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Abstract: Asymmetry in the upper and lower tails is an important feature in modeling bivariate
distributions. This article focuses on the log ratio between the tail probabilities at upper and lower
corners as a measure of tail asymmetry. Asymptotic behavior of this measure at extremely large and
small thresholds is explored with particular emphasis on the skew-normal copula. Our numerical
studies reveal that, when the correlation or skewness parameters are around at the boundary values,
some asymptotic tail approximations of the skew-normal copulas proposed in the literature are not
suitable to compute the measure of tail asymmetry with practically extremal thresholds.
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1. Introduction

Skewness in data is an important feature in various applications. As a typical example,
dependence among stock returns is known to be asymmetric in bearish and bullish mar-
kets [1]. To capture such asymmetry, skewed distributions have been extensively studied in
the literature. A popular family of skewed distributions is the skew elliptical distribution [2],
which includes, for example, the skew-normal distribution [3] and the skew-t distribution [4].
Various measures of asymmetry are also proposed, for example, in [5-9] to quantify certain
asymmetric feature of an underlying distribution, typically an asymmetry between upper
and lower tails.

For a more formal description of the subject of this paper, let X = (X1, X») be an R?-
valued random vector on a fixed atomless probability space. Denote by H the cumulative
distribution functions (cdf) of X with marginal distributions F; and F, respectively. For a
fixed threshold u € (0,1/2], we focus on the following measure of tail asymmetry (in lower
and upper tails) [9]:

M

m&zQM—m&zaw—w)

) = 1°g< P(X) < F ' (u), Xo < Fy ' (u)
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We are also interested in the asymptotic behavior of vy (1) as u | 0. Throughout the paper,
we assume that F; and F, are continuous so that (X3, X») has the unique copula C, which is
the cdf of (U3, Up) = (F1(X7), F2(X2)). Then vy is a function of the copula given by

B PU; >1—u,U, >1—u)
vi(u) =lo ( P(U; <u, Uy, <u)

= log<W> =:ve(u),

where C is the copula of (1 — Uy, 1— Up).

This paper concerns the measure of tail asymmetry (1) and its asymptotic behavior
of the skew-normal distribution. A d-dimensional random vector Y = (Y3, ..., Yn) is said to
follow the skew-normal distribution, denoted by Y ~ SN (4, ¥), if it admits the stochastic
representation

Y =6|Zo| + /16725, ;€ (-1,1), ¥ €Py @

where Zg ~ N(0,1), Z = (Z4,...,Z;) ~ N4(0,¥) is independent of Zy and P; is a set of
all d-dimensional correlation matrices. The parameter § = (41, ...,8;) € (—1,1)% is called
the skewness parameter and ¥ € P; is called the correlation matrix. The skew-normal copula,
denoted by Csn(+; d,Y), is defined as the copula of Y ~ SN, (4, ¥).

The contribution of this paper is twofold. First, we derive an asymptotic formula of
the measure of tail asymmetry (1) in terms of the upper and lower tail orders [10]. This
formula enables us to describe the asymptotic behavior of this measure for the skew-normal
copula. Various approaches are also introduced to evaluate the measure (1) for a finite
threshold u € (0,1/ 2]. Our second contribution is to numerically demonstrate that, when
the correlation or skewness parameters are around at the boundary values, some asymptotic
formulas of the skew-normal copula proposed in the literature are not suitable to compute
the measure of tail asymmetry with practically extremal thresholds, such as u = 0.01. This
finding supports the use of an exact evaluation of the measure (1) even for an extremely
small threshold u € (0,1/2] instead of some asymptotic tail approximations proposed in
the literature.

Apart from the measure (1), some other measures of tail asymmetry have been pro-
posed in the literature. Many of these existing measures are based on differences between
certain measures of upper and lower tails (see, e.g., [5-8]). Such difference-based measures
are not appropriate to quantify tail asymmetry of the skew-normal copula since values
of these measures tend to be small even for large values of ||J||. On the other hand, the
measure (1) returns reasonable values for such values of § because this measure is based
on the ratio between upper and lower tail probabilities. To the best of our knowledge, the
measure (1) is the only ratio-based measure of upper and lower tail probabilities, which
seems appropriate to measure the tail asymmetry of the skew-normal copula.

The organization of this paper is as follows. In Section 2, we review the concept of
tail order and skew-normal copulas. In Section 3, we derive a formula of the measure of
tail asymmetry in terms of the upper and lower tail orders. We also explore the measure
and its asymptotic behavior for the skew-normal copula. Numerical experiments are
provided in Section 4, where we reveal some situations when some asymptotic formulas of
the skew-normal copula proposed in the literature are not appropriate to use . Section 5
concludes this paper. Detailed calculations and all proofs are deferred to Appendices A
and B, respectively.

2. Preliminaries

We begin with introducing some concepts and notations. Two functions f,g: R — R
are called asymptotically equivalent ata € R = RU {+oo}, denoted by f(x) ~ g(x), x — a,
if limy—, f(x)/g(x) = 1. A function f : R — R is called slowly varying at a € [0, 0] if


https://doi.org/10.20944/preprints202306.1657.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 June 2023 doi:10.20944/preprints202306.1657.v1

limy_,, f(tx)/f(x) = 1 for any t € (0,00). The set of all slowly varying functions at a is
denoted by SV,. Throughout the paper, all vectors in the form (xi,...,x,), n € N, are
understood as column vectors.

2.1. Tail order and tail order parameter
According to [10], a d-dimensional copula C is said to have the lower tail order x (C) > 1
if
Clu,...,u) ~ut©p (u), ulo, 3)

where (1, € SVy. If, in addition, the limit lim,, | /1 () = ¢; (C) exists, then C is said to have
the lower tail order parameter (] (C) € [0, 00]. The copula C is called (lower) tail dependent
when «1,(C) = 1. In this case, ; (C) is known as the (lower) tail dependence coefficient (TDC).
The case k1 (C) = d is referred to as the tail independence. When 1 < x (C) < d, C is said to
have intermediate tail dependence. As such the model (3) can capture weaker tail dependence
that the TDC cannot. Similarly to the lower case, C is said to have the upper tail order
xu(C) > 1 and the upper tail order parameter £(;(C) € [0, co] if

Cl—u,...,1—u)~ uKU(C)EU(u), ulo, 4)
where (y € SV is such that lim,, o fy(u) = £{;(C).

2.2. The skew-normal copula

Let Y ~ SN, (d,¥) follow a d-dimensional skew-normal distribution defined via the
stochastic representation (2). According to [3], the joint probability density functions (pdf)
of Y is given by

fon(y;a, Q) = 2¢4(y; Q)@ (ay), yeRY,

where ¢, (-; Q) is the pdf of N;(0, Q) and the parameters QO € P? and « € R are specified

via
Q=AY+27")A, (5)
Q16 Ay-lg
= = 7 6
* V1-6TQ15 \/1_|_€T\If—1€ ©
where

A= diag<\/l —62,...,4/1 —55),
5
=010, 0j=—"—, je{l,...d}.
VY
)
The marginal pdf of Y;, j € {1,...,d}, is given by
fon(yi;0;) = 2¢(y)®(Cjyj), yj €R,
where ¢ and @ are pdf and cdf of N(0,1), respectively. Note that Y; ~ SNi(¢;), j €
{1,...,d}, where SN1(6;) = SN1(4;,1). Moreover, it follows from (2) that
~Y ~ SN(—6,9). @)

Skewness of the skew-normal copula is illustrated in Figure 1, where the contour plot of
the (symmetric) normal distribution is compared with that of the skew-normal copula with
its marginal distributions transformed into the standard normal distributions.
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Figure 1. Contour plots of the (symmetric) normal distribution with p = 0.5 (left) and the skew-
normal copula Csn(d, ¥) with (61,52, ¥12) = (—0.8, —0.8,0.5) with its marginal distributions trans-
formed into the standard normal distributions (right).

The skew-normal distribution can be written in terms of the conditional distribution
of the normal distribution. More precisely, it is shown in [3, Section 2.2] that

(Xl,...,Xd) | {X() >0}NSN((5,"P), (8)
where (Xo, X1, ..., X3) ~ Nyi1(0441, QY*(8)) with the extended correlation matrix

)
0 (8) = ((15 ‘g) € Pas1. ©)

This representation allows us to write the cdfs of SN;(J, ¥) and its copula as follows.

Lemma 1. Let FsN(+;6,Y) be the cdf of Y ~ SNy(8,¥) with marginal cdfs Fsn(+;90;), j €
{1,...,d}. Then

Fon(y; 6, %) = 2411 ((0,y); Q*(=9)), (10)

where @y, 1(-; O (—0)) is the cdf of Ny 1(0441, Y*(—5)). Therefore, the cdf of the skew-normal
copula CsN(+; 8,'Y) can be written by

Con(w; 8, %) = 2@ 1((0, Fond (u1;61), - - ., Fog (145 64)); (= 6)). (11)

3. Tail asymmetry of the skew-normal copula

In this section we explore tail asymmetry of the skew-normal copula via the measure (1)
and its asymptotic behavior. We will show in Proposition 1 that the measure (1), after
properly scaled, quantifies the difference between the upper and lower tail orders when
they differ. Moreover, when the upper and lower tail orders coincide, the measure (1)
quantifies the difference between the upper and lower tail order parameters. These results
support the use of the measure (1) for quantifying tail asymmetry of the skew-normal
copula since, to our knowledge, difference-based measures of asymmetry proposed in the
literature do not measure tail asymmetry properly when the upper and lower tail indices
are not equal.

3.1. Measure of tail asymmetry and tail order

This section explores the relationship between the measure of tail asymmetry (1) and
the tail order. To this end, suppose that a bivariate copula C satisfies (3) and (4).

The next proposition states that the measure of tail asymmetry (1) can be asymptoti-
cally represented in terms of the difference between the upper and lower tail indices.
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Proposition 1 (Measure of tail asymmetry and tail order). Let C be a bivariate copula with
lower and upper tail orders k1 (C) and xy(C), respectively. If ki (C) # . (C), then

ve(u) ~ {xy(C) —xL(C)}logu, ulO. (12)

Ifxy(C) = x1.(C) and C admits the upper and lower tail order parameters £{;(C), ¢{ (C) € (0,0),
then

co-m(9).

Remark 1 (Relationship with TDCs). Equation (13) implies that the limit of vc(u) as u | 0 is
obtainable from upper and lower TDCs. Indeed, if ky(C) = x,(C) = 1, £{(C) and ¢; (C) corre-
spond to upper and lower TDCs, respectively. Then lim,, o vc(u) is a straightforward calculation
from (13). This result can be applied to evaluate the limit of vc(u) of, for example, the skew-t
distribution, whose upper and lower TDCs are available; see [11].

(13)

3.2. Measure of tail asymmetry of the skew-normal copula

From this section we focus on the bivariate case d = 2. Let § € (—1,1) be the off-
diagonal entry of ¥ and p € (—1, 1) be that of (2. We denote, for example, the bivariate case
of Csn(+;6,Y) by Csn(+; J, p) for notational simplicity. Note that  is the partial correlation
of Y7 and Y; given Zj, where Zy, Y; and Y are those used in (2). By calculation, it holds that

p=py/(1—62)(1—062) + 610, (14)

By selecting (41,6,) € (—1,1)? and ¢ € (—1,1) independently, the range of the parameter
p implied by (14) is given by

6100 — /(1= 62)(1—03) < p < 616 + 1/ (1 — 62)(1 — 83). (15)

Moreover, in the bivariate case, the parameter « is given by

= ! po2) 16
' ¢<1—p2><1—p2><1—5%)(1—6%)(‘52—”1) "

The reader is referred to Appendix A.1 for detailed derivations of (14) and (16).

We first consider the case of a finite threshold u € (0,1/2]. In this case, the measure of
tail asymmetry (1) of the skew-normal copula can be evaluated by the following proposition.
Note that we denote by vgy (u; d,§) the measure (1) of the skew-normal copula Csn(+; 6, ).

Proposition 2 (Measure of tail asymmetry of the skew-normal copula). Let Con(+; 8, 0) be
the skew-normal copula with § € (—1,1)> and p € (—1,1). Then its measure of tail asymmetry (1)
for a finite threshold u € (0,1/2] is given by

v (1:6,) = log ( S =008) p?)

N
o s ((0, Fgd (1; ~01), Fixl (1 -02)); 2 (9) ) -
<I>3( (0, Egpy (;61), I&(u;tsz));ﬁ*(*‘s)) ,
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Figure 2. The measure of tail asymmetry vsn(#; 6, p0), u = 0.01, for different parameters of the
skew-normal copula with §; = §, = 6.

where
1 5 02
Q)= |9 1 ﬁﬂﬁ*’%%
b p\1-8\1-8+a6 1

The formula (17) enables us to numerically compute vgn (14; J, §) for a finite threshold
u € (0,1/2]. For an illustrative example, Figure 2 provides curves of vgN(u; 8, §), u = 0.01,
for the skew-normal copula with different parameters. The function ®3 in (17) is evaluated
by pmvnorm(algorithm = TVPACK) [12] in the R package mvtnorm. We observe that the
measure vgN (1; 8, f) is symmetric in § with respect to = 0, and is monotonically changing
in p.

We next consider the asymptotic behavior of v(u) for an extremely large and small
thresholds. Summarizing the existing results in the literature, we have that

2 ifé1,6,>0,
xL(Coni0,0) =4 37" ~ (18)
ﬁ, if 01,0, <0;

see Appendix A.2 for detailed calculations. Together wtih xy(Csn; d,0) = «L(Csn; —9,0),
we obtain the following result.

Proposition 3 (Asymptotic behavior of the measure of tail asymmetry of the skew-normal
copula). Let Cs(+;6,0) be the skew-normal copula with § = (61,6,) € (—1,1)? and p €
(—1,1). Suppose that 61 and 6, have the same sign, which includes the case when at least one of
them is zero. Then the measure of tail asymmetry (1) of Csn(+; &, ) satisfies

. vsn(;6,p) . 22
lim log 1l = sign(é1, %) 1+p 1+p) (19)

where

1, ifoy > 0and 5, > 0,

. 5,(5 —
sign(d1,62) {_1, if61 < 0and 6, < 0.
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Figure 3. The measure of tail asymmetry vsn(#; 6, f) against — log(u) for different skewness parame-
ters § of the skew-normal copula with § = 0.
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Figure 4. Values of log Ay (4; 6, p), u = 0.01, computed by (21) with the algorithm TVPACK.

Remark 2 (6; and J, with opposite signs). It is assumed in Proposition 3 that 61 and 5, have
the same sign. However, the upper and lower tail orders of the bivariate skew-normal copula are
investigated in [13] for more general 61 and d,. Based on their results, analytical expression of the
limit lim,, o vsN (u; 8, 0) / log u can be derived even for 81 and &, with opposite signs although the
expression may not be as simple as (19).

Note that ven (159, 0) = 0 for every u € (0,1/2] if § = 0. The asymptotic behavior of
ven(u;6,p0) as u | 0 is illustrated in Figure 3, where vgn (14, f) is evaluated by (17) with
the algorithm TVPACK. It is observed that the curves of vsN(u; d, p) against —log(u) are
asymptotically linear.

Remark 3 (Measure of tail asymmetry and TDCs). The measure of tail asymmetry (1) of the
skew-normal copula can also be written by

~ A u; _5/ 0
USN(M,' 5,p) = 10g<w), (20)
where
~ _ Con(u,u;6,p
/\L(u; 5/p) = M (21)

The value Ay, (u; 8, p) for a finite u € (0,1/2] can be computed by (17) with the algorithm TVPACK.
Figure 4 shows the curves of log A1 (0.01; 6, p) against J for various correlation parameters. It is
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observed that Ay1,(0.01;6, §) increases as |5| goes to 1; moreover, Ay, (0.01;6, §) is higher for 6 < 0
than for § > 0.

Remark 4 (Asymptotic formulas of the TDCs). It is shown in [14] that

1p 1+p _L

AL(1;0,0) ~ uTe (1+ p) m(_‘hﬂog u) ™, ulo. (22)
Moreover, [15, Theorem 2] shows that, for u | 0,
,BZM -1 g1 if o
u ogu 2, [} > 0/
A (u; 813, p) ~ 1;IOJE/5(1+;32)2( gu) if (23)

I
u1+p(1¥) }%‘;(—nlogu) Tre, ifd <O,

where A = =a(14+p)//1+a2(1—p2), a = a1 = ap, { = {1 = {p and B is defined in (A2)
such that B> +1 =2/(1+ p).

The following asymptotic formulas of Ay, are also given in [16, Appendix B] based on the tail
expansion of the skew-normal copula.

5 K‘lu’{_l(—Zlogu)"*%, iféd >0,
,M(wélbp)N’{(E?)ukﬁ(_Zk%u)_ﬁ¥, 5 <0, (24)
where
2(1-0%) 2

Tl p-202 145

Note that the asymptotic formulas in (24) are slightly different from those in (23), but they lead to
the same tail order. With this observation, the asymptotic formulas (22), (23) and (24) yield the
same limit (19) by using (20).

4. Accuracy of the asymptotic formulas

In Section 3, various approaches are provided to compute the measure of tail asym-
metry of the skew-normal copula. It is partly observed in Figure 3 that the formula (17)
with the algorithm TVPACK gives results consistent with the asymptotic formula (19). As
mentioned in Remark 4, the measure of tail asymmetry (1) can also be computed from
the asymptotic formulas (22), (23) and (24) derived in the literature. In line with this, this
section explores the performance of these asymptotic formulas in a series of numerical
experiments. For ease of illustration, we focus on the equi-skewed case J; = d, = 9.

We first compute the value of Ay (u; 61y, ) for u = 0.01 as an extremely small u by
(21) and (11) with @3 evaluated by pmvnorm(algorithm = TVPACK) [12] in the R package
mvtnorm. Figure 5 plots the contour of log Ay (0.01;1,5) for 6 € [—0.999,0.999] and p €
[—0.8,0.999] by using (11). The range of f is restricted due to the numerical limitation. We
observe that log Ay (0.01; 015, o) approaches 0 as ¢ and |5| go to 1, which is consistent with
the fact that the skew-normal copula is comonotonic for these parameters. Monotonicity
of the function Ay (u;61,, ) with respect to 4 is also indicated from Figure 5. Namely, it is
observable that the value of log A (0.01; 515, §) for a fixed § is monotonically decreasing for
6 < 0 and increasing for § > 0, and thus the minimum is attained at § = 0. For special cases,
if p = 0, the correlation between Y7 and Y in (2) is given by 02.1f 6 = +1, the correlation
is one, the variables are comonotonic, and thus log Ay (u; +£15,0) =log1 = 0. If § = 0, the
variables are independent and thus log Ay (1;02,0) = log u.

Next, we demonstrate the performance of the asymptotic formulas presented in Re-
mark 4. Figure 6 plots the contour of the difference of log Ay (0.01;1,,5) based on the
asymptotic formula (23) and that based on the numerical evaluation of (21) with the algo-
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Figure 5. Contour of log A1 (0.01; 01, 6) for § € [—0.999,0.999] and p € [—0.8,0.999] based on (21)
with the algorithm TVPACK.

rithm TVPACK. The same plot is provided for the asymptotic formula (24) instead of (23).
Interestingly, we observe that the two asymptotic formulas perform well on the different
areas of the parameter range. In particular, the difference of the asymptotic approximation
based on the formula (23) is large around the boundaries. Discontinuity of the asymptotic
formulas is also observed around § = 0, which is more visible for the formula (23).

5. Conclusion

In this paper we explored the measure of tail asymmetry proposed in [9], and its
asymptotic behavior. We showed that the measure, after properly scaled, is asymptotically
equivalent to the difference of the upper and lower tail orders [10]. Based on this result,
we derived an analytical expression of the measure of tail asymmetry for the skew-normal
copula. The performance of this formula is verified by comparing it to another analytical
formula with a finite threshold. We also investigated the asymptotic formulas of the
TDC of the skew-normal copula proposed in the literature. Our numerical experiments
revealed that these formulas perform well for moderate values of parameters, but are not
recommendable for approximating the measure of tail asymmetry with finite thresholds
when the parameters are at their boundaries.

Supplementary Materials: The R code used in this paper is available.
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Appendix A. Detailed calculations
Appendix A.1. Parameters of the bivariate skew-normal copula

In this section we describe detailed derivations of (14) and (16).
For the 2 x 2 correlation matrices Q and ¥, letp = Qp = Oy and p = Yo = ¥o1.

Then,
o= COI‘(Yl, Yz) =pA Ay + 0107, A =4/1— 5%, Ny =4/1— (5%
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Figure 6. (Top) Contour of the difference of log A (0.01; 61, §) based on the asymptotic formula (23)
and that based on the numerical evaluation of (21) with the algorithm TVPACK for § € [—0.999,0.999]
and g € [—0.8,0.999]. (Bottom) The same contour plot based on the asymptotic formula (24) instead
of (23).

Here, § is the partial correlation of Y7 and Y, given that Z is fixed in the trivariate random
vector (Zy, Y1,Y?2) given in (2). By using (5), we have

O=a(¥+5")a= A((,l) Ff) * (szz %?))A’
where

A:(Al 0>: \/1— 62 0 _ 1/4/1+¢3 0
0 A 0 4/1—&2 0 1//1+3

Hence, we have that

o_ (1 p) :A< 1+ ﬁ+§1§2>A

p 1 P+012 1433
1 P+l _
) VITGVIRE | _ ( 1 PA1A; + 51(52>
% 1 A1y + 6162 1 !
V 1V 2

which yields (14).
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Next we check «. By using

0715 — 1 1 —-p 51 _ 1 51 - P‘SZ
1—p2 - 1 6y 1—p2 by —pdy)’

1—p2 —5%+2p51(52 —(5%
1—p2 ’

1-5'Q7 s =

we have from (6) that

-1 _
oo 1 (gl B Pfg). (A1)
V1i—6TQ-1s \/(1_pZ)(l_p2_5%+2p5152—(5%) 2 — pPo1

Recall that the extended correlation matrix Q*(J) in (9) is given by

1 61 &
Q@) =(6 1 p).
52 1Y 1

det O (8) = 1 — p* — 62 4+ 206,05 — 63,

Since
the parameter « in (A1) is given by

“ <Z;> ~/a —p2)1detQ*(5) (2 :22)'

Note that this representation coincides with that in [16, Appendix B], where (a1, a;) and
) (J) are denoted by (B1, B2) and R, respectively. Since

det O (8) =1 — p? — 62 + 20816, — &3
=1 — (5D + 6102)% — 6% + 2(pA1 Ay + 6102)818, — 03
— 146365 —p2(1 —5%) (1 —55) — 52— 82

= (1-7)(1-4) (1-4).
we obtain (16).

Appendix A.2. Tail orders of the bivariate skew-normal copula

In this section we summarize tail orders of the bivariate skew-normal copula known
in the literature. Since xy(CsN; J, f) = «1.(Con; —6, f), we study only the lower tail order
xL(Csn; 6,0), p € (—1,1), for various § = (61,5,) € (—1,1)%. Moreover, we focus on the
case when J; and J; have the same sign, that is, either 61,6, > 0 or 61, < 0. In this case,
we will show below that the lower tail order is summarized by (18). The interested reader
is referred to [13] for more general cases of the skewness parameter. Note that the explicit
forms of the tail orders of the skew-normal copula can also be found, for example, in [13,15]
and [16]. Although they cover different cases of the parameters, their results are consistent
with each other.

Casel: 61 =6, =6

We first consider the equi-skewed case §; = &, = ¢ € (—1,1). It follows from [15,
Theorem 2] that

B*+1, ifa>0,

Cgon; 0,0) =
kL (Csni; 6, 0) {1421)’ ifa <0,
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where
‘ )
VA+p)+p)(1-62)
and
1—p)(1+2(14p)a?
ﬁ_\/< p)(Hé pla2) a2
and thus, by calculation,
1—5 2
241=-"PP 1 .
Fri=1ti1=15

Note that the signs of & and J are identical, and that § = 0 if and only if « = 0. When 6 =0,
we have that

2 2

xL(Csn; 0,0) = 45 1+p
see also Li and Joe [16, Appendix B].
Casell: 61,0, < 0
It is shown in [13] that
. 2
KL(CSN) §/P) = m/

which is also derived in [16]. Note that the condition Aja; + Ayay < 0is imposed in [16],

and this condition is implied by (15). Indeed, we have from (16) that

M (61 — pd2) + Do (62 — pdy)
V=) et (0)

and thus the sign of Ajay + Axap equals to that of the numerator of the right-hand side of
(A3). From (15), the inequality A1y + Apd; < 0 implies that

Alﬂé] + Azwz =

(A3)

A (51 - p(Sz) + A2(52 — p51) = A161 4+ Ardy — p(A152 + A2(51)
< A6+ Apdy — (5152 + A1A2)(A152 + A2(51)

= M61 + Dby — A610% — 8285 — Ay (1 - 5%)52 e (1 - 55)51 —0,

and thus Aja1 + Arap < 0.
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CaselIll: 61,6, > 0
It is shown in [13] that
KL(CSN : 5,ﬁ) = KU(CSN . —5,p)
1 J1+ai(1—p%)  1+a3(1—p?)  2(max(1—p%) —p)
12 2 + 2 +
—p 1+ 1+23 O+ (1+3)

1 1 N 1 2p
/A1 148 a1+ )

2
2 X1 &2
+(1 p)(\/1+€%+\/1+€%)

_ AT+ AT 200
1—p?

+ (Alocl + Azl’(z)z. (A4)

Note that, in [13], {1 and {, above are denoted by A1 and A,, respectively. The formula (A4)
is also derived in Appendix B of [16]. Note again that the condition Ajaq + Ayaxy > 0
imposed in [16] is implied by (15). We will check that

A2+ A3 —20M1 1y 2 2
1- P2 + (Aloq + Azﬁéz) =17 p, (A5)
that is, the expression (A4) can be simplified as
K1.(Con : 6,5) = xu(Con : —0,p) = ——
L{LsN :0,0) = Ku(LsN - ,P—1+ﬁ-

First, by multiplying (1 — p?) on the right-hand side of (A5), the desired equation is
equivalent to

2(1-p)(1-p?)
(1-p%) 7

A2+ A2 —2pA Ay + (1 - pz) (Aray + Agap)? =
which is also equivalent to

(1= )N85 8% + 03 ~ 200 + (1= ¢7) (B + dasa)?} = 2(1 =) (1 - ) 6303
(A6)

by multiplying (1 — §2) A?A3 on both sides. Since

_ {0t + (83 = pb) o)’
(Drag + Dorg)? = (1 —1p2)(12— ;2)(1 35%) (11 - %)

the left-hand side of (A6) reduces to
(1— %) ATA3(AT + AG) — 20(1 — ) ATAS + { (61 — p&2) A1 + (82 — po1) A2}>. (A7)
The last two terms of (A7) are expanded into
—2p(1 - ﬁZ)A%Ag + {(61 — p82) A1 + (32 — p&1) Az}
= —20(1-72) A3 +2(61 — p&) (62— po) My (AB)
+ (01— p&2)* 3 + (52 — pb1)* A3
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By using 10, — p = —pA1A,, the coefficient of AjA; at the first two terms in the right-hand
side of (A8) is given by

~20(1-p2) (1= ) (1 &3) +2(61 — &) (82 — pén)
= —20(1- 83— +6253) + 2002 (1- 82) (1= 3) +2(818, — 083 — &3 + p20185 )
= 2(816, — p — 830} + 0210 ) + 20p% (1- 6% (1 - 63)

= —20(1 — p162) A Ay + 2007 A3 A3
= —2p(1 — pd16, — pPpA1A2) A1,

- —Zﬁ(l - p2) M.
(A9)

By using p = §A1A; + 6162, the last two terms of the right-hand side of (A8) are rearranged
as follows:

(01 — p&2)* A3 + (82 — p1)* A3
- ((51 (1 - 5%) - pA1A252)2A% + (52(1 - 5%) - pAlAz(Sl)zA%
- {(51A2 — pA162)? + (62D — pAzél)z}A§A§

= {(3+ 53— 25363 (1+ %) — 4pr620 82 | 833

(A10)

Combining (A9) and (A10), the term (A8) reduces to

—2p (1 - 152> AIAS +{ (81 — p82) Dy + (62 — p61) B2}
={=2p(1-p?) + (83 + 63 25303 (1 + %) — 4901020 8 b A2

Therefore, the desired equation (A6) is now

(1- ) {3+ 83 — 208180 + (1 - ?) (Mrar + Bgma)* b = 2(1— ) (1 - p?),
which can be checked as follows:
(1= ) {83+ 83 — 208180 + (1 - p) (Arar + Aoaz)” }
= (2= -8)(1- %) —2p(1- %) + (3 + 8% — 28363 (1 + %) — 4perrttry
= 2(1 — 826% — F2A2AE - 2ﬁ(51§2A1A2) —25 (1 - p2)
=2(1-p%) —2p(1 - p?)
=21-p)(1-¢?).

Case IV: One of 4 and 6, is zero and the other is negative

By symmetry, it suffices to consider the case when J; = 0 and J; < 0. In this case, [13]
shows that x. (Csn : 6,0) =2/ (1 + p).
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Case V: One of 41 and 4, is zero and the other is positive

By symmetry, it suffices to consider the case when J; = 0 and d, > 0. In this case, [13]
shows that, if a1 + axA, > 0, then

Ay — 2
KL(CSN : 5,(5) = ((12_;;)) + (0(1 + OQAz)z + 1.

The condition & + apA; > 0 is always satisfied since

52(B2 — p)
V(1 —p?) det Q¥ ()

and p < A, by (15). Since det Q*(8) = (1 — p?)(1 — 63) and p = pA,, we have that

(D —p)?
(1-p?)

a1+ arNy =

(82 — 0)*{05 + detQ*(8)}
(1 —p?) detQ*(6)

(1-p)*(1—p*+p*5)
(1-p2)(1-p%)

(1-p)(1-p*(1-53))

+ (a1 + aahy)? =

(1—-p)(1+p)
_1-p
EY
Therefore,
. Ay —p)? 2
KL(CSN : ‘SIP) = ((12_‘53)) + (061 +0(2A2)2+1 = 1+p.

Appendix B. Proofs
Proof of Lemma 1. By (8), it holds that

(X1,..., X)) | {X5 >0} ~SN(=6,Y),
where (X{, X{,...,X};) ~ Ng;1(0441, Q" (=9)). By (7), we have
—(X1,..., X)) | {=X( < 0} ~SN(6,Y).

Since —(X{, X}, ..., X}) ~ Ngy1(0451, Q*(—5)), we obtain (10).
According to Sklar’s theorem [17], the skew-normal copula Csn(+; &, ¥) has the cdf

Con(w; 8, ¥) = Fon(Foy (u1;81), -+ -, Forg (a5 8a); 6,°F).
Then (11) follows directly from (10). O

Proof of Proposition 1. By (3) and (4), we have, as x — oo,

C(1-1/x,1-1
ve(1/x) :10g< ( c(1;§,1/X) m)

o x U@ py(1/x)
8 x L (C) g (1/x)

~ {xu(C) — KL(C)}log<i> +log fu(1/x) — log £1.(1/x).

This immediately implies (13). Notice that the functions x — fy(1/x) and x — ¢ (1/x)
are slowly varying at oco. Together with [18, Proposition 2.6 (i)], we obtain (12). O
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Proof of Proposition 2. Notice from (7) that

Con(1— 11,1 —up;8,p) = Con(ur, u2; —6,p), (u1,u2) € (0,1)% (A11)
By (11), it holds that
v (M§ ~)_10 7SN(1_74;1—14}5/F3)
SNUL S P =108 Con(u,u;6,p)
CSN(u/u}—(S’ﬁ))
=log| =——"—"—-"+~
g( Con(u,u; 8,p)

D5 (o, Fog (u; —61), Fq (u; —52);0*(5))
® (0, Fon (5 51),F§I&(u;5z);0*(—5))

= log

which completes the proof. [

Proof of Proposition 3. By (A11), it holds that xy(Csn; d,0) = xL(Csn; —6,0). Then the
formula (19) follows directly from (12) in Proposition 1 and the detailed calculations
provided in Appendix A.2, which is also summarized in (18). O
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