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Abstract: GNSS time series prediction plays a significant role in monitoring crustal plate motion, landslide 

detection, and maintenance of the global coordinate framework. Long Short-Term Memory (LSTM), a deep 

learning model has been widely applied in the field of high-precision time series prediction especially when 

combined with Variational Mode Decomposition (VMD) to form the VMD-LSTM hybrid model. To further 

improve the prediction accuracy of the VMD-LSTM model, this paper proposes a dual variational modal 

decomposition long short-term memory (DVMD-LSTM) model to effectively handle the noise in GNSS time 

series prediction. This model extracts fluctuation features from the residual terms obtained after VMD 

decomposition to reduce the prediction errors associated with residual terms in the VMD-LSTM model. Daily 

E, N, and U coordinate data recorded at multiple GNSS stations between 2000 and 2022 are used to validate 

the performance of the proposed DVMD-LSTM model. The experimental results demonstrate that compared 

to the VMD-LSTM model, the DVMD-LSTM model achieves significant improvements in prediction 

performance across all measurement stations. The average RMSE is reduced by 9.86%, and the average MAE 

is reduced by 9.44%. Furthermore, the average accuracy of the optimal noise model for the predicted results is 

improved by 36.50%, and the average speed accuracy of the predicted results is enhanced by 33.02%. These 

findings collectively attest to the superior predictive capabilities of the DVMD-LSTM model, thereby enhancing 

the reliability of the predicted results. 

Keywords: GNSS; deep learning; time series prediction; VMD; LSTM 

 

1. Introduction 

Over the past three decades, with the rapid development of satellite navigation technology, a 

large number of GNSS continuously operating reference stations have been established worldwide. 

These stations provide important data sources for crustal plate motion monitoring [1–3], landslide 

detection [4], deformation monitoring of bridges or dams [5–7], and maintenance of regional or global 

coordinate frameworks [8]. By analyzing the long-term GNSS observation data time series from these 

stations, it is possible to predict the variation of coordinates at continuous time points, thereby 

providing important basis for determining motion trends. This has significant practical and 

theoretical value in geodesy and geodynamics research [9,10]. 

Time series prediction methods can be mainly categorized into two types: physical simulation 

and numerical simulation. Traditional physical and numerical simulation methods rely on 

geophysical theories, linear terms, periodic terms, and gap information to construct models [11]. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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However, these models face challenges in capturing complex nonlinear data and require manual 

selection of feature information and modeling parameters, leading to systematic biases and 

limitations [12]. In contrast, deep learning, as an emerging technology, can automatically extract 

information that is suitable for data features by constructing deep network structures. Deep learning 

exhibits strong learning capabilities and has advantages in handling large-scale and high-

dimensional data. It has been widely applied in various fields such as image recognition [13], natural 

language processing [14], speech recognition [15], and time series prediction [16–18].  

Long Short-Term Memory (LSTM), as an excellent variant of Recurrent Neural Networks (RNN), 

overcomes the issues of gradient vanishing, gradient exploding, and insufficient long-term memory 

in RNN [19,20]. Due to its significant advantages in long-range time series prediction, LSTM has been 

widely applied in various time series prediction domains such as electricity load forecasting [21] and 

wind speed prediction [22]. In recent years, the application of the LSTM algorithm in the GNSS 

domain has also become increasingly widespread. Kim et al. improved the accuracy and stability of 

absolute positioning solutions in autonomous vehicle navigation using a multi-layer LSTM model 

[23]. Tao et al. utilized a CNN-LSTM approach to extract deep multipath features from GNSS 

coordinate sequences, reducing the impact of multipath effects on positioning accuracy [24]. Xie et 

al. accurately predicted landslide periodic components using the LSTM model to establish a landslide 

hazard warning system [25]. 

Variational Mode Decomposition (VMD) is a signal processing method based on the principle 

of variational inference. It decomposes signals into various mode components (Intrinsic Mode 

Functions, IMF) with different frequencies through an optimization process, effectively extracting the 

time-frequency local features of signals and enabling efficient signal decomposition and analysis [26]. 

Currently, many researchers have combined VMD with LSTM to enhance the performance of LSTM 

in a range of fields. Huang et al. applied the VMD-LSTM model in the coal seam thickness prediction 

field, confirming that the predicted results closely matched the coal seam information obtained from 

existing boreholes [27]. Zhang et al. applied the VMD-LSTM model in the field of sports artificial 

intelligence, demonstrating its broad application prospects in predicting sports artificial intelligence 

directions [28]. Han et al. applied the VMD-LSTM model in the wind power prediction field, 

validating its high performance in multi-step and real-time predictions [29]. Xing et al. applied the 

VMD-LSTM model in predicting dynamic displacements of landslides and verified its high 

prediction accuracy using the case of the landslide in paddy fields in China [30]. 

The VMD-LSTM model has been widely adopted in various fields for time series prediction. 

However, most studies utilize VMD to decompose the original data, predict each Intrinsic Mode 

Function (IMF) and residual term separately, and then combine the predicted results to obtain the 

final prediction. Although this method yields good results for each IMF value, the fluctuation 

characteristics of the residual term are difficult to extract, leading to significant prediction errors in 

the model. Furthermore, existing research mainly focuses on the accuracy of the prediction results 

while neglecting the noise characteristics of the data itself [31–33]. Considering these factors, this 

paper proposes a dual VMD-LSTM (DVMD-LSTM) hybrid model that takes into consideration the 

characteristics of noise. By performing VMD decomposition on the residual components obtained 

from the initial VMD decomposition, the proposed model effectively extracts the fluctuation features 

within the residuals, enabling high-precision prediction of GNSS time series. By analyzing the RMSE 

and MAE of the predicted results in the E, N, and U directions across multiple measurement stations, 

the applicability and robustness of the proposed method are evaluated. Additionally, the quality of 

the predicted results is assessed by incorporating noise models and velocity evaluation. 

The structure of this paper is as follows: Section 2 introduces the principles of VMD, LSTM 

algorithms, and accuracy evaluation metrics. The principles and specific processes of the DVMD-

LSTM model are explained in detail. Section 3 describes the GNSS station data, presents data 

preprocessing strategies, and analyzes the reasons for the improved accuracy of the DVMD-LSTM 

model. Section 4 focuses on the prediction results and accuracy of both the single LSTM model and 

the hybrid model. The optimal noise model and velocity under each prediction model are compared 
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and analyzed to evaluate the performance of the DVMD-LSTM model using different accuracy 

assessment metrics. Finally, Section 5 provides conclusions and analysis. 

2. Principle and Method 

2.1. Variational Modal Decomposition (VMD) 

Variational Mode Decomposition (VMD) is an adaptive and fully non-recursive method for 

solving modal variational and signal processing problems [34]. GNSS time series exhibit inherent 

non-stationarity. Utilizing VMD to decompose the data effectively separates it into stationary signals, 

thereby extracting the fluctuation characteristics of the GNSS time series and providing a superior 

data foundation for model prediction. VMD iteratively searches for a variational model to decompose 

the original time series into distinct modal components. The specific decomposition process is 

outlined as follows [35,36]: 

(1) For each modal component ( )K tµ , the corresponding analytic signal is computed using the 

Hilbert transform, which allows obtaining its one-sided spectrum: 

( ) ( )K

j
t t

t
δ µ

π

 
+ ∗  

 (1) 

In the equation, 2 1j = − , δ  is the Dirac distribution. 

(2) By introducing exponential terms in each mode, the center frequency Kj te ω−  of each mode 

can be estimated, and the spectral components of each mode can be modulated to their respective 

fundamental frequency bands: 

( ) ( ) Kj t

K

j
t t e

t

ωδ µ
π

−  
+ ∗    

 (2) 

(3) The bandwidth of Kω  is estimated based on the smoothness of the demodulated signal's H1 

Gaussian. This leads to a constrained variational problem: 

{ } { }
( ) ( )

2

, 2
min K

K K

j t

t K

K

j
d t u t e

t

ω

µ ω

δ
π

−
    

+ ∗     
  (3) 

, , K

K

s t fµ =  (4) 

In the equation, f  represents the original signal, { }Kµ  represents the decomposed mode 

functions, and { }Kω  represents the corresponding center frequencies of each mode. 

(4) On this basis, quadratic penalty factors α  and Lagrange multiplier operator tλ  are 

introduced to transform it into an unconstrained variational problem. The extended Lagrange 

expression is as follows: 

{ } { }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

22

, , ,Kj t

K K t K K K

K K K

j
L t t e f t t t f t t

t

ωµ ω λ α δ µ µ λ µ
π

−  
= ∂ + ∗ + − + −    
    (5) 

where α  represents the quadratic penalty factor and tλ  denotes the Lagrange multiplier operator. 

Subsequently, the alternating direction method of multipliers (ADMM) is employed to solve this 

unconstrained variational problem. By alternately updating 1n

Kµ + , 1n

Kω +  and  1nλ +  the saddle point 

of the extended Lagrange expression, i.e., the optimal solution of the constrained variational model 

in Equation (3), is sought.  

From the above analysis, it is evident that choosing an appropriate number of mode 

components, K, is crucial for obtaining high-quality decomposition results in VMD. An excessively 

large K may lead to over-decomposition, while a small K may result in under-decomposition of the 

data. To determine the optimal K value for the E, N, and U time series of different stations, this study 
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adopts the method of comparing the signal-to-noise ratio (SNR) of the decomposed data to evaluate 

the quality of the decomposition results. A higher SNR indicates a clearer signal decomposition and 

better denoising effect. Through extensive experiments and based on empirical rules, this study 

restricts the K value to the range of 2 to 10 and selects the K value within this range that yields the 

highest SNR as the optimal K value for each time series. The definition of SNR is given as follows: 

2

1

2

1

( )
SNR 10lg

[ ( ) ( )]

N

i

N

i

f i

f i g i

=

=

=

−




 (6) 

where ( )f i  represents the original signal, and ( )g i  represents the reconstructed signal. 

2.2. Long Short Term Memory (LSTM) 

LSTM is an improved type of recurrent neural network (RNN) that addresses the issue of long-

term dependencies by utilizing memory cells, effectively mitigating the problems of vanishing and 

exploding gradients [37,38]. Compared to traditional neural networks, LSTM demonstrates strong 

advantages in handling long-term sequence prediction tasks and has been widely applied in areas 

such as time series forecasting and fault detection [39,40]. The LSTM architecture consists of input 

layers, hidden layers, and output layers, where each hidden layer employs input gates, forget gates, 

and output gates to store and access data, as shown in Figure 1. 

 

Figure 1. Basic structure of LSTM 

2.3. Dual variational mode decomposition long-short term memory network model (DVMD-LSTM) 

The VMD-LSTM model, as a classical hybrid deep learning model, has been widely applied in 

time series prediction tasks such as load forecasting and wind speed prediction, demonstrating 

remarkable predictive accuracy [41,42]. This model utilizes the Variational Mode Decomposition 

(VMD) to decompose the original data into a set of Intrinsic Mode Functions (IMFs) and a residue 

component, denoted as "r." Subsequently, each IMF and the residue component "r" are individually 

predicted, and their predictions are cumulatively aggregated to obtain the final model's prediction. 

It is worth noting that the IMFs, being stationary signals, can achieve higher predictive accuracy when 

individually predicted, thus effectively enhancing the predictive performance of the VMD-LSTM 

model. The specific prediction process is shown on the left side of Figure 2, and the residual value is 
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not decomposed. However, the residue component "r" remains unprocessed during the prediction 

process, leading to errors that can affect the model's predictive accuracy. Therefore, this paper 

proposes a hybrid deep learning model called Dual Variational Modal Decomposition - Long Short-

Term Memory (DVMD-LSTM). In this model, the residue component "r" is further decomposed using 

VMD, and the decomposed modal components are fused for prediction. By replacing the predicted 

results of the original residue component "r" with the fused modal components, the DVMD-LSTM 

model eliminates irregular residue terms and enhances the predictive accuracy of the fused modal 

components, thereby improving the overall prediction accuracy. The specific workflow is illustrated 

in Figure 2. 

 

Figure 2. DVMD-LSTM Hybrid Model Prediction Process 

The specific prediction process of the DVMD-LSTM model is as follows: 

Step 1: Preprocess the GNSS time series data by removing outliers, performing interpolation, 

and other data preprocessing techniques. Then, input the preprocessed data into the Variational 

Mode Decomposition (VMD) for decomposition. 

Step 2: Further decompose the residue component "r1" obtained from the VMD into individual 

modal components and another residue "r2" through another round of VMD. 

Step 3: Add up the modal components obtained from the VMD decomposition of the residue 

component "r1" to form the fused Intrinsic Mode Function (Fuse-IMF). Use the Fuse-IMF as a feature 

for prediction in the LSTM model. 

Step 4: Use the individual modal components obtained from the VMD decomposition of the 

original GNSS time series as features and input them separately into the LSTM model for prediction. 

Obtain K prediction results, where K represents the number of modal components. 

Step 5: Add the K prediction results obtained in Step 4 with the prediction result of the Fuse-IMF 

to obtain the final prediction result of the DVMD-LSTM model. 

Step 6: Calculate the RMSE and MAE of the prediction results and use them for evaluating the 

performance of the model under different noise models. 

2.4. Precision evaluation index 

To evaluate the prediction accuracy and noise characteristics of the hybrid model, this study 

employs Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) as 

evaluation metrics for model prediction accuracy [43,44]. Additionally, the Bayesian information 

criterion (BIC_tp) is used to determine the optimal noise model for the original GNSS time series and 
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the predicted time series under each model, in order to evaluate whether the prediction results 

consider colored noise [45]. The definitions of the three evaluation metrics are as follows: 

(1) RMSE 

( )
2

1

1 ˆ 
n

i i

i

RMSE y y
n =

= −  (7) 

(2) MAE 

( )
1

1 ˆ
n

i i

i

MAE y y
n =

= −  (8) 

In the above equations, iy  represents the actual GNSS data values, ˆ
iy  represents the predicted 

results of each model, and n denotes the number of GNSS data points. The values of RMSE and MAE 

are used as evaluation metrics for model prediction accuracy. Smaller values of RMSE and MAE 

indicate higher prediction accuracy of the model, while larger values indicate lower prediction 

accuracy. 

(3) BIC_tp 

_ 2log( ) log( )
2
n

BIC tp L v
π

= − +  (9) 

To provide a visual assessment of the improvement achieved by the hybrid model on each 

evaluation metric, this study introduces the Improvement Ratio (I) to quantify the magnitude of 

improvement in each accuracy evaluation metric. By calculating the I value, the degree of 

improvement in accuracy achieved by the hybrid model can be accurately determined. The 

calculation formula for the Improvement Ratio is as follows: 

ˆ
ˆ-

yy

y y
I

y
=  (10) 

In the above equation, y and ŷ  represent the evaluation metrics for accuracy, such as RMSE. 

The variable y represents the evaluation metric for the accuracy of the initial model's predictions, 

while ŷ  represents the evaluation metric for the accuracy of the predictions made by the hybrid 

model. A larger value of ˆyyI  indicates a greater improvement in the evaluation metric achieved by 

the hybrid model, and vice versa. 

3. Data and experiments 

3.1. Data Sources 

To validate the applicability and robustness of the DVMD-LSTM model, daily coordinate time 

series data in the E, N, and U directions from eight stations, namely albh, burn, ceda, foot, gobs, rhcl, 

sedr, and smel, spanning the years 2000 to 2022, were selected as experimental data. The data for 

these stations were obtained from the International GNSS Service (IGS). The information for each 

station is presented in Table 1, and the distribution of the stations is depicted in Figure 3. 
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Table 1. Information of each GNSS station. 

Site Longitude (°) Latitude (°)  Time span(year) Date missing rate 

albh -123.49  48.39  2000-2022 0.61% 

burn -117.84  42.78  2000-2022 1.27% 

ceda -112.86  40.68  2000-2022 2.74% 

foot -113.81  39.37  2000-2022 3.40% 

gobs -120.81  45.84  2000-2022 3.65% 

rhcl -118.03  34.02  2000-2022 1.79% 

sedr -122.22  48.52  2000-2022 0.49% 

smel -112.84  39.43  2000-2022 0.79% 

 

Figure 3. Distribution map of each GNSS station 

3.2. Data preprocessing 

For data preprocessing, this study employed the Hector software to remove outliers and detect 

step discontinuities in the raw data [46]. After identifying the step discontinuities, they were 

corrected using the least squares fitting method. The corrected data was then subjected to 

interpolation using the Regularized Expectation Maximization (RegEM) algorithm. This method 

combines the Expectation Maximization (EM) algorithm with regularization techniques to 

simultaneously maximize the likelihood function and consider the smoothness of the model and 

noise reduction. It can effectively handle the interpolation problem of missing data [47,48]. Due to 

space limitations, only the comparison of interpolation results for the gobs station with the highest 

missing rate in the E, N, and U components is shown in Figure 4. 

As shown in the figure, it can be observed that the RegEM method not only produces good 

interpolation results for scattered missing data but also maintains the trend of the sequence well in 

the presence of many continuous missing data. It successfully overcomes the limitation of poor 
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interpolation performance of linear interpolation at locations with continuous missing data. 

Moreover, it provides high-quality continuous time series data for subsequent experiments. 

 

Figure 4. Three-direction interpolation comparison chart of GBOS station (Black represents the 

original data before interpolation, and red represents the interpolated data). 

3.3. DVMD-LSTM Reliability Analysis 

To investigate the reasons for the improved prediction accuracy of the DVMD-LSTM model 

compared to the VMD-LSTM model, this study utilized the signal-to-noise ratio (SNR) method to 

determine the value of K for VMD decomposition at each station (including E, N, and U directions). 

Subsequently, the decomposed IMF components and the residual term r were used as features in the 

LSTM model for prediction. Furthermore, a second VMD decomposition was performed on the 

residual term r, and the fused data were used as model features for prediction. Due to space 

constraints, this paper only presents the predicted results of the IMF components and residual after 

decomposition in the U direction of the sedr station. Please refer to Figure 5 for details. 
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Figure 5. Prediction results of each IMF and residual under different models after VMD 

decomposition in U direction of sedr station. 

According to Figure 5, the VMD-LSTM model demonstrates excellent predictive capability for 

each IMF component. However, due to the lack of apparent regularity in the residual term r, the 

VMD-LSTM model struggles to effectively capture its fluctuation characteristics, resulting in poor 

prediction performance and consequently affecting the overall prediction accuracy of the VMD-

LSTM model. To address this issue, this study proposes the DVMD-LSTM model, which aims to 

maintain the same processing approach for each IMF component obtained from VMD decomposition 

while performing a secondary VMD decomposition specifically on the residual term r to further 

extract its fluctuation information. Through this step, the DVMD-LSTM model can more accurately 

predict the residual term r, leading to improved prediction performance, as discussed in Section 4. 

4. Experimental results and analysis 

4.1. DVMD-LSTM model prediction results and precision analysis 

To compare the improvement in predictive accuracy of the DVMD-LSTM model and the VMD-

LSTM model compared to the LSTM model under different fluctuation amplitudes, this study 

conducted experiments using datasets from different stations in three directions. The dataset was 

divided into a training set (from 2000 to 2011), a validation set (from 2012 to 2014), and a test set (from 

2015 to 2022). The training set was used to train the model parameters and learn the data features. 

The validation set was used to fine-tune the model's hyperparameters and evaluate its performance. 

The test set was used for the final evaluation of the model's performance to assess its effectiveness in 

practical applications. The purpose of this dataset partitioning scheme was to ensure that the model 
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had sufficient training data to fully learn the data features. Additionally, by obtaining sufficient 

prediction results on the test set, the optimal noise model for prediction accuracy could be evaluated. 

To better distinguish the prediction results, this study analyzed the prediction error R, which is the 

difference between the true values and the predicted results. Due to space limitations, this section 

only presents the prediction results of the sedr station in three directions for different models, as 

shown in Figure 6. 

 

Figure 6. Comparison of prediction results and prediction error R in three directions of sedr station 

under different models ((a–c) are the prediction results of each model, and (d–f) are comparison 

diagrams of prediction error R of each model). 

From Figure 6, it can be observed that as the fluctuation amplitude of the original data increases, 

the prediction errors of different models also increase to varying degrees, with the largest errors 

observed in the U direction. Compared to the LSTM model, the VMD-LSTM hybrid model better 

captures the fluctuation trends and amplitudes of the true values in the data, and exhibits smaller 

variations and extremities in the prediction error R. This indicates that after VMD decomposition, the 

VMD-LSTM model is able to capture the inherent fluctuation characteristics of the initial data more 

effectively, leading to more accurate predictions. Both the VMD-LSTM and DVMD-LSTM models 

exhibit similar prediction fluctuations and trends, but the DVMD-LSTM model has smaller prediction 

errors R. This suggests that the DVMD-LSTM model not only retains the advantages of the VMD-

LSTM model in predicting fluctuation trends and amplitudes, but also achieves higher prediction 

accuracy.  

To analyze the applicability and robustness of the DVMD-LSTM model, this study conducted 

predictions using the LSTM, VMD-LSTM, and DVMD-LSTM models in the E, N, and U directions for 

each GNSS station. The prediction accuracy and improvement achieved by each model are 

summarized in Table 2. Where “I” represents the degree of accuracy improvement of the hybrid 

model compared with the single LSTM model under different accuracy indexes. 
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Table 2. Comparison of the prediction results of each GNSS station in the three directions of E, N, and 

U under different models. 

Site ENU 

LSTM VMD-LSTM DVMD-LSTM 

RMSE 

(mm) 

MAE 

(mm) 

RMSE 

(mm) 
I/% 

MAE 

(mm) 
I/% 

RMSE 

(mm) 
I/% 

MAE 

(mm) 

albh 

E 

0.89 0.65 0.76 13.91  0.55 14.03  0.67 24.56 0.49 

burn 1.40 1.10 1.16 17.00  0.92 16.70  1.02 27.00 0.82 

ceda 1.73 1.35 1.37 20.75  1.06 21.18  1.21 29.82 0.94 

foot 0.58 0.44 0.51 12.91  0.38 13.51  0.45 22.12 0.34 

gobs 1.00 0.70 0.86 13.74  0.58 16.08  0.77 23.53  0.52 

rhcl 1.62 1.28 1.07 34.08  0.83 34.78  0.94 41.63  0.74 

sedr 0.68 0.53 0.58 15.00  0.45 15.13  0.50 27.07  0.39 

smel 0.57 0.44 0.40 30.80  0.30 31.08  0.34 40.11  0.26 

albh 

N 

0.73  0.57  0.55  24.53  0.43  24.23  0.49  32.77  0.38  

burn 1.39  1.11  1.07  22.74  0.85  23.37  0.95  31.65  0.76  

ceda 1.38  1.10  1.05  23.54  0.83  24.05  0.90  34.50  0.72  

foot 0.59  0.43  0.39  33.45  0.29  31.81  0.34  41.35  0.26  

gobs 0.86  0.63  0.63  26.95  0.46  26.60  0.56  34.86  0.41  

rhcl 3.14  2.54  1.71  45.59  1.31  48.53  1.58  49.55  1.21  

sedr 0.85  0.63  0.66  22.23  0.50  21.79  0.56  34.15  0.42  

smel 0.55  0.42  0.47  15.62  0.35  16.54  0.41  26.53  0.30  

albh 

U 

3.38  2.60  2.89  14.57  2.25  13.77  2.51  25.74  1.96  

burn 2.30  1.78  1.94  15.78  1.49  16.29  1.66  27.82  1.29  

ceda 2.65  2.03  2.27  14.48  1.73  15.08  1.96  26.09  1.49  

foot 2.39  1.83  1.87  21.89  1.43  22.23  1.60  32.94  1.23  

gobs 2.92  2.22  2.28  22.17  1.72  22.48  1.99  32.04  1.53  

rhcl 2.45  1.90  2.10  14.50  1.63  14.04  1.87  23.68  1.46  

sedr 3.33  2.62  2.37  28.68  1.87  28.79  1.96  41.19  1.54  

smel 2.36  1.87  1.84  22.38  1.43  23.12  1.58  33.17  1.24  

Based on the findings presented in Table 2, it can be observed that the VMD-LSTM model 

demonstrates superior performance compared to the LSTM model in predicting the RMSE of the E 

direction by an average reduction of 19.77%, the N direction by an average reduction of 26.83%, and 

the U direction by an average reduction of 19.31%. Additionally, the VMD-LSTM model exhibits an 

average reduction of 20.31% in MAE for the E direction, 27.12% for the N direction, and 19.48% for 

the U direction. These results indicate that the VMD-LSTM model achieves improvements in 

prediction accuracy across all directional components for any given station, with the most significant 

enhancement observed in the N-direction. 

Furthermore, the DVMD-LSTM model outperforms the LSTM model by achieving an average 

reduction of 29.48% in RMSE for the E direction, 35.67% for the N direction, and 30.33% for the U 

direction. Similarly, the average reduction in MAE for the DVMD-LSTM model is 29.48% for the E 

direction, 35.67% for the N direction, and 30.09% for the U direction, as compared to the VMD-LSTM 

model. Moreover, the DVMD-LSTM model demonstrates an average reduction of 9.71% in RMSE for 

the E direction, 8.84% for the N direction, and 11.02% for the U direction when compared to the VMD-

LSTM model. Correspondingly, the average reduction in MAE is 9.17% for the E direction, 8.55% for 

the N direction, and 10.61% for the U direction. These findings highlight the significant improvement 

in prediction accuracy achieved by the DVMD-LSTM model through the modification of the 

treatment of the residual component. Notably, the improvement achieved by the DVMD-LSTM 

model is more substantial than that of the VMD-LSTM model relative to the LSTM model, and it 

demonstrates varying degrees of enhancement across different stations. The larger improvement in 

the U direction for the DVMD-LSTM model can be attributed to the significant presence of 

fluctuations in the time series. After VMD decomposition, the residual component becomes more 
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prominent, and the VMD-LSTM model's inability to capture the fluctuation information leads to 

diminished prediction accuracy and greater room for improvement. 

In summary, the DVMD-LSTM model preserves the advantages of the VMD-LSTM model in 

predicting fluctuation trends and frequencies while achieving higher prediction accuracy. The results 

of the predictions conducted across different directional components of various stations further 

validate the superiority of the proposed model. These experimental findings confirm the model's 

applicability and robustness, demonstrating its potential for broad utilization in the field of high 

precision time series forecasting. 

4.2. Optimal Noise Model Research 

4.2.1. Comparison of optimal noise models under each prediction model 

To further investigate whether the DVMD-LSTM model can adequately consider the noise 

characteristics of different datasets during the prediction process, this study selected stations with 

the same optimal noise model as both the training and testing dataset. The optimal noise model 

represents the model that accurately describes and predicts noise under given data and problem 

conditions. Noise models are typically used to eliminate or reduce the impact of noise in data, thereby 

improving the performance and predictive capabilities of the models. The optimal noise models for 

the prediction results of each model were calculated, and the specific results are presented in Table 

3. 

Table 3. The optimal noise model of each station under different models in the three directions of E, 

N, and U. 

Site ENU 
Optimal noise model 

TURE LSTM VMD-LSTM DVMD-LSTM 

albh 

E 

RWFNWN PLWN RWFNWN RWFNWN 

burn RWFNWN PLWN PLWN RWFNWN 

ceda RWFNWN PLWN PLWN RWFNWN 

foot PLWN GGMWN FNWN PLWN 

gobs RWFNWN PLWN RWFNWN RWFNWN 

rhcl RWFNWN GGMWN PLWN RWFNWN 

sedr RWFNWN PLWN PLWN RWFNWN 

smel FNWN PLWN FNWN FNWN 

albh 

N 

RWFNWN PLWN RWFNWN RWFNWN 

burn FNWN PLWN PLWN PLWN 

ceda RWFNWN PLWN PLWN RWFNWN 

foot FNWN GGMWN FNWN FNWN 

gobs RWFNWN PLWN RWFNWN RWFNWN 

rhcl RWFNWN RWFNWN PLWN PLWN 

sedr FNWN GGMWN RWFNWN FNWN 

smel FNWN PLWN FNWN FNWN 

albh 

U 

PLWN PLWN RWFNWN FNWN 

burn PLWN GGMWN PLWN PLWN 

ceda PLWN PLWN RWFNWN PLWN 

foot PLWN PLWN FNWN FNWN 

gobs PLWN GGMWN PLWN FNWN 

rhcl FNWN PLWN RWFNWN FNWN 

sedr PLWN PLWN PLWN PLWN 

smel PLWN PLWN FNWN PLWN 
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According to Table 3, the optimal noise models differ among different stations, indicating the 

presence of inconsistent noise characteristics. Here is a brief introduction to the RWFNWN, PLWN, 

FNWN, and GGMWN noise models: 

RWFNWN (Robust Wiener Filter with Nonlinear White Noise): RWFNWN is a common noise 

model in the real world. It combines long-memory (long-range dependence) fractional noise with 

independently and identically distributed white noise. PLWN (Poisson Log-Normal White Noise): 

PLWN assumes that the noise in the data follows a power-law distribution and incorporates 

independently and identically distributed white noise. Power-law distributions capture the self-

similarity of data at different scales, where patterns exhibit similar statistical properties at both large 

and small scales. FNWN (Fractional Gaussian Noise): FNWN is a fractal noise model that describes 

the noise characteristics in data by combining fractional noise with white noise. Fractal noise exhibits 

self-similarity and scale invariance, allowing for a better description of coarse and fine-grained 

structures in the data. GGMWN (Generalized Gaussian-Mixture White Noise): GGMWN is a mixture 

of Gaussian noise model. It assumes that the noise in the data is composed of multiple components 

from Gaussian distributions, along with the addition of white noise. These noise models have 

different applicability in various data and problem domains. Selecting the appropriate noise model 

requires an evaluation and selection based on factors such as the characteristics of the data, the 

requirements of the problem, and the assumptions and complexities of the model. 

The LSTM model exhibits significant differences between its prediction results and the optimal 

noise models of the original data, with an average accuracy of only 25% across all three directions. 

Additionally, the predominant optimal noise models are PLWN and GGMWN. This suggests that 

the LSTM model does not adequately consider the inherent noise characteristics of GNSS time series 

during prediction. In contrast, the VMD-LSTM model shows improved accuracy in capturing the 

optimal noise models, with an average accuracy of 42.67%. This indicates that the VMD 

decomposition effectively captures the noise characteristics within the IMF components, although 

the noise characteristics in the residual component r are not fully captured, resulting in relatively 

lower overall accuracy. Therefore, the proposed DVMD-LSTM model further enhances the noise 

characteristics in the residual component r by performing VMD decomposition once again. As a 

result, the DVMD-LSTM model achieves an impressive average accuracy of 79.17% in capturing the 

optimal noise models. In summary, the DVMD-LSTM model adequately considers the noise 

characteristics of the data during the prediction process by processing the original data and 

decomposed residual component. 

4.2.2. Speed Estimation Impact Analysis 

In order to further investigate the quality of the predicted results for each model, this study 

calculates the velocity of GNSS reference stations based on the predicted results. By comparing the 

velocity values obtained from the original data and the optimal noise model calculated under each 

prediction model, an assessment of the predicted results for each model is conducted. The specific 

results are presented in Table 4. 
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Table 4. Velocity values obtained by each station under the optimal noise model. 

Site ENU 
Trend(mm/year) 

TURE LSTM VMD-LSTM DVMD-LSTM 

albh 

E 

-0.041 0.020 0.055 -0.044 

burn -0.108 -0.005 -0.051 -0.116 

ceda -0.726 -0.528 -0.693 -0.736 

foot 0.02 0.015 0.001 0.009 

gobs 0.659 0.656 0.672 0.682 

rhcl 0.811 0.666 0.805 0.783 

sedr 0.354 0.341 0.378 0.313 

smel 0.026 0.009 0.023 0.021 

albh 

N 

0.327 0.245 0.276 0.295 

burn 0.124 0.08 0.116 0.13 

ceda -0.065 -0.041 -0.227 -0.042 

foot 0.009 0.029 -0.036 0.005 

gobs 0.063 0.078 0.029 -0.02 

rhcl 1.253 0.743 1.132 1.071 

sedr 0.199 0.17 0.212 0.195 

smel 0.02 -0.001 -0.025 0.017 

albh 

U 

0.383 0.204 0.131 0.268 

burn 0.241 0.144 0.238 0.216 

ceda 0.016 0.159 0.074 0.137 

foot 0.194 0.125 0.194 0.202 

gobs 0.301 0.278 0.283 0.262 

rhcl 0.298 0.206 0.367 0.264 

sedr 0.017 0.022 0.082 0.04 

smel 0.195 0.182 0.206 0.183 

According to Table 4, in the E direction of each station, the average absolute error between the 

velocities predicted by the LSTM model and the velocities of the original data is 0.068 mm/year. In 

the N direction, it is 0.093 mm/year, and in the U direction, it is 0.078 mm/year. For the VMD-LSTM 

model, the average absolute error between the predicted velocities and the velocities of the original 

data is 0.031 mm/year in the E direction, 0.060 mm/year in the N direction, and 0.060 mm/year in the 

U direction. As for the DVMD-LSTM model, the average absolute error between the predicted 

velocities and the velocities of the original data is 0.016 mm/year in the E direction, 0.042 mm/year in 

the N direction, and 0.047 mm/year in the U direction. Compared to the LSTM model, the VMD-

LSTM model shows an average improvement of 37.67% in velocity prediction accuracy, while the 

DVMD-LSTM model demonstrates an average improvement of 56.80%. Compared with VMD-LSTM, 

the speed prediction accuracy of DVMD-LSTM model is improved by 33.02% on average. Thus, both 

the VMD-LSTM and DVMD-LSTM models exhibit improved velocity prediction accuracy compared 

to the LSTM model, with the DVMD-LSTM model showing a greater improvement, further 

demonstrating its outstanding predictive performance. 

In summary, this study evaluated the performance of various prediction models by analyzing 

their prediction accuracy, optimal noise models, and velocity results. The results indicate that the 

DVMD-LSTM model outperforms the others in multiple aspects, highlighting its potential for wide 

application in high-precision time series prediction with multiple noise characteristics. 

5. Conclusion 

Addressing the limitations of low prediction accuracy and inadequate consideration of noise 

characteristics in the VMD-LSTM model for time series forecasting, this paper proposes a high-

precision GNSS time series prediction method based on DVMD and LSTM. The proposed method is 

comprehensively validated and tested on the daily time series data from eight North American 
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regional GNSS stations, spanning the period from 2000 to 2022, in the E, N, and U directions. The 

experimental results demonstrate the following: 

(1) The VMD-LSTM model shows good prediction results for each IMF value after VMD 

decomposition, but performs poorly in predicting the residual component. The proposed DVMD-

LSTM model utilizes VMD decomposition to extract the fluctuation characteristics of the residual 

component, leading to a significant improvement in the prediction accuracy of the residual 

component and enhancing the overall prediction accuracy. 

(2) Compared to the initial VMD-LSTM hybrid model, the DVMD-LSTM model exhibits 

significant improvements in prediction accuracy. The RMSE values for the DVMD-LSTM model are 

reduced by an average of 9.71% in the E direction, 8.84% in the N direction, and 11.02% in the U 

direction. Additionally, the MAE values are decreased by an average of 9.17% in the E direction, 

8.55% in the N direction, and 10.61% in the U direction. Across all measurement stations, the DVMD-

LSTM model consistently outperforms the VMD-LSTM model, indicating its superior predictive 

accuracy, adaptability, and robustness.  

(3) Compared to the LSTM model, the DVMD-LSTM model achieves an average improvement 

of 36.50% in the accuracy of the average optimal noise model across all stations, reaching an overall 

accuracy of 79.17%. This demonstrates that the DVMD-LSTM model adequately considers the noise 

characteristics of the data during the prediction process and achieves superior prediction results. By 

calculating the velocities obtained from the optimal noise models, it is evident that the DVMD-LSTM 

model achieves an average improvement of 33.02% in velocity prediction accuracy compared to the 

VMD-LSTM model, further confirming the outstanding predictive performance of the DVMD-LSTM 

model. 
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