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Abstract: In econometrics and finance, volatility modelling has long been a specialised field for

addressing a variety of issues pertaining to the risk and uncertainties of an asset. This study presents a

robust framework, through a step-by-step design, that is relevant for effective Monte Carlo simulation

(MCS) with empirical verifications to estimate volatility using the Generalized Autoregressive Score

(GAS) model. The framework describes an organised approach to the MCS experiment that includes

"background (optional), defining the aim, research questions, method of implementation, and

summarised conclusion". The method of implementation is a workflow that consists of writing the

code, setting the seed, setting the true parameter a priori, data generation process, and performance

assessment through meta-statistics. Among the findings, it is experimentally demonstrated in the

study that the GAS model with a lower unconditional shape parameter value can generate a dataset

that adequately reflects the behaviour of financial time series data, relevant for volatility estimation.

This dynamic framework is intended to help interested users on MCS experiments utilising the GAS

model for reliable volatility calculations in finance and other areas.

Keywords: consistency, efficiency, score driven model, simulation design, time-varying parameter

estimation.

1. Introduction

In finance and econometrics, modelling of volatility has long been used to address a variety of

issues concerning the risk and uncertainties of an asset [1,2]. This study is an extension of an earlier

study on volatility estimation through the Generalized Autoregressive Conditional Heteroscedasticity

(GARCH) model created by Bollerslev [3] (see Samuel et al. [4]). That is, the GARCH model was

used in our earlier study to begin a "simulation framework for volatility estimation" work that was

introduced in Samuel et al. [4] with the Monte Carlo simulation (MCS) design and guidelines. The

Generalized Autoregressive Score (GAS) model is used in this instance to extend the robust design

process. As a result, this study identifies a vital framework that is pertinent to the simulation of

financial time series data for volatility estimation using the GAS model. The framework can be applied

for volatility estimation in financial and non-financial areas.

The GAS is a dynamic model used for time-varying parameter modelling, much like the GARCH

model (see [5]). Hence, this study’s main contribution is to show how the GAS model using the GAS

package can be effectively applied to enhance time varying scale parameter (volatility) estimation

through MC simulation, with empirical verification. Moreover, simulation through any model largely

revolves around generating an appropriate dataset that can produce a reasonable output approximation.

Thus, one further contribution of this study is to investigate how to use the GAS model to generate
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(simulate) a dataset that can adequately reflect the behaviour of financial time series data that is

relevant for volatility estimation.

MCS studies are computer-based experiments that involve the use of known probability

distributions for creating data by pseudo-random sampling. The data may be simulated through

parametric models or repeated resampling [6]. MCS is used for approximating real-life scenarios,

where it uses random quantities (or a probabilistic approach) to provide deterministic outcomes [7].

Since its introduction by three scientists in the field of physics [8], MCS has become an increasingly

applied technique in a wide range of fields including finance, supply chain, engineering, science [9],

and in all portfolio and investment types [10]. One of the reasons for its wide applications is because it

is based on the concept of the central limit theorem where the distribution of its estimates follows (or

converges to) the Normal distribution [11].

The raw data used for this study are the daily closing Standard & Poor South African sovereign

bond index, abbreviated S&P SA bond index. They are the bond market’s data in US Dollars from

Datastream [12] for the period 4th January 2000 to 11th June 2021 with 5598 observations. The period

under study includes the covid-19 pandemic crisis period that began in 2020. The rest of this paper is

structured as follows: Section 2 reviews the theories underlying the GAS model, the true parameter

recovery (TPR) measure, and the description of the simulation design. Section 3 shows how the

simulation framework is illustrated using financial bond return data, with empirical verifications.

Section 4 discusses the main findings and Section 5 presents concluding remarks on the novelty of the

study.

2. Materials and Methods

2.1. The GAS Model

Volatility can be effectively estimated through a Score Driven (SD) model known as the GAS

introduced by Harvey [13] and Creal et al. [14] (see [5,15,16]). The GAS model is also called the

Dynamic Conditional Score (DCS) model, and its applications are used in many financial econometrics

analytics (see [17]). It provides a connection between the stochastic volatility (SV) models [18] and

GARCH models (see [19]).

The GAS model uses the score of the conditional density function to determine the time-variation

in the parameters, i.e., the use of the score function is applied as the driver of the parameters’ time

variation. Also, the score functions are robust to outliers because they discount extreme values by

reducing the number of extreme observations, which takes place because the GAS model is conditional

on time t [13]. For instance, if errors are modelled using fat-tailed innovations under a GAS model, a

big absolute return swing will not lead to a large increase in volatility [14]. Hence, the GAS model is

indeed robust and quite suitable for modelling skewed and/or fat-tailed time series data like financial

returns [13,20]. Moreover, like the other observation-driven models, likelihood estimation using the

GAS model is simple and direct [5]. Observation-driven modelling exist in the presence of time-varying

parameters, where parameters are functions of lagged dependent variables, concurrent variables and

lagged exogenous variables (see [14,21] for details).

Let a random vector of M-dimension at time t with a conditional distribution be represented by rt

∈ ℜM such that:

rt|r1:t−1 ∼ f (rt; ϑt), (1)

where r1:t−1 ≡ (r⊤1 , ..., r⊤t−1)
⊤ are the past time-values of rt up till t − 1, that indicate the set of

information available prior to time t [22], and ϑt ∈ Θ ⊆ ℜI is a time-varying parameters’ vector with

complete characterization of f (·) depending only on r1:t−1 and a group of additional time-invariant

parameters ζ, such that ϑt ≡ ϑ(r1:t−1, ζ) ∀ t. The key attribute of GAS models is that the score of the
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conditional distribution (i.e., the conditional probability density function of rt, as stated in Equation 1)

drives the evolution in the time-varying parameter vector ϑt, in relation to an autoregressive element:

ϑt+1 ≡ κ + Act + Bϑt, (2)

where ct is the innovation term denoting a possibly scaled score of f (rt; ϑt) with respect to ϑt,

estimated in rt (see [14,15,23]). The intercept κ, vectors A and B are proper dimensional matrices of

coefficients that control for the time-varying parameters’ (ϑt) evolution [5,15]. These are functions of

the static parameters vector ζ, that is ζ = (κ, A, B)⊤ [14,17,23]. Various classes of observation-driven

models can be obtained with different choices of the scaled score ct, hence these types of models are

referred to as score-driven models [22]. The autoregressive Equation (2) that acts as a mechanism for

updating ϑt can be generally stated (see [14]) as:

ϑt+1 = κ +
p

∑
i=1

Aict−i+1 +
q

∑
j=1

Bjϑt−j+1. (3)

The ct is a vector relative to the score of Equation (1):

ct ≡ Ct(ϑt)∇t(rt, ϑt). (4)

For any realized observation rt, the time-varying ϑt is updated to the next period t + 1 using

Equation (3) with ct as defined in Equations (4) and (5) [14]. The matrix Ct denotes an I × I (valued)

positive definite scaling matrix identified at time t, and:

∇t(rt, ϑt) ≡
∂log f (rt; ϑt)

∂ϑt
(5)

represents the score of Equation (1) estimated at ϑt. The variance of ∇t can be accounted for by

setting the Ct (scaling matrix) to a power ω > 0 of the inverse of the Information Matrix, Jt, of the

time-varying parameters ϑt [5,14], i.e.,

Ct(ϑt) ≡ Jt(ϑt)
−ω, for: Jt(ϑt) ≡ Et−1

[

∇t(rt, ϑt)∇t(rt, ϑt)
⊤
]

, (6)

with the expectation taken on rt|r1:t−1. For ω, values can be taken in the set {0, 1
2 , 1}. If ω = 1

2 or

ω = 1 is fixed by a user, the inverse of the square root of the conditional score ∇t(rt, ϑt) pre-multiplies

the conditional score’s covariance matrix Jt(ϑt). However, when ω = 0, there will be no scaling since

Ct = I (identity matrix). It should be noted that for any choice of ω, ct follows a Martingale Difference

with respect to the distribution of rt|r1:t−1 since the score’s expectation is zero, that is, Et−1[ct] = 0 ∀ t.

More so, we can easily derive the additional moment condition ∨t−1[ct] = I when ω = 1
2 [5]. Because

ct is a Martingale Difference, the time-varying parameters’ process can revert to the mean near its

long-term value of mean (I − B)−1κ once the spectral radius of B < 1. This means that the I-valued

vector κ controls for the level, while the I × I matrix B controls for the persistence of the process [5,22].

In Equation (2), the extra I × I matrix of A’s coefficients of the scaled score ct controls the effect of ct

on ϑt+1, where ct indicates the direction for updating the parameters vector from ϑt to ϑt+1 [5,14].

2.1.1. Reparameterisation of the Time-Varying Parameter

The parameter vector ϑt in Equation (2) is unbounded because it has a linear specification, and

its parameter space is regularly restricted (i.e., Θ ⊂ ℜI) in practice. Therefore, the GAS structure uses

a nonlinear link function Λ(·), as an alternative to the positivity imposing constraints, to map the

reparametrised parameters vector ϑ̆t ∈ ℜI into ϑt such that ϑ̆t ∈ ℜI also provides a linear effective
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specification experienced in Equation (2). Based on this, the ϑt updating equation now takes the GAS

recursion of the form:

ϑt ≡ Λ(ϑ̆t) (7)

ϑ̆t ≡ κ + Ac̆t−1 + Bϑ̆t−1, (8)

where κ ≡ (κµ, κσ, κν)⊤ represents the vkappa vector, A ≡ diag(aµ, aσ, aν), B ≡ diag(bµ, bσ, bν)

and Λ(·) is a mapping function [5,16]. The estimated coefficients {κµ, κσ, κν}, {aµ, aσ, aν} and {bµ,

bσ, bν} are the elements of vectors κ, A and B respectively, where µ, σ, and ν are the location, scale

and shape parameters in that order. The initialisation of the process is at ϑ1 = (I − B)−1κ, and

c̆t ≡ C̆t(ϑ̆t)∇̆t(rt, ϑ̆t), where ∇̆t(rt, ϑ̆t) is the score of Equation (1) with respect to ϑ̆t (further details on

this can be found in [5,16]).

Based on the dependence of the driving mechanism in Equation (3) on the scaled score vector in

Equation (4), Equations (1) to (5) describe the GAS model of p and q as GAS(p, q), and the candidate

model GAS(1, 1) is used for the time-varying scale parameter, or volatility, estimation in this study.

This is because the time varying parameter ϑt evolves in the form of an autoregressive (AR) process of

order 1 [23], and the model typically features as GAS(1, 1) [24]. Hence, GAS(1, 1) model is used as the

data generating process (DGP) for the simulation modelling, and it also serves as the only candidate

model for the empirical data modelling. The volatility persistence of the GAS(1, 1) model is defined as

B1 (see [5,14]). Volatility persistence is a measure of how fast the existing shock to volatility will fade

away [25] and revert to the mean (normal) state.

The maximum likelihood estimation (MLE) of ϑ̂ can be implemented through the prediction error

decomposition, given the static parameter vector ζ and the past information r1:t−1. That is, for a sample

of N realisations of rt, gathered in r1:N , the MLE of the vector of parameters ζ is a solution of:

ζ̂ ≡ arg max
ζ

L(ζ; r1:N), where L(ζ; r1:N) ≡ log f (r1; ϑ1) +
N

∑
t=2

log f (rt; ϑt) (9)

with ϑ1 ≡ (I − B)−1κ, and the time-varying parameters’ vector ϑt ≡ ϑ(r1:t−1, ζ) for t > 1, such

that ϑt depends on r1:t−1 and ζ.

2.2. The True Parameter Recovery Measure

The true parameter recovery (TPR) measure in Equation (10) was developed by Samuel et al. [4]

as a means of measuring the performance of the MCS estimator in recovering the true parameter. It is

used as a proxy for the coverage of the MCS experiment to determine how much of the true parameter

is recovered by the MC simulation estimator.

TPR =

(

K −
[

(ϑ − ϑ̂)

ϑ
× K

])

%, (10)

where ϑ is the true data-generating parameter, K = 0, 1, 2, . . ., 100 is the nominal recovery level,

and ϑ̂ is the estimator from the simulated data. For instance, a TPR estimated value of 95% or 100%

indicates that the MCS estimator recovers 95% or 100% of the true parameter. A full recovery of the

true parameter ϑ can be achieved by the MCS estimator ϑ̂ when ϑ̂ = ϑ, where ϑ > 0, such that the TPR

output equals the given nominal recovery level K (i.e., TPR = K%).

2.3. Simulation Design

The design of the simulation framework involves "background (optional), defining the aim,

research questions, method of implementation, and summarised conclusion". The method of

implementation is a workflow that consists of writing the code, setting the seed, setting the true
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parameter a priori, data generation process, and performance evaluation through meta-statistics (see

[4]). These steps, as summarized by the flowchart in Figure 1, are relevant for successful simulations

through the GAS model. The details on each design step are as follows:

Background (optional)

Define the aim

Research questions

Write the code

Set the seed

Set the true parameter a priori

Data generation process (DGP)

Meta-statistical evaluation of performance

Discussion and summarisedconclusion

Method of implementation

Figure 1. Flowchart on simulation design for volatility estimation.

2.3.1. Aim of the Simulation Study

After optionally stating the background of the study, the next step is to define the aim of the study

and it must be concisely, clearly and unambiguously stated for reader’s understanding. The focus of

MCS studies generally dwells on estimators’ capabilities in recovering the true parameters ϑ, such that

E(ϑ̂) = ϑ for unbiasedness, ϑ̂ → ϑ as the sample size N → ∞ for consistency, and root mean square

error (RMSE) or standard error (SE) tends to zero as N → ∞ for good efficiency or precision of the

true parameter’s estimator. Hence, the aim of the study may revolve around those properties, like the

bias or unbiasedness, consistency, efficiency or precision of the estimator. The aim can also evolve

from comparisons of multiple entities, like comparing the efficiency of various error distributions, or

comparing the performance of multiple models or modification of an existing method.

2.3.2. State the Research Questions

After defining the study aim, relevant questions with regards to the purpose of the simulation

should be outlined. These will be pointers to the objectives of the study. The intricacies of some

statistical research questions make them better resolved via simulation approaches. Simulation

provides a robust procedure for responding to a wide range of theoretical and methodological questions

and can offer a flexible structure for answering specific questions pertinent to researchers’ quest [26].

2.3.3. Method of Implementation

The simulation and empirical modelling of this study are implemented in R Statistical Software,

version 4.0.3, with RStudio version 2023.03.1+446, using the GAS [5,16], SimDesign [27], tidyverse [28],

patchwork [29], aTSA [30], rugarch [31,32], and forecast [33] packages. Computation is executed on

Intel(R) Core(TM)i5-8265U CPU @ 1.60GHz 1.80 GHz. The method of implementing the simulation is

as follows:

• Write the code: Carrying out a proper simulation experiment that mirrors real-life situation can

be very demanding and computationally intensive, hence readable computer code with the right

syntax must be ensued. MCS code must be well organised to avoid difficulties during debugging.

It is always safer to start with small coding practices, get familiar with them and ensure they run
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properly with necessary debugging of errors before embarking on more intensive and complex

ones. Code must be efficiently and flexibly written and well arranged for easy readability.

• Set the seed: Simulation code will generate different sequence of random numbers each time it is

run unless a seed is set [34]. A set seed initialises the random number generator [32] and ensures

reproducibility, where the same result is obtained for different runs of the simulation process [35].

The seed needs to be set only once, for each simulation, at the start of the simulation session [6,32],

and it is better to use the same seed values throughout the process [6]. The seed is essentially

used for reproducibility. Samuel et al. [4] used the GARCH model to show that as the sample

size N increases, the arrangement (or pattern) of the seed values generally does not influence the

efficiency and consistency of an estimator. This however may depend on the quality of the model

used.

• After setting the seed, the true parameter value/s of the true sampling distribution (or true model)

are then set a priori [22,36].

• Next, simulated observations are generated using the true sampling distribution or the true

model given some sets of (or different sets of) fixed parameters. Generation of simulated datasets

through the GAS model is carried out using the R package "GAS". Random data generation

involving this package can be implemented using either of two approaches [5,16]. The first

approach is to carry out the data generating simulation directly on a fitted object "fit" (or uGASFit)

using the UniGASSim (univariate GAS simulation) function for the simulated random data. The

second approach uses the function UniGASSim with "fit = null". This latter approach involves

full specification of a GAS model that includes selection of the conditional error distribution of

the time series process, and specifying the static parameter ζ = (κ, A, B) that controls the time

variation in ϑt, as described in Section 2.1.

The simulation or data generating process can be run once or replicated multiple times. However,

data generation through the GAS process is generally designed to run only once. In their study

through autoregressive process, Samuel et al. [4] showed that the outcomes of MCS experiments

using the GARCH model are the same for datasets simulated with the same seed value, regardless

of whether the simulation or data generating process is run once or replicated multiple times.

Hence, the outcome of a single run is the same as the average of multiple runs or replicates.

Their findings further revealed that in any multiple generated (simulated) datasets in the family

GARCH model, each simulated series is distinct in randomness and shape, and it is different from

every other series in the datasets.

• The generated (simulated) data are analysed and the estimates from them are assessed using

classic methods through meta-statistics to derive relevant information about the estimators.

Meta-statistics (see [27]) are performance measures or metrics for evaluating the modelling

outcomes by judging the closeness between an estimate and the true parameter. A few of the

frequently used meta-statistical summaries, as described below, include the bias, root mean

square error (RMSE), standard error (SE) and relative efficiency (RE). For more meta-statistics, see

[6,27,37].

Bias

The bias, on average, measures the tendency of the simulated estimators ϑ̂ to be smaller or

larger than their true parameter value ϑ. It is defined as the average difference between the true

(population) parameter and its estimate [38]. The optimal value of bias is 0 [37,39]. An unbiased

estimator, on average, yields the correct value of the true parameter. Bias with a positive (negative)

value indicates that the true parameter value is over-estimated (under-estimated). However, in

absolute values, the closer the estimator is to 0, the better it is. Bias is stated mathematically as
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E(ϑ̃ − ϑ), but can be presented in Monte Carlo simulations (see [40]) as bias = 1
L ∑

L
i=1(ϑ̂i − ϑ).

The two formulae are connected as:

E(ϑ̃ − ϑ) = E(ϑ̃)− ϑ =
1

L

L

∑
i=1

ϑ̂i − ϑ =
1

L

L

∑
i=1

(ϑ̂i − ϑ), (11)

where ϑ̃ = ϑ̂i(i = 1, ..., L) is a finite ith number of the sample estimate ϑ̂ for the datasets, L is the

number of replications, and ϑ is the true parameter.

Standard Error

Sampling variability in the estimation can be evaluated via the standard error (SE) as stated

(see [40,41]) in Equation (12). Also called Monte Carlo standard deviation, it is a measure of the

efficiency or precision of the true parameter’s estimator, where it is used to estimate the long-run

standard deviation of ϑ̂i for finite repetitions. It does not require knowing the true parameter ϑ

but depends on its estimator ϑ̂i only. The smaller the sampling variability, the more the efficiency

or precision of the ϑ’s estimator (see [6]). Sampling variability decreases with increased sample

size [37].

SE =

√

√

√

√

1

L

L

∑
i=1

(ϑ̂i − ϑ̄)2, where ϑ̄ =
L

∑
i=1

ϑ̂/L. (12)

RMSE

The root mean square error (RMSE) is an accuracy measure for evaluating the difference between a

model’s true value and its prediction. RMSE measure indicates the sampling error of an estimator

when compared to the true parameter value [37] and it is stated as:

RMSE =

√

√

√

√

1

L

L

∑
i=1

(

ϑ̂i − ϑ
)2

. (13)

Its computation involves the true parameter ϑ. An estimator with smaller RMSE is more efficient

in recovering the true parameter value [37,41], and minimum RMSE produces maximum precision

[42]. Consistency of the estimator occurs when RMSE decreases such that ϑ̂ → ϑ as the sample

size N → ∞ [6,31]. RMSE is related to bias and sampling variability as:

RMSE =

√

bias2 + SE2. (14)

That is, the RMSE is an inclusive measure that combines bias and SE, such that low SE can be

penalised for bias. The mean squared error (MSE) is obtained by squaring the RMSE. MCS

is highly dependent on the law of large numbers, and it is expected that the distribution of a

suitably large sample should converge to that of the underlying population as the sample size

increases [43]. It is also expected that increasing the sample size should relatively decrease the

sampling error, but this is not always the case. That is, the number of sample size cannot always

be sufficiently increased to limit the sampling error to a bearable level [43]. Using sample sizes

between 100 and 7000 inclusive, Kwiatkowski [11] graphically shows the effect of varying sample

sizes on simulation outcomes. The author reveals that as the sample size increases, the spread

of an estimated value decreases proportionately. However, at some point, additional sample

increase does not further reduce the spread [11].
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Relative Efficiency

Sampling efficiency between one estimator and the other can be compared using the relative

efficiency (RE) statistic by creating ratios between the estimators’ RMSE values as shown in

Equation (15). In the formula, the first RMSE or RMSE1 is taken as the reference estimator, such

that other RMSEs are assessed in relation to it. This performance measure can be used when

the estimators of interest are unbiased. The RE ≡ 1 when i = 1, and values above (less than) 1

indicate less (greater) efficiency. Less efficiency means more variability than the statistic that is

referenced, while greater efficiency indicates less variability and higher precision for recovering

the true parameter ϑ [37,40]. For instance, RE < 1 suggests that estimator i is the preferred one,

i.e., if i = 2 for instance, estimator 1 is less efficient in relation to estimator i = 2 [44].

RE =

(

RMSEi

RMSE1

)2

. (15)

2.4. Discussion and Summary

After the method of implementation, the last stage in the framework steps is the conclusion,

which should reflect a summary discussion of all logical findings from the experiments, with answers

to the research questions. The conclusion brings out the novelty of the research and may also include

the limitations experienced and opportunities for future work. In addition, relevant information on

simulation results can be conveyed through graphics, tabular presentation, or both.

3. Results: Simulation and Empirical

3.1. Practical Illustrations of the Simulation Design: Application to Bond Return Series

By way of illustration, this section practically describes how the stated steps can be applied

through Monte Carlo simulations with real data empirical verification. The steps are illustrated using

bond returns as follows:

3.2. The Background

As a preamble, simulation involving the GAS model can be conducted through the UniGASSim

function with uGASFit (or simply "fit") object and UniGASSim function with "fit = null" (see Page

52 of Catania et al. [16] for the usage of UniGASSim function). The latter approach using "fit = null"

involves full specification of the GAS model, where the coefficients of the matrices κ, A and B in

Equation (2) have to be defined. Both of these approaches can be done with shape parameter (or

degree of freedom) that is time-varying (νt) or constant (ν). This illustrative study focuses on νt. In

the simulation structure, A and B matrices are constrained to exist as diagonals, e.g., for a GAS model

with Student’s t error distribution, A ≡ diag(aµ, aσ, aν) and B ≡ diag(bµ, bσ, bν), where µ, σ and ν

are location, scale and shape parameters, respectively. In the outputs of the estimation, a1, a2, a3,

b1, b2 and b3 are estimates of aµ, aσ, aν, bµ, bσ and bν, respectively (see Appendix A for clues). Also

κ ≡ (I − B)Λ−1(ϑ∗), where I is an identity matrix of a suitable size, ϑ∗ is the ThetaStar object, and Λ−1

is a mapping function that is represented by the UniUnmapParameters() function1. The ThetaStar ϑ∗

is a vector of the unconditional time varying parameters, i.e., ϑ∗ = (Uµ, Uσ, Uν)⊤, where Uµ, Uσ, and

Uν are the unconditional location, scale and shape parameters, respectively. The coefficients kappa1,

1 That is, the inverse of the mapping function Λ−1 in κ is represented by the UniUnmapParameters() function in the GAS
simulation code (see [5])
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kappa2 and kappa3 in the estimation’s outputs are vector κ’s elements, where κ ≡ (κµ, κσ, κν)⊤(see

Appendix A for clues, and [5] for more details).

It is believed that an observation-driven model can suitably estimate volatility when the

underlying error distribution is appropriately assumed [45]. In other words, to minimize risk

and adequately maximise asset returns, volatility needs to be estimated with an appropriate error

assumption when the true error distribution is unknown. As described in Section 2.1, GAS(1,1)

model is used as the true data generating process (DGP) for the MC simulation modelling. Hence,

this illustrative study demonstrates the dynamics of the observation-driven model GAS, where

the outcomes of the model fitted with each of seven assumed error distributions of the Gaussian,

skew-Gaussian, Student’s t, skew-Student’s t, asymmetric Student’s t with one tail decay parameter

(AST1), asymmetric Student’s t with two tail decay parameters (AST), and asymmetric Laplace

distribution (ALD) are compared to obtain the most suitable for volatility estimation. Details on the

error distributions can be seen in [5,14,46] or through the function DistInfo() in R package "GAS".

For further background layout, it is known that financial data are fat-tailed [47], i.e., non-Normal.

Hence, to obtain a set of simulated observations that can closely reflect this fat-tailed behaviour of

financial time series data under the GAS modelling, the unconditional shape parameter or degree of

freedom (Uν) needs to be modified. Modification of Uν can only take place within numerical bounds

or range 4 to 50.01. That is, the parameter space can take values from 4.01 to 50. Values outside of

this range are unacceptable by the UniUnmapParameters() function. This study investigated this with

various datasets by using values outside the range and discovered that the outputs only returned "Not

a Number (NaN)" for the unconditional location, scale and shape parameters. Readers can check Table

2 on page 14 of Ardia et al. [5] for all the imposed numerical bounds.

Next, this study carries out an experiment with Uν = {10.3, 8.2, 4.1} to determine which will

be appropriate to generate simulated observations that properly reflects the fat-tailed behaviour of

financial data. This is executed by fitting GAS(1,1)-Student’s t model with time-varying location, scale

and shape parameters to the SA bond return data. All the obtained estimates from the fit are then used

directly unaltered (except for Ûν that is altered or modified) to generate three sets of 30000 simulated

datasets. That is, the first dataset is obtained with Uν = 10.3, the second and third with Uν = 8.2 and Uν

= 4.1, respectively. For each simulated dataset, a quantile-quantile (QQ) plot is produced as displayed

in Figure 2. It can be seen from the figure that the plot in Panel C for GAS(1,1)-Student’s t with Uν =

4.1 displays fatter tails than the other two panels with Uν = 8.2 and Uν = 10.3. The tails of Panel C’s

plot is about twice and more than twice as fat as those of Panels B and A, respectively. Hence, the DGP

GAS(1,1) model, as stated in Equation (16), fitted to a Student’s t distributed error with Uν of 4.1 is the

most suitable among the three to generate the required simulated financial return data.

ϑt+1 = κ + A1ct + B1ϑt. (16)

It is observed in this background study that modification of the Uν using the fit object approach is

not directly feasible. Hence, this study applies the fit = null approach, where all the estimates (except

the Ûν that is modified) from the fit object are used. That is, all the estimates obtained from the fit of

the true model to the real bond return data are directly used unaltered, except the modified Ûν, in the

specification of the GAS simulation process.

The Student’s t is used as the true error distribution for this illustration because it is assumed that

financial data appear to have a distribution much like it, and it is also believed that it can suitably

deal with fat tailed or leptokurtic features [48,49] experienced in financial data [50]. However, to

buttress the illustration, we further used the AST1 as another true error distribution in addition to the

Student’s t, and compare their outcomes. Besides these two true sampling errors, users may choose

to use any relevant non-Gaussian distributions, as stated in the DistInfo() function, for their data

generations based on individual user’s research needs. For any chosen true error distribution, the

DistInfo() function reveals the parameter/s that must be specified as time-varying.
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Panel A: GAS(1,1)−Student’s t with Uv = 10.3 Panel B: GAS(1,1)−Student’s t with Uv = 8.2 Panel C: GAS(1,1)−Student’s t with Uv = 4.1
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Figure 2. QQ plots of Uν = {10.3, 8.2, 4.1}.

3.3. Aim of the Simulation Study

This study aims at obtaining the most appropriate assumed error distribution to use for conditional

volatility estimation when the underlying (true) error distribution is unknown.

3.4. Research Questions

This simulation study should result in responses to the following questions:

1. Which among the assumed error distributions is the most suitable from the GAS simulation

process to estimate volatility?

2. What type (i.e., strong, weak or inconsistence) of
√

N consistency, in terms of RMSE and SE, does

the volatility persistence estimator B̂ of the GAS process exhibit?

3. How does the estimator B̂ of the most suitable assumed error distribution compare to the

estimator B̂ of contending assumed error distributions with regards to bias, and efficiency (or

precision) in terms of RMSE, SE and RE?

4. How is the performance of the MCS estimator B̂ in recovering the true parameter B?

3.5. Method of Implementation

Since we intend to use the Student’s t and AST1 as the true error distributions to generate the

simulated observations, the method of implementation is described via two Monte Carlo experiments.

The implementation method is illustrated using the UniGASSim function with "fit = null" as discussed

in the background. This approach involves full specification of the GAS model in the coefficients of

matrices A, B and κ. For the two true error distributions, the scale parameters’ descriptions of the

conditional volatility are set within 0.975 < bσ = B < 1 and 0 < aσ < 0.15. The B = bσ is the GAS

volatility persistence parameter in the diagonal of matrix B (see [14,51]). Moreover, the aσ and B = bσ

parameters of the GAS model actually correspond to the α and α + β parameters, respectively, of the

GARCH model [51].

Next, the two MCS experiments to illustrate the method of implementation are carried out using

each of the two true error distributions one after another.

3.5.1. Method of Implementation with the Student’s t Error

With Student’s t as the true innovation distribution, the written code is first used to fit the true

model GAS(1,1)-Student’s t with time-varying (denoted by "TRUE" in the UniGASSpec function)

location, scale and shape parameters to the SA bond return data through the UniGASFit function.

The time variation in the location, scale and shape parameters of the fit are graphically described as
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displayed in Figure 3, with the location in the top panel, followed by the scale and then the shape

parameter graphics.
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Figure 3. Time-varying location (top panel), scale (middle panel) and shape (bottom panel) parameters.

Next, through the UniGASSim function, using seed 12345 in the code, the value of the scale

parameter b2 = bσ = B = 0.9831 (i.e., 9.830649e−01) from the fit is set a priori as the true parameter for

the MCS process, as shown in Panel A of Table 1. This value and all the other estimates (with the Ûν

that is modified to 4.1) from the fit object are used in the code to generate (simulate) three sets of N =

30000 observations. That is, all the estimates from the fit of the true model to the real return data are

directly used unaltered, except the modified Ûν by using 4.1 (in the ThetaStar object of the code) in

place of the fit object’s estimate of Ûν = 8.17843724.

Table 1. Simulation outcomes.

Panel A Panel B
True model: GAS(1.1)-Student’s t True model: GAS(1.1)-AST1

True parameter: B = 0.9831 True parameter: B = 0.9788

Assumed error N B̂ RMSEB̂ BiasB̂ SEB̂ REB̂ TPRB̂ (95%) B̂ RMSEB̂ BiasB̂ SEB̂ TPRB̂ (95%)

17000 0.9589 0.0249 -0.0242 0.0059 − 92.66% 0.9444 0.0346 -0.0344 0.0036 91.66%
Gaussian 18000 0.9620 0.0217 -0.0210 0.0051 0.7575 92.97% 0.9488 0.0302 -0.0300 0.0031 92.09%

19000 0.9643 0.0192 -0.0187 0.0043 0.7872 93.19% 0.9493 0.0300 -0.0295 0.0051 92.13%

17000 0.9604 0.0234 -0.0227 0.0058 − 92.81% 0.9522 0.0268 -0.0266 0.0034 92.42%
skew 18000 0.9630 0.0206 -0.0200 0.0050 0.7781 93.06% 0.9527 0.0264 -0.0262 0.0034 92.46%

Gaussian 19000 0.9650 0.0185 -0.0180 0.0042 0.8055 93.26% 0.9531 0.0259 -0.0257 0.0033 92.50%

17000 0.9775 0.0066 -0.0056 0.0034 − 94.46% 0.9747 0.0051 -0.0042 0.0030 94.60%
Student’s t 18000 0.9780 0.0061 -0.0051 0.0032 0.8547 94.51% 0.9746 0.0051 -0.0042 0.0030 94.59%

19000 0.9781 0.0058 -0.0049 0.0031 0.9268 94.52% 0.9752 0.0046 -0.0036 0.0028 94.65%

17000 0.9775 0.0065 -0.0056 0.0034 − 94.46% 0.9744 0.0053 -0.0044 0.0030 94.57%
skew 18000 0.9779 0.0061 -0.0051 0.0032 0.8692 94.50% 0.9744 0.0053 -0.0044 0.0030 94.57%

Student’s t 19000 0.9782 0.0057 -0.0048 0.0031 0.8906 94.53% 0.9750 0.0047 -0.0038 0.0028 94.63%

17000 0.9774 0.0066 -0.0057 0.0034 − 94.45% 0.9749 0.0049 -0.0039 0.0030 94.62%
AST 18000 0.9777 0.0063 -0.0054 0.0033 0.9061 94.48% 0.9744 0.0053 -0.0044 0.0029 94.57%

19000 0.9782 0.0058 -0.0049 0.0031 0.8398 94.53% 0.9753 0.0045 -0.0035 0.0028 94.66%

17000 0.9775 0.0065 -0.0056 0.0034 − 94.46% 0.9750 0.0049 -0.0039 0.0030 94.63%
AST1 18000 0.9780 0.0060 -0.0051 0.0032 0.8581 94.51% 0.9749 0.0049 -0.0040 0.0029 94.62%

19000 0.9788 0.0053 -0.0043 0.0031 0.7623 94.59% 0.9755 0.0043 -0.0033 0.0027 94.68%

17000 0.9768 0.0073 -0.0063 0.0037 − 94.39% 0.9745 0.0054 -0.0044 0.0031 94.58%
ALD 18000 0.9775 0.0066 -0.0056 0.0035 0.8140 94.46% 0.9740 0.0057 -0.0048 0.0031 94.54%

19000 0.9778 0.0062 -0.0052 0.0033 0.8827 94.49% 0.9748 0.0049 -0.0040 0.0030 94.61%

Next, due to initial values effect in the data generating process which may lead to size distortion

[52], the first N = {13000, 12000, 11000} sets of observations are each discarded at each stage of the

generated 30000 observations to circumvent such distortion. That is, only the last N = {17000, 18000,
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19000} simulated return observations are used under each of the seven assumed error distributions, as

shown in Table 1. This trimming steps are carried out following the simulation structure of Feng and

Shi [38]. An observation-driven process can be size distorted with regards to its kurtosis, where strong

size distortion may be a result of high kurtosis [53]. After generating the simulated return datasets,

GAS(1,1) process is fitted to them under each of the seven distributed error assumptions. The full

analytic code that shows the lines of commands for each stage of the method of implementation is

available from the authors on request.

Next, comparisons through the four meta-statistical summaries comprising the bias, RMSE, SE

and RE are carried out for the volatility persistence estimator B̂. The most suitable assumed error

distribution for volatility estimation will be obtained from the estimator B̂ with the best precision and

efficiency (for recovering the true parameter) in the meta-statistical comparisons done under the seven

error assumptions.

Now, comparing RMSE for B̂ in Panel A of Table 1, the AST1 assumed error distribution

outperforms the other six assumed errors, including the true error Student’s t, in efficiency with

the least value as N tends to the peak. For bias comparison, the AST1 also outperforms the rest of

the error assumptions with the lowest absolute value of bias as N tends to the peak. Comparing SE,

the Student’s t, skew-Student’s t, and AST1 are equal in performance for efficiency and precision

in terms of SE, and they outperform the rest. The AST assumed error follows them in performance.

Lastly, for RE comparison, we used each preceding RMSE as the reference estimator, i.e., RMSE1 as the

reference estimator for RMSE2, and RMSE2 for RMSE3 under each error assumption. The outcomes

show that the AST1 displays the highest precision for recovering the true parameter than the rest, with

the smallest RE value as N tends to the peak. The RMSE and SE performance measures also showcase

adequate
√

N consistency in recovering the true parameter under the seven assumed distributed errors.

To summarise, when the true error distribution is Student’s t, the AST1 assumed error distribution

relatively outperforms the other six distributed error assumptions in efficiency and precision, and in

the overall performance.

Panel A of Table 1 further reveals that the MCS estimator B̂ considerably recovers the true

parameter B at the 95% (i.e., 0.95) nominal recovery level. The recovery outcomes for each of the

seven error distribution assumptions are visually displayed in Figure 4, where it is revealed that the

MCS estimates perform considerably well in recovering the true parameter as shown by the closeness

of the TPR outcomes to the 95% nominal recovery level. This indicates a good performance of the

MCS experiments with considerably valid outcomes. However, the non-Gaussian error assumptions

perform better in the recovery than the Gaussian and skew-Gaussian assumed errors, as revealed in

the plot. It can also be observed from the results in Panel A of the table that the MCS estimate B̂ is

directly proportional to the TPR outcome. Hence, the smaller (larger) the MCS estimate, the smaller

(larger) the TPR outcome.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 June 2023                   doi:10.20944/preprints202306.1735.v1

https://doi.org/10.20944/preprints202306.1735.v1


13 of 25

Gaussian skew−Gaussian Student’s t skew−Student’s t AST AST1 ALD

17000 17500 18000 18500 1900017000 17500 18000 18500 1900017000 17500 18000 18500 1900017000 17500 18000 18500 1900017000 17500 18000 18500 1900017000 17500 18000 18500 1900017000 17500 18000 18500 19000

0.75

0.80

0.85

0.90

0.95

1.00

Sample size (N)

T
P

R
 o

u
tc

o
m

e

Errors

A_Gaussian

B_skew−Gaussian

C_Student’s t

D_skew−Student’s t

E_AST

F_AST1

G_ALD

The TPR outcome in each assumed error (the coverage) for true model GAS(1,1)−Student’s t

Figure 4. The true parameter recovery (TPR) outlook. The dotted line is the 95% (i.e., 0.95) nominal

recovery level.

3.5.2. Method of Implementation with AST1

The second illustration of the method of implementation is carried out with the AST1 as the true

error distribution. The written lines of code is first used to fit the true model GAS(1,1)-AST1 with

time varying location, scale, skewness and shape parameters to the SA bond return data through the

UniGASFit function. The time variation in these parameters are graphically displayed in Figure 5, with

the location in the top panel, followed by the scale, skewness and then the shape parameter graphics

downwards in subsequent panels.
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Figure 5. AST1: Time-varying location (top panel), scale (upper-middle panel), skewness (lower-middle

panel) and shape (bottom panel) parameters.

Next, through the UniGASSim function, using seed 12345 in the code, the value of the scale

parameter b2 = bσ = B = 0.9788 (i.e., 9.788202e−01) from the fit is used (or set) a priori as the true

parameter for the MCS process, as shown in Panel B of Table 1. This value and all the other estimates

(with the Ûν that is modified to 4.1) from the fit object are used to generate three sets of N = 30000

return observations. In other words, the outputs from the fit are used as arguments for the objects A,

B and ThetaStar (with a modified Ûν = 4.1) to generate the simulated observations. That is, all the

estimates from the fit of the true model to the real return data are directly used unaltered, except the
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unconditional shape parameter or degree of freedom value Ûν = 7.7453810 that is modified to Ûν =

4.1. Next, following the previous trimming pattern, N = {17000, 18000, 19000} datasets are used under

each of the seven assumed error distributions, as shown in Table 1. The full code is available from the

authors on request.

Now, comparing RMSE and SE for B̂ in Panel B of Table 1, the AST1 error assumption outperforms

the other six assumed errors in efficiency and precision with the least values as N tends to the peak.

For bias comparison, the AST1 also outperforms the rest, with the lowest absolute values of biases as

N tends to the peak. The relative efficiency (RE) comparison is not done here due to the weak
√

N

consistency of the RMSE under the AST and ALD assumed errors. In this study, consistency is termed

"strong" ("weak") when the estimator’s RMSE/SE value decreases as the sample size N increases

without (with) distortion. To summarise, when the true error distribution is AST1, the AST1 assumed

error distribution outperforms the other six error distribution assumptions in efficiency and precision,

and in the overall performance. It is also observed from the outcomes of the RMSE and SE for both

true models in Panels A and B that the GAS model with the Gaussian error distribution is considerably

consistent but not efficient when the true error distribution is not Gaussian.

Furthermore, as revealed in Panel B of Table 1 and as visualised in Figure 6, the MCS estimator B̂

considerably recovers the true parameter B at the 95% nominal recovery level, for each of the seven

assumed errors. This indicates a good performance of the MCS experiments with considerably valid

results. However, as also observed under the true model GAS(1,1)-Student’s t, the non-Gaussian error

assumptions perform better in the recovery than the Gaussian and skew-Gaussian assumed errors, as

revealed in the plot. Panel B of Table 1 also shows that the closer the MCS estimate is to zero, the smaller

the TPR outcome. It can be seen from Figures 4 and 6, and in Table 1 that the MCS estimator performs

slightly better at recovering the true parameter under the Gaussian and skew-Gaussian assumed errors

for the true model GAS(1,1)-Student’s t than it is for true model GAS(1,1)-AST1. Moreover, the true

model GAS(1,1)-Student’s t displays better
√

N consistency for the RMSE and SE metrics than the

GAS(1,1)-AST1 as revealed in Table 1. Hence, these show the preference of the Student’s t error for the

data generation process than the AST1 error.
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Figure 6. The true parameter recovery (TPR) outlook. The dotted line is the 95% (i.e., 0.95) nominal

recovery level.

3.6. Empirical Study

Next, the results of the MCS experiments are now empirically verified using real return data from

the SA bond index. Among the seven assumed error distributions, the most appropriate for the GAS

process to estimate the volatility of the bond market’s returns is investigated. For the market index,
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the price data are transformed to the log-daily returns by taking the difference of logarithms of the

price, presented in percentage as:

rt = ln

(

Pt

Pt−1

)

× 100. (17)

The Pt and Pt−1 are the closing bond price index at time t and the previous day’s closing price at

time t − 1, respectively; rt denotes the current return and ln is the natural logarithm.

3.6.1. Exploratory Data Analysis

To begin with, the price and return series are first examined through exploratory data analysis

(EDA) as shown in Figures 7 to 9. The EDA visually inspects the content of the dataset to reveal

vital information and possible outliers. The histogram plot in panel A of Figure 7 shows a skewed

non-symmetric distribution that suggests non-stationarity in the price index, while panel B reveals

approximately symmetric or stationary distribution in the return series. Panel A of Figure 8 also

reveals the non-stationarity in the price index as observed in the price series plot, while panel B shows

stationarity in the returns through the return series plot. Figure 8 further reveals four obvious extreme

spikes in the distributions of price and returns during the period under study. These spikes are a

result of severe global events and economic downturns that led to extreme market volatilities, notably

the 2002/2003 SARS epidemic outbreak [54], the 2008 global financial crisis caused by the dot.com

bubble [55], (another possible cause of the 2008 turmoil was the U.S. loans crisis, i.e., the defaults on

consolidated mortgage-backed securities [56]), the 2016 Brexit issues, and the 2020 covid-19 pandemic

outbreak. Figure 9 shows the price and return densities in Panels A and B respectively, while Panels C

and D display the movements of the price and return distributions with their densities.
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This is also used where the returns < 0.
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Figure 8. Distributions of price (in Panel A) and returns (Panel B).
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Figure 9. Price and return densities in Panels A and B respectively, while Panels C and D display the

price and return distributions with their densities.

3.6.2. Tests for Autocorrelation and Heteroscedasticity

Next, autocorrelation (or serial correlation) is checked by fitting an autoregressive moving

average (ARMA(p,q)) model (see [31]), with a non-skew (Normal) innovation distribution and a

skew distribution (Student’s t innovation distribution), to the stationary return series. The p and q

are the orders of the AR and MA processes, respectively. Student’s t innovation distribution is used

because it adequately reflects the distribution of financial data [57]. Among the candidate ARMA(p,q)

models examined, both ARMA(1,1) and ARMA(2,2) models as stated in Equations 18 and 19 are found

adequate to remove possible serial correlation in the residual returns. The autocorrelation function

(ACF) and partial ACF (PACF) plots of the fit of the ARMA(2,2) model is displayed in Figure 102. Table

2 presents the results of the Weighted Ljung-Box (WLB) tests (see [58] for details) on the "standardized"

2 The ACF and PACF diagrams were plotted using the auto.arima() function in R forecast package developed by Hyndman
and Khandakar [33].
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and "standardized squared" residuals for fitting the two models. The p-values of the tests at lag order 9

for ARMA(1,1) and lag order 19 for ARMA(2,2) are all greater than 0.05, under each error distribution.

Based on this, we fail to reject the null hypothesis of "no serial correlation" in the SA bond market’s

returns.

rt = φ0 + φ1rt−1 + ϕ1εt−1 + εt (18)

rt = φ0 + φ1rt−1 + φ2rt−2 + ϕ2εt−2 + ϕ1εt−1 + εt (19)

Outcomes of serial correlation test
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Figure 10. Outcomes of serial correlation test.

Through the outcomes from the autocorrelation test, Engle’s ARCH test (see [59]) is carried

out using the Lagrange Multiplier (LM) and Portmanteau-Q (PQ) tests to check for the presence

of heteroscedasticity in the residuals. These tests are implemented based on the null hypothesis of

homoscedasticity in the residuals of an Autoregressive Integrated Moving Average (ARIMA) model.

The tests are executed using the arima() function, in R package aTSA, for ARMA(1,1) and ARMA(2,2)

models. The outcomes of both tests reveal highly significant p-values of 0 from lag order 4 to 24 as

shown in Panels A and B of Table 3. Thus, the null hypothesis of "no heteroscedastic" in the residuals

is rejected, which denotes the existence of volatility clustering. Volatility clustering infers that big

changes in returns tend to be followed by big changes, of either sign, and small changes tend to be

followed by small changes [60]. Based on the outcomes, an autoregressive model can be fitted to filter

out the heteroscedasticity in the return series. This is done by fitting the GAS(1,1) model, as shown in

Equation (16), with each of the seven error distributions, to the SA bond returns.

Table 2. ARMA(1,1) and ARMA(2,2) models’ outcomes on Bond returns.

Panel A Panel B
ARMA(1,1) ARMA(2,2)

Normal Student’s t Normal Student’s t

Test on standardized WLB(9) 2.2258 3.2100 WLB(19) 6.2949 10.3830
residuals p-value(9) (0.9728) (0.8563) p-value(19) (0.9573) (0.4060)

Test on standardized WLB(9) 6.5740 7.4880 WLB(19) 6.4740 7.5450
squared residuals p-value(9) (0.2376) (0.1617) p-value(19) (0.2473) (0.1577)

Note: WLB denotes the Weighted Ljung-Box test, where "(9)" and "(19)" are lags 9 and 19, respectively.
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Table 3. Engle’s ARCH test results.

Panel A Panel B
ARMA(1,1) model ARMA(2,2) model

PQ test LM test PQ test LM test
Lag order PQ P-value LM P-value PQ P-value LM P-value

4 904 0 4729 0 888 0 4658 0
8 1127 0 2196 0 1104 0 2184 0

12 1400 0 1361 0 1377 0 1354 0
16 1517 0 1015 0 1497 0 1010 0
20 1575 0 807 0 1556 0 803 0
24 1624 0 666 0 1602 0 663 0
Note: PQ is the Portmanteau-Q statistic, and LM is the Lagrange-Multiplier statistic.

3.6.3. Selection of the Most Appropriate Error Assumption

Next, selection of the most appropriate assumed error distribution to describe the market’s returns,

when fitted with the GAS model for volatility estimation, is obtained from Table 4. The results of the

GAS(1,1) model fitted with each of the seven assumed innovation distributions to a real return data

from the SA bond market index is compared with the outcomes of the MCS studies. The empirical

outputs through the Akaike information criterion (AIC) and Bayesian information criterion (BIC) (see

[31] for details) are presented in Table 4. The error distribution with the least values of the information

criteria is selected as the most suitable to describe the market for volatility estimation. It is observed

from the table that the GAS parameter estimate (B̂) is statistically significant at 1% level under the

seven assumed innovation distributions.

Table 4. Empirical outcomes of GAS modelling on SA Bond return data.

Panel A Normal skew-Normal Student t skew-Student t AST AST1 ALD

B̂ 0.9804* 0.9819* 0.9790* 0.9804* 0.9788* 0.9790* 0.9784*
AIC 17936.36 17900.84 17682.49 17672.13 17668.28 17666.39 17910.63
BIC 17962.88 17933.99 17715.64 17711.91 17714.69 17706.17 17943.78

Panel B Normal skew-Normal Student t skew-Student t AST AST1 ALD

B̂ 0.9805* 0.9819* 0.9831* 0.9818* 0.9807* 0.9818* 0.9784*
AIC 17915.19 17904.84 17666.31 17672.84 17664.18 17650.89 17914.63
BIC 17954.97 17951.25 17725.98 17739.14 17737.11 17717.19 17961.04

Note: The "∗" indicates 1% level of significance. Panel A shows the outcomes of the GAS fit for time-varying scale parameter,

while Panel B gives the outcomes for time-varying location, scale, and shape parameters.

The empirical findings are conducted in two ways. The first outcome is in Panel A of Table 4,

where the seven assumed errors are compared when the scale parameter alone is time-varying. It

is observed here that the values of the AIC and BIC are smallest under the AST1 error distribution.

The second outcome is in Panel B where the seven innovation distributions are compared when the

location, scale, and shape parameters are time-varying. The results also show that the two information

criteria are smallest under the AST1. Hence, the AST1 innovation assumption outperforms the other

six assumed innovation distributions. These outcomes are consistent with the results of the MCS

studies. The code for the empirical modelling is available from the authors on request.

The empirical outputs of the GAS(1,1)-AST1 model, with time-varying location, scale, skewness

and shape parameters, fitted to the SA bond return dataset are given in Appendix A. Hence, using the
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outputs, the equations of the GAS model for time-varying scale (or volatility), location, skewness and

shape parameters can be stated as:

ϑt+1 = κ + A1ct + B1ϑt

Location : ϑt+1 = 1.853386e−02 + 1.007662e−06ct + 8.802454e−01ϑt

Scale : ϑt+1 = 2.055416e−02 + 4.204045e−02ct + 9.788202e−01ϑt

Skewness : ϑt+1 = 1.343679e−01 + 1.185833e−01ct + 2.053495e−05ϑt

Shape : ϑt+1 = −7.220809e−02 + 1.400373e−04ct + 9.702012e−01ϑt

4. Discussion and Summarised Conclusion

In conclusion, it is observed in the MCS studies that using the UniGASSim function with "fit =

null" (i.e., full specification of the GAS model) approach, the AST1 consistently emerges as the most

suitable assumed error distribution to use with the GAS model for volatility estimation and description

of the SA bond returns when the underlying error distribution is unknown. The result was verified

empirically. The persistence of volatility (B̂) under this most suitable error distribution as revealed in

Table 4 is, on the average, 0.98. Precisely, the outcomes are 0.9790 and 0.9818 in Panels A and B of the

table, respectively. Hence, this shows that the SA bond market’s returns volatility is quite persistent.

The conclusion proceeds with answers provided to the research questions. For answer to the first

question, the AST1 distribution is the most appropriate among the seven assumed error distributions

from the GAS process simulation for volatility estimation. Second, the volatility persistence estimator

B̂ displays considerably strong
√

N consistency. To break this down, there is strong
√

N consistency for

the estimator B̂ under all the seven assumed error distributions in the Student’s t true error distribution

(or true model GAS(1,1)-Student’s t) for both RMSE and SE in Panel A of Table 1. The AST1 true error

distribution, or true model GAS(1,1)-AST1, in Panel B also shows considerably strong
√

N consistency

under the error assumptions, with the exception of the weak consistency in the AST and ALD assumed

errors for RMSE metric, and under the Gaussian assumed error for SE metric. Third, when compared

to contending assumed error distributions, the estimator B̂ of AST1 is the overall best in efficiency

and precision in terms of RMSE, SE and RE, and in absolute values of biases under the two true error

distributions, as revealed in Table 1.

Fourth, as a proxy for the coverage of the MCS experiments, the MCS estimator B̂ performed

well in recovering the true parameter B through the TPR measure for the 95% nominal recovery level

as revealed in Table 1. The results show that the TPR results are suitably close to the 95% nominal

recovery level under the seven assumed error distributions for the two true error distributions (or true

models). This indicates a good performance of the MCS experiments with considerably valid results.

However, the non-Gaussian error assumptions performed better in the recovery than the Gaussian

and skew-Gaussian assumed errors, for the two true error distributions. The study also observed from

the outcomes of the TPR measure and the consistency of the RMSE and SE, that the Student’s t is a

preferred error distribution for data generation than the AST1.

This illustrative study through the GAS simulation modelling focused on time-varying shape

parameter or degree of freedom νt, where the "shape = TRUE". Interested users and readers can try the

other approach with "shape = FALSE" (i.e., constant shape parameter or degree of freedom ν). Any

argument specified as "FALSE" in the UniGASSpec function for the GAS specification is constrained to

0 (see [5] or use help(UniGASSpec) in R GAS package for details).

5. Concluding Remarks

This novel study presents a robust step-by-step simulation framework for volatility estimation

through the observation-driven GAS model using the GAS package, with relevant findings. The

framework discloses an organised approach to Monte Carlo simulation (MCS) experiment that

involves "background (optional), defining the aim, research questions, method of implementation and
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summarised conclusion". The method of implementation is a workflow that consists of writing the

code, setting the seed, setting the true parameter a priori, data generation process, and performance

assessment through meta-statistics. This handy framework is exemplified using financial return data,

which makes it easily applicable to users for effective MCS studies.

One of the novel contributions from this study is that it has experimentally demonstrated that

the GAS model with a lower unconditional shape parameter or degree of freedom value (Uν = 4.1)

can generate a dataset that adequately reflects the behaviour of financial time series data, relevant

for volatility estimation. This dynamic approach, to the best of the authors’ knowledge, has not been

used in prior works, and the finding is a significant contribution to the existing literature, which

could be a relevant guide to users on how to obtain an appropriate simulated financial time series

data through the GAS model. It is also observed that to determine the sample size that is adequate

for a particular simulation, focus should be put on the level of accuracy or precision (in this case,

on efficiency and/or consistency) of the target statistic of interest. If a set of sample sizes yields the

same efficiency outcomes, the outcome with the best consistency among the set can be used for a final

decision on sample size determination.

Furthermore, in line with the findings of Gilli et al. [43], the outcomes from this study also show

that increasing the samples or sample size does not always reduce the sampling error (RMSE). The

RMSE results may be strongly/weakly
√

N consistent. Moreover, it is observed that the volatility

persistence estimator of the GAS model displays appreciable
√

N consistency. In addition, consistent

with the outcomes of other autoregressive models like the GARCH model (see [4,38]), this study

also revealed that the GAS model with the Gaussian error distribution is consistent but not efficient

when the true error distribution is not Gaussian. Also, the outcome of the illustrative study shows

that the AST1 error assumption is the most suitable among the seven assumed errors to describe the

financial returns for volatility estimation. The application of this (AST1) error distribution with the

GAS model for variability estimation reveals that volatility is quite persistent in the SA bond returns.

In a broader context, the outcome of this robust estimation approach using the AST1 fitted with the

GAS specification could be useful to investors and financial practitioners in enhancing the accuracy of

their risk measurement for investment decisions and portfolio management. Lastly, the true parameter

recovery (TPR) measure was used as a proxy for the coverage of the MCS experiments. This measure

is a robust but flexible presentation of the concept of the estimator’s coverage, and it is easy to use for

measuring the level of recovery of the true parameter value by the MCS estimates. Its outcomes show

considerably good performance of the MCS estimator at recovering the true parameter.

It is expected that this robust framework will adequately guide interested researchers on MCS

experiments using the GAS model and package for a robust volatility estimation in finance and other

areas involved with estimating volatility.

5.1. Limitations in the Study

The following limitations or issues are noticed in this study. First, MCS is somewhat complex

and time-demanding, hence it needs adequate planning, with critical and analytical reasoning, to

be properly executed. Second, the quality of the simulation modelling may depend on the quality

of the model used. Third, implementing the experiments may involve large runtime. This study

shows that a considerably large sample size may sometimes be required to obtain a reasonable output

approximation, which in turn may require a large computational time (or runtime). It is also noticed

that the GAS package does not have a provision to test for serial correlation in the returns, hence this

study used the Weighted Ljung-Box (WLB) statistic through the R rugarch package and the auto.arima()

function in R forecast package to carry out the test. Lastly, since the package also does not make

provision for estimating the coverage of the MCS experiments, this study used the TPR measure as

a proxy for the coverage, and it is observed that the MCS estimates considerably recover the true

parameters.
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5.2. Future Research Interest

In this ongoing research on simulation framework, the authors intend extending the ideas to

modelling of multivariate processes, and for volatility forecasting and portfolio management.
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Abbreviations

The following abbreviations are used in this manuscript:

MCS Monte Carlo simulation

GAS Generalized Autoregressive Score

UniGASSim Univariate GAS simulation

UniGASSpec Univariate GAS specification

SD Score Driven

DCS Dynamic Conditional Score

SV Stochastic volatility

GARCH Generalised Autoregressive Conditional Heteroscedasticity

AST1 Asymmetric Student’s t with one tail decay parameter

AST Asymmetric Student’s t with two tail decay parameters

ALD Asymmetric Laplace distribution

TPR True Parameter Recovery

S&P Standard & Poor

ARMA Autoregressive Moving Average

ARIMA Autoregressive Integrated Moving Average

MLE Maximum likelihood estimation

DGP Data generation process

RMSE Root mean square error

MSE Mean square error

RE Relative efficiency

SE Standard error

Uν Unconditional shape parameter or degree of freedom

NaN Not a Number

EDA Exploratory Data Analysis

QQ Quantile-Quantile

LM Lagrange Multiplier

PQ Portmanteau-Q

AIC Akaike information criterion

BIC Bayesian information criterion

p-value Probability value

SA South Africa

ACF Autocorrelation function

PACF Partial autocorrelation function

WLB Weighted Ljung-Box

Appendix A. The Empirical Outputs of GAS(1,1)-AST1 Model

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

− Univar ia te GAS F i t −

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Model S p e c i f i c a t i o n :

T = 5598

Condit ional d i s t r i b u t i o n : a s t 1

Score s c a l i n g type : I d e n t i t y

Time varying parameters : l o c a t i o n , scale , skewness , shape

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Est imates :

Est imate Std . Error t value Pr(>| t |)

kappa1 1 .853386 e −02 3 .463080 e −03 5 .3518437 4 .353128 e −08
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kappa2 2 .055416 e −02 4 .782360 e −03 4 .2979115 8 .620750 e −06

kappa3 1 .343679 e −01 3 .616292 e −02 3 .7156259 1 .013507 e −04

kappa4 −7.220809 e −02 2 .473271 e −01 −0.2919538 3 .851610 e −01

a1 1 .007662 e −06 5 .463283 e −10 1844.4260540 0 .000000 e+00

a2 4 .204045 e −02 4 .244949 e −03 9 .9036407 0 .000000 e+00

a3 1 .185833 e −01 2 .402063 e −02 4 .9367251 3 .972266 e −07

a4 1 .400373 e −04 2 .255226 e −06 62 .0945401 0 .000000 e+00

b1 8 .802454 e −01 5 .283429 e −05 16660.4929171 0 .000000 e+00

b2 9 .788202 e −01 4 .786878 e −03 204.4798891 0 .000000 e+00

b3 2 .053495 e −05 2 .614385 e −10 78546.0273745 0 .000000 e+00

b4 9 .702012 e −01 1 .020551 e −01 9 .5066428 0 .000000 e+00

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Uncondit ional Parameters :

l o c a t i o n s c a l e skewness shape

0 .1547653 2 .6391596 0 .5328714 7 .7453810

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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