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Abstract: GNSS time series prediction plays a significant role in monitoring crustal plate motion, landslide
detection, and maintenance of the global coordinate framework. Long Short-Term Memory (LSTM), a deep
learning model has been widely applied in the field of high-precision time series prediction especially when
combined with Variational Mode Decomposition (VMD) to form the VMD-LSTM hybrid model. To further
improve the prediction accuracy of the VMD-LSTM model, this paper proposes a dual variational modal
decomposition long short-term memory (DVMD-LSTM) model to effectively handle the noise in GNSS time
series prediction. This model extracts fluctuation features from the residual terms obtained after VMD
decomposition to reduce the prediction errors associated with residual terms in the VMD-LSTM model. Daily
E, N, and U coordinate data recorded at multiple GNSS stations between 2000 and 2022 are used to validate
the performance of the proposed DVMD-LSTM model. The experimental results demonstrate that compared
to the VMD-LSTM model, the DVMD-LSTM model achieves significant improvements in prediction
performance across all measurement stations. The average RMSE is reduced by 9.86%, and the average MAE
is reduced by 9.44%. Furthermore, the average accuracy of the optimal noise model for the predicted results is
improved by 36.50%, and the average speed accuracy of the predicted results is enhanced by 33.02%. These
findings collectively attest to the superior predictive capabilities of the DVMD-LSTM model, thereby enhancing
the reliability of the predicted results.

Keywords: GNSS; deep learning; time series prediction; VMD; LSTM

1. Introduction

Over the past three decades, with the rapid development of satellite navigation technology, a
large number of GNSS continuously operating reference stations have been established worldwide.
These stations provide important data sources for crustal plate motion monitoring [1-3], landslide
detection [4], deformation monitoring of bridges or dams [5-7], and maintenance of regional or global
coordinate frameworks [8]. By analyzing the long-term GNSS observation data time series from these
stations, it is possible to predict the variation of coordinates at continuous time points, thereby
providing important basis for determining motion trends. This has significant practical and
theoretical value in geodesy and geodynamics research [9,10].

Time series prediction methods can be mainly categorized into two types: physical simulation
and numerical simulation. Traditional physical and numerical simulation methods rely on
geophysical theories, linear terms, periodic terms, and gap information to construct models [11].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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However, these models face challenges in capturing complex nonlinear data and require manual
selection of feature information and modeling parameters, leading to systematic biases and
limitations [12]. In contrast, deep learning, as an emerging technology, can automatically extract
information that is suitable for data features by constructing deep network structures. Deep learning
exhibits strong learning capabilities and has advantages in handling large-scale and high-
dimensional data. It has been widely applied in various fields such as image recognition [13], natural
language processing [14], speech recognition [15], and time series prediction [16-18].

Long Short-Term Memory (LSTM), as an excellent variant of Recurrent Neural Networks (RNN),
overcomes the issues of gradient vanishing, gradient exploding, and insufficient long-term memory
in RNN [19,20]. Due to its significant advantages in long-range time series prediction, LSTM has been
widely applied in various time series prediction domains such as electricity load forecasting [21] and
wind speed prediction [22]. In recent years, the application of the LSTM algorithm in the GNSS
domain has also become increasingly widespread. Kim et al. improved the accuracy and stability of
absolute positioning solutions in autonomous vehicle navigation using a multi-layer LSTM model
[23]. Tao et al. utilized a CNN-LSTM approach to extract deep multipath features from GNSS
coordinate sequences, reducing the impact of multipath effects on positioning accuracy [24]. Xie et
al. accurately predicted landslide periodic components using the LSTM model to establish a landslide
hazard warning system [25].

Variational Mode Decomposition (VMD) is a signal processing method based on the principle
of variational inference. It decomposes signals into various mode components (Intrinsic Mode
Functions, IMF) with different frequencies through an optimization process, effectively extracting the
time-frequency local features of signals and enabling efficient signal decomposition and analysis [26].
Currently, many researchers have combined VMD with LSTM to enhance the performance of LSTM
in a range of fields. Huang et al. applied the VMD-LSTM model in the coal seam thickness prediction
field, confirming that the predicted results closely matched the coal seam information obtained from
existing boreholes [27]. Zhang et al. applied the VMD-LSTM model in the field of sports artificial
intelligence, demonstrating its broad application prospects in predicting sports artificial intelligence
directions [28]. Han et al. applied the VMD-LSTM model in the wind power prediction field,
validating its high performance in multi-step and real-time predictions [29]. Xing et al. applied the
VMD-LSTM model in predicting dynamic displacements of landslides and verified its high
prediction accuracy using the case of the landslide in paddy fields in China [30].

The VMD-LSTM model has been widely adopted in various fields for time series prediction.
However, most studies utilize VMD to decompose the original data, predict each Intrinsic Mode
Function (IMF) and residual term separately, and then combine the predicted results to obtain the
final prediction. Although this method yields good results for each IMF value, the fluctuation
characteristics of the residual term are difficult to extract, leading to significant prediction errors in
the model. Furthermore, existing research mainly focuses on the accuracy of the prediction results
while neglecting the noise characteristics of the data itself [31-33]. Considering these factors, this
paper proposes a dual VMD-LSTM (DVMD-LSTM) hybrid model that takes into consideration the
characteristics of noise. By performing VMD decomposition on the residual components obtained
from the initial VMD decomposition, the proposed model effectively extracts the fluctuation features
within the residuals, enabling high-precision prediction of GNSS time series. By analyzing the RMSE
and MAE of the predicted results in the E, N, and U directions across multiple measurement stations,
the applicability and robustness of the proposed method are evaluated. Additionally, the quality of
the predicted results is assessed by incorporating noise models and velocity evaluation.

The structure of this paper is as follows: Section 2 introduces the principles of VMD, LSTM
algorithms, and accuracy evaluation metrics. The principles and specific processes of the DVMD-
LSTM model are explained in detail. Section 3 describes the GNSS station data, presents data
preprocessing strategies, and analyzes the reasons for the improved accuracy of the DVMD-LSTM
model. Section 4 focuses on the prediction results and accuracy of both the single LSTM model and
the hybrid model. The optimal noise model and velocity under each prediction model are compared
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and analyzed to evaluate the performance of the DVMD-LSTM model using different accuracy
assessment metrics. Finally, Section 5 provides conclusions and analysis.

2. Principle and Method

2.1. Variational Modal Decomposition (VMD)

Variational Mode Decomposition (VMD) is an adaptive and fully non-recursive method for
solving modal variational and signal processing problems [34]. GNSS time series exhibit inherent
non-stationarity. Utilizing VMD to decompose the data effectively separates it into stationary signals,
thereby extracting the fluctuation characteristics of the GNSS time series and providing a superior
data foundation for model prediction. VMD iteratively searches for a variational model to decompose
the original time series into distinct modal components. The specific decomposition process is
outlined as follows [35,36]:

(1) For each modal component /4 (t), the corresponding analytic signal is computed using the
Hilbert transform, which allows obtaining its one-sided spectrum:

[5(r)+i} i (1) M

Tt

In the equation, j>=-1, & is the Dirac distribution.

(2) By introducing exponential terms in each mode, the center frequency e¢’/*' of each mode
can be estimated, and the spectral components of each mode can be modulated to their respective
fundamental frequency bands:
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(3) The bandwidth of @ is estimated based on the smoothness of the demodulated signal's H1
Gaussian. This leads to a constrained variational problem:
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In the equation, f represents the original signal, {#| represents the decomposed mode

functions, and {@] represents the corresponding center frequencies of each mode.

(4) On this basis, quadratic penalty factors ¢ and Lagrange multiplier operator /4, are
introduced to transform it into an unconstrained variational problem. The extended Lagrange
expression is as follows:
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where & represents the quadratic penalty factor and 4, denotes the Lagrange multiplier operator.

2

Subsequently, the alternating direction method of multipliers (ADMM) is employed to solve this
unconstrained variational problem. By alternately updating #,""', ®,""' and 1""' the saddle point
of the extended Lagrange expression, i.e., the optimal solution of the constrained variational model
in Equation (3), is sought.

From the above analysis, it is evident that choosing an appropriate number of mode
components, K, is crucial for obtaining high-quality decomposition results in VMD. An excessively
large K may lead to over-decomposition, while a small K may result in under-decomposition of the
data. To determine the optimal K value for the E, N, and U time series of different stations, this study
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adopts the method of comparing the signal-to-noise ratio (SNR) of the decomposed data to evaluate
the quality of the decomposition results. A higher SNR indicates a clearer signal decomposition and
better denoising effect. Through extensive experiments and based on empirical rules, this study
restricts the K value to the range of 2 to 10 and selects the K value within this range that yields the
highest SNR as the optimal K value for each time series. The definition of SNR is given as follows:

2. /0
SNR =10lg——="—— (6)
2L -gOF

i=1

where f(i) represents the original signal, and g(i) represents the reconstructed signal.

2.2. Long Short Term Memory (LSTM)

LSTM is an improved type of recurrent neural network (RNN) that addresses the issue of long-
term dependencies by utilizing memory cells, effectively mitigating the problems of vanishing and
exploding gradients [37,38]. Compared to traditional neural networks, LSTM demonstrates strong
advantages in handling long-term sequence prediction tasks and has been widely applied in areas
such as time series forecasting and fault detection [39,40]. The LSTM architecture consists of input
layers, hidden layers, and output layers, where each hidden layer employs input gates, forget gates,
and output gates to store and access data, as shown in Figure 1.
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Figure 1. Basic structure of LSTM

2.3. Dual variational mode decomposition long-short term memory network model (DVMD-LSTM)

The VMD-LSTM model, as a classical hybrid deep learning model, has been widely applied in
time series prediction tasks such as load forecasting and wind speed prediction, demonstrating
remarkable predictive accuracy [41,42]. This model utilizes the Variational Mode Decomposition
(VMD) to decompose the original data into a set of Intrinsic Mode Functions (IMFs) and a residue
component, denoted as "r." Subsequently, each IMF and the residue component "r" are individually
predicted, and their predictions are cumulatively aggregated to obtain the final model's prediction.
It is worth noting that the IMFs, being stationary signals, can achieve higher predictive accuracy when
individually predicted, thus effectively enhancing the predictive performance of the VMD-LSTM

model. The specific prediction process is shown on the left side of Figure 2, and the residual value is
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not decomposed. However, the residue component "r" remains unprocessed during the prediction
process, leading to errors that can affect the model's predictive accuracy. Therefore, this paper
proposes a hybrid deep learning model called Dual Variational Modal Decomposition - Long Short-
Term Memory (DVMD-LSTM). In this model, the residue component "r" is further decomposed using
VMD, and the decomposed modal components are fused for prediction. By replacing the predicted
results of the original residue component "r" with the fused modal components, the DVMD-LSTM
model eliminates irregular residue terms and enhances the predictive accuracy of the fused modal
components, thereby improving the overall prediction accuracy. The specific workflow is illustrated

in Figure 2.
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Figure 2. DVMD-LSTM Hybrid Model Prediction Process

The specific prediction process of the DVMD-LSTM model is as follows:

Step 1: Preprocess the GNSS time series data by removing outliers, performing interpolation,
and other data preprocessing techniques. Then, input the preprocessed data into the Variational
Mode Decomposition (VMD) for decomposition.

Step 2: Further decompose the residue component "r1" obtained from the VMD into individual
modal components and another residue "r2" through another round of VMD.

Step 3: Add up the modal components obtained from the VMD decomposition of the residue
component "r1" to form the fused Intrinsic Mode Function (Fuse-IMF). Use the Fuse-IMF as a feature
for prediction in the LSTM model.

Step 4: Use the individual modal components obtained from the VMD decomposition of the
original GNSS time series as features and input them separately into the LSTM model for prediction.
Obtain K prediction results, where K represents the number of modal components.

Step 5: Add the K prediction results obtained in Step 4 with the prediction result of the Fuse-IMF
to obtain the final prediction result of the DVMD-LSTM model.

Step 6: Calculate the RMSE and MAE of the prediction results and use them for evaluating the

performance of the model under different noise models.

2.4. Precision evaluation index

To evaluate the prediction accuracy and noise characteristics of the hybrid model, this study
employs Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) as
evaluation metrics for model prediction accuracy [43,44]. Additionally, the Bayesian information
criterion (BIC_tp) is used to determine the optimal noise model for the original GNSS time series and
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the predicted time series under each model, in order to evaluate whether the prediction results
consider colored noise [45]. The definitions of the three evaluation metrics are as follows:

(1) RMSE

1 & R
RMSE = - (y,-3,) )

i=1

() MAE

MAE = 3[(3,-3,) ®

In the above equations, y; represents the actual GNSS data values, J, represents the predicted
results of each model, and n denotes the number of GNSS data points. The values of RMSE and MAE
are used as evaluation metrics for model prediction accuracy. Smaller values of RMSE and MAE
indicate higher prediction accuracy of the model, while larger values indicate lower prediction
accuracy.

(3) BIC_tp
BIC tp=-2log(L)+ log(zi)v 9)
V4

To provide a visual assessment of the improvement achieved by the hybrid model on each
evaluation metric, this study introduces the Improvement Ratio (I) to quantify the magnitude of
improvement in each accuracy evaluation metric. By calculating the I value, the degree of
improvement in accuracy achieved by the hybrid model can be accurately determined. The
calculation formula for the Improvement Ratio is as follows:

Iy = (10)

<

In the above equation, y and j represent the evaluation metrics for accuracy, such as RMSE.

The variable y represents the evaluation metric for the accuracy of the initial model's predictions,
while J represents the evaluation metric for the accuracy of the predictions made by the hybrid

model. A larger value of /; indicates a greater improvement in the evaluation metric achieved by

the hybrid model, and vice versa.
3. Data and experiments

3.1. Data Sources

To validate the applicability and robustness of the DVMD-LSTM model, daily coordinate time
series data in the E, N, and U directions from eight stations, namely albh, burn, ceda, foot, gobs, rhcl,
sedr, and smel, spanning the years 2000 to 2022, were selected as experimental data. The data for
these stations were obtained from the International GNSS Service (IGS). The information for each
station is presented in Table 1, and the distribution of the stations is depicted in Figure 3.
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Table 1. Information of each GNSS station.

Site Longitude (°) Latitude (°) Time span(year) Date missing rate
albh -123.49 48.39 2000-2022 0.61%
burn -117.84 42.78 2000-2022 1.27%
ceda -112.86 40.68 2000-2022 2.74%
foot -113.81 39.37 2000-2022 3.40%
gobs -120.81 45.84 2000-2022 3.65%
rhcl -118.03 34.02 2000-2022 1.79%
sedr -122.22 48.52 2000-2022 0.49%
smel -112.84 39.43 2000-2022 0.79%
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Figure 3. Distribution map of each GNSS station

3.2. Data preprocessing

For data preprocessing, this study employed the Hector software to remove outliers and detect
step discontinuities in the raw data [46]. After identifying the step discontinuities, they were
corrected using the least squares fitting method. The corrected data was then subjected to
interpolation using the Regularized Expectation Maximization (RegEM) algorithm. This method
combines the Expectation Maximization (EM) algorithm with regularization techniques to
simultaneously maximize the likelihood function and consider the smoothness of the model and
noise reduction. It can effectively handle the interpolation problem of missing data [47,48]. Due to
space limitations, only the comparison of interpolation results for the gobs station with the highest
missing rate in the E, N, and U components is shown in Figure 4.

As shown in the figure, it can be observed that the RegEM method not only produces good
interpolation results for scattered missing data but also maintains the trend of the sequence well in
the presence of many continuous missing data. It successfully overcomes the limitation of poor
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interpolation performance of linear interpolation at locations with continuous missing data.
Moreover, it provides high-quality continuous time series data for subsequent experiments.

15 ..
E - origin

10 | - interpolation

gobs (mm)

1999 2004 2009 2014 2019 2024

1999 2004 2009 2014 2019 2024

Time (year)

Figure 4. Three-direction interpolation comparison chart of GBOS station (Black represents the
original data before interpolation, and red represents the interpolated data).

3.3. DVMD-LSTM Reliability Analysis

To investigate the reasons for the improved prediction accuracy of the DVMD-LSTM model
compared to the VMD-LSTM model, this study utilized the signal-to-noise ratio (SNR) method to
determine the value of K for VMD decomposition at each station (including E, N, and U directions).
Subsequently, the decomposed IMF components and the residual term r were used as features in the
LSTM model for prediction. Furthermore, a second VMD decomposition was performed on the
residual term r, and the fused data were used as model features for prediction. Due to space
constraints, this paper only presents the predicted results of the IMF components and residual after
decomposition in the U direction of the sedr station. Please refer to Figure 5 for details.
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Figure 5. Prediction results of each IMF and residual under different models after VMD
decomposition in U direction of sedr station.

According to Figure 5, the VMD-LSTM model demonstrates excellent predictive capability for
each IMF component. However, due to the lack of apparent regularity in the residual term r, the
VMD-LSTM model struggles to effectively capture its fluctuation characteristics, resulting in poor
prediction performance and consequently affecting the overall prediction accuracy of the VMD-
LSTM model. To address this issue, this study proposes the DVMD-LSTM model, which aims to
maintain the same processing approach for each IMF component obtained from VMD decomposition
while performing a secondary VMD decomposition specifically on the residual term r to further
extract its fluctuation information. Through this step, the DVMD-LSTM model can more accurately
predict the residual term r, leading to improved prediction performance, as discussed in Section 4.

4. Experimental results and analysis

4.1. DVMD-LSTM model prediction results and precision analysis

To compare the improvement in predictive accuracy of the DVMD-LSTM model and the VMD-
LSTM model compared to the LSTM model under different fluctuation amplitudes, this study
conducted experiments using datasets from different stations in three directions. The dataset was
divided into a training set (from 2000 to 2011), a validation set (from 2012 to 2014), and a test set (from
2015 to 2022). The training set was used to train the model parameters and learn the data features.
The validation set was used to fine-tune the model's hyperparameters and evaluate its performance.
The test set was used for the final evaluation of the model's performance to assess its effectiveness in
practical applications. The purpose of this dataset partitioning scheme was to ensure that the model
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had sufficient training data to fully learn the data features. Additionally, by obtaining sufficient
prediction results on the test set, the optimal noise model for prediction accuracy could be evaluated.
To better distinguish the prediction results, this study analyzed the prediction error R, which is the
difference between the true values and the predicted results. Due to space limitations, this section
only presents the prediction results of the sedr station in three directions for different models, as
shown in Figure 6.
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Figure 6. Comparison of prediction results and prediction error R in three directions of sedr station
under different models ((a—c) are the prediction results of each model, and (d-f) are comparison
diagrams of prediction error R of each model).

From Figure 6, it can be observed that as the fluctuation amplitude of the original data increases,
the prediction errors of different models also increase to varying degrees, with the largest errors
observed in the U direction. Compared to the LSTM model, the VMD-LSTM hybrid model better
captures the fluctuation trends and amplitudes of the true values in the data, and exhibits smaller
variations and extremities in the prediction error R. This indicates that after VMD decomposition, the
VMD-LSTM model is able to capture the inherent fluctuation characteristics of the initial data more
effectively, leading to more accurate predictions. Both the VMD-LSTM and DVMD-LSTM models
exhibit similar prediction fluctuations and trends, but the DVMD-LSTM model has smaller prediction
errors R. This suggests that the DVMD-LSTM model not only retains the advantages of the VMD-
LSTM model in predicting fluctuation trends and amplitudes, but also achieves higher prediction
accuracy.

To analyze the applicability and robustness of the DVMD-LSTM model, this study conducted
predictions using the LSTM, VMD-LSTM, and DVMD-LSTM models in the E, N, and U directions for
each GNSS station. The prediction accuracy and improvement achieved by each model are
summarized in Table 2. Where “1” represents the degree of accuracy improvement of the hybrid
model compared with the single LSTM model under different accuracy indexes.
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Table 2. Comparison of the prediction results of each GNSS station in the three directions of E, N, and
U under different models.

LSTM VMD-LSTM DVMD-LSTM
Site ENU RMSE MAE RMSE MAE RMSE MAE
I/'% I/'% I/'%
(mm) (mm) (mm) (mm) (mm) (mm)

albh 0.89 0.65 0.76 13.91 0.55 14.03 0.67 2456 0.49
burn 1.40 1.10 1.16 17.00 0.92 16.70 1.02 27.00 0.82
ceda 1.73 1.35 1.37  20.75 1.06 21.18 1.21 29.82 0.94
foot E 0.58 0.44 0.51 1291 0.38 13.51 0.45 22.12 0.34
gobs 1.00 0.70 0.86 13.74  0.58 16.08 0.77 2353 052
rhcl 1.62 1.28 1.07  34.08 0.83 34.78 0.94 41.63 0.74
sedr 0.68 0.53 0.58 15.00 0.45 15.13 050 27.07 0.39
smel 0.57 0.44 040 3080 030 31.08 034 40.11 0.26
albh 0.73 0.57 0.55 24.53 0.43 24.23 0.49 32.77 0.38
burn 1.39 1.11 1.07 22.74 0.85 23.37  0.95 31.65 0.76
ceda 1.38 1.10 1.05 23.54 0.83 24.05 0.90 34.50 0.72
foot N 0.59 0.43 039 3345 029 3181 034 4135 0.26
gobs 0.86 0.63 063 2695 046 26.60 056 3486 041
rhcl 3.14 2.54 1.71 45.59 1.31 48.53 1.58 49.55 1.21
sedr 0.85 0.63 0.66 22.23 0.50 21.79 0.56 34.15 0.42
smel 0.55 0.42 0.47 15.62 0.35 16.54 0.41 26.53 0.30
albh 3.38 2.60 2.89 1457 225 13.77 251 25.74 1.96
burn 2.30 1.78 1.94 15.78 1.49 16.29 1.66 27.82 1.29
ceda 2.65 2.03 2.27 14.48 1.73 15.08 1.96 26.09 1.49
foot U 2.39 1.83 1.87 21.89 1.43 22.23 1.60 32.94 1.23
gobs 2.92 2.22 2.28 22.17 1.72 22.48 1.99 32.04 1.53
rhcl 2.45 1.90 2.10 14.50 1.63 14.04 1.87  23.68 1.46
sedr 3.33 2.62 237  28.68 1.87  28.79 1.96 41.19 1.54
smel 2.36 1.87 1.84 22.38 1.43 23.12 1.58 33.17 1.24

Based on the findings presented in Table 2, it can be observed that the VMD-LSTM model
demonstrates superior performance compared to the LSTM model in predicting the RMSE of the E
direction by an average reduction of 19.77%, the N direction by an average reduction of 26.83%, and
the U direction by an average reduction of 19.31%. Additionally, the VMD-LSTM model exhibits an
average reduction of 20.31% in MAE for the E direction, 27.12% for the N direction, and 19.48% for
the U direction. These results indicate that the VMD-LSTM model achieves improvements in
prediction accuracy across all directional components for any given station, with the most significant
enhancement observed in the N-direction.

Furthermore, the DVMD-LSTM model outperforms the LSTM model by achieving an average
reduction of 29.48% in RMSE for the E direction, 35.67% for the N direction, and 30.33% for the U
direction. Similarly, the average reduction in MAE for the DVMD-LSTM model is 29.48% for the E
direction, 35.67% for the N direction, and 30.09% for the U direction, as compared to the VMD-LSTM
model. Moreover, the DVMD-LSTM model demonstrates an average reduction of 9.71% in RMSE for
the E direction, 8.84% for the N direction, and 11.02% for the U direction when compared to the VMD-
LSTM model. Correspondingly, the average reduction in MAE is 9.17% for the E direction, 8.55% for
the N direction, and 10.61% for the U direction. These findings highlight the significant improvement
in prediction accuracy achieved by the DVMD-LSTM model through the modification of the
treatment of the residual component. Notably, the improvement achieved by the DVMD-LSTM
model is more substantial than that of the VMD-LSTM model relative to the LSTM model, and it
demonstrates varying degrees of enhancement across different stations. The larger improvement in
the U direction for the DVMD-LSTM model can be attributed to the significant presence of
fluctuations in the time series. After VMD decomposition, the residual component becomes more
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prominent, and the VMD-LSTM model's inability to capture the fluctuation information leads to
diminished prediction accuracy and greater room for improvement.

In summary, the DVMD-LSTM model preserves the advantages of the VMD-LSTM model in
predicting fluctuation trends and frequencies while achieving higher prediction accuracy. The results
of the predictions conducted across different directional components of various stations further
validate the superiority of the proposed model. These experimental findings confirm the model's
applicability and robustness, demonstrating its potential for broad utilization in the field of high
precision time series forecasting.

4.2. Optimal Noise Model Research

4.2.1. Comparison of optimal noise models under each prediction model

To further investigate whether the DVMD-LSTM model can adequately consider the noise
characteristics of different datasets during the prediction process, this study selected stations with
the same optimal noise model as both the training and testing dataset. The optimal noise model
represents the model that accurately describes and predicts noise under given data and problem
conditions. Noise models are typically used to eliminate or reduce the impact of noise in data, thereby
improving the performance and predictive capabilities of the models. The optimal noise models for
the prediction results of each model were calculated, and the specific results are presented in Table
3.

Table 3. The optimal noise model of each station under different models in the three directions of E,

doi:10.20944/preprints202306.1705.v1

N, and U.
. Optimal noise model

Site ENU TURE LSTM  VMD-LSTM DVMD-LSTM
albh RWENWN  PLWN RWENWN  RWFNWN
burn RWENWN  PLWN PLWN RWENWN
ceda RWENWN  PLWN PLWN RWENWN
foot . PLWN GGMWN FNWN PLWN
gobs RWENWN  PLWN RWENWN  RWFNWN
rhel RWENWN  GGMWN PLWN RWENWN
sedr RWENWN  PLWN PLWN RWENWN
smel FNWN PLWN FNWN FNWN
albh RWENWN  PLWN RWENWN  RWFNWN
burn FNWN PLWN PLWN PLWN
ceda RWENWN  PLWN PLWN RWENWN
foot N FNWN  GGMWN FNWN FNWN
gobs RWENWN  PLWN RWENWN  RWENWN
rhel RWENWN  RWENWN PLWN PLWN
sedr FNWN  GGMWN  RWFNWN FNWN
smel FNWN PLWN FNWN FNWN
albh PLWN PLWN RWENWN FNWN
burn PLWN GGMWN PLWN PLWN
ceda PLWN PLWN RWENWN PLWN
foot U PLWN PLWN FNWN FNWN
gobs PLWN GGMWN PLWN FNWN
rhel FNWN PLWN RWENWN FNWN
sedr PLWN PLWN PLWN PLWN
smel PLWN PLWN FNWN PLWN
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According to Table 3, the optimal noise models differ among different stations, indicating the
presence of inconsistent noise characteristics. Here is a brief introduction to the RWFNWN, PLWN,
FNWN, and GGMWN noise models:

RWFNWN (Robust Wiener Filter with Nonlinear White Noise): RWFNWN is a common noise
model in the real world. It combines long-memory (long-range dependence) fractional noise with
independently and identically distributed white noise. PLWN (Poisson Log-Normal White Noise):
PLWN assumes that the noise in the data follows a power-law distribution and incorporates
independently and identically distributed white noise. Power-law distributions capture the self-
similarity of data at different scales, where patterns exhibit similar statistical properties at both large
and small scales. FNWN (Fractional Gaussian Noise): FNWN is a fractal noise model that describes
the noise characteristics in data by combining fractional noise with white noise. Fractal noise exhibits
self-similarity and scale invariance, allowing for a better description of coarse and fine-grained
structures in the data. GGMWN (Generalized Gaussian-Mixture White Noise): GGMWN is a mixture
of Gaussian noise model. It assumes that the noise in the data is composed of multiple components
from Gaussian distributions, along with the addition of white noise. These noise models have
different applicability in various data and problem domains. Selecting the appropriate noise model
requires an evaluation and selection based on factors such as the characteristics of the data, the
requirements of the problem, and the assumptions and complexities of the model.

The LSTM model exhibits significant differences between its prediction results and the optimal
noise models of the original data, with an average accuracy of only 25% across all three directions.
Additionally, the predominant optimal noise models are PLWN and GGMWN. This suggests that
the LSTM model does not adequately consider the inherent noise characteristics of GNSS time series
during prediction. In contrast, the VMD-LSTM model shows improved accuracy in capturing the
optimal noise models, with an average accuracy of 42.67%. This indicates that the VMD
decomposition effectively captures the noise characteristics within the IMF components, although
the noise characteristics in the residual component r are not fully captured, resulting in relatively
lower overall accuracy. Therefore, the proposed DVMD-LSTM model further enhances the noise
characteristics in the residual component r by performing VMD decomposition once again. As a
result, the DVMD-LSTM model achieves an impressive average accuracy of 79.17% in capturing the
optimal noise models. In summary, the DVMD-LSTM model adequately considers the noise
characteristics of the data during the prediction process by processing the original data and
decomposed residual component.

4.2.2. Speed Estimation Impact Analysis

In order to further investigate the quality of the predicted results for each model, this study
calculates the velocity of GNSS reference stations based on the predicted results. By comparing the
velocity values obtained from the original data and the optimal noise model calculated under each
prediction model, an assessment of the predicted results for each model is conducted. The specific
results are presented in Table 4.
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Table 4. Velocity values obtained by each station under the optimal noise model.

. Trend(mm/year)

Site ENU ~TUrE LSTM  VMD-LSTM DVMD-LSTM
albh -0.041 0.020 0.055 -0.044
burn -0.108 -0.005 -0.051 -0.116
ceda -0.726 -0.528 -0.693 -0.736
foot . 0.02 0.015 0.001 0.009
gobs 0.659 0.656 0.672 0.682
rhel 0.811 0.666 0.805 0.783
sedr 0.354 0.341 0.378 0.313
smel 0.026 0.009 0.023 0.021
albh 0.327 0.245 0.276 0.295
burn 0.124 0.08 0.116 0.13
ceda -0.065 -0.041 -0.227 -0.042
foot N 0.009 0.029 -0.036 0.005
gobs 0.063 0.078 0.029 -0.02
rhel 1253 0.743 1132 1.071
sedr 0.199 0.17 0212 0.195
smel 0.02 -0.001 -0.025 0.017
albh 0.383 0.204 0.131 0.268
burn 0.241 0.144 0.238 0.216
ceda 0.016 0.159 0.074 0.137
foot U 0.194 0.125 0.194 0.202
gobs 0.301 0.278 0.283 0.262
rhel 0.298 0.206 0.367 0.264
sedr 0.017 0.022 0.082 0.04
smel 0.195 0.182 0.206 0.183

According to Table 4, in the E direction of each station, the average absolute error between the
velocities predicted by the LSTM model and the velocities of the original data is 0.068 mm/year. In
the N direction, it is 0.093 mm/year, and in the U direction, it is 0.078 mm/year. For the VMD-LSTM
model, the average absolute error between the predicted velocities and the velocities of the original
data is 0.031 mm/year in the E direction, 0.060 mm/year in the N direction, and 0.060 mm/year in the
U direction. As for the DVMD-LSTM model, the average absolute error between the predicted
velocities and the velocities of the original data is 0.016 mm/year in the E direction, 0.042 mm/year in
the N direction, and 0.047 mm/year in the U direction. Compared to the LSTM model, the VMD-
LSTM model shows an average improvement of 37.67% in velocity prediction accuracy, while the
DVMD-LSTM model demonstrates an average improvement of 56.80%. Compared with VMD-LSTM,
the speed prediction accuracy of DVMD-LSTM model is improved by 33.02% on average. Thus, both
the VMD-LSTM and DVMD-LSTM models exhibit improved velocity prediction accuracy compared
to the LSTM model, with the DVMD-LSTM model showing a greater improvement, further
demonstrating its outstanding predictive performance.

In summary, this study evaluated the performance of various prediction models by analyzing
their prediction accuracy, optimal noise models, and velocity results. The results indicate that the
DVMD-LSTM model outperforms the others in multiple aspects, highlighting its potential for wide
application in high-precision time series prediction with multiple noise characteristics.

5. Conclusion

Addressing the limitations of low prediction accuracy and inadequate consideration of noise
characteristics in the VMD-LSTM model for time series forecasting, this paper proposes a high-
precision GNSS time series prediction method based on DVMD and LSTM. The proposed method is
comprehensively validated and tested on the daily time series data from eight North American
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regional GNSS stations, spanning the period from 2000 to 2022, in the E, N, and U directions. The
experimental results demonstrate the following:

(1) The VMD-LSTM model shows good prediction results for each IMF value after VMD
decomposition, but performs poorly in predicting the residual component. The proposed DVMD-
LSTM model utilizes VMD decomposition to extract the fluctuation characteristics of the residual
component, leading to a significant improvement in the prediction accuracy of the residual
component and enhancing the overall prediction accuracy.

(2) Compared to the initial VMD-LSTM hybrid model, the DVMD-LSTM model exhibits
significant improvements in prediction accuracy. The RMSE values for the DVMD-LSTM model are
reduced by an average of 9.71% in the E direction, 8.84% in the N direction, and 11.02% in the U
direction. Additionally, the MAE values are decreased by an average of 9.17% in the E direction,
8.55% in the N direction, and 10.61% in the U direction. Across all measurement stations, the DVMD-
LSTM model consistently outperforms the VMD-LSTM model, indicating its superior predictive
accuracy, adaptability, and robustness.

(3) Compared to the LSTM model, the DVMD-LSTM model achieves an average improvement
of 36.50% in the accuracy of the average optimal noise model across all stations, reaching an overall
accuracy of 79.17%. This demonstrates that the DVMD-LSTM model adequately considers the noise
characteristics of the data during the prediction process and achieves superior prediction results. By
calculating the velocities obtained from the optimal noise models, it is evident that the DVMD-LSTM
model achieves an average improvement of 33.02% in velocity prediction accuracy compared to the
VMD-LSTM model, further confirming the outstanding predictive performance of the DVMD-LSTM
model.
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