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Article 
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Abstract: To solve the problem that the common long-tailed classification method does not use the 

semantic features of the original label text of the image, and the difference between the classification 

accuracy of most classes and minority classes is large, the long-tailed image classification method 

based on enhanced contrast visual language trains the head class and tail class samples separately, 

uses text image to pre-train the information, and uses enhanced momentum contrast loss function 

and RandAugment enhancement to improve the learning of tail class samples. On the ImageNet-LT 

long-tailed dataset, the enhanced contrastive visual-language based long-tailed image classification 

method has improved all class accuracy, tail class accuracy, middle class accuracy, and F1 values by 

3.4%, 7.6%, 3.5%, and 11.2%, respectively, compared to the BALLAD method. The difference in ac-

curacy between the head class and tail class is reduced by 1.6% compared to the BALLAD method. 

The results of three comparative experiments indicate that the long-tailed image classification 

method based on enhanced contrastive visual-language has improved the performance of tail clas-

ses and reduced the accuracy difference between majority and minority classes. 

Keywords: long-tailed image classification; contrastive learning; data augmentation 

 

1. Introduction 

Image classification [1] is the earliest application of machine learning in the field of computer 

vision, and is the foundation of other visual tasks such as object detection and instance segmentation. 

Due to the rich semantic information contained in images (such as multiple targets, scenes, behaviors, 

etc.), the characteristics closest to human perception and expression ability, and the gradual optimi-

zation of the performance and cost of visual sensors (mainly cameras), image classification and its 

derived detection, segmentation and other visual algorithms are gradually being applied in fields 

such as healthcare, transportation, signal processing [2], etc. However, in the application process, due 

to the unique nature of the actual environment, some difficult to solve problems are gradually en-

countered. 

In image classification tasks, input data is manually collected and annotated, and through hu-

man intervention, the amount of data in each category is balanced as much as possible, with no sig-

nificant difference in sample size among different categories. The manually balanced data set simpli-

fies the requirements for algorithm robustness, but with the gradual increase of the focus categories, 

maintaining the balance among various categories will bring Exponential growth in acquisition costs. 

For example, if an animal classification dataset is to be built, it is easier to collect millions of pictures 

from common data such as cats and dogs. However, considering the balance of the data set, it is also 

necessary to collect the same amount of samples for rare animals such as snow leopards. With the 
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increase of the rarity of the category, the collection volume tends to grow Exponential growth, as 

shown in Figure 1.  
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Figure 1. Schematic diagram of the long-tailed distribution of natural animal species. 

In practical applications, such as facial recognition, species classification, autonomous driving, 

medical diagnosis, drone detection, and other fields, there is a problem of long-tailed category im-

balance [3]. For example, for autonomous driving, the data on normal driving will account for the 

vast majority, while there is very little data on actual abnormal situations/car accident risks; For med-

ical diagnosis, the number of people with specific diseases is also extremely uneven compared to the 

normal population. However, this type of imbalance problem often makes the training of deep neural 

networks very difficult. Classification and recognition systems that directly use long-tailed distribu-

tion data for training often tend to lean towards the head class data, making them insensitive to tail 

class features during prediction and affecting the correct judgment of the system [3]. In traditional 

methods, a series of common methods to mitigate performance degradation caused by long tail dis-

tribution data are based on category rebalancing strategy, including resampling training data and 

reweighting to redesign loss function [3]. These methods can effectively reduce the bias of the model 

to the head class in the training process, thus producing more accurate classification Decision bound-

ary. However, because the distribution of the original data is unbalanced, and the over parameterized 

deep networks are easy to fit this composite distribution, they often face the risk of tail class overfit-

ting and head class underfitting. 

Given that the problem of class imbalance in long tailed distribution datasets is very widespread 

in practical tasks, it is crucial to train high-performance network models from a large number of im-

ages that follow the long-tailed distribution. Moreover, the difference in class distribution between 

training and testing data will greatly limit the practical application of neural networks. This research 

topic has important practical significance and is an important paradigm for promoting the imple-

mentation of deep neural networks in model implementation. How to effectively utilize long tail data 

to train a balanced classifier is a key issue. From a practical implementation perspective, this study 

will improve the speed of data collection and reduce collection costs. This article explores effective 

contrastive learning strategies to learn better image representations from imbalanced data, in order 

to better apply them to long tail image classification. We hope to provide better development ideas 

for the application of image classification in today's gradually developing image technology. 

2. Related Work 

The research content of this paper is long tail distribution image classification. Long-tail image 

classification methods mainly include data resampling, data reweighting, data enhancement, transfer 

learning, ensemble learning, etc. 

2.1. Data Resampling 

Data resampling solves the problem of long-tailed distribution image classification from the data 

level. Resampling is the most widely used method [4] [5] in processing long-tailed distribution image 
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classification in depth learning, mainly including oversampling [6,7] , under-sampling [8-10] and 

mixed sampling [11,12] . 

The oversampling method mainly reduces the imbalance between the head class and the tail 

class by increasing the number of samples of the tail class [6,7]. Inspired by this, in 2019, Gupta et al. 

proposed the repeated factor sampling method [13], which performs a rebalancing operation on the 

training data by increasing the sampling frequency of the tail image. In 2020, Peng et al. proposed the 

soft box sampling method [14], which utilizes class perception sampling to calculate the replication 

factor for each image based on the distribution of labels, and replicate the images according to the 

specified number of times to solve the problem of class imbalance. In 2020, Hu et al. designed an 

instance level class balancing scheme [15] to balance instance level samples of original images. The 

balanced samples are learned using meta-modules, transferring knowledge from the data rich header 

to the data poor tail. In 2020, Wu et al. proposed non maximum suppression resampling [16], which 

adaptively adjusts the threshold for non-maximum suppression based on the label frequencies of 

different categories, in order to retain more candidate target categories from the tail category and 

balance the data distribution by suppressing candidate target categories from the head category. Ac-

cording to the principle of the oversampling method, this method simply repeats the positive exam-

ple, which will cause overemphasis on the positive example, and it is easy to over fit the positive 

example. In 2022, Park et al. proposed a oversampling method based on feature dictionary [6], and 

built a feature dictionary through a pre trained feature extractor. Synthesize samples based on feature 

dictionaries and enrich the diversity of minority class data by fine-tuning classifiers. In 2023, Li et al. 

proposed a small number of oversampling based on subspace [7]. This method believes that each 

type of sample is formed by common and unique features, and these features can be extracted 

through subspace. In order to obtain balanced data, map images belonging to minority categories are 

oversampling to more accurately describe minority categories. Balanced data is obtained by restoring 

the generated subspace product to the original space. 

Compared with the oversampling method, the under-sampling method reduces the imbalance 

between the head class and the tail class by reducing the number of samples of the head class [8-10]. 

In 2020, the Bilateral branch network (BBN) [17] developed conventional learning branches and re-

balanced branches, using a new bilateral sampling strategy to address class imbalance issues. Uni-

form sampling was applied to simulate the original long tail training for conventional branches, and 

a reverse sampler was applied to sample more tail class samples for rebalanced branches to improve 

tail class performance. In 2021, Lee et al. proposed a framework for classifying unbalanced data using 

under-sampling and Convolutional neural network [8], created a balanced training set through un-

der-sampling, and then used Convolutional neural network for training. In 2021, Zang et al. proposed 

a feature and sampling adaptive strategy [18], which used model classification loss to adjust the sam-

pling rates of different categories on the validation set, thereby sampling more tail class samples with 

insufficient representation. In 2022, Lehmann et al. proposed a subclass based under-sampling 

method [9], which selects samples from all subclasses of a class for under-sampling, and identifies 

subclasses by clustering the advanced features of the CNN model. In 2023, Farshidvard et al. pro-

posed a method based on under-sampling and ensemble [10], which divides most classes into clus-

ters, so that there are no minority class samples in the majority samples of each cluster, while con-

trolling the size of each cluster. 

Mixed sampling [11,12] is a method of combining oversampling and under-sampling to achieve 

sample balance. In 2020, Ding et al. proposed a KA integration method of under-sampling and over-

sampling [11], under-sampling the majority of classes through the kernel based adaptive synthesis 

method, and oversampling the minority classes at the same time, generating a set of balanced data 

sets to train the corresponding classifiers separately, and the final results will be voted by all these 

trained classifiers. By combining under-sampling with oversampling in this way, KA Ensemble is 

good at solving the class imbalance problem with large imbalance rate [11]. In 2022, EF Swana et al. 

studied the use of a Naïve Bayes classifier, support vector machine, and k-nearest neighbors together 

with synthetic minority oversampling technique, Tomek link, and the combination of these two 

resampling techniques for fault classification with simulation and experimental imbalanced data. 
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Resampling is the most common method to solve the problem of long-tailed distribution image 

classification. However, these classic methods generally have poor results. For example, in the case 

of Oversampling of tail categories, it may lead to overfitting of tail categories [6,7], and if there are 

errors or noises in the samples of tail categories, oversampling may exacerbate these problems. Un-

der-sampling may lead to insufficient learning of head categories [8-10] and may result in the loss of 

valuable data in the head categories. For extremely imbalanced long tail data, under-sampling meth-

ods often lose a large amount of information due to the significant difference in data volume between 

the head class and tail class. 

2.2. Data Reweighting 

The data reweighting strategy aims to minimize the total cost of the classifier, and solves the 

problem of imbalanced data classification by adjusting the loss values of different categories during 

training and increasing the attention of minority class samples during model learning. 

In 2017, Lin et al. proposed Focal Loss [19]. During training, this loss function can automatically 

reduce the weight of the head class, making the model focus on learning the tail class. In 2017, Her-

mans et al. proposed the Triplet loss function [20], and used the Gradient descent to train samples 

with small differences. In 2019, Class Balanced Loss (CB) [21] introduced the concept of effective 

sample size, which alleviated the problem of class imbalance by forcing a class balance reweighting 

term that is inversely proportional to the number of effective samples in the class. In 2019, Cao et al. 

proposed Label Distribution Aware Margin Loss (LDAM) [22], which involves the model learning 

the initial feature representation before reweighting. In 2020, the distribution balance loss [23] was 

alleviated by a new tolerant regularization method to alleviate gradient over suppression. At the 

same time, it also evaluates the difference between the expected sampling frequency and the actual 

sampling frequency for each class, and then uses the quotient of these two frequencies to recalculate 

the weighted loss values for different classes. In 2020, Equalization Loss [24] proposed to directly 

reduce the weight of loss values for tail class samples when the tail class samples are negative sample 

pairs for a large number of head class samples. In 2021, Equalization loss v2 [25] extended Equaliza-

tion loss by introducing a new gradient reweighting mechanism that dynamically increases the 

weight of positive gradients and decreases the weight of negative gradients for model training on 

each subtask. Seesaw loss [26] rebalances the positive and negative gradients of each category using 

mitigation and compensation factors. LADE [27] introduces label distribution decoupling loss to dis-

entangle the learning model from the long tail training distribution, and then adapts the model to 

any test class distribution when the test label frequency is available. 

Balanced meta-softmax [28], optimizing sample distribution by adjusting the model on the vali-

dation set. The progressive margin Loss function [29] uses two margin items to adjust the classifica-

tion margin of long-tailed learning. Sequential margins extract discriminative features and maintain 

category order relationships. The variational margin gradually suppresses the head class and handles 

class imbalance in long tail training samples. The adversarial robust long-tailed classification method 

[30] rebalances data through a scale invariant classifier and boundary adjustments during the infer-

ence process. 

Although the data reweighting method alleviates the imbalance in gradient proportion caused 

by long tail distribution, for some extreme cases, such as when the sample proportion of tail catego-

ries is very small, the recognition accuracy of tail categories is still at a low level. 

2.3. Data Augentation 

Data augmentation aims to utilize a series of data augmentation techniques to enhance the size 

and quality of the dataset [31,32] for model training. In 2021, Zhang et al. proposed a data augmen-

tation method based on neighborhood risk minimization [33], which helps correct overconfidence in 

the model. In the decoupling training scheme, this method has a positive impact on representation 

learning and a negative or negligible impact on classification learning. Based on these observations, 

data mixup is used in the decoupling training scheme to enhance representation learning. 
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In addition, the Remix method also adopts a method for long-tailed learning and introduces a 

rebalancing hybrid enhancement method to enhance tail classes. In 2021, Li et al. proposed Meta 

semantic augmentation (MetaSAug) based on meta learning [34], using a variant of implicit semantic 

data augmentation (ISDA) [35] to enhance tail classes. ISDA obtains semantic direction by estimating 

the Covariance matrix of sample features, and translates deep features along multiple semantic mean-

ingful directions to generate diversified enhancement samples. However, due to insufficient tail class 

samples, it is impossible to estimate the Covariance matrix of tail class. To solve this problem, Meta-

SAug explores meta learning to guide the learning of each class's Covariance matrix. In this way, the 

Covariance matrix of tails can be estimated more accurately, thus generating rich tail class feature 

information. Although data augmentation methods enhance the diversity of training samples, they 

are prone to introducing noise and ambiguity during the training process. 

2.4. Transfer Learning 

Transfer learning is to transfer knowledge from the source domain to enhance model training in 

the target domain. The source domain is a different domain from the test sample, but it has rich 

supervisory information. The target domain is the domain where the test sample is located, with no 

labels or only a small number of labels. There are mainly four Transfer learning schemes in the deep 

learning processing of long-tailed distribution image classification, namely, head to tail knowledge 

transfer, model pre-training, knowledge distillation and self-training. 

The knowledge transfer from beginning to end is to transfer the knowledge of the head class to 

the tail class to enhance model performance. Yin et al. proposed feature transfer learning (FTL) [36], 

which uses the intra class variance knowledge of the head class to enhance the characteristics of the 

tail class samples, so that the tail class features have higher intra class variance, so that the tail class 

gets better performance. The LEAP [37] method proposed by Liu et al. constructs a "feature cloud" 

for each class by adding tail class samples with certain interference in the feature space, seeking to 

transfer the knowledge of the head class feature cloud to enhance the intra class variation of the tail 

class feature cloud. This method effectively alleviates the problem of inter class feature variance dis-

tortion. The online feature enhancement method [38] uses class activation mapping to decouple sam-

ple features into specific class features and uncertain class features, and combines the class specific 

features of the tail class samples with the class unknown features of the head class samples to enhance 

the tail class. Then, using all enhanced and original features, the model classifier is fine-tuned using 

a rebalancing sampler to achieve better long tail learning performance. 

Model pre-training is one of the commonly used methods for deep learning model training. Do-

main specific Transfer learning [39] uses all long tail samples to pretrain the model, and then fine 

tune the model on the training subset of class balance. Slowly transfer the learned features to the tail 

class to achieve a more balanced performance among all classes. In addition, the self-supervised pre 

training method [40] first uses self-supervised learning (such as comparative learning [41 or rotation 

prediction [42]) for model pre-training, and then carries out standard training on long-tailed data. 

This scheme is also used to process long tail data with noise labels [43]. The proposal of the visual 

and language pre training dataset (Conceptual 12M [44]) has promoted the development of visual 

language models in the field of long-tailed recognition. 

Knowledge distillation is the training of student models using the output of well-trained teacher 

models. The Learning from multiple experts (LFME) method [45] divides the entire long tailed dis-

tribution dataset into several subsets with less imbalanced classes, and trains multiple experts with 

different sample subsets. Based on these experts, the LFME method utilizes adaptive knowledge dis-

tillation methods and selects difficult course examples to train a unified student model. The Routing 

diversity distribution aware experts (RIDE) [46] introduces a knowledge distillation method on the 

basis of a multi expert framework to reduce the parameters of the multi expert model by learning a 

student network model with fewer experts. The self-supervised distillation method [47] has invented 

a new self-distillation scheme to enhance decoupling training. The decoupling training scheme trains 

a calibration model based on supervised and self-supervised information, and then uses the 
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calibration model to generate soft labels for all samples. Afterwards, a new student model is extracted 

using the generated soft labels and the original long-tailed labels, and finally a new classifier fine-

tuning stage is entered. In addition, the distillation virtual instance method [48] uses a class equilib-

rium model as the teacher model to solve the long tail classification problem. 

The purpose of self-training is to learn well performing models from a small number of labeled 

samples and a large number of unlabeled samples. The Class balancing self-training (CReST) method 

[49] studied self-training in long tail classification and found that the supervised model has high 

classification accuracy for tail classes. Based on this discovery, CReST proposes to select more tail 

class samples for online pseudo labeling in each iteration, enabling the retrained model to achieve 

better performance on tail classes. The MosaicOS method [50] pre trains the model using scene cen-

tered images labeled in the original detection dataset. The pre trained model is fine tuned in two 

stages: first, the pseudo labeled object centered image is fine-tuned, and then the original labeled 

scene centered image is fine-tuned, which can alleviate the negative impact of data differences and 

effectively improve long tail learning performance. 

Due to the introduction of additional knowledge, the transfer learning method improves the 

performance of the tail class without sacrificing the performance of the head class, but the perfor-

mance improvement is not obvious when the difference between the head class and the tail class is 

large. The lack of sufficient tail class samples is one of the key problems of long tail learning, and the 

related methods of Transfer learning deserve further exploration. 

2.5. Ensemble Learning 

The method based on ensemble learning solves the learning problem of long-tailed distribution 

image by strategically generating and combining multiple network modules (multiple experts). 

Long-tailed multi label visual recognition method [51] explored a bilateral branch network solution 

to long tail multi label classification, used sigmoid cross-entropy loss function to train each branch 

for multi label classification, and forced the use of logit consistency loss to improve the consistency 

of the two branches. 

The all complete experts (ACE) method [52] divides all classes into several different subsets: one 

subset contains all classes, one contains intermediate and tail classes, and the other only has tail clas-

ses. ACE trains multiple experts with different class subsets, and uses distributed adaptive optimizer 

to adjust the Learning rate of different experts. In 2022, the ResLT [53] method proposed by Cui et al. 

also had an idea similar to ACE. The Test time aggregating diverse experts (TADE) [54] explores 

multiple expert schemes to handle long-tailed recognition problems, where the distribution of test 

classes can be uniform or long tail. TADE provides two solutions: one is a diversified expert learning 

strategy that can train experts with different class distributions based on the characteristics of long 

tailed distribution datasets; The second is the testing time expert aggregation strategy, which can use 

self-supervised methods to aggregate multiple experts to process data of various unknown test dis-

tributions. The methods based on Ensemble learning usually achieve better performance on the head 

and tail classes. However, such methods often result in higher computational costs due to the use of 

multiple experts. 

3. Method 

Real data often follows a long-tailed distribution, with the head class dominating the training 

and the tail class having only a small number of samples, which is a major challenge in the field of 

image classification. The existing methods either use manually balanced datasets (such as ImageNet) 

or develop more robust algorithms to process data, such as class rebalancing strategies and network 

module improvements. 

Although the above methods are effective for long-tailed distribution datasets, they sacrifice the 

performance of the header class at different levels. To address these limitations, researchers have 

turned to exploring new network architecture training paradigms. Long-tailed classification models 

typically include two key parts: feature extractors and classifiers. For each component, there are 
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corresponding methods, either designing better classifiers [37,55], or learning reliable representations 

[56,57]. In terms of the new training framework, existing work attempts to divide one stage of training 

into two stages. For example, the learning process of decoupling training method [58] is decoupled 

into representation learning and classifier training. In addition, the Ensemble learning scheme [52] 

[54] first learns multiple experts with different data subsets, and then combines them to deal with the 

long-tailed distribution image classification problem. However, these methods all use a limited set of 

predefined labels to train the model, ignoring the availability of semantic feature information in the 

original label text of the image. After research, it was found that previous work was almost limited 

to a predetermined approach when dealing with imbalanced datasets, which relied entirely on visual 

models and completely ignored the semantic features of the original label text rich in the image itself. 

This may be a promising solution to impose additional supervision on insufficient data sources. 

The large-scale visual-language pre-training model provides a new approach for image classifi-

cation. Through open vocabulary supervision, pre trained visual-language models can learn power-

ful multimodal representations (input information can be expressed in multiple ways). Utilize se-

mantic similarity between visual input and text input to transform visual recognition into a visual-

language matching problem. Comparative visual language models such as CLIP [59] and ALIGN [60] 

provide new ideas for long-tailed classification tasks. The feature extractors of these models integrate 

image and text modalities, focusing on learning feature matching between different modalities. They 

have strong robustness, but lack the ability to model complex interactions between images and text. 

Due to the significant difference in classification accuracy between majority and minority classes 

in commonly used long tail classification algorithms, the failure to utilize the semantic features of the 

original image label text, and the inability of existing contrastive visual-language models to model 

complex interactions between images and text, this paper proposes an enhanced contrastive visual 

language long-tailed image classification algorithm (ECVL). The algorithm uses a two-stage training 

method, designs the Loss function for text and image retrieval respectively, uses enhanced momen-

tum to compare the Loss function to measure the learning degree of samples, and applies random 

enhancement to the categories with insufficient learning degree to further strengthen the learning of 

the model for minority samples. 

3.1. Overall Framework 

Similar to common contrastive visual-language models, the ECVL long-tailed image classifica-

tion algorithm uses a two-stage training approach to transform visual recognition into a visual-lan-

guage matching problem through similarity between visual and text inputs. The first stage mainly 

uses the visual features of the image and the semantic features of the original label text to train for 

most categories. The second stage first uses class balance for a few categories, and then uses linear 

adapters to carry out differentiated training. Finally, use the enhancement momentum to compare 

the loss function to measure the memory of the model for samples. For samples with insufficient 

memory, use the RandAugment [63] to select random enhancement methods Enhancing breadth can 

further enrich feature representation. 

3.2. Contrasting Visual-Language Pre-training Model 

Compare visual language models with a dual encoder architecture, including a language en-

coder ℒenc and a visual encoder 𝒱enc. Given an input image 𝐼, use 𝒱enc extracts the visual features 

of image 𝐼 using the formula shown in (1). Similarly, use ℒ𝑒𝑛𝑐 encodes the input text sequence 𝑇 as 

its corresponding text feature, as shown in the formula (2). 𝑓𝑣 = 𝒱enc(𝐼) ∈ R𝑑𝑣 (1) 𝑓𝑙 = ℒenc(𝑇) ∈ R𝑑𝑙 (2) 
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After extracting the features of each modality, use two transformation matrices 𝑊𝑣 ∈ 𝑅𝑑𝑣×𝑑  and 𝑊𝑙 ∈ 𝑅𝑑1×𝑑  project the original visual and textual features into a shared embedding space, where v 

and u are d-dimensional normalized vectors, as shown in formula (3). 

 𝑣 = 𝑊𝑣⊤𝑓𝑣∥𝑊𝑣⊤𝑓𝑣∥ , 𝑢 = 𝑊𝑙⊤𝑓𝑙∥𝑊𝑙⊤𝑓𝑙∥ (3) 

In the pre-training stage, for text-image pairs in a batch, the training goal is to shorten the dis-

tance between the same category and different categories, ℒ𝑣→𝑙 for text retrieval, ℒ𝑙→𝑣 for image re-

trieval, where 𝜏 Indicates that the temperature exceeds the parameter, 𝜏 represents the number of 

text image pairs in a batch. ℒ𝑣→𝑙 and ℒ𝑙→𝑣 as shown in formulas (4) and (5). 

 ℒ𝑣→𝑙 = − 1𝑁 ∑ 𝑙𝑜𝑔𝑁𝑖  𝑒𝑥𝑝(𝑣𝑖⊤𝑢𝑖/𝜏)∑ 𝑒𝑥𝑝𝑁𝑗=1  (𝑣𝑖⊤𝑢𝑗/𝜏) (4) 

 ℒ𝑙→𝑣 = − 1𝑁  ∑ 𝑙𝑜𝑔𝑁𝑖 𝑒𝑥𝑝(𝑢𝑖⊤𝑣𝑖/𝜏)∑ 𝑒𝑥𝑝𝑁𝑗=1  (𝑢𝑖⊤𝑣𝑗/𝜏) (5) 

By converting the category labels of an image into a text sequence of "A photo of a {Class}", the 

matching score between the target image and the text sequence of all categories can be obtained. The 

category with the highest score is selected as the final predicted category. The normalized test image 

features are represented as 𝑣, and the normalized text features are represented as{𝑢1, ⋯  , 𝑢𝐾}. There-

fore, the category probability of the test image is shown in formula (5.6). Where 𝑝𝑖  represents the 

probability of class 𝑖, and 𝐾 represents the total number of candidate classes. Finally, the text label 

with the highest probability will be selected as the prediction result. 

 𝑝𝑖 = 𝑒𝑥𝑝 (𝒗⊤𝒖𝑖)/𝜏∑ 𝑒𝑥𝑝𝐾𝑗=1 (𝒗⊤𝒖𝑗)/𝜏 (6) 

3.3. Balanced Linear Adapter 

The performance of contrastive visual-language models on the head and tail classes is balanced, 

while traditional contrastive learning methods such as PaCo [61] have lower performance on the tail 

classes due to a lack of training samples. Inspired by the zero-shot classification ability of visual-

language comparison models, improvements were made on the basis of CLIP. The training of long 

tail data is divided into two stages. The first stage fully utilizes existing training data and ensures the 

performance of most categories, while the second stage focuses on improving the learning ability of 

a few categories. These two stages aim at the long-tailed and balance training samples respectively, 

and refine the comparison Loss function. 

According to the research results proposed by Gururangan et al. [62] in Phase I, model pre-

training with domain adaptation and task adaptation can greatly improve the performance of the 

target NLP task. Similarly, this applies equally to image classification tasks. In stage one, pre-training 

using the contrastive visual-language backbone model on the long-tailed target dataset is also bene-

ficial for learning most class samples, making full use of available training data. Since the input of 

the model in Phase I is to process image category labels into text sequences, the comparison loss 

function used in the pre training is formula (4). The parameters of the text encoder and image encoder 

are updated instantly during training. After stage one training, most classes usually achieve good 

results, while minority class samples require stage two balance training. The processing process of 

the stage model is shown in Figure 2. 

a photo of a {CLASS}

class labels

classes
cat dog cow

Image Encoder

Text Encoder classes
cat dog cow

Logits
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Figure 2. The model processing flow chart of Phase I. 
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Figure 3. The model processing flow chart of Phase Ⅱ. 

Due to the insufficient sample size and limited data for the tail category, direct training 

on the backbone in Phrase Ⅱ will result in overfitting. Therefore, in this stage, pre training 

is not conducted on the backbone, but instead, linear adapters and enhancements are used 

to optimize the visual language representation of a few category samples for momentum 

contrast loss. As shown in Figure 3, the processing of the semantic features of the original 

label text is the same as that of Stage Ⅰ. Assuming the original image feature is 𝑓, the weight 

matrix of the linear adapter is 𝑊 ∈ 𝑅𝑑×𝑑 The offset is 𝑅𝑑, and the processed image features 

can be expressed as formula (7). 

 𝑓⋆ = 𝜆 ⋅ 𝑅𝑒𝐿𝑈(𝑊⊤𝑓 + 𝑏)ℒ𝐷𝐶𝑉𝐿 + (1 − 𝜆)𝑓 (7) 

Among 𝜆, the residual factor is used to dynamically combine the image features after fine-tun-

ing in the second stage with the original image features in the first stage. 

  The enhanced momentum comparison loss function is used to measure the learning of the 

model for samples. Assuming 𝑥𝑖 is the training sample on the long tail dataset, 𝑥𝑖 The comparison 

loss is expressed as  𝐿𝑖 . {𝐿𝑖,0, … , 𝐿𝑖,𝑡 , … , 𝐿𝑖,𝑇}  represents the tracking loss value 𝐿𝑖 among 𝑇 Epochs. 

Based on this, define the moving average momentum loss, as shown in formula (8). 

 ℒ𝑖,0𝑚 = ℒ𝑖,0, ℒ𝑖,𝑡𝑚 = 𝛽ℒ𝑖,𝑡−1𝑚 + (1 − 𝛽)ℒ𝑖,𝑡 (8) 

The 𝛽 is a hyperparameter that represents the smoothness of the loss. After training 𝑇 Epochs 

using the above moving average momentum loss, the set of momentum losses for each sample can 

be obtained as  {ℒ0,𝑡𝑚 , … , ℒ𝑖,𝑡𝑚 , … , ℒ𝑁,𝑡𝑚 }, where N is the number of training samples in the dataset. Fi-

nally, the definition of momentum loss is normalized as follows, as shown in formula (9): 

 𝑀𝑖,𝑡 = 12 ( ℒ𝑖,𝑡𝑚−ℒ𝑡̄𝑚𝑚𝑎𝑥{∣ℒ𝑖,𝑡𝑚−ℒ𝑡̄𝑚∣}𝑖=0,…,𝑁 + 1 (9) 

Among them ℒ𝑡ˉ 𝑚
 represents the average momentum loss of the 𝑡 Epoch. The range of 𝑀𝑖    

normalized values is [0,1] , with an average value of 0.5, reflecting the model's level of sample 

memory. To promote model learning, use 𝑀𝑖 to control the occurrence and intensity of enhancement 

indicators. The specific approach follows RandAugment [63], randomly selecting 𝑘  types of en-

hancements and using probability 𝑀𝑖 and intensity [0, 𝑀𝑖] apply each enhancement. Assuming that 

the enhancement set defined by RandAugment is 𝐴 = (𝐴1, … , 𝐴𝑗, … , 𝐴𝐾), where 𝐾 is the enhance-

ment amount, k enhancements are applied in each step. On this basis, define a memory enhancement 

function, as shown in formula (10). 

 

𝛹(𝑥𝑖; 𝐴, 𝑀𝑖) = 𝑎1(𝑥𝑖) … 𝑎𝑘(𝑥𝑖),𝑎𝑗(𝑥𝑖) = {𝐴𝑗(𝑥𝑖; 𝑀𝑖𝜁) 𝑢 ∼ 𝒰(0,1)&𝑢 < 𝑀𝑖𝑥𝑖 other
 (10) 

Among 𝜁  sampling from uniformly distributed 𝒰(0,1). 𝐴𝑗(𝑥𝑖; M𝑖𝜁)  represent 𝑥𝑖  undergoes 

the j enhancement with a strength of M𝑖𝜁. Apply the selected 𝑘 enhancements in sequence in 𝐴. For 
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simplicity, use 𝛹(𝑥𝑖) to represent 𝛹(𝑥𝑖 ; 𝐴, 𝑀𝑖). In this paper, the enhanced momentum loss function 

is shown in Formula (11). 

 ℒ𝐷𝐶𝑉𝐿 = 1𝑁 ∑ −𝑙𝑜𝑔𝑁𝑖 𝑒𝑥𝑝(𝑓(𝛹(𝑥𝑖))⊤𝑓(𝛹(𝑥𝑖+))𝜏 )𝛴𝑥𝑖′∈𝑋′𝑒𝑥𝑝 (𝑓(𝛹(𝑥𝑖))⊤𝑓(𝛹(𝑥𝑖′))𝜏 ) (11) 

Where 𝑋′  represents  𝑋− ∪ {𝑥𝑖+}, 𝑥𝑖  and 𝑥𝑖+  represents two views of a sample, 𝑥𝑖′ ∈ 𝑋−  is a 

view of other samples. Intuitively, the enhanced momentum contrast Loss function is used to meas-

ure the memory of the model for the samples, and adaptively allocate appropriate enhanced strength 

for the samples with insufficient memory. 

In the training process of stage 2, to avoid the model deviating from the head class, a class bal-

ance sampling strategy [8] is still used to construct a balanced training sample set. Assuming there 

are 𝐾 classes in the target dataset to form a total of 𝑁 training samples. The number of training 

samples for class 𝑗 is expressed as 𝑛𝑗. Then use formula (12) to represent 𝑁. 

 𝑁 = ∑ 𝑛𝑗𝐾𝑗=1  (12) 

Assuming that classes are sorted in descending order, the long- tailed distribution means  𝑛𝑖 ≥𝑛𝑗 (𝑖<𝑗 and 𝑛1 ≫ 𝑛𝐾). For class balanced sampling, the probability of sampling each data point from 

class 𝑗 is defined as 𝑞𝑗 = 1/𝐾. In other words, to construct a balanced training sample set, first select 

a class from 𝐾  candidate objects, and then sample a data point from the selected class. Finally, 

through stage two, use ℒ𝑣→𝑙  Fine tune the balanced training data. 

3.4. Algorithm Description 

Based on the introduction of the ECVL long tail image classification algorithm in the previous 

text, this section mainly introduces the training process of the long tail image classification algorithm 

based on enhanced contrastive visual language in two different stages: stage one and stage two, as 

shown in algorithm 1 and algorithm 2. 

Algorithm 1 is the training process for model stage one, which simultaneously trains the visual 

and language branches of the visual language model. In each Epoch, it is preferred to input images 

and corresponding category text information; Afterwards, the visual features of the image and the 

semantic features of the original label text are extracted using formulas (1) and (2), respectively; And 

then use  ℒ𝑣→𝑙   Perform text retrieval using ℒ𝑙→𝑣  Perform image retrieval to obtain associated im-

age and text information; Finally, use formula (6) to predict the image category, and evaluate the 

prediction results using evaluation indicators after the classification is completed. 

Algorithm 2 is the training process for model stage 2. The model first balances a few types of 

samples, and then fine tunes the linear adapter. After fine tuning, it uses the enhanced momentum 

Loss function described according to formula (11) to evaluate the sample learning situation. For sam-

ples with insufficient representation of learning features, RA random enhancement is used. Finally, 

the features learned in these two stages are dynamically fused and output. 
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4. Experiments 

The ECVL algorithm takes 229 seconds to infer 100 images on a single NVIDIA A100 40G GPU. 

In order to verify the performance of the proposed ECVL long-tailed image classification algorithm, 

experiments were carried out on three common long-tailed distribution data sets CIFAR100-LT, 

Places-LT and ImageNet-LT to analyze the performance of this algorithm, and ablation experiments 

were conducted to prove the role of enhanced momentum in comparison with Loss function and 

random enhancement. This section may be divided by subheadings. It should provide a concise and 

precise description of the experimental results, their interpretation, as well as the experimental con-

clusions that can be drawn. 

4.1.  Long-tailed Datasets 

4.1.1. CIFAR100-LT 

CIFAR100-LT [27] is the dataset obtained by long-tailed of the data set CIFAR100. It is created 

by reducing the number of training samples of each class through the Exponential function, and the 

test set remains unchanged. 

4.1.2.  Places-LT 

Places-LT [64] is a dataset obtained by long-tailed transformation based on the Places [65] da-

taset. The Places dataset contains 10 million images classified by scene, and the label of the sample 

represents the meaning of the scene. It is currently the largest scene dataset in the world with the 

largest sample size, as shown in Figure 2. The long-tailed rate of the training set in the Places-LT 

dataset is 996, and the number of categories is 365. The total sample size in the training set is 62500, 

and the sample size in the test set is 7300. The category with the largest sample size in the training set 

is 4980, while the category with the smallest sample size is 5. The ratio of the maximum to minimum 

sample size is 996, making it the dataset with the largest long tail rate used in this article. 

4.1.3.  ImageNet-LT 

ImageNet-LT [64] was obtained through the long-tailed ImageNet dataset, with a total of 1000 

categories. The total number of samples in the dataset exceeds 186K, with 116K training samples, 20K 

validation samples, and 50K testing samples. In ImageNet-LT, the long-tailed rate in the training set 

is 256, the maximum class sample size is 1280, and the minimum class sample size is 5. This dataset 

simulates the distribution of long tailed data commonly found in real life. The data in the training set 

is divided into three parts. The header category contains categories with a sample size greater than 

100, the middle category contains categories with a sample size greater than 20 but less than 100, and 

the tail category contains categories with a sample size smaller than 20. 

4.2.  Experimental Design and Validation 
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All experiments in this article are based on Python implementation, version 1.7.1. The server 

system used in the experiment is Ubuntu 20.04, CUDA version 10.1, and the AdamW optimizer and 

300 Epochs are used to train the model. The experiment was trained on a NVIDIA A100 40G * 8 GPU 

device. The configuration details of the experimental environment are shown in Table 1. 

Table 1. Experimental environment 

Name Model/parameter 

CPU Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz 

GPU NVIDIA A100 40G * 8 

Memory 128G 

Hard disk 1T 

Operating system Ubuntu20.04 

CUDA CUDA Version 10.1 

Deep learning framework Pytorch 1.7.1 

Development language Python 3.7 

4.2.1.  Experimental Results and Analysis of CIFAR100-LT 

In this experiment, the backbone network used by ECVL was ResNet-50, and the experiment 

was conducted on the long-tailed distribution dataset CIFAR100-LT. The experimental results are 

shown in Table 2. The enhanced contrastive visual language long tail classification algorithm pro-

posed in this chapter has an accuracy of 20.5% and 17.2% higher in tail categories than RIDE [46] and 

TADE [54], and an accuracy of 6.7% and 6.0% higher in all categories compared to RIDE [46] and 

TADE [54], respectively. The F1 values are 14.3% and 11.8% higher than RIDE [46] and TADE [54], 

respectively. ECVL improves the accuracy difference between majority and minority classes, not only 

improving the performance of majority classes but also improving the recognition accuracy of mi-

nority classes. It also proves that using the semantic features of the original label text as supplemen-

tary information for classification is helpful in improving the performance of the model. 

Table 2. Experimental results of ECVL on CIFAR100-LT 

Model Backbone 
Accuracy 

F1 
Head Medium Tail All 

OLTR[64] ResNet-32 61.8% 41.4% 17.6% 41.2% 52.3% 

LDAM[22] ResNet-32 61.5% 41.7% 20.2% 42.0% 52.9% 

cRT[4] ResNet-32 64.0% 44.8% 18.1% 43.3% 51.9% 

RIDE[46] ResNet-32 69.3% 49.3% 26.0% 49.1% 57.3% 

TADE[54] ResNet-32 65.4% 49.3% 29.3% 49.8% 58.8% 

BALLAD[66] ResNet-50 62.4% 52.3% 38.2% 51.6% 62.1% 

ECVL ResNet-50 65.0% 57.2% 46.5% 55.8% 70.6% 

4.2.2.  Experimental Results and Analysis of ImageNet-LT 

In this experiment, the comparative experimental results are shown in Table 3. Compared with 

the long-tailed image classification algorithm that only uses contrastive learning, the enhanced con-

trastive visual language proposed in this chapter has an accuracy of 29.2% higher in tail categories 

than PaCo [61], 13.6% higher in all categories than PaCo [61], and a F1 value of 14.9% higher than 

PaCo [61]. The accuracy of CWTA in tail categories is 7.9% higher than that of BALLAD [66], 3.4% 

higher in all categories, and 11.2% higher in F1 values than BALLAD [66]. This not only proves that 
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the proposed enhanced momentum contrast Loss function is more effective than only using contrast 

loss, but also proves that using text image pairs for pre training is helpful for improving model per-

formance. 

Table 3. Experimental results of ECVL on ImageNet-LT 

4.2.3.  Experimental Results and Analysis of Places-LT 

In this experiment, the ECVL algorithm uses ResNet-50 as the backbone network and conducts 

experiments on the long-tailed distribution dataset Places-LT. The comparative experimental results 

are shown in Table 4. Compared with the long-tailed image classification algorithm that only uses 

contrastive learning, the ECVL long-tailed image classification algorithm has an accuracy of 10.1% 

higher on tail classes than PaCo [61], an accuracy of 6.0% higher on all classes than PaCo [61], and an 

F1 value of 7.3% higher than PaCo [61]; Compared with the comparative visual language model BAL-

LAD [66], the accuracy on the tail class is improved by 1.3%. The experiment shows that the enhanced 

momentum contrast Loss function in ECVL is more effective than only using the contrast loss func-

tion, and it is helpful to train the model by randomly enhancing the samples with insufficient learning 

after processing the enhanced momentum contrast loss function. 

Table 4. Experimental results of ECVL on Places-LT 

Model Backbone 
Accuracy 

F1 
Head Medium Tail All 

OLTR[64] ResNet-152 44.7% 37.0% 25.3% 35.9% 46.4% 

cRT[4] ResNet-152 42.0% 37.6% 24.9% 36.7% 45.5% 

LWS[4] ResNet-152 40.6% 39.1% 28.6% 37.6% 46.2% 

ResLT[53] ResNet-152 39.8% 43.6% 31.4% 39.8% 51.2% 

PaCo[61] ResNet-50 37.5% 47.2% 33.9% 41.2% 52.3% 

BALLAD[66] ResNet-50 46.7% 48.0% 42.7% 46.5% 56.8% 

 
ResNet-101 48.0% 48.6% 46.0% 47.9% - 

ViT-B/16 49.3% 50.2% 48.4% 49.5% - 

ECVL ResNet-50 48.6% 48.3% 44.0% 47.2% 59.6% 

Model Backbone 
Accuracy 

F1 
Head Medium Tail All 

OLTR[64] ResNeXt-50 43.2% 35.1% 18.5% 35.6% 47.6% 

cRT[4] ResNeXt-50 61.8% 46.2% 27.4% 49.6% 53.7% 

LWS[4] ResNeXt-152 62.2% 50.1% 35.8% 52.8% - 

ResNeXt-50 60.2% 47.2% 30.3% 49.9% 50.6% 

ResLT[53] ResNeXt-152 63.5% 50.4% 34.2% 53.3% - 

 ResNeXt-50 63.0% 50.5% 35.5% 52.9% 55.2% 

Balanced Softmax[28] ResNeXt-101 63.3% 53.3% 40.3% 55.1% - 

ResNet-50 66.7% 52.9% 33.0% 55.0% - 

PaCo[61] ResNeXt-50 67.7% 53.8% 34.2% 56.2% - 

ResNet-50 65.0% 55.7% 38.2% 57.0% 62.3% 

BALLAD[66] ResNeXt-50 67.5% 56.9% 36.7% 58.2% - 

ResNet-50 71.0% 66.3% 59.5% 67.2% 66.0% 

ECVL ResNet-50 73.2% 69.8% 67.4% 70.6% 77.2% 
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4.3.  Experimental Design and Validation 

The ECVL long-tailed image classification algorithm proposed in this paper uses the visual char-

acteristics of the image itself and the semantic characteristics of the original label text, the enhanced 

momentum contrastive loss function and RandAugment to complete the long tail classification, and 

performs well on the public long tail dataset. In order to verify the effectiveness of enhanced momen-

tum vs. Loss function and random enhancement in the model, this section conducts ablation experi-

mental analysis on them on different public long-tailed distribution data sets, and the experimental 

results are shown in Table 5 to Table 7. On CIFAR100-LT, the difference in classification accuracy 

between most categories and minority categories decreased by 1.8% compared with only using en-

hanced momentum to compare the Loss function and neither using enhanced momentum to compare 

the Loss function nor using random enhancement; With the enhanced momentum contrastive loss 

function and the random enhancement module, the classification accuracy of most categories and 

minority categories increased by 2.5% and 3.4% respectively than without the random enhancement 

module. On ImageNet-LT, compared with using only the enhanced momentum contrastive loss func-

tion module and neither the enhanced momentum comparison Loss function nor the random en-

hancement module, the difference between the classification accuracy of most classes and minority 

classes decreased by 0.7%; Compared with the loss function and the random enhancement module 

with enhanced momentum, the classification accuracy of most categories and minority categories 

increased by 0.7% and 1.2% respectively. Through analysis, it is found that although the accuracy of 

all categories is improved by not using the enhanced momentum contrastive loss function or the 

random enhancement module, there is still a large difference in the accuracy difference between the 

majority of categories and the minority in the final fine-tuning process; After adding the enhanced 

momentum contrastive loss function, the accuracy difference between the majority and minority clas-

ses has improved, but in some cases there is degradation (such as Places-LT dataset). The enhanced 

momentum comparison between the loss function and the random enhancement module can im-

prove the overall accuracy and reduce the accuracy difference between the majority and minority. 

Table 5. Ablation Experiment of ECVL on CIFAR100-LT 

Moduel 
Accuracy 

F1 
Head Medium Tail All 

no momentum contrast loss + no ran-

dom augment 
62.4% 52.3% 38.2% 51.6% 62.1% 

momentum contrast loss 62.5% 53.3% 40.1% 52.4% 65.8% 

momentum contrast loss +random 

Augment 
65.0% 57.2% 46.5% 55.8% 70.6% 

 

Table 5. Ablation Experiment of ECVL on ImageNet-LT 

Module 
Accuracy 

F1 
Head Medium Tail All 

no momentum contrast loss + no ran-

dom augment 
71.0% 66.3% 59.5% 67.2% 66.0% 

momentum contrast loss 72.5% 68.7% 63.2% 69.4% 70.8% 

momentum contrast loss +random 

Augment 
73.2% 69.9% 67.4% 70.6% 77.2% 

 

Module 
Accuracy 

F1 
Head Medium Tail All 

no momentum contrast loss + no ran-

dom augment 

46.7% 48.0% 42.7% 46.2% 56.8% 
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momentum contrast loss 47.0% 47.5% 43.2% 46.5% 58.3% 

momentum contrast loss +random 

Augment 

48.6% 48.3% 44.0% 47.2% 59.6% 

5. Conclusions 

This article first analyzes the advantages and disadvantages of existing long-tailed image classi-

fication methods, proposes a long-tailed classification algorithm based on enhanced contrastive vis-

ual-language, and then elaborates on the algorithm framework, algorithm design details, algorithm 

design process, and comparative experimental analysis. In addition, this article conducts compara-

tive experiments and ablation research analysis on three long tailed datasets: CIFAR100-LT, 

ImageNet-LT, and Places-LT. 

Compared with BALLAD method, ECVL on CIFAR100-LT reduces the difference in classifica-

tion accuracy between majority and minority classes by 5.7%, and increases F1 by 8.5%. Compared 

with BALLAD, ECVL on ImageNet-LT reduces the difference in classification accuracy between ma-

jority and minority classes by 1.7%, and increases F1 by 11.2%. Compared with BALLAD, the F1 of 

ECVL on Places-LT has increased by 5.8%. On Places-LT, compared with using only the enhanced 

momentum contrast loss function module and neither the enhanced momentum contrast loss func-

tion nor the random enhancement module, the difference in classification accuracy between most 

classes and minority classes decreased by 1.8%. Compared with the non-random enhancement mod-

ule, the accuracy rate of minority classification and F1 of the enhanced momentum contrast loss func-

tion and random enhancement module increased by 0.7% and 1.3% respectively. The classification 

accuracy, difference in accuracy between majority and minority categories, F1, and convergence of 

the model in different quantity categories in the experiment have demonstrated the effectiveness of 

the algorithm proposed in this paper. 
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