solvers, for example see equations (2), (3), (6) or (9).
The implementation details of such a procedures class are strictly dependent on the concrete extension
of the integrand type. From the FOODIE solvers point of view, we need to known only that first
argument passed as bounded one, the left-hand-side of the operator, and the second argument, the
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right-hand-side of the operator, are two integrand object and the returned object is still an integrand
one.

3.1.3. Integrand/real and real/integrand operators procedures

The abstract interfaces of Integrand/real and real/integrand operators procedures are shown in
Listing 5.

func t ion integrand_op_real ( lhs , rhs ) r e s u l t ( o p e r a t o r _ r e s u l t )
import : : integrand , R_P
c l a s s ( integrand ) , i n t e n t ( IN ) : : l h s ! < Left hand side.
r e a l ( R_P ) , i n t e n t ( IN ) : : rhs ! < Right hand side.
c l a s s ( integrand ) , a l l o c a t a b l e : : o p e r a t o r _ r e s u l t ! < Operator result.
endfunction integrand_op_real

funct ion real_op_integrand ( lhs , rhs ) r e s u l t ( o p e r a t o r _ r e s u l t )
import : : integrand , R_P
r e a l ( R_P ) , i n t e n t ( IN ) : : l h s ! < Left hand side.
c l a s s ( integrand ) , i n t e n t ( IN ) : : rhs ! < Right hand side.
c l a s s ( integrand ) , a l l o c a t a b l e : : o p e r a t o r _ r e s u l t ! < Operator result.
endfunction real_op_integrand

Listing 5: Integrand/real and real/integrand operators procedure interfaces

These two interfaces are necessary in order to complete the algebra operating on the integrand
object class, allowing the multiplication of an integrand object for a real number, circumstance that
happens in all solvers, see equations (2), (3), (6) or (9). The implementation details of these procedures
are strictly dependent on the concrete extension of the integrand type. From the FOODIE solvers point
of view, we need to known only that first argument passed as bounded one, the left-hand-side of the
operator, and the second argument, the right-hand-side of the operator, are an integrand object and
real number of viceversa and the returned object is still an integrand one.

3.1.4. Integrand assignment procedure

The abstract interface of integrand assignment procedure is shown in Listing 6.

subroutine assignment_integrand ( lhs , rhs )
import : : integrand
c l a s s ( integrand ) , i n t e n t (INOUT) : : l h s ! < Left hand side.
c l a s s ( integrand ) , i n t e n t ( IN ) : : rhs ! < Right hand side.
endsubroutine assignment_integrand

Listing 6: integrand assignment procedure interface

The assignment statement is necessary in order to complete the algebra operating on the integrand
object class, allowing the assignment of an integrand object by another one, circumstance that happens
in all solvers, see equations (2), (3), (6) or (9). The implementation details of this assignment is strictly
dependent on the concrete extension of the integrand type. From the FOODIE solvers point of view, we
need to known only that first argument passed as bounded one, the left-hand-side of the assignment,
and the second argument, the right-hand-side of the assignment, are two integrand objects.

3.2. The explicit forward Euler solver

The explicit forward Euler solver is exposed (by the FOODIE main module that must imported,
see Listing 1) as a single derived type (that is a standard convention for all FOODIE solvers) named
euler_explicit_integrator. It provides the type bound procedure (also referred as method) integrate for
integrating in time an integrand object, or any of its polymorphic concrete extensions. Consequently,
for using such a solver it must be previously defined as an instance of the exposed FOODIE integrator
type, see Listing 7.

use FOODIE, only : e u l e r _ e x p l i c i t _ i n t e g r a t o r
type ( e u l e r _ e x p l i c i t _ i n t e g r a t o r ) : : i n t e g r a t o r

Listing 7: definition of an explicit forward Euler integrator
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Once an integrator of this type has been instantiated, it can be directly used without any
initialization, for example see Listing 8.

type ( my_integrand ) : : my_field
c a l l i n t e g r a t o r%i n t e g r a t e (U=my_field , Dt = 0 . 1 )

Listing 8: example of usage of an explicit forward Euler integrator

where my_integrand is a concrete (valid) extension of integrand ADT.
The complete implementation of the integrate method of the explicit forward Euler solver is

reported in Listing 9.

subroutine i n t e g r a t e (U, Dt , t )
c l a s s ( integrand ) , i n t e n t (INOUT) : : U ! < Field to be integrated.
r e a l ( R_P ) , i n t e n t ( IN ) : : Dt ! < Time step.
r e a l ( R_P ) , opt ional , i n t e n t ( IN ) : : t ! < Time.
U = U + U%t ( t = t ) * Dt
re turn
endsubroutine i n t e g r a t e

Listing 9: implementation of the integrate method of Euler solver

This method takes three arguments, the first argument is an integrand class, it being the integrand
field that must integrated one-step-over in time, the second is the time step used and the third, that
is optional, is the current time value that is passed to the residuals function for taking into account
the cases where the time derivative explicitly depends on time. The time step is not automatically
computed (for example inspecting the passed integrand field), thus its value must be externally
computed and passed to the integrate method.

3.3. The explicit TVD/SSP Runge-Kutta class of solvers

The TVD/SSP Runge-Kutta class of solvers is exposed as a single derived type named
tvd_runge_kutta_integrator. This type provides three methods:

• init: initialize the integrator accordingly the possibilities offered by the class of solvers;
• destroy: destroy the integrator previously initialized, eventually freeing the allocated dynamic

memory registers;
• integrate: integrate integrand field one-step-over in time.

As common for FOODIE solvers, for using such a solver it must be previously defined as an
instance of the exposed FOODIE integrator type, see Listing 10.

use FOODIE, only : tvd_runge_kut ta_ integra tor
type ( tvd_runge_kut ta_ integra tor ) : : i n t e g r a t o r

Listing 10: definition of an explicit TVD/SSP Runge-Kutta integrator

Once an integrator of this type has been instantiated, it must be initialized before used, for
example see Listing 11.

c a l l i n t e g r a t o r%i n i t ( s t a g e s =3)

Listing 11: example of initialization of an explicit TVD/SSP Runge-Kutta integrator

In the Listing 11 a 3-stages solver has been initialized. As a matter of facts, from the equations (3)
and (4) a solver belonging to this class is completely defined once the number of stages adopted has
been chosen. The complete definition of the tvd_runge_kutta_integrator type is reported into Listing 12.
As shown, the Butcher’s coefficients are stored as allocatable arrays the values of which are initialized
by the init method.

type : : tvd_runge_kut ta_ integra tor
i n t e g e r ( I_P ) : : s t a g e s =0 ! Number of stages.
r e a l ( R_P ) , a l l o c a t a b l e : : alph ( : , : ) ! alpha Butcher’s coefficients.
r e a l ( R_P ) , a l l o c a t a b l e : : beta ( : ) ! beta Butcher’s coefficients.
r e a l ( R_P ) , a l l o c a t a b l e : : gamm ( : ) ! gamma Butcher’s coefficients.
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conta ins
procedure , pass ( s e l f ) , publ ic : : destroy
procedure , pass ( s e l f ) , publ ic : : i n i t
procedure , pass ( s e l f ) , publ ic : : i n t e g r a t e
f i n a l : : f i n a l i z e

endtype tvd_runge_kut ta_ integra tor

Listing 12: definition of tvd_runge_kutta_integrator type

After the solver has been initialized it can be used for integrating an integrand field, as shown in
Listing 13.

type ( my_integrand ) : : my_field
type ( my_integrand ) : : my_stages ( 1 : 3 )
c a l l i n t e g r a t o r%i n t e g r a t e (U=my_field , s tage=my_stage , Dt = 0 . 1 )

Listing 13: example of usage of a TVD/SSP Runge-Kutta integrator

where my_integrand is a concrete (valid) extension of integrand ADT. Listing 13 shows that the memory
registers necessary for storing the Runge-Kutta stages must be supplied by the client code.

The complete implementation of the integrate method of the explicit TVD/SSP Runge-Kutta class
of solvers is reported in Listing 14.

subroutine i n t e g r a t e ( s e l f , U, stage , Dt , t )
c l a s s ( tvd_runge_kut ta_ in tegra tor ) , i n t e n t ( IN ) : : s e l f ! Actual RK integrator.
c l a s s ( integrand ) , i n t e n t (INOUT) : : U ! Field to be integrated.
c l a s s ( integrand ) , i n t e n t (INOUT) : : s tage ( 1 : ) ! Runge-Kutta stages [1:stages].
r e a l ( R_P ) , i n t e n t ( IN ) : : Dt ! Time step.
r e a l ( R_P ) , i n t e n t ( IN ) : : t ! Time.
i n t e g e r ( I_P ) : : s ! First stages counter.
i n t e g e r ( I_P ) : : s s ! Second stages counter.
s e l e c t type ( s tage )
c l a s s i s ( integrand )

do s =1 , s e l f%s t a g e s
s tage ( s ) = U
do ss =1 , s − 1

s tage ( s ) = s tage ( s ) + s tage ( ss ) * ( Dt * s e l f%alph ( s , ss ) )
enddo
stage ( s ) = s tage ( s)% t ( t = t + s e l f%gamm( s ) * Dt )

enddo
do s =1 , s e l f%s t a g e s

U = U + stage ( s ) * ( Dt * s e l f%beta ( s ) )
enddo

e n d s e l e c t
re turn
endsubroutine i n t e g r a t e

Listing 14: implementation of the integrate method of explicit TVD/SSP Runge-Kutta class

This method takes five arguments, the first argument is passed as bounded argument and it is
the solver itself, the second is of an integrand class, it being the integrand field that must integrated
one-step-over in time, the third is the stages array for storing the stages computations, the fourth is the
time step used and the fifth, that is optional, is the current time value that is passed to the residuals
function for taking into account the cases where the time derivative explicitly depends on time. The
time step is not automatically computed (for example inspecting the passed integrand field), thus its
value must be externally computed and passed to the integrate method.

It is worth noting that the stages memory registers, namely the array stage, must be passed as
argument because it is defined as a not-passed polymorphic argument, thus we are not allowed to
define it as an automatic array of the integrate method.

3.4. The explicit low storage Runge-Kutta class of solvers

The low storage variant of Runge-Kutta class of solvers is exposed as a single derived type named
ls_runge_kutta_integrator. This type provides three methods:

• init: initialize the integrator accordingly the possibilities offered by the class of solvers;
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• destroy: destroy the integrator previously initialized, eventually freeing the allocated dynamic
memory registers;

• integrate: integrate integrand field one-step-over in time.

As common for FOODIE solvers, for using such a solver it must be previously defined as an
instance of the exposed FOODIE integrator type, see Listing 15.

use FOODIE, only : l s _ r u n g e _ k u t t a _ i n t e g r a t o r
type ( l s _ r u n g e _ k u t t a _ i n t e g r a t o r ) : : i n t e g r a t o r

Listing 15: definition of an explicit low storage Runge-Kutta integrator

Once an integrator of this type has been instantiated, it must be initialized before used, for
example see Listing 16.

c a l l i n t e g r a t o r%i n i t ( s t a g e s =5)

Listing 16: example of initialization of an explicit low storage Runge-Kutta integrator

In the Listing 16 a 5-stages solver has been initialized. As a matter of facts, from the equation
(5) a solver belonging to this class is completely defined once the number of stages adopted has been
chosen. The complete definition of the ls_runge_kutta_integrator type is reported into Listing 17. As
shown, the Williamson’s coefficients are stored as allocatable arrays the values of which are initialized
by the init method.

type : : l s _ r u n g e _ k u t t a _ i n t e g r a t o r
i n t e g e r ( I_P ) : : s t a g e s =0 ! Number of stages.
r e a l ( R_P ) , a l l o c a t a b l e : : A ( : ) ! Low storage *A* coefficients.
r e a l ( R_P ) , a l l o c a t a b l e : : B ( : ) ! Low storage *B* coefficients.
r e a l ( R_P ) , a l l o c a t a b l e : : C ( : ) ! Low storage *C* coefficients.
conta ins

procedure , pass ( s e l f ) , publ ic : : destroy
procedure , pass ( s e l f ) , publ ic : : i n i t
procedure , pass ( s e l f ) , publ ic : : i n t e g r a t e
f i n a l : : f i n a l i z e

endtype l s _ r u n g e _ k u t t a _ i n t e g r a t o r

Listing 17: definition of ls_runge_kutta_integrator type

After the solver has been initialized it can be used for integrating an integrand field, as shown in
Listing 18.

type ( my_integrand ) : : my_field
type ( my_integrand ) : : my_stages ( 1 : 2 )
c a l l i n t e g r a t o r%i n t e g r a t e (U=my_field , s tage=my_stage , Dt = 0 . 1 )

Listing 18: example of usage of a low storage Runge-Kutta integrator

where my_integrand is a concrete (valid) extension of integrand ADT. Listing 18 shows that the memory
registers necessary for storing the Runge-Kutta stages must be supplied by the client code, as it happens
of the TVD/SSP Runge-Kutta class. However, now the registers necessary is always 2, independently
on the number of stages used, that in the example considered are 5.

The complete implementation of the integrate method of the explicit low storage Runge-Kutta
class of solvers is reported in Listing 19.

subroutine i n t e g r a t e ( s e l f , U, stage , Dt , t )
c l a s s ( l s _ r u n g e _ k u t t a _ i n t e g r a t o r ) , i n t e n t ( IN ) : : s e l f ! Actual RK integrator.
c l a s s ( integrand ) , i n t e n t (INOUT) : : U ! Field to be integrated.
c l a s s ( integrand ) , i n t e n t (INOUT) : : s tage ( 1 : 2 ) ! Runge-Kutta registers [1:2].
r e a l ( R_P ) , i n t e n t ( IN ) : : Dt ! Time step.
r e a l ( R_P ) , i n t e n t ( IN ) : : t ! Time.
i n t e g e r ( I_P ) : : s ! First stages counter.
s e l e c t type ( s tage )
c l a s s i s ( integrand )

s tage ( 1 ) = U
stage ( 2 ) = U* 0 . _R_P
do s =1 , s e l f%s t a g e s

s tage ( 2 ) = s tage ( 2 ) * s e l f%A( s ) + s tage (1)% t ( t = t + s e l f%C( s ) * Dt ) * Dt
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s tage ( 1 ) = s tage ( 1 ) + s tage ( 2 ) * s e l f%B ( s )
enddo
U = stage ( 1 )

e n d s e l e c t
re turn
endsubroutine i n t e g r a t e

Listing 19: implementation of the integrate method of explicit low storage Runge-Kutta class

This method takes five arguments, the first argument is passed as bounded argument and it is
the solver itself, the second is of an integrand class, it being the integrand field that must integrated
one-step-over in time, the third is the stages array for storing the stages computations, the fourth is the
time step used and the fifth, that is optional, is the current time value that is passed to the residuals
function for taking into account the cases where the time derivative explicitly depends on time. The
time step is not automatically computed (for example inspecting the passed integrand field), thus its
value must be externally computed and passed to the integrate method.

It is worth noting that the stages memory registers, namely the array stage, must be passed as
argument because it is defined as a not-passed polymorphic argument, thus we are not allowed to
define it as an automatic array of the integrate method.

3.5. The explicit Adams-Bashforth class of solvers

The explicit Adams-Bashforth class of solvers is exposed as a single derived type named
adams_bashforth_integrator. This type provides three methods:

• init: initialize the integrator accordingly the possibilities offered by the class of solvers;
• destroy: destroy the integrator previously initialized, eventually freeing the allocated dynamic

memory registers;
• integrate: integrate integrand field one-step-over in time;
• update_previous: auto update (cyclically) previous time steps solutions.

As common for FOODIE solvers, for using such a solver it must be previously defined as an
instance of the exposed FOODIE integrator type, see Listing 20.

use FOODIE, only : adams_bashforth_integrator
type ( adams_bashforth_integrator ) : : i n t e g r a t o r

Listing 20: definition of an explicit Adams-Bashforth integrator

Once an integrator of this type has been instantiated, it must be initialized before used, for
example see Listing 21.

c a l l i n t e g r a t o r%i n i t ( s teps =4)

Listing 21: example of initialization of an explicit Adams-Bashforth integrator

In the Listing 21 a 4-steps solver has been initialized. As a matter of facts, from the equation (6) a
solver belonging to this class is completely defined once the number of time steps adopted has been
chosen. The complete definition of the adams_bashforth_integrator type is reported into Listing 22. As
shown, the linear coefficients are stored as allocatable arrays the values of which are initialized by the
init method.

type : : adams_bashforth_integrator
p r i v a t e
i n t e g e r ( I_P ) : : s t eps =0 ! Number of time steps.
r e a l ( R_P ) , a l l o c a t a b l e : : b ( : ) ! b coefficients.
conta ins

procedure , pass ( s e l f ) , publ ic : : destroy
procedure , pass ( s e l f ) , publ ic : : i n i t
procedure , pass ( s e l f ) , publ ic : : i n t e g r a t e
procedure , pass ( s e l f ) , publ ic : : update_previous
f i n a l : : f i n a l i z e

endtype adams_bashforth_integrator

Listing 22: definition of adams_bashforth_integrator type
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After the solver has been initialized it can be used for integrating an integrand field, as shown in
Listing 23.

r e a l : : t imes ( 1 : 4 )
type ( my_integrand ) : : my_field
type ( my_integrand ) : : previous ( 1 : 4 )
c a l l i n t e g r a t o r%i n t e g r a t e (U=my_field , previous=previous , Dt=Dt , t =times )

Listing 23: example of usage of an Adams-Bashforth integrator

where my_integrand is a concrete (valid) extension of integrand ADT, times are the time at each 4 steps
considered for the current one-step-over integration and previous are the memory registers where
previous time steps solutions are saved.

The complete implementation of the integrate method of the explicit Adams-Bashforth class of
solvers is reported in Listing 24.

subroutine i n t e g r a t e ( s e l f , U, previous , Dt , t , autoupdate )
c l a s s ( adams_bashforth_integrator ) , i n t e n t ( IN ) : : s e l f ! Actual AB integrator.
c l a s s ( integrand ) , i n t e n t (INOUT) : : U ! Field to be integrated.
c l a s s ( integrand ) , i n t e n t (INOUT) : : previous ( 1 : ) ! Previous time steps solutions.
r e a l ( R_P ) , i n t e n t ( IN ) : : Dt ! Time steps.
r e a l ( R_P ) , i n t e n t ( IN ) : : t ( : ) ! Times.
l o g i c a l , opt ional , i n t e n t ( IN ) : : autoupdate ! Autoupdate previous time steps.
l o g i c a l : : autoupdate_ ! autoupdate previous time steps, dummy var.
i n t e g e r ( I_P ) : : s ! Steps counter.
autoupdate_ = . t rue . ; i f ( present ( autoupdate ) ) autoupdate_ = autoupdate
do s =1 , s e l f%st eps

U = U + previous ( s)% t ( t = t ( s ) ) * ( Dt * s e l f%b ( s ) )
enddo
i f ( autoupdate_ ) c a l l s e l f%update_previous (U=U, previous=previous )
re turn
endsubroutine i n t e g r a t e

Listing 24: implementation of the integrate method of explicit Adams-Bashforth class

This method takes five arguments, the first argument is passed as bounded argument and it is
the solver itself, the second is of an integrand class, it being the integrand field that must integrated
one-step-over in time, the third are the previous time steps solutions, the fourth is the time step used,
the fifth is an array of the time values of the steps considered for the current one-step-over integration
that are passed to the residuals function for taking into account the cases where the time derivative
explicitly depends on time and the sixth is a logical flag for enabling/disabling the cyclic update of
previous time steps solutions. The time step is not automatically computed (for example inspecting
the passed integrand field), thus its value must be externally computed and passed to the integrate

method.
It is worth noting that the method also performs the cyclic update of the previous time steps

solutions memory registers. This can be disable passing autoupdate=.false.: it is useful in the framework
of predictor-corrector solvers.

3.6. The implicit Adams-Moulton class of solvers

The implicit Adams-Moulton class of solvers is exposed as a single derived type named
adams_moulton_integrator. This type provides three methods:

• init: initialize the integrator accordingly the possibilities offered by the class of solvers;
• destroy: destroy the integrator previously initialized, eventually freeing the allocated dynamic

memory registers;
• integrate: integrate integrand field one-step-over in time;
• update_previous: auto update (cyclically) previous time steps solutions.

As common for FOODIE solvers, for using such a solver it must be previously defined as an
instance of the exposed FOODIE integrator type, see Listing 25.
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use FOODIE, only : adams_moulton_integrator
type ( adams_moulton_integrator ) : : i n t e g r a t o r

Listing 25: definition of an implicit Adams-Moulton integrator

Once an integrator of this type has been instantiated, it must be initialized before used, for
example see Listing 26.

c a l l i n t e g r a t o r%i n i t ( s teps =3)

Listing 26: example of initialization of an implicit Adams-Moulton integrator

In the Listing 26 a 3-steps solver has been initialized. As a matter of facts, from the equation (7) a
solver belonging to this class is completely defined once the number of time steps adopted has been
chosen. The complete definition of the adams_moulton_integrator type is reported into Listing 27. As
shown, the linear coefficients are stored as allocatable arrays the values of which are initialized by the
init method.

type : : adams_moulton_integrator
p r i v a t e
i n t e g e r ( I_P ) : : s t eps =−1 ! Number of time steps.
r e a l ( R_P ) , a l l o c a t a b l e : : b ( : ) ! b coefficients.
conta ins

procedure , pass ( s e l f ) , publ ic : : destroy
procedure , pass ( s e l f ) , publ ic : : i n i t
procedure , pass ( s e l f ) , publ ic : : i n t e g r a t e
procedure , pass ( s e l f ) , publ ic : : update_previous
f i n a l : : f i n a l i z e

endtype adams_moulton_integrator

Listing 27: definition of adams_moulton_integrator type

After the solver has been initialized it can be used for integrating an integrand field, as shown in
Listing 28.

r e a l : : t imes ( 1 : 3 )
type ( my_integrand ) : : my_field
type ( my_integrand ) : : previous ( 1 : 3 )
c a l l i n t e g r a t o r%i n t e g r a t e (U=my_field , previous=previous , Dt=Dt , t =times )

Listing 28: example of usage of an Adams-Moulton integrator

where my_integrand is a concrete (valid) extension of integrand ADT, times are the time at each 4 steps
considered for the current one-step-over integration and previous are the memory registers where
previous time steps solutions are saved.

The complete implementation of the integrate method of the implicit Adams-Moulton class of
solvers is reported in Listing 29.

subroutine i n t e g r a t e ( s e l f , U, previous , Dt , t , autoupdate )
c l a s s ( adams_bashforth_integrator ) , i n t e n t ( IN ) : : s e l f ! Actual AB integrator.
c l a s s ( integrand ) , i n t e n t (INOUT) : : U ! Field to be integrated.
c l a s s ( integrand ) , i n t e n t (INOUT) : : previous ( 1 : ) ! Previous time steps solutions.
r e a l ( R_P ) , i n t e n t ( IN ) : : Dt ! Time steps.
r e a l ( R_P ) , i n t e n t ( IN ) : : t ( : ) ! Times.
l o g i c a l , opt ional , i n t e n t ( IN ) : : autoupdate ! Autoupdate previous time steps.
l o g i c a l : : autoupdate_ ! autoupdate previous time steps, dummy var.
i n t e g e r ( I_P ) : : s ! Steps counter.
autoupdate_ = . t rue . ; i f ( present ( autoupdate ) ) autoupdate_ = autoupdate
i f ( autoupdate_ ) c a l l s e l f%update_previous (U=U, previous=previous )
i f ( s e l f%steps >0) then

U = previous ( s e l f%steps ) + U%t ( t = t ( s e l f%steps ) + Dt ) * ( Dt * s e l f%b ( s e l f%st eps ) )
do s =0 , s e l f%st eps − 1

U = U + previous ( s+1)% t ( t = t ( s +1 ) ) * ( Dt * s e l f%b ( s ) )
enddo
i f ( autoupdate_ ) c a l l s e l f%update_previous (U=U, previous=previous )

e l s e
U = U + U%t ( t = t ( s +1 ) ) * ( Dt * s e l f%b ( 0 ) )

endi f
re turn
endsubroutine i n t e g r a t e

Listing 29: implementation of the integrate method of explicit Adams-Moulton class
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This method takes six arguments, the first argument is passed as bounded argument and it is
the solver itself, the second is of an integrand class, it being the integrand field that must integrated
one-step-over in time, the third are the previous time steps solutions, the fourth is the time step used,
the fifth is an array of the time values of the steps considered for the current one-step-over integration
that are passed to the residuals function for taking into account the cases where the time derivative
explicitly depends on time and the sixth is a logical flag for enabling/disabling the cyclic update of
previous time steps solutions. The time step is not automatically computed (for example inspecting
the passed integrand field), thus its value must be externally computed and passed to the integrate

method.
It is worth noting that the method also performs the cyclic update of the previous time steps

solutions memory registers. This can be disable passing autoupdate=.false.: it is useful in the framework
of predictor-corrector solvers.

3.7. The predictor-corrector Adams-Bashforth-Moulton class of solvers

The predictor-corrector Adams-Bashforth-Moulton class of solvers is exposed as a single derived
type named adams_bashforth_moulton_integrator. This type provides three methods:

• init: initialize the integrator accordingly the possibilities offered by the class of solvers;
• destroy: destroy the integrator previously initialized, eventually freeing the allocated dynamic

memory registers;
• integrate: integrate integrand field one-step-over in time;

As common for FOODIE solvers, for using such a solver it must be previously defined as an
instance of the exposed FOODIE integrator type, see Listing 30.

use FOODIE, only : adams_bashforth_moulton_integrator
type ( adams_bashforth_moulton_integrator ) : : i n t e g r a t o r

Listing 30: definition of an implicit Adams-Moulton integrator

Once an integrator of this type has been instantiated, it must be initialized before used, for
example see Listing 31.

c a l l i n t e g r a t o r%i n i t ( s teps =3)

Listing 31: example of initialization of an implicit Adams-Moulton integrator

In the Listing 31 a 3-steps solver has been initialized. As a matter of facts, from the equation (8) a
solver belonging to this class is completely defined once the number of time steps adopted has been
chosen. The complete definition of the adams_moulton_integrator type is reported into Listing 32. As
shown, the linear coefficients are stored as allocatable arrays the values of which are initialized by the
init method.

type , extends ( i n t e g r a t o r _ m u l t i s t e p _ o b j e c t ) : : integrator_adams_bashforth_moulton
p r i v a t e
type ( integrator_adams_bashforth ) : : p r e d i c t o r ! Predictor solver.
type ( integrator_adams_moulton ) : : c o r r e c t o r ! Corrector solver.
conta ins

procedure , pass ( s e l f ) : : destroy
procedure , pass ( s e l f ) : : i n i t i a l i z e
procedure , pass ( s e l f ) : : scheme_number

endtype integrator_adams_bashforth_moulton

Listing 32: definition of adams_bashforth_moulton_integrator type

After the solver has been initialized it can be used for integrating an integrand field, as shown in
Listing 33.

r e a l : : t imes ( 1 : 3 )
type ( my_integrand ) : : my_field
type ( my_integrand ) : : previous ( 1 : 3 )
c a l l i n t e g r a t o r%i n t e g r a t e (U=my_field , previous=previous , Dt=Dt , t =times )

Listing 33: example of usage of an Adams-Bashforth-Moulton integrator
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where my_integrand is a concrete (valid) extension of integrand ADT, times are the time at each 4 steps
considered for the current one-step-over integration and previous are the memory registers where
previous time steps solutions are saved.

The complete implementation of the integrate method of the predictor-corrector
Adams-Bashforth-Moulton class of solvers is reported in Listing 34.

subroutine i n t e g r a t e ( s e l f , U, Dt , t )
c l a s s ( integrator_adams_bashforth_moulton ) , i n t e n t ( inout ) : : s e l f ! Integrator.
c l a s s ( i n t e g r a n d _ o b j e c t ) , i n t e n t ( inout ) : : U ! Field to be integrated.
r e a l ( R_P ) , i n t e n t ( in ) : : Dt ! Time steps.
r e a l ( R_P ) , i n t e n t ( in ) : : t ! Times.
i n t e g e r ( I_P ) : : s ! Step counter.

do s =1 , s e l f%st eps
s e l f%p r e d i c t o r%previous ( s ) = s e l f%previous ( s )
s e l f%p r e d i c t o r%t ( s ) = s e l f%t ( s )
s e l f%p r e d i c t o r%Dt ( s ) = s e l f%Dt ( s )

enddo
do s =1 , s e l f%st eps − 1

s e l f%c o r r e c t o r%previous ( s ) = s e l f%p r e d i c t o r%previous ( s +1)
s e l f%c o r r e c t o r%t ( s ) = s e l f%p r e d i c t o r%t ( s +1)
s e l f%c o r r e c t o r%Dt ( s ) = s e l f%p r e d i c t o r%Dt ( s +1)

enddo
c a l l s e l f%p r e d i c t o r%i n t e g r a t e (U=U, Dt=Dt , t = t )
c a l l s e l f%c o r r e c t o r%i n t e g r a t e (U=U, Dt=Dt , t = t )
i f ( s e l f%autoupdate ) &

c a l l s e l f%update_previous (U=U, previous= s e l f%previous , Dt=Dt , t =t , previous_t= s e l f%t )
endsubroutine i n t e g r a t e

Listing 34: implementation of the integrate method of predictor-corrector Adams-Bashforth-Moulton
class

This method takes four arguments, the first argument is passed as bounded argument and it is
the solver itself, the second is of an integrand class, it being the integrand field that must integrated
one-step-over in time, the third is the time step used, and the fourth is the current time. The time step
is not automatically computed (for example inspecting the passed integrand field), thus its value must
be externally computed and passed to the integrate method.

3.8. The leapfrog solver

The explicit Leapfrog class of solvers is exposed as a single derived type named leapfrog_integrator.
This type provides three methods:

• init: initialize the integrator accordingly the possibilities offered by the class of solvers;
• integrate: integrate integrand field one-step-over in time.

As common for FOODIE solvers, for using such a solver it must be previously defined as an
instance of the exposed FOODIE integrator type, see Listing 35.

use FOODIE, only : l e a p f r o g _ i n t e g r a t o r
type ( l e a p f r o g _ i n t e g r a t o r ) : : i n t e g r a t o r

Listing 35: definition of an explicit Leapfrog integrator

Once an integrator of this type has been instantiated, it must be initialized before used, for
example see Listing 36.

! default coefficients nu=0.01, alpha=0.53
c a l l i n t e g r a t o r%i n i t ( )
! custom coefficients
c a l l i n t e g r a t o r%i n i t ( nu =0 .015 , alpha = 0 . 6 )

Listing 36: example of initialization of an explicit Leapfrog integrator

The complete definition of the leapfrog_integrator type is reported into Listing 37. As shown, the
filter coefficients are initialized to zero, suitable values are initialized by the init method.
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type : : l e a p f r o g _ i n t e g r a t o r
p r i v a t e
r e a l ( R_P ) : : nu=0.01 _R_P ! Robert-Asselin filter coefficient.
r e a l ( R_P ) : : alpha =0.53 _R_P ! Robert-Asselin-Williams filter coefficient.
conta ins

procedure , pass ( s e l f ) , publ ic : : i n i t
procedure , pass ( s e l f ) , publ ic : : i n t e g r a t e

endtype l e a p f r o g _ i n t e g r a t o r

Listing 37: definition of leapfrog_integrator type

After the solver has been initialized it can be used for integrating an integrand field, as shown in
Listing 38.

r e a l : : t imes ( 1 : 2 )
type ( my_integrand ) : : f i l t e r _ d i s p l a c e m e n t
type ( my_integrand ) : : my_field
type ( my_integrand ) : : previous ( 1 : 2 )
c a l l i n t e g r a t o r%i n t e g r a t e (U=my_field , previous=previous , f i l t e r = f i l t e r _ d i s p l a c e m e n t , Dt=Dt , &

t =times )

Listing 38: example of usage of a Leapfrog integrator

where my_integrand is a concrete (valid) extension of integrand ADT, previous are the memory registers
where previous time steps solutions are saved, filter_displacement is the register necessary for computing
the eventual displacement of the applied filter and times are the time at each 2 steps considered for the
current one-step-over integration.

The complete implementation of the integrate method of the explicit Leapfrog class of solvers is
reported in Listing 39.

subroutine i n t e g r a t e ( s e l f , U, previous , Dt , t , f i l t e r )
c l a s s ( l e a p f r o g _ i n t e g r a t o r ) , i n t e n t ( IN ) : : s e l f ! LF integrator.
c l a s s ( integrand ) , i n t e n t (INOUT) : : U ! Field to be integrated.
c l a s s ( integrand ) , i n t e n t (INOUT) : : previous ( 1 : 2 ) ! Previous time steps solutions.
r e a l ( R_P ) , i n t e n t ( in ) : : Dt ! Time step.
r e a l ( R_P ) , i n t e n t ( IN ) : : t ! Time.
c l a s s ( integrand ) , opt ional , i n t e n t (INOUT) : : f i l t e r ! Filter field displacement.
U = previous ( 1 ) + previous (2)% t ( t = t ) * ( Dt * 2 . _R_P )
i f ( present ( f i l t e r ) ) then

f i l t e r = ( previous ( 1 ) − previous ( 2 ) * 2 . _R_P + U) * s e l f%nu * 0 . 5 _R_P
previous ( 2 ) = previous ( 2 ) + f i l t e r * s e l f%alpha
U = U + f i l t e r * ( s e l f%alpha − 1 . _R_P )

endi f
previous ( 1 ) = previous ( 2 )
previous ( 2 ) = U
return
endsubroutine i n t e g r a t e

Listing 39: implementation of the integrate method of explicit Leapfrog class

This method takes six arguments, the first argument is passed as bounded argument and it is
the solver itself, the second is of an integrand class, it being the integrand field that must integrated
one-step-over in time, the third are the previous time steps solutions, the fourth is the optional
filter-displacement-register, the fifth is the time step used and the sixth is an array of the time values of
the steps considered for the current one-step-over integration that are passed to the residuals function
for taking into account the cases where the time derivative explicitly depends on time. The time step
is not automatically computed (for example inspecting the passed integrand field), thus its value
must be externally computed and passed to the integrate method. It is worth noting that if the filter
displacement argument is not passed, the solver reverts back to the standard unfiltered Leapfrog
method.

It is worth noting that the method also performs the cyclic update of the previous time steps
solutions memory registers. In particular, if the filter displacement argument is passed the method
performs the RAW filtering.
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3.9. General Remarks

Table 8 presents a comparison of the relevant parts of equations (2), (3), (4), (5), (6) and (9) with
the corresponding FOODIE implementations reported in Listings 9, 14, 19, 24 and 39, respectively. This
comparison proves that the integrand ADT has allowed a very high-level implementation syntax. The
Fortran implementation is almost equivalent to the rigorous mathematical formulation. This aspect
directly implies that the implementation of a ODE solver into the FOODIE library is very clear, concise
and less-errors-prone than an hard-coded implementation where the solvers must be implemented for
each specific definition of the integrand type, it being not abstract.

Table 8. Comparison between rigorous mathematical formulation and FOODIE high-level
implementation; the syntax "(s)" and "(ss)" imply the summation operation

SOLVER MATHEMATICAL FORMULATION FOODIE IMPLEMENTATION

explicit forward Euler U
(

tn+1) = U (tn) + ∆t · R [tn, U (tn)] U = U + U%t(t = t) ∗ Dt

TVD/SSP Runge-Kutta
Ks = R

(

tn + γs∆t, Un + ∆t
s−1
∑

l=1
αs,lKl

)

Un+1 = Un + ∆t ·
Ns

∑
s=1

βsKs

stage(s) = stage(s) + stage(ss) ∗ (Dt ∗ sel f %alph(s, ss))
U = U + stage(s) ∗ (Dt ∗ sel f %beta(s))

low storage Runge-Kutta
K2 = AsK2 + ∆t · R (tn + Cs∆t, K1)

K1 = K1 + BsK2

stage(2) = stage(2) ∗ sel f %A(s)+
+stage(1)%t(t = t + sel f %C(s) ∗ Dt) ∗ Dt
stage(1) = stage(1) + stage(2) ∗ sel f %B(s)

explicit Adams-Bashforth
U
(

tn+Ns
)

= U
(

tn+Ns−1)+

+∆t ∑
n+Ns

s=1 bs · R
[

tn+s−1, U
(

tn+s−1)] U = U + U%t(n = s, t = t(s)) ∗ (Dt ∗ sel f %b(s))

explicit Leapfrog U
(

tn+2) = U (tn) + 2∆t · R
[

tn+1, U
(

tn+1)] U = U%previous_step(n = 1) + U%t(n = 2, t = t) ∗ (Dt ∗ 2.)

4. Tests and Examples

For the assessment of FOODIE capabilities the oscillator test is considered:

4.1. Oscillation equations test

Let us consider the oscillator problem, it being a simple, yet interesting IVP. Briefly, the oscillator
problem is a prototype problem of non dissipative, oscillatory phenomena. For example, let us consider
a pendulum subjected to the Coriolis accelerations without dissipation, the motion equations of which
can be described by the ODE system (11).

Ut = R(U)

U =

[

x

y

]

R(U) =

[

− f y

f x

]

(11)

where the frequency is chosen as f = 104. The ODE system (11) is completed by the following initial
conditions:

x(t0) = 0
y(t0) = 1

(12)

where t0 = 0 is the initial time considered.
The IVP constituted by equations (11) and (12) is (apparently) simple and its exact solution is

known:

x(t0 + ∆t) = X0cos( f ∆t)− y0sin( f ∆t)

y(t0 + ∆t) = X0sin( f ∆t) + y0cos( f ∆t)
(13)

where ∆t is an arbitrary time step. This problem is non-stiff meaning that the solution is constituted by
only one time-scale, namely the single frequency f .

This problem is only apparently simple. As a matter of facts, in a non dissipative oscillatory
problem the eventual errors in the amplitude approximation can rapidly drive the subsequent series
of approximations to an unphysical solution. This is of particular relevance if the solution (that is
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numerically approximated) constitutes a prediction far from the initial conditions, that is the common
case in weather forecasting.

Because the Oscillation system (11) posses a closed exact solution, the discussion on this test
has twofolds aims: to assess the accuracy of the FOODIE’s built-in solvers comparing the numerical
solutions with the exact one and to demonstrate how it is simple to solve this prototypical problem by
means of FOODIE.

4.1.1. Errors Analysis

For the analysis of the accuracy of each solver, we have integrated the Oscillation equations (11)
with different, decreasing time steps in the range [5000, 2500, 1250, 625, 320, 100]. The error is estimated
by the L2 norm of the difference between the exact (Ue) and the numerical (U∆t) solutions for each
time step:

ε(∆t) = ||Ue − U∆t||2 =

√

√

√

√

Ns

∑
s=1

(Ue(t0 + s ∗ ∆t)− U∆t(t0 + s ∗ ∆t))2 (14)

where Ns is the total number of time steps performed to reach the final integration time.
Using two pairs of subsequent-decreasing time steps solution is possible to estimate the order of

accuracy of the solver employed computing the observed order of accuracy:

p =
log10

(

ε(∆t1)
ε(∆t2)

)

log10
(

∆t1
∆t2

) (15)

where ∆t1
∆t2

> 1.

4.1.2. FOODIE aware implementation of an oscillation numerical solver

The IVP (11) can be easily solved by means of FOODIE library. The first block of a FOODIE aware
solution consists to define an oscillation integrand field defining a concrete extension of the FOODIE
integrand type. Listing 40 reports the implementation of such an integrand field that is contained into
the tests suite shipped within the FOODIE library.

type , extends ( integrand ) : : o s c i l l a t i o n
p r i v a t e
i n t e g e r ( I_P ) : : dims=0 ! Space dimensions.
r e a l ( R_P ) : : f =0 . _R_P ! Oscillation frequency (Hz).
r e a l ( R_P ) , dimension ( : ) , a l l o c a t a b l e : : U ! Integrand (state) variables, [1:dims].
conta ins

! auxiliary methods
procedure , pass ( s e l f ) , publ ic : : i n i t
procedure , pass ( s e l f ) , publ ic : : output
! type_integrand deferred methods
procedure , pass ( s e l f ) , publ ic : : t => d O s c i l l a t i o n _ d t
procedure , pass ( l hs ) , publ ic : : integrand_mult iply_integrand => &

o s c i l l a t i o n _ m u l t i p l y _ o s c i l l a t i o n
procedure , pass ( l hs ) , publ ic : : in tegrand_mul t ip ly_rea l => o s c i l l a t i o n _ m u l t i p l y _ r e a l
procedure , pass ( rhs ) , publ ic : : r ea l_mul t ip ly_ in tegrand => r e a l _ m u l t i p l y _ o s c i l l a t i o n
procedure , pass ( l hs ) , publ ic : : add => a d d _ o s c i l l a t i o n
procedure , pass ( l hs ) , publ ic : : sub => s u b _ o s c i l l a t i o n
procedure , pass ( l hs ) , publ ic : : ass ign_integrand => o s c i l l a t i o n _ a s s i g n _ o s c i l l a t i o n
procedure , pass ( l hs ) , publ ic : : a s s i g n _ r e a l => o s c i l l a t i o n _ a s s i g n _ r e a l

endtype o s c i l l a t i o n

Listing 40: implementation of the oscillation integrand type

The oscillation field extends the integrand ADT making it a concrete type. This derived type is
very simple: it has 5 data members for storing the state vector and some auxiliary variables, and it
implements all the deferred methods necessary for defining a valid concrete extension of the integrand

ADT (plus 2 auxiliary methods that are not relevant for our discussion). The key point is here
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constituted by the implementation of the deferred methods: the integrand ADT does not impose any
structure for the data members, that are consequently free to be customized by the client code. In this
example the data members have a very simple, clean and concise structure:

• dims is the number of space dimensions; in the case of equation (11) we have dims = 2, however
the test implementation has been kept more general parametrizing this dimension in order to
easily allow future modification of the test-program itself;

• f stores the frequency of the oscillatory problem solved, that is here set to 104, but it can be
changed at runtime in the test-program;

• U is the state vector corresponding directly to the state vector of equation (11);

As the Listing 40 shows, the FOODIE implementation strictly corresponds to the mathematical
formulation embracing all the relevant mathematical aspects into one derived type, a single object.
Here we not review the implementation of all deferred methods, this being out of the scope of the
present work: the interested reader can see the tests suite sources shipped within the FOODIE library.
However, some of these methods are relevant for our discussion, thus they are reviewed.

dOscillation_dt, the oscillation residuals function

Probably, the most important methods for an IVP solver is the residuals function. As a matter of
facts, the ODE equations are implemented into the residuals function. However, the FOODIE ADT
strongly alleviates the subtle problems that could arise when the ODE solver is hard-implemented
within the specific ODE equations. As a matter of facts, the integrand ADT specifies the precise interface
the residuals function must have: if the client code implements a compliant interface, the FOODIE
solvers will work as expected, reducing the possible errors location into the ODE equations, having
designed the solvers on the ADT and not on the concrete type.

Listing 41 reports the implementation of the oscillation residuals function: it is very clear and
concise. Moreover, comparing this listing with the equation (11) the close correspondence between the
mathematical formulation and Fortran implementation is evident.

func t ion d O s c i l l a t i o n _ d t ( s e l f , t ) r e s u l t ( dSta te_dt )
c l a s s ( o s c i l l a t i o n ) , i n t e n t ( IN ) : : s e l f ! Oscillation field.
r e a l ( R_P ) , opt ional , i n t e n t ( IN ) : : t ! Time.
c l a s s ( integrand ) , a l l o c a t a b l e : : dSta te_dt ! Oscillation field time derivative.
i n t e g e r ( I_P ) : : dn ! Time level, dummy variable.
a l l o c a t e ( o s c i l l a t i o n : : dSta te_dt )
s e l e c t type ( dSta te_dt )
c l a s s i s ( o s c i l l a t i o n )

dSta te_dt = s e l f
dSta te_dt%U( 1 ) = − s e l f%f * s e l f%U( 2 )
dSta te_dt%U( 2 ) = s e l f%f * s e l f%U( 1 )

e n d s e l e c t
re turn
endfunction d O s c i l l a t i o n _ d t

Listing 41: implementation of the oscillation integrand residuals function

Add method, an example of oscillation symmetric operator

As a prototype of the operators overloading let us consider the add operator, it being a prototype
of symmetric operators, the implementation of which is presented in Listing 42.

func t ion a d d _ o s c i l l a t i o n ( lhs , rhs ) r e s u l t ( opr )
c l a s s ( o s c i l l a t i o n ) , i n t e n t ( IN ) : : l h s ! Left hand side.
c l a s s ( integrand ) , i n t e n t ( IN ) : : rhs ! Right hand side.
c l a s s ( integrand ) , a l l o c a t a b l e : : opr ! Operator result.
a l l o c a t e ( o s c i l l a t i o n : : opr )
s e l e c t type ( opr )
c l a s s i s ( o s c i l l a t i o n )

opr = l h s
s e l e c t type ( rhs )
c l a s s i s ( o s c i l l a t i o n )
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opr%U = l h s%U + rhs%U
e n d s e l e c t

e n d s e l e c t
re turn
endfunction ad d _O sc i l l a t i on

Listing 42: implementation of the oscillation integrand add operator

It is very simple and clear: firstly all the auxiliary data are copied into the operator result, then the
state vector of the result is populated with the addiction between the state vectors of the left-hand-side
and right-hand-side. This is very intuitive from the mathematical point of view and it helps to reduce
implementation errors. Similar implementations are possible for all the other operators necessary to
define a valid intregrand ADT concrete extension.

assignment of an oscillation object

The assignment overloading of the oscillation type is the last key-method that enforces the
conciseness of the FOODIE aware implementation. Listing 43 reports the implementation of the
assignment overloading. Essentially, to all the data members of the left-hand-side are assigned the
values of the corresponding right-hand-side. Notably, for the assignment of the state vector and
of the previous time steps solution array we take advantage of the automatic re-allocation of the
left-hand-side variables when they are not allocated or allocated differently from the right-hand-side,
that is a Fortran 2003 feature. In spite its simplicity, the assignment overloading is a key-method
enabling the usage of FOODIE solver: effectively, the assignment between two integrand ADT variables
is ubiquitous into the solvers implementations, see equation (3) for example.

subroutine o s c i l l a t i o n _ a s s i g n _ o s c i l l a t i o n ( lhs , rhs )
c l a s s ( o s c i l l a t i o n ) , i n t e n t (INOUT) : : l h s ! Left hand side.
c l a s s ( integrand ) , i n t e n t ( IN ) : : rhs ! Right hand side.
s e l e c t type ( rhs )
c l a s s i s ( o s c i l l a t i o n )

l hs%dims = rhs%dims
l hs%f = rhs%f
i f ( a l l o c a t e d ( rhs%U) ) l hs%U = rhs%U

e n d s e l e c t
re turn
endsubroutine o s c i l l a t i o n _ a s s i g n _ o s c i l l a t i o n

Listing 43: implementation of the oscillation integrand assignment

FOODIE numerical integration

Using the above discussed oscillation type it is very easy to solve IVP (11) by means of FOODIE
library. Listing 44 presents the numerical integration of system (11) by means of the Leapfrog
RAW-filtered method. In the example, the integration is performed with 104 steps with a fixed
∆t = 102 until the time t = 106 is reached. The example shows also that for starting a multi-step
scheme such as the Leapfrog one a lower-oder or equivalent order one-scheme is necessary: in the
example the first 2 steps are computed by means of one-step TVD/SSP Runge-Kutta 2-stages schemes.
Note that the memory registers for storing the Runge-Kutta stages and the RAW filter displacement
must be handled by the client code. Listing 44 demonstrates how it is simple, clear and concise to solve
a IVP by FOODIE solvers. Moreover, it proves how it is simple and effective to apply different solvers
in a coupled algorithm, that greatly simplify the development of new hybrid solvers for self-adaptive
time step size.

use foodie , only : l e a p f r o g _ i n t e g r a t o r , tvd_runge_kut ta_ integra tor
type ( l e a p f r o g _ i n t e g r a t o r ) : : l f _ i n t e g r a t o r ! Leapfrog integrator.
type ( tvd_runge_kut ta_ integra tor ) : : r k _ i n t e g r a t o r ! Runge-Kutta integrator.
type ( o s c i l l a t i o n ) : : rk_s tage ( 1 : 2 ) ! Runge-Kutta stages.
type ( o s c i l l a t i o n ) : : previous ( 1 : 2 ) ! Previous time steps solution.
type ( o s c i l l a t i o n ) : : o s c i l l a t o r ! Oscillation field.
type ( o s c i l l a t i o n ) : : f i l t e r ! Filter displacement.
i n t e g e r : : s tep ! Time steps counter.
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r e a l : : Dt ! Time step.
c a l l l f _ i n t e g r a t o r%i n i t ( )
c a l l r k _ i n t e g r a t o r%i n i t ( s t a g e s =2)
c a l l o s c i l l a t o r%i n i t ( i n i t i a l _ s t a t e = [ 0 . 0 , 1 . 0 ] , f =10e4 , s t eps =2)
Dt = 100 . 0
do step =1 , 10000

i f (2>= step ) then
c a l l r k _ i n t e g r a t o r%i n t e g r a t e (U= o s c i l l a t o r , s tage=rk_stage , Dt=Dt , t =step * Dt )
previous ( s tep ) = o s c i l l a t o r

e l s e
c a l l l f _ i n t e g r a t o r%i n t e g r a t e (U= o s c i l l a t o r , previous=previous , f i l t e r = f i l t e r , Dt=Dt , &

t =step * Dt )
endi f

enddo
c a l l p r i n t _ r e s u l t s (U= o s c i l l a t o r )

Listing 44: numerical integration of the oscillation system by means of Leapfrog RAW-filtered method

4.1.3. Adams-Bashforth

Table 9 summarizes the Adams-Bashforth error analysis. As expected, the Adams-Bashforth 1
step solution, that reverts back to the explicit forward Euler one, is unstable for all the ∆t exercised.

The expected observed orders of accuracy for the Adams-Bashforth solvers using 2, 3 and 4
time steps tend to 1.5, 2.5 and 3.5 that are in agreement with the expected formal order of 2, 3 and
4, respectively. Comparing the errors of the finest time resolution, i.e. ∆t = 100, we find that the L2
norm decreases of the 2 orders of magnitude as the solver’s accuracy increases by 1 order. This also
means that fixing a tolerance on the errors, the higher is the solver’s accuracy the larger is the time
resolution available. As an example, assuming that admissible errors are of O(10−2) with the 4-steps
solver we can use ∆t = 625 performing Ns = t f inal/625 numerical integration steps, whereas using a
3-steps solvers we must adopt ∆t = 100 performing 6.25 × Ns numerical integration steps instead of
Ns. Considering that the computational costs is only slightly affected by the number of previous time
steps considered3, the accuracy order has strong impact on the overall numerical efficiency: to improve
the numerical efficiency reducing the computational costs, the usage of high order Adams-Bashforth
solvers with larger time steps should be preferred instead of low order solvers with smaller time steps.

Table 9. Oscillation test: errors analysis of explicit Adams-Bashforth solvers

(a) 1 step

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.840E+10 0.706E+10 / /
2500.0 0.503E+06 0.570E+06 14.03 13.60
1250.0 0.289E+04 0.272E+04 7.45 7.71
625.0 0.239E+03 0.232E+03 3.59 3.55
320.0 0.737E+02 0.722E+02 1.76 1.74
100.0 0.250E+02 0.247E+02 0.93 0.92

(b) 2 steps

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.596E+03 0.583E+03 / /
2500.0 0.221E+02 0.218E+02 4.75 4.74
1250.0 0.764E+01 0.769E+01 1.53 1.50
625.0 0.265E+01 0.268E+01 1.53 1.52
320.0 0.968E+00 0.981E+00 1.51 1.50
100.0 0.169E+00 0.171E+00 1.50 1.50

(c) 3 steps

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.857E+01 0.854E+01 / /
2500.0 0.391E+01 0.386E+01 1.13 1.14
1250.0 0.825E+00 0.814E+00 2.24 2.25
625.0 0.150E+00 0.148E+00 2.46 2.46
320.0 0.282E-01 0.278E-01 2.49 2.49
100.0 0.154E-02 0.152E-02 2.50 2.50

(d) 4 steps

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.128E+07 0.143E+07 / /
2500.0 0.106E+01 0.107E+01 20.21 20.34
1250.0 0.967E-01 0.981E-01 3.45 3.45
625.0 0.859E-02 0.871E-02 3.49 3.49
320.0 0.827E-03 0.838E-03 3.50 3.50
100.0 0.141E-04 0.143E-04 3.50 3.50

3 Recalling equation (6) one can observe that there is only one new evaluation of the residuals function R independently of
the previous time steps considered. Thus, the computational costs is affected only by the increasing number of residuals
summations, the costs of which are typically negligible with respect the cost of R evaluation.
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Figure 1 shows, for each solver exercised, the X(t) and Y(t) solution for t ∈ [0, 106]: the plots into
the figure report a global overview of the solution for all the instants considered (left subplots) and a
detailed zoom over the last instants of the integration (right subplots) for evaluating the numerical
errors accumulation. For the sake of clarity, the strongly unstable solutions are omitted into the subplots
concerning the final integration instants, namely the solutions for large ∆t. Figure 1 emphasizes the
instability generation for some pairs steps number/∆t. The 2 and 4 steps solutions are instable for
∆t = 5000 → f ∗ ∆t = 0.5. On the contrary, the 3 steps solution is stable, but the amplitude is dumped
and the solution vanishes as the integration proceeds. The 2 and 4 steps solutions show a phase error
that decreases as the time resolution increases, whereas 3 steps solution has null phase error.

(a) 1 step (b) 2 steps

(c) 3 steps (d) 4 steps
Figure 1. Oscillation equations solutions computed by means of Adams-Bashforth solvers.

4.1.4. Adams-Bashforth-Moulton

Table 10 summarizes the Adams-Bashforth-Moulton error analysis. The same considerations
done for the Adams-Bashforth solutions can repeated for the Adams-Bashforth-Moulton ones, thus
they are omitted for the sake of conciseness. An interesting result concerns the observed errors: the
O(10−2) error is now obtained with ∆t = 1250 for the 4-steps solver, thus it is 2 times faster than the
corresponding Adams-Bashforth 4-step solver. Considering that the computational costs of a single
Adams-Bashforth-Moulton step is only slightly greater than the corresponding Adamas-Bashforth
step, the efficiency increasing is not negligible.

Figure 2 shows similar plots of Figure 1 above discussed. Differently from the Adams-bashforth
class, the amplitude damping feature is now possessed by the 2-steps solver, see plot Figure 2b, while
all solutions show phase errors that decrease as the time resolution increases.
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Table 10. Oscillation test: errors analysis of predictor-corrector Adams-Bashforth-Moulton solvers

(a) 1 step

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.241E+20 0.266E+20 / /
2500.0 0.664E+11 0.716E+11 28.44 28.47
1250.0 0.952E+06 0.100E+07 16.09 16.12
625.0 0.413E+04 0.407E+04 7.85 7.95
320.0 0.387E+03 0.383E+03 3.54 3.53
100.0 0.145E+03 0.145E+03 0.84 0.83

(b) 2 steps

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.704E+01 0.701E+01 / /
2500.0 0.392E+01 0.395E+01 0.84 0.83
1250.0 0.148E+01 0.150E+01 1.40 1.39
625.0 0.526E+00 0.534E+00 1.49 1.49
320.0 0.193E+00 0.196E+00 1.50 1.50
100.0 0.338E-01 0.342E-01 1.50 1.50

(c) 3 steps

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.457E+01 0.464E+01 / /
2500.0 0.656E+00 0.654E+00 2.80 2.83
1250.0 0.100E+00 0.987E-01 2.71 2.73
625.0 0.169E-01 0.167E-01 2.56 2.56
320.0 0.314E-02 0.310E-02 2.52 2.51
100.0 0.171E-03 0.169E-03 2.50 2.50

(d) 4 steps

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.229E+01 0.225E+01 / /
2500.0 0.119E+00 0.118E+00 4.26 4.25
1250.0 0.825E-02 0.833E-02 3.85 3.83
625.0 0.671E-03 0.681E-03 3.62 3.61
320.0 0.631E-04 0.640E-04 3.53 3.53
100.0 0.107E-05 0.108E-05 3.51 3.51

(a) 1 step (b) 2 steps

(c) 3 steps (d) 4 steps
Figure 2. Oscillation equations solutions computed by means of Adams-Bashforth-Moulton solvers

4.1.5. Adams-Moulton

Table 11 summarizes the Adams-Moulton error analysis. The implicit Adams-Moulton solvers
behave much like the Adams-Bashforth-Moulton ones: they have similar errors and observed orders
for the same formal order considered. However, the implicit Adams-Moulton class uses one less step
with respect the corresponding Adams-Bashforth-Moulton class: this could lead to the promise of
higher computational efficiency. Notwithstanding, for solving the implicit non-linearity embedded
into the Adams-Moulton solvers an iterative algorithm must be employed: for the results presented, a
5 iterations of fixed point algorithm have been computed. This strongly reduces the eventual gain of
computational efficiency with respect the Adams-Bashforth-Moulton class.
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Table 11. Oscillation test: errors analysis of explicit Adams-Moulton solvers; the implicit non-linearity
is solved by 5 iterations of fixed point algorithm

(a) 1 step

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.840E+10 0.706E+10 / /
2500.0 0.503E+06 0.570E+06 14.03 13.60
1250.0 0.289E+04 0.272E+04 7.45 7.71
625.0 0.239E+03 0.232E+03 3.59 3.55
320.0 0.737E+02 0.722E+02 1.76 1.74
100.0 0.250E+02 0.247E+02 0.93 0.92

(b) 2 steps

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.108E+02 0.109E+02 / /
2500.0 0.412E+01 0.419E+01 1.39 1.38
1250.0 0.148E+01 0.150E+01 1.48 1.48
625.0 0.527E+00 0.533E+00 1.49 1.49
320.0 0.193E+00 0.196E+00 1.50 1.50
100.0 0.338E-01 0.342E-01 1.50 1.50

(c) 3 steps

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.390E+01 0.384E+01 / /
2500.0 0.551E+00 0.544E+00 2.82 2.82
1250.0 0.947E-01 0.934E-01 2.54 2.54
625.0 0.167E-01 0.165E-01 2.50 2.50
320.0 0.313E-02 0.309E-02 2.50 2.50
100.0 0.171E-03 0.169E-03 2.50 2.50

(d) 4 steps

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.983E+00 0.999E+00 / /
2500.0 0.832E-01 0.845E-01 3.56 3.56
1250.0 0.736E-02 0.746E-02 3.50 3.50
625.0 0.652E-03 0.660E-03 3.50 3.50
320.0 0.626E-04 0.635E-04 3.50 3.50
100.0 0.107E-05 0.108E-05 3.50 3.50

Figure 3 shows similar plots of Figure 2 above discussed: there are not relevant differences
between the 2 classes of solvers.

(a) 0 step (b) 1 step

(c) 2 steps (d) 3 steps
Figure 3. Oscillation equations solutions computed by means of Adams-Moulton solvers

4.1.6. Leapfrog

The Leapfrog solutions are in agreement with the expected results: both unfiltered and
RAW-filtered solutions show an observed order of accuracy that tends to the formal 2nd order. The two
solutions are almost the same.
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Table 12. Oscillation test: errors analysis of explicit Leapfrog solvers.

(a) Unfiltered

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.156E+02 0.156E+02 / /
2500.0 0.849E+01 0.846E+01 0.87 0.88
1250.0 0.300E+01 0.303E+01 1.50 1.48
625.0 0.106E+01 0.107E+01 1.51 1.50
320.0 0.387E+00 0.392E+00 1.50 1.50
100.0 0.676E-01 0.685E-01 1.50 1.50

(b) RAW-filtered

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.156E+02 0.156E+02 / /
2500.0 0.855E+01 0.852E+01 0.86 0.87
1250.0 0.303E+01 0.305E+01 1.50 1.48
625.0 0.107E+01 0.108E+01 1.51 1.50
320.0 0.390E+00 0.395E+00 1.50 1.50
100.0 0.685E-01 0.692E-01 1.50 1.50

(a) Unfiltered (b) RAW-filtered
Figure 4. Oscillation equations solutions computed by means of Leapfrog solvers.

4.1.7. Low Storage Runge-Kutta

Table 13. Oscillationtest: errors analysis of explicit Low Storage Runge-Kutta solvers.

(a) 1 stage

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.840E+10 0.706E+10 / /
2500.0 0.503E+06 0.570E+06 14.03 13.60
1250.0 0.289E+04 0.272E+04 7.45 7.71
625.0 0.239E+03 0.232E+03 3.59 3.55
320.0 0.737E+02 0.722E+02 1.76 1.74
100.0 0.250E+02 0.247E+02 0.93 0.92

(b) 5 stages

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.120E+00 0.122E+00 / /
2500.0 0.106E-01 0.107E-01 3.51 3.51
1250.0 0.935E-03 0.947E-03 3.50 3.50
625.0 0.826E-04 0.836E-04 3.50 3.50
320.0 0.793E-05 0.803E-05 3.50 3.50
100.0 0.135E-06 0.137E-06 3.50 3.50

(c) 6 stages

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.979E-01 0.994E-01 / /
2500.0 0.876E-02 0.888E-02 3.48 3.48
1250.0 0.776E-03 0.786E-03 3.50 3.50
625.0 0.686E-04 0.695E-04 3.50 3.50
320.0 0.659E-05 0.667E-05 3.50 3.50
100.0 0.112E-06 0.114E-06 3.50 3.50

(d) 7 stages

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.238E-01 0.240E-01 / /
2500.0 0.203E-02 0.205E-02 3.55 3.55
1250.0 0.177E-03 0.180E-03 3.51 3.51
625.0 0.156E-04 0.158E-04 3.50 3.50
320.0 0.150E-05 0.152E-05 3.50 3.50
100.0 0.269E-07 0.273E-07 3.46 3.46

(e) 12 stages

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.195E-01 0.198E-01 / /
2500.0 0.175E-02 0.177E-02 3.48 3.48
1250.0 0.155E-03 0.157E-03 3.50 3.50
625.0 0.137E-04 0.139E-04 3.50 3.50
320.0 0.132E-05 0.133E-05 3.50 3.50
100.0 0.225E-07 0.228E-07 3.50 3.50

(f) 13 stages

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.795E-02 0.805E-02 / /
2500.0 0.703E-03 0.712E-03 3.50 3.50
1250.0 0.621E-04 0.629E-04 3.50 3.50
625.0 0.549E-05 0.556E-05 3.50 3.50
320.0 0.527E-06 0.534E-06 3.50 3.50
100.0 0.899E-08 0.911E-08 3.50 3.50

(g) 14 stages

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.849E-02 0.860E-02 / /
2500.0 0.750E-03 0.759E-03 3.50 3.50
1250.0 0.662E-04 0.671E-04 3.50 3.50
625.0 0.585E-05 0.593E-05 3.50 3.50
320.0 0.562E-06 0.569E-06 3.50 3.50
100.0 0.959E-08 0.972E-08 3.50 3.50
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(a) 1 stage (b) 5 stages
Figure 5. Oscillation equations solutions computed by means of low storage Runge-Kutta solvers.

(a) 6 stages (b) 7 stages

(c) 12 stages (d) 13 stages

(e) 14 stages
Figure 6. Oscillation equations solutions computed by means of low storage Runge-Kutta solvers.
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4.1.8. TVD/SSP Runge-Kutta

Table 14. Oscillation test: errors analysis of explicit TVD/SSP Runge-Kutta.

(a) 1 stage

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.840E+10 0.706E+10 / /
2500.0 0.503E+06 0.570E+06 14.03 13.60
1250.0 0.289E+04 0.272E+04 7.45 7.71
625.0 0.239E+03 0.232E+03 3.59 3.55
320.0 0.737E+02 0.722E+02 1.76 1.74
100.0 0.250E+02 0.247E+02 0.93 0.92

(b) 2 stages

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.316E+02 0.319E+02 / /
2500.0 0.892E+01 0.894E+01 1.83 1.84
1250.0 0.301E+01 0.305E+01 1.57 1.55
625.0 0.106E+01 0.107E+01 1.51 1.51
320.0 0.387E+00 0.392E+00 1.50 1.50
100.0 0.676E-01 0.685E-01 1.50 1.50

(c) 3 stages

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.255E+01 0.252E+01 / /
2500.0 0.523E+00 0.516E+00 2.28 2.29
1250.0 0.944E-01 0.931E-01 2.47 2.47
625.0 0.167E-01 0.165E-01 2.50 2.50
320.0 0.314E-02 0.310E-02 2.50 2.50
100.0 0.171E-03 0.169E-03 2.50 2.50

(d) 5 stages

TIME STEP ERROR X ERROR Y ORDER X ORDER Y
5000.0 0.139E+00 0.141E+00 / /
2500.0 0.122E-01 0.124E-01 3.50 3.50
1250.0 0.108E-02 0.110E-02 3.50 3.50
625.0 0.956E-04 0.969E-04 3.50 3.50
320.0 0.937E-05 0.949E-05 3.47 3.47
100.0 0.512E-06 0.519E-06 2.50 2.50

(a) 1 stage (b) 2 stages

(c) 3 stages (d) 5 stages
Figure 7. Oscillation equations solutions computed by means of TVD/SSP Runge-Kutta solvers.

5. Benchmarks on parallel frameworks

As aforementioned, FOODIE is unaware of any parallel paradigms or programming models the
client codes adopt. As a consequence, the parallel performances measurements presented into this
section are aimed only to prove that FOODIE environment does not destroy the parallel scaling of the
baseline code implemented without FOODIE.

To obtain such a prove, the 1D Euler PDE system described previously is numerically solved with
FOODIE-aware test codes that in turn exploit parallel resources by means:
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• CoArray Fortran (CAF) model, for shared and distributed memory architectures;
• OpenMP directive-based model, for only shared memory architectures;

In order to measure the performances of the parallel-enabled FOODIE tests, the strong and weak

scaling have been considered. For the strong scaling the speedup has been computed:

speedup(N, k) =
Tserial(N)

Tparallel(N, k)
(16)

where N is the problem size, K the number of parallel resources used (namely the physical cores),
Tserial is the CPU time of the serial code and Tparallel the one of the parallel code. The ideal speedup is
linear with slop equals to 1. The efficiency correlated to the strong scaling measurement is defined as:

e f f iciency(N, k) =
speedup(N, k)

k
(17)

The maximum ideal efficiency is obviously the unity.
For the of weak scaling measurement the sizeup has been computed:

sizeup(N, k) =
Nk

N1
·

Tserial(N1)

Tparallel(Nk, k)
(18)

where N1 is the minimum size considered and NK is the size used for the test computed with k parallel
resources. If NK is scaled proportional to N1, the ideal sizeup is again linear and if Nk = k · N1 the
slope is again linear. The efficiency correlated to the weak scaling is defined as:

e f f iciency(N, k) =
sizeup(N, k)

k
(19)

The maximum ideal efficiency is obviously the unity.
The same 1D Euler PDEs problem is also solved by parallel-enabled codes that are not based on

FOODIE: their solutions provide a reference for measuring the effect of FOODIE abstraction on the
parallel scaling.

5.1. CAF benchmark

This subsection reports the parallel scaling analysis of Euler 1D test programs (with and without
FOODIE) being parallelized by means of CoArrays Fortran (CAF) model. This parallel model is based
on the concept of coarray introduced into the Fortran 2008 standard: the array syntax is extended
introducing the so called codimension that is a new arrays indexing. Essentially, a CAF enabled code
is designed to be replicated a certain number of times and all copies, conventionally named images,
are executed asynchronously. Each image has its own set of data (memory) and the codimension
indexes are used to access to the (remote) memory of the other images. The CAF approach allows
the implementation of Partitioned Global Address Space (PGAS) model following the SPMD (single
program, multiple data) parallelization paradigm. The programmer must take care of defining the
coarray variables and of synchronizing the images when necessary. This approach requires the
refactoring of legacy serial codes, but it allows the exploitation of both shared and distributed memory
architectures. Moreover, it is a standard feature of Fortran (2008), thus it is not chained to any particular
compiler vendors extension.

The benchmarks shows in this section have been done on a dual Intel(R) Xeon(R) CPU X5650

exacores workstation for a total of 12 physical cores, coupled with 24GB of RAM. In order to perform
an accurate analysis 4 different codes have considered:

• FOODIE-aware codes:

– serial code;
– CAF-enabled code;
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• procedural codes without using FOODIE library:

– serial code;
– CAF-enabled code;

These codes (see A.1 for the implementation details) have been compiled by means of the GNU
gfortran compiler v5.2.0 coupled with OpenCoarrays v1.1.04.

The Euler conservation laws are integrated for 30 time steps by means of the TVD RK(5,4) solver:
the measured CPU time used for computing the scaling efficiencies is the average of the 30 integrations,
thus representing the mean CPU time for computing one time step integration.

For the strong scaling, the benchmark has been conducted with 240000 finite volumes. Figure
8a summarizes the strong scaling analysis: it shows that FOODIE-based code scales similarly to the
baseline code without FOODIE.

For the weak scaling the minimum size is 24000 finite volumes and the size is scaled linearly
with the CAF images, thus N12 = 288000 cells. Figure 8b summarizes the weak scaling analysis and it
essentially confirms that FOODIE-based code scales similarly to the baseline code without FOODIE.

Both strong and weak scaling analysis point out that for the computing architecture considered
the parallel scaling is reasonable up to 12 cores, the efficiency being always satisfactory.

(a) Strong scaling, number of cells 240000

(b) Weak scaling, minimum number of cells 24000
Figure 8. Scaling efficiency with CAF programming model.

4 OpenCoarrays is an open-source software project for developing, porting and tuning transport layers that support coarray
Fortran (CAF) compilers, see http://www.opencoarrays.org/.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 June 2023                   doi:10.20944/preprints202306.1761.v1

http://www.opencoarrays.org/
https://doi.org/10.20944/preprints202306.1761.v1


35 of 41

To complete the comparison, the absolute CPU-time consumed by the two families of codes (with
and without FOODIE) must be considered. Table 15 summarizes the benchmarks results. As shown,
procedural and FOODIE-aware codes consume a very similar CPU-time for both the strong and the
weak benchmarks. The same results are shown in Figure 9. These results prove that the abstraction of
FOODIE environment does not degrade the computational efficiency.

Table 15. caf benchmarks results

(a) Strong benchmarks, number of cells 240000

NUMBER OF CAF THREADS CPU TIME FOR 1 TIME STEP INTEGRATION

FOODIE serial FOODIE parallel procedural serial procedural parallel

1 3.2970 3.3297 3.0049 3.0563
2 / 1.6536 / 1.5686
4 / 0.8515 / 1.8116
8 / 0.4296 / 0.4130
12 / 0.3094 / 0.2839

(b) Weak benchmarks, minimum number of cells 24000

NUMBER OF CAF THREADS NUMBER OF CELLS CPU TIME FOR 1 TIME STEP INTEGRATION

FOODIE serial FOODIE parallel procedural serial procedural parallel

1 24000 0.3105 0.3159 0.3089 0.3133
2 48000 / 0.3209 / 0.3185
4 96000 / 0.3384 / 0.3269
8 192000 / 0.3449 / 0.3369

12 288000 / 0.4291 / 0.3657

(a) Strong benchmark, number of cells 240000
(b) Weak benchmark, minimum number of
cells 24000

Figure 9. CPU time consumed with caf programming model

5.2. OpenMP benchmark

This subsection reports the parallel scaling analysis of Euler 1D test programs (with and without
FOODIE) being parallelized by means of OpenMP directives-based paradigm. This parallel model is
based on the concept of threads: an OpenMP enabled code start a single (master) threaded program and,
at run-time, it is able to generate a team of (many) threads that work concurrently on the parallelized
parts of the code, thus reducing the CPU time necessary for completing such parts. The parallelization
is made by means of directives explicitly inserted by the programmer: the communications between
threads are automatically handled by the compiler (through the provided OpenMP library used as
back-end). OpenMP parallel paradigm is not a standard feature of Fortran, rather it is an extension
provided by the compiler vendors. This parallel paradigm constitutes an effective and easy approach
for parallelizing legacy serial codes, however its usage is limited to shared memory architectures
because all threads must have access to the same memory.
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The benchmarks shown in this section have been done on a dual Intel(R) Xeon(R) CPU X5650

exacores workstation for a total of 12 physical cores, coupled with 24GB of RAM. In order to perform
an accurate analysis 4 different codes have considered:

• FOODIE-aware codes:

– serial code;
– OpenMP-enabled code;

• procedural codes without using FOODIE library:

– serial code;
– OpenMP-enabled code;

These codes (see A.1 for the implementation details) have been compiled by means of the GNU
gfortran compiler v5.2.0 with -O2 -fopenmp compilation flags.

The Euler conservation laws are integrated for 30 time steps by means of the TVD RK(5,4) solver:
the measured CPU time used for computing the scaling efficiencies is the average of the 30 integrations,
thus representing the mean CPU time for computing one time step integration.

For the strong scaling, the benchmark has been conducted with 240000 finite volumes. Figure
10a summarizes the strong scaling analysis: it shows that FOODIE-based code scales similarly to the
baseline code without FOODIE.

(a) Strong scaling, number of cells 240000

(b) Weak scaling, minimum number of cells 24000
Figure 10. Scaling efficiency with OpenMP programming model

For the weak scaling the minimum size is 24000 finite volumes and the size is scaled linearly with
the OpenMP threads, thus N12 = 288000 cells. Figure 10b summarizes the weak scaling analysis and it
essentially confirms that FOODIE-based code scales similarly to the baseline code without FOODIE.
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Both strong and weak scaling analysis point out that for the computing architecture considered
the parallel scaling is reasonable up to 8 cores: using 12 cores the measured efficiencies become
unsatisfactory, reducing below the 60%.

To complete the comparison, the absolute CPU-time consumed by the two families of codes (with
and without FOODIE) must be considered. Table 16 summarizes the benchmarks results. As shown,
procedural and FOODIE-aware codes consume a very similar CPU-time for both the strong and the
weak benchmarks. The same results are shown in Figure 11. These results prove that the abstraction of
FOODIE environment does not degrade the computational efficiency.

Table 16. OpenMP benchmarks results

(a) Strong benchmarks, number of cells 240000

NUMBER OF OPENMP THREADS CPU TIME FOR 1 TIME STEP INTEGRATION

FOODIE serial FOODIE parallel procedural serial procedural parallel

1 3.3466 3.3076 3.1252 3.0873
2 / 1.8166 / 1.7765
4 / 0.9798 / 1.0085
8 / 0.5192 / 0.5055
12 / 0.4847 / 0.4748

(b) Weak benchmarks, minimum number of cells 24000

NUMBER OF OPENMP THREADS NUMBER OF CELLS CPU TIME FOR 1 TIME STEP INTEGRATION

FOODIE serial FOODIE parallel procedural serial procedural parallel

1 24000 0.3171 0.3162 0.3089 0.3111
2 48000 / 0.3492 / 0.3854
4 96000 / 0.3666 / 0.4069
8 192000 / 0.3862 / 0.4142
12 288000 / 0.5727 / 0.6142

(a) Strong benchmark, number of cells 240000
(b) Weak benchmark, minimum number of
cells 24000

Figure 11. CPU time consumed with OpenMP programming model.

6. Concluding Remarks and Perspectives

The present manuscript provides detailed analysis of the implementation and tests of a software
framework for the numerical solution of Ordinary Differential Equations (ODEs) for evolutionary
(dynamic) problems. The numerical solution of general, non linear differential equations system of
the form Ut = R(t, U), U0 = F 5 is an ubiquitous mathematical representation for many dynamic
phenomena. As a consequence, the development of new mathematical and numerical methods for
solving ODEs is of paramount interest for mathematicians and physicists: in particular, it is crucial to
minimize implementation errors, to maximize source code clearness and conciseness and to speed-up

5 Where U is the vector of state variables being a function of the time-like independent variable t, Ut =
dU
dt , R is the (vectorial)

residual function, it could be a non linear function of the solution U itself and F is the (vectorial) initial conditions function.
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the rapid implementation of new ideas while preserving computational efficiency. Such goals are
often in contrast with hard-coded ODEs solvers which implementations are often very different
from the mathematical description of the solvers themselves. As demonstrated in this work, the
exploitation of Fortran Object Oriented Programming capabilities had let us to implement a very
powerful ODEs solver library, FOODIE framework, that allows mathematicians and physicists to
implement novel solvers in a very clear, concise and less-errors-prone than the hard-coded way due to
the high abstraction level of the library itself. In particular, by means of the Abstract Calculus Pattern
(ACP), FOODIE library allows to express the solvers formulae with a very high-level language, it being
close as much as possible to their natural mathematical formulations which scientists are familiar to, i.e.
the presented approach allows the implementation of novels methods with the same low-efforts of
Computer Algebra System (CAS). However, differently from common CAS, the presented approach is
implemented in pure Fortran programming language, allowing also for High Performance Computing
(HPC) problems. As a matter of facts, the presented tests and parallel benchmarks have proved that
FOODIE (and ACP approach in general) does not decrease the parallel computing efficiency.

Future works on FOODIE will concern the implementation of new ODEs solvers as well as its
applications to some non linear, dynamic PDEs system, in particular concerning the Computational
Fluid Dynamics (CFD) field. Current exascale superpc are currently focused on GPU accelerators: the
closest perspective of FOODIE extensions will concern the exploitation of parallel GPU computing
power by means of OpenMP GPU offloading.

Appendix A. Euler 1D Parallel Tests API

In subsections 5.1 and 5.2 it has been proved that FOODIE usage does not penalize the parallel
scaling of an equivalent procedural code implemented without FOODIE. To this aim, we have solved
the Euler’s conservation laws (in one dimension) by means of FOODIE: as a matter of fact, Euler 1D
PDEs constitutes a complex test retaining many difficulties of real applications, but it is still simple
enough to serve as benchmark test. In this section we report the implementation details of the codes
developed to solve (with serial and parallel models) the Euler 1D PDEs system.

Appendix A.1. Euler 1D baseline API

The 1D Euler PDEs system is a non linear, hyperbolic (inviscid) system of conservation laws for
compressible gas dynamics, that reads

Ut = R(U) ⇔ Ut = F(U)x

U =







ρ

ρu

ρE






F(U) =







ρu

ρu2 + p

ρuH







(A1)

where ρ is the density, u is the velocity, p the pressure, E the total internal specific energy and H

the total specific enthalpy. The PDEs system must completed with the proper initial and boundary
conditions. Moreover, an ideal (thermally and calorically perfect) gas is considered

R = cp − cv

γ =
cp

cv

e = cvT

h = cpT

(A2)
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where R is the gas constant, cp and cv are the specific heats at constant pressure and volume
(respectively), e is the internal energy, h is the internal enthalpy and *T* is the temperature. The
following addition equations of state hold:

T = p
ρR

E = ρe + 1
2 ρu2

H = ρh + 1
2 ρu2

a =
√

γp
ρ

(A3)

An extension of the above Euler system is considered allowing the modelling of a multi-fluid
mixture of different gas (with different physical characteristics). The well known Standard
Thermodynamic Model is used to model the gas mixture replacing the density with the density
fraction of each specie composing the mixture. This led to the following system:

Ut = R(U) ⇔ Ut = F(U)x

U =







ρs

ρu

ρE






F(U) =







ρsu

ρu2 + p

ρuH






f or s = 1, 2, ...Ns

ρ = ∑
Ns
s=1 ρs

cp = ∑
NS
s=1

ρs
ρ cp,s cv = ∑

NS
s=1

ρs
ρ cv,s

(A4)

where Ns is the number of initial species composing the gas mixture.

Appendix A.1.1. Memory organization

The finite volume, Godunov’s like approach is employed. Essentially, the method of Lines is used
to decouple the space operator from the time one. Firstly, the space operator (the residual function
of equation (A1)) is numerically solved in order to reduce the original PDEs system to a system of
ODEs that is then integrated over time by means of FOODIE solvers. Here we omit the details of the
numerical models, interested readers can see [20,21]. On the contrary, some details on the memory
organization is necessary to explaining the implemented API.

The conservative variables are co-located at the cell center. The cell and (inter)faces numeration is
as shown in Listing 45.

c e l l ( i n t e r ) f a c e s
| |
v v

|−−−−|−−−−|−...−|−−−−|−−−|−−−|−−−|−...−|−−−−−|−−−−−|−−−−−|−...−|−−−−−−−|−−−−−−−|
|1−Ng|2−Ng| . . . |−1 | 0 | 1 | 2 | . . . | Ni | Ni+1| Ni+1| . . . |Ni+Ng−1| Ni+Ng |
|−−−−|−−−−|−...−|−−−−|−−−|−−−|−−−|−...−|−−−−−|−−−−−|−−−−−|−...−|−−−−−−−|−−−−−−−|

0−Ng −1 0 1 2 Ni−1 Ni Ni+Ng

Listing 45: Numerical grid organization

In Listing 45 Ni is the number of finite volumes (cells) used for discretizing the domain and Ng is the
number of ghost cells used for imposing the left and right boundary conditions (for a total of 2Ng

cells). For each cell the conservative variables must be stored: this is done by means of of rank 2 array
where the first index refers to the conservative variables (densities, momentum or energy) while the
second index refers to the space location, namely the cell index.

The most CPU time consuming part of a finite volume scheme is the fluxes computation across
the cells interfaces. Such a computation corresponds to a loop over all the cells interfaces. Listing 46
shows a pseudo-code example of such a computation.
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do i =0 , Ni
F ( : , i ) = compute_fluxes (U( : , i ) , U( : , i + 1 ) )

enddo

Listing 46: Pseudo-code example of fluxes computation

In the pseudo-code of Listing 46 it has been emphasized that the fluxes across an interface depends
on the cells at left and right of the interface itself. The key point for the parallelization of such an
algorithm is to compute the fluxes concurrently using as much as possible the parallel resources
provided by the running architecture. As a consequence, the above showed loop over the whole
domain is split into sub-domains (explicitly or implicitly accordingly to the parallel model adopted)
and the fluxes of each sub-domain are computed concurrently.

Appendix A.1.2. The integrand API

The conservative variables of 1D Euler’s system can be easily implemented as a FOODIE integrand

field defining a concrete extension of the FOODIE integrand type. Listing 47 reports the implementation
of such an integrand field that is contained into the tests suite shipped within the FOODIE library.

type , extends ( integrand ) : : euler_1D
p r i v a t e
i n t e g e r ( I_P ) : : ord=0 ! Space accuracy formal order.
i n t e g e r ( I_P ) : : Ni=0 ! Space dimension.
i n t e g e r ( I_P ) : : Ng=0 ! Number of ghost cells for boundary conditions handling.
i n t e g e r ( I_P ) : : Ns=0 ! Number of initial species.
i n t e g e r ( I_P ) : : Nc=0 ! Number of conservative variables, Ns+2.
i n t e g e r ( I_P ) : : Np=0 ! Number of primitive variables, Ns+4.
r e a l ( R_P ) : : Dx=0. _R_P ! Space step.
type ( weno_interpolator_upwind ) : : weno ! WENO interpolator.
r e a l ( R_P ) , a l l o c a t a b l e : : U ( : , : ) ! Integrand (state) variables, whole physical domain [1:Nc,1:Ni].
r e a l ( R_P ) , a l l o c a t a b l e : : cp0 ( : ) ! Specific heat cp of initial species [1:Ns].
r e a l ( R_P ) , a l l o c a t a b l e : : cv0 ( : ) ! Specific heat cv of initial species [1:Ns].
c h a r a c t e r ( : ) , a l l o c a t a b l e : : BC_L ! Left boundary condition type.
c h a r a c t e r ( : ) , a l l o c a t a b l e : : BC_R ! Right boundary condition type.
i n t e g e r ( I_P ) : : me=0 ! ID of this_image().
i n t e g e r ( I_P ) : : we=0 ! Number of CAF images used.
conta ins

! auxiliary methods
procedure , pass ( s e l f ) , publ ic : : i n i t
procedure , pass ( s e l f ) , publ ic : : destroy
procedure , pass ( s e l f ) , publ ic : : output
procedure , pass ( s e l f ) , publ ic : : dt => compute_dt
! ADT integrand deferred methods
procedure , pass ( s e l f ) , publ ic : : t => dEuler_dt
procedure , pass ( l hs ) , publ ic : : l o c a l _ e r r o r => e u l e r _ l o c a l _ e r r o r
procedure , pass ( l hs ) , publ ic : : integrand_mult iply_integrand => e u l e r _ m u l t i p l y _ e u l e r
procedure , pass ( l hs ) , publ ic : : in tegrand_mul t ip ly_rea l => e u l e r _ m u l t i p l y _ r e a l
procedure , pass ( rhs ) , publ ic : : r ea l_mul t ip ly_ in tegrand => r e a l _ m u l t i p l y _ e u l e r
procedure , pass ( l hs ) , publ ic : : add => add_euler
procedure , pass ( l hs ) , publ ic : : sub => sub_euler
procedure , pass ( l hs ) , publ ic : : ass ign_integrand => e u l e r _ a s s i g n _ e u l e r
procedure , pass ( l hs ) , publ ic : : a s s i g n _ r e a l => e u l e r _ a s s i g n _ r e a l
! private methods
procedure , pass ( s e l f ) , p r i v a t e : : p r i m i t i v e 2 c o n s e r v a t i v e
procedure , pass ( s e l f ) , p r i v a t e : : c o n s e r v a t i v e 2 p r i m i t i v e
procedure , pass ( s e l f ) , p r i v a t e : : synchronize
procedure , pass ( s e l f ) , p r i v a t e : : impose_boundary_conditions
procedure , pass ( s e l f ) , p r i v a t e : : r e c o n s t r u c t _ i n t e r f a c e s _ s t a t e s
procedure , pass ( s e l f ) , p r i v a t e : : r iemann_solver
f i n a l : : f i n a l i z e

endtype euler_1D

Listing 47: implementation of the Euler 1D integrand type

Serial, CAF enabled and OpenMP versions of Euler test share the same integrand API. In the
serial version the cells fluxes are computed serially, whereas in CAF and OpenMP versions they are
computed in parallel by the number of CAF images or OpenMP threads used, respectively.
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