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Abstract: Asymmetry in the upper and lower tails is an important feature in modeling bivariate 1

distributions. This article focuses on the log ratio between the tail probabilities at upper and lower 2

corners as a measure of tail asymmetry. Asymptotic behavior of this measure at extremely large and 3

small thresholds is explored with particular emphasis on the skew-normal copula. Our numerical 4

studies reveal that, when the correlation or skewness parameters are around at the boundary values, 5

some asymptotic tail approximations of the skew-normal copulas proposed in the literature are not 6

suitable to compute the measure of tail asymmetry with practically extremal thresholds. 7

Keywords: Measure of asymmetry; Skew-normal copula; Tail dependence; Tail order 8

1. Introduction 9

Skewness in data is an important feature in various applications. As a typical example, 10

dependence among stock returns is known to be asymmetric in bearish and bullish mar- 11

kets [1]. To capture such asymmetry, skewed distributions have been extensively studied in 12

the literature. A popular family of skewed distributions is the skew elliptical distribution [2], 13

which includes, for example, the skew-normal distribution [3] and the skew-t distribution [4]. 14

Various measures of asymmetry are also proposed, for example, in [5–9] to quantify certain 15

asymmetric feature of an underlying distribution, typically an asymmetry between upper 16

and lower tails. 17

For a more formal description of the subject of this paper, let X = (X1, X2) be an R2-
valued random vector on a fixed atomless probability space. Denote by H the cumulative
distribution functions (cdf) of X with marginal distributions F1 and F2, respectively. For a
fixed threshold u ∈ (0, 1/2], we focus on the following measure of tail asymmetry (in lower
and upper tails) [9]:

νH(u) = log

(

P(X1 ≥ F−1
1 (1 − u), X2 ≥ F−1

2 (1 − u))

P(X1 ≤ F−1
1 (u), X2 ≤ F−1

2 (u))

)

. (1)
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We are also interested in the asymptotic behavior of νH(u) as u ↓ 0. Throughout the paper,
we assume that F1 and F2 are continuous so that (X1, X2) has the unique copula C, which is
the cdf of (U1, U2) = (F1(X1), F2(X2)). Then νH is a function of the copula given by

νH(u) = log

(

P(U1 ≥ 1 − u, U2 ≥ 1 − u)

P(U1 ≤ u, U2 ≤ u)

)

= log

(

C(1 − u, 1 − u)

C(u, u)

)

=: νC(u),

where C is the copula of (1 − U1, 1 − U2). 18

This paper concerns the measure of tail asymmetry (1) and its asymptotic behavior
of the skew-normal distribution. A d-dimensional random vector Y = (Y1, . . . , Yn) is said to
follow the skew-normal distribution, denoted by Y ∼ SNd(δ, Ψ), if it admits the stochastic
representation

Yj = δj|Z0|+
√

1 − δ2
j Zj, δj ∈ (−1, 1), Ψ ∈ Pd, (2)

where Z0 ∼ N(0, 1), Z = (Z1, . . . , Zd) ∼ Nd(0, Ψ) is independent of Z0 and Pd is a set of 19

all d-dimensional correlation matrices. The parameter δ = (δ1, . . . , δd) ∈ (−1, 1)d is called 20

the skewness parameter and Ψ ∈ Pd is called the correlation matrix. The skew-normal copula, 21

denoted by CSN(·; δ, Ψ), is defined as the copula of Y ∼ SNd(δ, Ψ). 22

The contribution of this paper is twofold. First, we derive an asymptotic formula of 23

the measure of tail asymmetry (1) in terms of the upper and lower tail orders [10]. This 24

formula enables us to describe the asymptotic behavior of this measure for the skew-normal 25

copula. Various approaches are also introduced to evaluate the measure (1) for a finite 26

threshold u ∈ (0, 1/2]. Our second contribution is to numerically demonstrate that, when 27

the correlation or skewness parameters are around at the boundary values, some asymptotic 28

formulas of the skew-normal copula proposed in the literature are not suitable to compute 29

the measure of tail asymmetry with practically extremal thresholds, such as u = 0.01. This 30

finding supports the use of an exact evaluation of the measure (1) even for an extremely 31

small threshold u ∈ (0, 1/2] instead of some asymptotic tail approximations proposed in 32

the literature. 33

Apart from the measure (1), some other measures of tail asymmetry have been pro- 34

posed in the literature. Many of these existing measures are based on differences between 35

certain measures of upper and lower tails (see, e.g., [5–8]). Such difference-based measures 36

are not appropriate to quantify tail asymmetry of the skew-normal copula since values 37

of these measures tend to be small even for large values of ‖δ‖. On the other hand, the 38

measure (1) returns reasonable values for such values of δ because this measure is based 39

on the ratio between upper and lower tail probabilities. To the best of our knowledge, the 40

measure (1) is the only ratio-based measure of upper and lower tail probabilities, which 41

seems appropriate to measure the tail asymmetry of the skew-normal copula. 42

The organization of this paper is as follows. In Section 2, we review the concept of 43

tail order and skew-normal copulas. In Section 3, we derive a formula of the measure of 44

tail asymmetry in terms of the upper and lower tail orders. We also explore the measure 45

and its asymptotic behavior for the skew-normal copula. Numerical experiments are 46

provided in Section 4, where we reveal some situations when some asymptotic formulas of 47

the skew-normal copula proposed in the literature are not appropriate to use . Section 5 48

concludes this paper. Detailed calculations and all proofs are deferred to Appendices A 49

and B, respectively. 50

2. Preliminaries 51

We begin with introducing some concepts and notations. Two functions f , g : R → R 52

are called asymptotically equivalent at a ∈ R = R∪ {±∞}, denoted by f (x) ∼ g(x), x → a, 53

if limx→a f (x)/g(x) = 1. A function f : R → R is called slowly varying at a ∈ [0, ∞] if 54
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limx→a f (tx)/ f (x) = 1 for any t ∈ (0, ∞). The set of all slowly varying functions at a is 55

denoted by SVa. Throughout the paper, all vectors in the form (x1, . . . , xn), n ∈ N, are 56

understood as column vectors. 57

2.1. Tail order and tail order parameter 58

According to [10], a d-dimensional copula C is said to have the lower tail order κL(C) ≥ 1
if

C(u, . . . , u) ∼ uκL(C)ℓL(u), u ↓ 0, (3)

where ℓL ∈ SV0. If, in addition, the limit limu↓0 ℓL(u) = ℓ∗L(C) exists, then C is said to have
the lower tail order parameter ℓ∗L(C) ∈ [0, ∞]. The copula C is called (lower) tail dependent
when κL(C) = 1. In this case, ℓ∗L(C) is known as the (lower) tail dependence coefficient (TDC).
The case κL(C) = d is referred to as the tail independence. When 1 < κL(C) < d, C is said to
have intermediate tail dependence. As such the model (3) can capture weaker tail dependence
that the TDC cannot. Similarly to the lower case, C is said to have the upper tail order
κU(C) ≥ 1 and the upper tail order parameter ℓ∗U(C) ∈ [0, ∞] if

C(1 − u, . . . , 1 − u) ∼ uκU(C)ℓU(u), u ↓ 0, (4)

where ℓU ∈ SV0 is such that limu↓0 ℓU(u) = ℓ∗U(C). 59

2.2. The skew-normal copula 60

Let Y ∼ SNd(δ, Ψ) follow a d-dimensional skew-normal distribution defined via the
stochastic representation (2). According to [3], the joint probability density functions (pdf)
of Y is given by

fSN(y; α, Ω) = 2φd(y; Ω)Φ(α⊤y), y ∈ R
d,

where φd(·; Ω) is the pdf of Nd(0, Ω) and the parameters Ω ∈ Pd and α ∈ Rd are specified
via

Ω = ∆(Ψ + ζζ⊤)∆, (5)

α =
Ω

−1δ
√

1 − δ⊤
Ω−1δ

=
∆
−1

Ψ
−1ζ

√

1 + ζ⊤Ψ−1ζ

, (6)

where

∆ = diag

(

√

1 − δ2
1 , . . . ,

√

1 − δ2
d

)

,

ζ = (ζ1, . . . , ζd), ζ j =
δj

√

1 − δ2
j

, j ∈ {1, . . . , d}.

The marginal pdf of Yj, j ∈ {1, . . . , d}, is given by

fSN(yj; δj) = 2φ(yj)Φ(ζ jyj), yj ∈ R,

where φ and Φ are pdf and cdf of N(0, 1), respectively. Note that Yj ∼ SN1(δj), j ∈
{1, . . . , d}, where SN1(δj) = SN1(δj, 1). Moreover, it follows from (2) that

−Y ∼ SN(−δ, Ψ). (7)

Skewness of the skew-normal copula is illustrated in Figure 1, where the contour plot of 61

the (symmetric) normal distribution is compared with that of the skew-normal copula with 62

its marginal distributions transformed into the standard normal distributions. 63
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Figure 1. Contour plots of the (symmetric) normal distribution with ρ = 0.5 (left) and the skew-

normal copula CSN(δ, Ψ) with (δ1, δ2, Ψ1,2) = (−0.8,−0.8, 0.5) with its marginal distributions trans-

formed into the standard normal distributions (right).

The skew-normal distribution can be written in terms of the conditional distribution
of the normal distribution. More precisely, it is shown in [3, Section 2.2] that

(X1, . . . , Xd) | {X0 > 0} ∼ SN(δ, Ψ), (8)

where (X0, X1, . . . , Xd) ∼ Nd+1(0d+1, Ω
∗(δ)) with the extended correlation matrix

Ω
∗(δ) =

(

1 δ⊤

δ Ω

)

∈ Pd+1. (9)

This representation allows us to write the cdfs of SNd(δ, Ψ) and its copula as follows. 64

Lemma 1. Let FSN(·; δ, Ψ) be the cdf of Y ∼ SNd(δ, Ψ) with marginal cdfs FSN(·; δj), j ∈
{1, . . . , d}. Then

FSN(y; δ, Ψ) = 2Φd+1((0, y); Ω
∗(−δ)), (10)

where Φd+1(·; Ω
∗(−δ)) is the cdf of Nd+1(0d+1, Ω

∗(−δ)). Therefore, the cdf of the skew-normal
copula CSN(·; δ, Ψ) can be written by

CSN(u; δ, Ψ) = 2Φd+1((0, F−1
SN (u1; δ1), . . . , F−1

SN (ud; δd)); Ω
∗(−δ)). (11)

3. Tail asymmetry of the skew-normal copula 65

In this section we explore tail asymmetry of the skew-normal copula via the measure (1) 66

and its asymptotic behavior. We will show in Proposition 1 that the measure (1), after 67

properly scaled, quantifies the difference between the upper and lower tail orders when 68

they differ. Moreover, when the upper and lower tail orders coincide, the measure (1) 69

quantifies the difference between the upper and lower tail order parameters. These results 70

support the use of the measure (1) for quantifying tail asymmetry of the skew-normal 71

copula since, to our knowledge, difference-based measures of asymmetry proposed in the 72

literature do not measure tail asymmetry properly when the upper and lower tail indices 73

are not equal. 74

3.1. Measure of tail asymmetry and tail order 75

This section explores the relationship between the measure of tail asymmetry (1) and 76

the tail order. To this end, suppose that a bivariate copula C satisfies (3) and (4). 77

The next proposition states that the measure of tail asymmetry (1) can be asymptoti- 78

cally represented in terms of the difference between the upper and lower tail indices. 79
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Proposition 1 (Measure of tail asymmetry and tail order). Let C be a bivariate copula with
lower and upper tail orders κL(C) and κU(C), respectively. If κU(C) 6= κL(C), then

νC(u) ∼ {κU(C)− κL(C)} log u, u ↓ 0. (12)

If κU(C) = κL(C) and C admits the upper and lower tail order parameters ℓ∗U(C), ℓ
∗
L(C) ∈ (0, ∞),

then

νC(u) ∼ log

(

ℓ∗U(C)
ℓ∗L(C)

)

. (13)

Remark 1 (Relationship with TDCs). Equation (13) implies that the limit of νC(u) as u ↓ 0 is 80

obtainable from upper and lower TDCs. Indeed, if κU(C) = κL(C) = 1, ℓ∗U(C) and ℓ∗L(C) corre- 81

spond to upper and lower TDCs, respectively. Then limu↓0 νC(u) is a straightforward calculation 82

from (13). This result can be applied to evaluate the limit of νC(u) of, for example, the skew-t 83

distribution, whose upper and lower TDCs are available; see [11]. 84

3.2. Measure of tail asymmetry of the skew-normal copula 85

From this section we focus on the bivariate case d = 2. Let ρ̃ ∈ (−1, 1) be the off-
diagonal entry of Ψ and ρ ∈ (−1, 1) be that of Ω. We denote, for example, the bivariate case
of CSN(·; δ, Ψ) by CSN(·; δ, ρ̃) for notational simplicity. Note that ρ̃ is the partial correlation
of Y1 and Y2 given Z0, where Z0, Y1 and Y are those used in (2). By calculation, it holds that

ρ = ρ̃
√

(1 − δ2
1)(1 − δ2

2) + δ1δ2. (14)

By selecting (δ1, δ2) ∈ (−1, 1)2 and ρ̃ ∈ (−1, 1) independently, the range of the parameter
ρ implied by (14) is given by

δ1δ2 −
√

(1 − δ2
1)(1 − δ2

2) < ρ < δ1δ2 +
√

(1 − δ2
1)(1 − δ2

2). (15)

Moreover, in the bivariate case, the parameter α is given by

α =
1

√

(1 − ρ2)(1 − ρ̃2)(1 − δ2
1)(1 − δ2

2)

(

δ1 − ρδ2

δ2 − ρδ1

)

. (16)

The reader is referred to Appendix A.1 for detailed derivations of (14) and (16). 86

We first consider the case of a finite threshold u ∈ (0, 1/2]. In this case, the measure of 87

tail asymmetry (1) of the skew-normal copula can be evaluated by the following proposition. 88

Note that we denote by νSN(u; δ, ρ̃) the measure (1) of the skew-normal copula CSN(·; δ, ρ̃). 89

Proposition 2 (Measure of tail asymmetry of the skew-normal copula). Let CSN(·; δ, ρ̃) be
the skew-normal copula with δ ∈ (−1, 1)2 and ρ̃ ∈ (−1, 1). Then its measure of tail asymmetry (1)
for a finite threshold u ∈ (0, 1/2] is given by

νSN(u; δ, ρ̃) = log

(

CSN(u, u;−δ, ρ̃)

CSN(u, u; δ, ρ̃)

)

= log





Φ3

(

(0, F−1
SN (u;−δ1), F−1

SN (u;−δ2)); Ω
∗(δ)

)

Φ3

(

(0, F−1
SN (u; δ1), F−1

SN (u; δ2)); Ω∗(−δ)
)



, (17)
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Figure 2. The measure of tail asymmetry νSN(u; δ, ρ̃), u = 0.01, for different parameters of the

skew-normal copula with δ1 = δ2 = δ.

where

Ω
∗(δ) =









1 δ1 δ2

δ1 1 ρ̃
√

1 − δ2
1

√

1 − δ2
2 + δ1δ2

δ2 ρ̃
√

1 − δ2
1

√

1 − δ2
2 + δ1δ2 1









.

The formula (17) enables us to numerically compute νSN(u; δ, ρ̃) for a finite threshold 90

u ∈ (0, 1/2]. For an illustrative example, Figure 2 provides curves of νSN(u; δ, ρ̃), u = 0.01, 91

for the skew-normal copula with different parameters. The function Φ3 in (17) is evaluated 92

by pmvnorm(algorithm = TVPACK) [12] in the R package mvtnorm. We observe that the 93

measure νSN(u; δ, ρ̃) is symmetric in δ with respect to δ = 0, and is monotonically changing 94

in ρ̃. 95

We next consider the asymptotic behavior of ν(u) for an extremely large and small
thresholds. Summarizing the existing results in the literature, we have that

κL(CSN; δ, ρ̃) =

{

2
1+ρ̃ , if δ1, δ2 ≥ 0,

2
1+ρ , if δ1, δ2 ≤ 0;

(18)

see Appendix A.2 for detailed calculations. Together wtih κU(CSN; δ, ρ̃) = κL(CSN;−δ, ρ̃), 96

we obtain the following result. 97

Proposition 3 (Asymptotic behavior of the measure of tail asymmetry of the skew-normal
copula). Let CSN(·; δ, ρ̃) be the skew-normal copula with δ = (δ1, δ2) ∈ (−1, 1)2 and ρ̃ ∈
(−1, 1). Suppose that δ1 and δ2 have the same sign, which includes the case when at least one of
them is zero. Then the measure of tail asymmetry (1) of CSN(·; δ, ρ̃) satisfies

lim
u↓0

νSN(u; δ, ρ̃)

log u
= sign(δ1, δ2)

(

2

1 + ρ
− 2

1 + ρ̃

)

, (19)

where

sign(δ1, δ2) =

{

1, if δ1 ≥ 0 and δ2 ≥ 0,

−1, if δ1 ≤ 0 and δ2 ≤ 0.
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Figure 3. The measure of tail asymmetry νSN(u; δ, ρ̃) against − log(u) for different skewness parame-

ters δ of the skew-normal copula with ρ̃ = 0.
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Figure 4. Values of log λL(u; δ, ρ̃), u = 0.01, computed by (21) with the algorithm TVPACK.

Remark 2 (δ1 and δ2 with opposite signs). It is assumed in Proposition 3 that δ1 and δ2 have 98

the same sign. However, the upper and lower tail orders of the bivariate skew-normal copula are 99

investigated in [13] for more general δ1 and δ2. Based on their results, analytical expression of the 100

limit limu↓0 νSN(u; δ, ρ̃)/ log u can be derived even for δ1 and δ2 with opposite signs although the 101

expression may not be as simple as (19). 102

Note that νSN(u; δ, ρ̃) = 0 for every u ∈ (0, 1/2] if δ = 0. The asymptotic behavior of 103

νSN(u; δ, ρ̃) as u ↓ 0 is illustrated in Figure 3, where νSN(u; δ, ρ̃) is evaluated by (17) with 104

the algorithm TVPACK. It is observed that the curves of νSN(u; δ, ρ̃) against − log(u) are 105

asymptotically linear. 106

Remark 3 (Measure of tail asymmetry and TDCs). The measure of tail asymmetry (1) of the
skew-normal copula can also be written by

νSN(u; δ, ρ̃) = log

(

λL(u;−δ, ρ̃)

λL(u; δ, ρ̃)

)

, (20)

where

λL(u; δ, ρ̃) =
CSN(u, u; δ, ρ̃)

u
. (21)

The value λL(u; δ, ρ̃) for a finite u ∈ (0, 1/2] can be computed by (17) with the algorithm TVPACK. 107

Figure 4 shows the curves of log λL(0.01; δ, ρ̃) against δ for various correlation parameters. It is 108
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observed that λL(0.01; δ, ρ̃) increases as |δ| goes to 1; moreover, λL(0.01; δ, ρ̃) is higher for δ < 0 109

than for δ > 0. 110

Remark 4 (Asymptotic formulas of the TDCs). It is shown in [14] that

λL(u; 0, ρ) ∼ u
1−ρ
1+ρ (1 + ρ)

√

1 + ρ

1 − ρ
(−4π log u)

− ρ
1+ρ , u ↓ 0. (22)

Moreover, [15, Theorem 2] shows that, for u ↓ 0,

λL(u; δ12, ρ) ∼











uβ2 (2πλ)β2

√
πβ(1+β2)2 (− log u)β2− 1

2 , if δ > 0,

u
1−ρ
1+ρ

(

1+ρ
2

)√

1+ρ
1−ρ (−π log u)

− ρ
1+ρ , if δ < 0,

(23)

where λ = ζ = α(1 + ρ)/
√

1 + α2(1 − ρ2), α = α1 = α2, ζ = ζ1 = ζ2 and β is defined in (A2) 111

such that β2 + 1 = 2/(1 + ρ̃). 112

The following asymptotic formulas of λL are also given in [16, Appendix B] based on the tail
expansion of the skew-normal copula.

λL(u; δ12, ρ̃) ∼







κ−1uκ−1(−2 log u)κ− 3
2 , if δ > 0,

(

1+ρ
2

)

u
1−ρ
1+ρ (−2 log u)

− ρ
1+ρ , if δ < 0,

(24)

where

κ =
2(1 − δ2)

1 + ρ − 2δ2
=

2

1 + ρ̃
.

Note that the asymptotic formulas in (24) are slightly different from those in (23), but they lead to 113

the same tail order. With this observation, the asymptotic formulas (22), (23) and (24) yield the 114

same limit (19) by using (20). 115

4. Accuracy of the asymptotic formulas 116

In Section 3, various approaches are provided to compute the measure of tail asym- 117

metry of the skew-normal copula. It is partly observed in Figure 3 that the formula (17) 118

with the algorithm TVPACK gives results consistent with the asymptotic formula (19). As 119

mentioned in Remark 4, the measure of tail asymmetry (1) can also be computed from 120

the asymptotic formulas (22), (23) and (24) derived in the literature. In line with this, this 121

section explores the performance of these asymptotic formulas in a series of numerical 122

experiments. For ease of illustration, we focus on the equi-skewed case δ1 = δ2 = δ. 123

We first compute the value of λL(u; δ12, ρ̃) for u = 0.01 as an extremely small u by 124

(21) and (11) with Φ3 evaluated by pmvnorm(algorithm = TVPACK) [12] in the R package 125

mvtnorm. Figure 5 plots the contour of log λL(0.01; δ12, ρ̃) for δ ∈ [−0.999, 0.999] and ρ̃ ∈ 126

[−0.8, 0.999] by using (11). The range of ρ̃ is restricted due to the numerical limitation. We 127

observe that log λL(0.01; δ12, ρ̃) approaches 0 as ρ̃ and |δ| go to 1, which is consistent with 128

the fact that the skew-normal copula is comonotonic for these parameters. Monotonicity 129

of the function λL(u; δ12, ρ̃) with respect to δ is also indicated from Figure 5. Namely, it is 130

observable that the value of log λL(0.01; δ12, ρ̃) for a fixed ρ̃ is monotonically decreasing for 131

δ < 0 and increasing for δ > 0, and thus the minimum is attained at δ = 0. For special cases, 132

if ρ = 0, the correlation between Y1 and Y2 in (2) is given by δ2. If δ = ±1, the correlation 133

is one, the variables are comonotonic, and thus log λL(u;±12, 0) = log 1 = 0. If δ = 0, the 134

variables are independent and thus log λL(u; 02, 0) = log u. 135

Next, we demonstrate the performance of the asymptotic formulas presented in Re- 136

mark 4. Figure 6 plots the contour of the difference of log λL(0.01; δ12, ρ̃) based on the 137

asymptotic formula (23) and that based on the numerical evaluation of (21) with the algo- 138
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Figure 5. Contour of log λL(0.01; δ12, ρ̃) for δ ∈ [−0.999, 0.999] and ρ ∈ [−0.8, 0.999] based on (21)

with the algorithm TVPACK.

rithm TVPACK. The same plot is provided for the asymptotic formula (24) instead of (23). 139

Interestingly, we observe that the two asymptotic formulas perform well on the different 140

areas of the parameter range. In particular, the difference of the asymptotic approximation 141

based on the formula (23) is large around the boundaries. Discontinuity of the asymptotic 142

formulas is also observed around δ = 0, which is more visible for the formula (23). 143

5. Conclusion 144

In this paper we explored the measure of tail asymmetry proposed in [9], and its 145

asymptotic behavior. We showed that the measure, after properly scaled, is asymptotically 146

equivalent to the difference of the upper and lower tail orders [10]. Based on this result, 147

we derived an analytical expression of the measure of tail asymmetry for the skew-normal 148

copula. The performance of this formula is verified by comparing it to another analytical 149

formula with a finite threshold. We also investigated the asymptotic formulas of the 150

TDC of the skew-normal copula proposed in the literature. Our numerical experiments 151

revealed that these formulas perform well for moderate values of parameters, but are not 152

recommendable for approximating the measure of tail asymmetry with finite thresholds 153

when the parameters are at their boundaries. 154
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Appendix A. Detailed calculations 165

Appendix A.1. Parameters of the bivariate skew-normal copula 166

In this section we describe detailed derivations of (14) and (16). 167

For the 2 × 2 correlation matrices Ω and Ψ, let ρ = Ω12 = Ω21 and ρ̃ = Ψ12 = Ψ21.
Then,

ρ = cor(Y1, Y2) = ρ̃∆1∆2 + δ1δ2, ∆1 =
√

1 − δ2
1 , ∆2 =

√

1 − δ2
2 .
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Figure 6. (Top) Contour of the difference of log λL(0.01; δ12, ρ̃) based on the asymptotic formula (23)

and that based on the numerical evaluation of (21) with the algorithm TVPACK for δ ∈ [−0.999, 0.999]

and ρ̃ ∈ [−0.8, 0.999]. (Bottom) The same contour plot based on the asymptotic formula (24) instead

of (23).

Here, ρ̃ is the partial correlation of Y1 and Y2 given that Z0 is fixed in the trivariate random
vector (Z0, Y1, Y2) given in (2). By using (5), we have

Ω = ∆

(

Ψ + ζζ⊤
)

∆ = ∆

((

1 ρ̃

ρ̃ 1

)

+

(

ζ2
1 ζ1ζ2

ζ1ζ2 ζ2
2

))

∆,

where

∆ =

(

∆1 0
0 ∆2

)

=





√

1 − δ2
1 0

0
√

1 − δ2
2



 =





1/
√

1 + ζ2
1 0

0 1/
√

1 + ζ2
2



.

Hence, we have that

Ω =

(

1 ρ

ρ 1

)

= ∆

(

1 + ζ2
1 ρ̃ + ζ1ζ2

ρ̃ + ζ1ζ2 1 + ζ2
2

)

∆

=





1
ρ̃+ζ1ζ2√

1+ζ2
1

√
1+ζ2

2
ρ̃+ζ1ζ2√

1+ζ2
1

√
1+ζ2

2

1



 =

(

1 ρ̃∆1∆2 + δ1δ2

ρ̃∆1∆2 + δ1δ2 1

)

,

which yields (14). 168
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Next we check α. By using

Ω
−1δ =

1

1 − ρ2

(

1 −ρ

−ρ 1

)(

δ1

δ2

)

=
1

1 − ρ2

(

δ1 − ρδ2

δ2 − ρδ1

)

,

1 − δ⊤
Ω

−1δ =
1 − ρ2 − δ2

1 + 2ρδ1δ2 − δ2
2

1 − ρ2
,

we have from (6) that

α =
Ω

−1δ
√

1 − δ⊤
Ω−1δ

=
1

√

(1 − ρ2)
(

1 − ρ2 − δ2
1 + 2ρδ1δ2 − δ2

2

)

(

δ1 − ρδ2

δ2 − ρδ1

)

. (A1)

Recall that the extended correlation matrix Ω
∗(δ) in (9) is given by

Ω
∗(δ) =





1 δ1 δ2

δ1 1 ρ

δ2 ρ 1



.

Since
det Ω

∗(δ) = 1 − ρ2 − δ2
1 + 2ρδ1δ2 − δ2

2 ,

the parameter α in (A1) is given by

α =

(

α1

α2

)

=
1

√

(1 − ρ2)det Ω∗(δ)

(

δ1 − ρδ2

δ2 − ρδ1

)

.

Note that this representation coincides with that in [16, Appendix B], where (α1, α2) and
Ω

∗(δ) are denoted by (β1, β2) and R, respectively. Since

det Ω
∗(δ) =1 − ρ2 − δ2

1 + 2ρδ1δ2 − δ2
2

= 1 − (ρ̃∆1∆2 + δ1δ2)
2 − δ2

1 + 2(ρ̃∆1∆2 + δ1δ2)δ1δ2 − δ2
2

= 1 + δ2
1δ2

2 − ρ̃2
(

1 − δ2
1

)(

1 − δ2
2

)

− δ2
1 − δ2

2

=
(

1 − ρ̃2
)(

1 − δ2
1

)(

1 − δ2
2

)

,

we obtain (16). 169

Appendix A.2. Tail orders of the bivariate skew-normal copula 170

In this section we summarize tail orders of the bivariate skew-normal copula known 171

in the literature. Since κU(CSN; δ, ρ̃) = κL(CSN;−δ, ρ̃), we study only the lower tail order 172

κL(CSN; δ, ρ̃), ρ̃ ∈ (−1, 1), for various δ = (δ1, δ2) ∈ (−1, 1)2. Moreover, we focus on the 173

case when δ1 and δ2 have the same sign, that is, either δ1, δ2 ≥ 0 or δ1, δ2 ≤ 0. In this case, 174

we will show below that the lower tail order is summarized by (18). The interested reader 175

is referred to [13] for more general cases of the skewness parameter. Note that the explicit 176

forms of the tail orders of the skew-normal copula can also be found, for example, in [13,15] 177

and [16]. Although they cover different cases of the parameters, their results are consistent 178

with each other. 179

Case I: δ1 = δ2 = δ 180

We first consider the equi-skewed case δ1 = δ2 = δ ∈ (−1, 1). It follows from [15,
Theorem 2] that

κL(CSN; δ, ρ̃) =

{

β2 + 1, if α > 0,
2

1+ρ , if α < 0,
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where

α =
δ

√

(1 + ρ̃)(1 + ρ)(1 − δ2)
,

and

β =

√

(1 − ρ)(1 + 2(1 + ρ)α2)

1 + ρ
, (A2)

and thus, by calculation,

β2 + 1 =
1 − ρ̃

1 + ρ̃
+ 1 =

2

1 + ρ̃
.

Note that the signs of α and δ are identical, and that δ = 0 if and only if α = 0. When δ = 0,
we have that

κL(CSN; 0, ρ̃) =
2

1 + ρ̃
=

2

1 + ρ
;

see also Li and Joe [16, Appendix B]. 181

Case II: δ1, δ2 < 0 182

It is shown in [13] that

κL(CSN; δ, ρ̃) =
2

1 + ρ
,

which is also derived in [16]. Note that the condition ∆1α1 + ∆2α2 < 0 is imposed in [16],
and this condition is implied by (15). Indeed, we have from (16) that

∆1α1 + ∆2α2 =
∆1(δ1 − ρδ2) + ∆2(δ2 − ρδ1)
√

(1 − ρ2)det Ω∗(δ)
, (A3)

and thus the sign of ∆1α1 + ∆2α2 equals to that of the numerator of the right-hand side of
(A3). From (15), the inequality ∆1δ2 + ∆2δ1 < 0 implies that

∆1(δ1 − ρδ2) + ∆2(δ2 − ρδ1) = ∆1δ1 + ∆2δ2 − ρ(∆1δ2 + ∆2δ1)

< ∆1δ1 + ∆2δ2 − (δ1δ2 + ∆1∆2)(∆1δ2 + ∆2δ1)

= ∆1δ1 + ∆2δ2 − ∆1δ1δ2
2 − ∆2δ2

1δ2 − ∆2

(

1 − δ2
1

)

δ2 − ∆1

(

1 − δ2
2

)

δ1 = 0,

and thus ∆1α1 + ∆2α2 < 0. 183
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Case III: δ1, δ2 > 0 184

It is shown in [13] that

κL(CSN : δ, ρ̃) = κU(CSN : −δ, ρ̃)

=
1

1 − ρ2







1 + α2
1

(

1 − ρ2
)

1 + ζ2
1

+
1 + α2

2

(

1 − ρ2
)

1 + ζ2
2

+
2
(

α1α2

(

1 − ρ2
)

− ρ
)

√

(

1 + ζ2
1

)(

1 + ζ2
2

)







=
1

1 − ρ2







1

1 + ζ2
1

+
1

1 + ζ2
2

− 2ρ
√

(

1 + ζ2
1

)(

1 + ζ2
2

)

+
(

1 − ρ2
)





α1
√

1 + ζ2
1

+
α2

√

1 + ζ2
2





2










=
∆

2
1 + ∆

2
2 − 2ρ∆1∆2

1 − ρ2
+ (∆1α1 + ∆2α2)

2. (A4)

Note that, in [13], ζ1 and ζ2 above are denoted by λ1 and λ2, respectively. The formula (A4)
is also derived in Appendix B of [16]. Note again that the condition ∆1α1 + ∆2α2 > 0
imposed in [16] is implied by (15). We will check that

∆
2
1 + ∆

2
2 − 2ρ∆1∆2

1 − ρ2
+ (∆1α1 + ∆2α2)

2 =
2

1 + ρ̃
, (A5)

that is, the expression (A4) can be simplified as

κL(CSN : δ, ρ̃) = κU(CSN : −δ, ρ̃) =
2

1 + ρ̃
.

First, by multiplying
(

1 − ρ2
)

on the right-hand side of (A5), the desired equation is
equivalent to

∆
2
1 + ∆

2
2 − 2ρ∆1∆2 +

(

1 − ρ2
)

(∆1α1 + ∆2α2)
2 =

2(1 − ρ̃)
(

1 − ρ2
)

(1 − ρ̃2)
,

which is also equivalent to

(1 − ρ̃2)∆2
1∆

2
2

{

∆
2
1 + ∆

2
2 − 2ρ∆1∆2 +

(

1 − ρ2
)

(∆1α1 + ∆2α2)
2
}

= 2(1 − ρ̃)
(

1 − ρ2
)

∆
2
1∆

2
2

(A6)

by multiplying
(

1 − ρ̃2
)

∆
2
1∆

2
2 on both sides. Since

(∆1α1 + ∆2α2)
2 =

{(δ1 − ρδ2)∆1 + (δ2 − ρδ1)∆2}2

(1 − ρ2)(1 − ρ̃2)
(

1 − δ2
1

)(

1 − δ2
2

) ,

the left-hand side of (A6) reduces to

(1 − ρ̃2)∆2
1∆

2
2(∆

2
1 + ∆

2
2)− 2ρ(1 − ρ̃2)∆3

1∆
3
2 + {(δ1 − ρδ2)∆1 + (δ2 − ρδ1)∆2}2. (A7)

The last two terms of (A7) are expanded into

−2ρ
(

1 − ρ̃2
)

∆
3
1∆

3
2 + {(δ1 − ρδ2)∆1 + (δ2 − ρδ1)∆2}2

= −2ρ
(

1 − ρ̃2
)

∆
3
1∆

3
2 + 2(δ1 − ρδ2)(δ2 − ρδ1)∆1∆2

+ (δ1 − ρδ2)
2
∆

2
1 + (δ2 − ρδ1)

2
∆

2
2.

(A8)
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By using δ1δ2 − ρ = −ρ̃∆1∆2, the coefficient of ∆1∆2 at the first two terms in the right-hand
side of (A8) is given by

− 2ρ
(

1 − ρ̃2
)(

1 − δ2
1

)(

1 − δ2
2

)

+ 2(δ1 − ρδ2)(δ2 − ρδ1)

= −2ρ
(

1 − δ2
1 − δ2

2 + δ2
1δ2

2

)

+ 2ρρ̃2
(

1 − δ2
1

)(

1 − δ2
2

)

+ 2
(

δ1δ2 − ρδ2
1 − ρδ2

2 + ρ2δ1δ2

)

= 2
(

δ1δ2 − ρ − ρδ2
1δ2

2 + ρ2δ1δ2

)

+ 2ρρ̃2
(

1 − δ2
1

)(

1 − δ2
2

)

= −2ρ̃(1 − ρδ1δ2)∆1∆2 + 2ρρ̃2
∆

2
1∆

2
2

= −2ρ̃(1 − ρδ1δ2 − ρρ̃∆1∆2)∆1∆2

= −2ρ̃
(

1 − ρ2
)

∆1∆2.

(A9)

By using ρ = ρ̃∆1∆2 + δ1δ2, the last two terms of the right-hand side of (A8) are rearranged
as follows:

(δ1 − ρδ2)
2
∆

2
1 + (δ2 − ρδ1)

2
∆

2
2

=
(

δ1

(

1 − δ2
2

)

− ρ̃∆1∆2δ2

)2
∆

2
1 +

(

δ2

(

1 − δ2
1

)

− ρ̃∆1∆2δ1

)2
∆

2
2

=
{

(δ1∆2 − ρ̃∆1δ2)
2 + (δ2∆1 − ρ̃∆2δ1)

2
}

∆
2
1∆

2
2

=
{(

δ2
1 + δ2

2 − 2δ2
1δ2

2

)(

1 + ρ̃2
)

− 4ρ̃δ1δ2∆1∆2

}

∆
2
1∆

2
2.

(A10)

Combining (A9) and (A10), the term (A8) reduces to

−2ρ
(

1 − ρ̃2
)

∆
3
1∆

3
2 + {(δ1 − ρδ2)∆1 + (δ2 − ρδ1)∆2}2

=
{

−2ρ̃
(

1 − ρ2
)

+
(

δ2
1 + δ2

2 − 2δ2
1δ2

2

)(

1 + ρ̃2
)

− 4ρ̃δ1δ2∆1∆2

}

∆
2
1∆

2
2.

Therefore, the desired equation (A6) is now

(1 − ρ̃2)
{

∆
2
1 + ∆

2
2 − 2ρ∆1∆2 +

(

1 − ρ2
)

(∆1α1 + ∆2α2)
2
}

= 2(1 − ρ̃)
(

1 − ρ2
)

,

which can be checked as follows:

(1 − ρ̃2)
{

∆
2
1 + ∆

2
2 − 2ρ∆1∆2 +

(

1 − ρ2
)

(∆1α1 + ∆2α2)
2
}

=
(

2 − δ2
1 − δ2

2

)(

1 − ρ̃2
)

− 2ρ̃
(

1 − ρ2
)

+
(

δ2
1 + δ2

2 − 2δ2
1δ2

2

)(

1 + ρ̃2
)

− 4ρ̃δ1δ2∆1∆2

= 2
(

1 − δ2
1δ2

2 − ρ̃2
∆

2
1∆

2
2 − 2ρ̃δ1δ2∆1∆2

)

− 2ρ̃
(

1 − ρ2
)

= 2(1 − ρ2)− 2ρ̃(1 − ρ2)

= 2(1 − ρ̃)
(

1 − ρ2
)

.

Case IV: One of δ1 and δ2 is zero and the other is negative 185

By symmetry, it suffices to consider the case when δ1 = 0 and δ2 < 0. In this case, [13] 186

shows that κL(CSN : δ, ρ̃) = 2/(1 + ρ). 187
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Case V: One of δ1 and δ2 is zero and the other is positive 188

By symmetry, it suffices to consider the case when δ1 = 0 and δ2 > 0. In this case, [13]
shows that, if α1 + α2∆2 > 0, then

κL(CSN : δ, ρ̃) =
(∆2 − ρ)2

(1 − ρ2)
+ (α1 + α2∆2)

2 + 1.

The condition α1 + α2∆2 > 0 is always satisfied since

α1 + α2∆2 =
δ2(∆2 − ρ)

√

(1 − ρ2)det Ω∗(δ)

and ρ < ∆2 by (15). Since det Ω
∗(δ) = (1 − ρ̃2)(1 − δ2

2) and ρ = ρ̃∆2, we have that

(∆2 − ρ)2

(1 − ρ2)
+ (α1 + α2∆2)

2 =
(∆2 − ρ)2{δ2

2 + det Ω
∗(δ)}

(1 − ρ2)det Ω∗(δ)

=
(1 − ρ̃)2(1 − ρ̃2 + ρ̃2δ2

2)

(1 − ρ2)(1 − ρ̃2)

=
(1 − ρ̃)(1 − ρ̃2(1 − δ2

2))

(1 − ρ2)(1 + ρ̃)

=
1 − ρ̃

1 + ρ̃
.

Therefore,

κL(CSN : δ, ρ̃) =
(∆2 − ρ)2

(1 − ρ2)
+ (α1 + α2∆2)

2 + 1 =
2

1 + ρ̃
.

Appendix B. Proofs 189

Proof of Lemma 1. By (8), it holds that

(X′
1, . . . , X′

d) | {X′
0 > 0} ∼ SN(−δ, Ψ),

where (X′
0, X′

1, . . . , X′
d) ∼ Nd+1(0d+1, Ω

∗(−δ)). By (7), we have

−(X′
1, . . . , X′

d) | {−X′
0 < 0} ∼ SN(δ, Ψ).

Since −(X′
0, X′

1, . . . , X′
d) ∼ Nd+1(0d+1, Ω

∗(−δ)), we obtain (10). 190

According to Sklar’s theorem [17], the skew-normal copula CSN(·; δ, Ψ) has the cdf

CSN(u; δ, Ψ) = FSN(F−1
SN (u1; ζ1), . . . , F−1

SN (ud; ζd); δ, Ψ).

Then (11) follows directly from (10). 191

Proof of Proposition 1. By (3) and (4), we have, as x → ∞,

νC(1/x) = log

(

C(1 − 1/x, 1 − 1/x)

C(1/x, 1/x)

)

∼ log

(

x−κU(C)ℓU(1/x)

x−κL(C)ℓL(1/x)

)

∼ {κU(C)− κL(C)} log

(

1

x

)

+ log ℓU(1/x)− log ℓL(1/x).

This immediately implies (13). Notice that the functions x 7→ ℓU(1/x) and x 7→ ℓL(1/x) 192

are slowly varying at ∞. Together with [18, Proposition 2.6 (i)], we obtain (12). 193
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Proof of Proposition 2. Notice from (7) that

CSN(1 − u1, 1 − u2; δ, ρ̃) = CSN(u1, u2;−δ, ρ̃), (u1, u2) ∈ (0, 1)2. (A11)

By (11), it holds that

νSN(u; δ, ρ̃) = log

(

CSN(1 − u, 1 − u; δ, ρ̃)

CSN(u, u; δ, ρ̃)

)

= log

(

CSN(u, u;−δ, ρ̃)

CSN(u, u; δ, ρ̃)

)

= log





Φ3

(

0, F−1
SN (u;−δ1), F−1

SN (u;−δ2); Ω
∗(δ)

)

Φ3

(

0, F−1
SN (u; δ1), F−1

SN (u; δ2); Ω∗(−δ)
)



,

which completes the proof. 194

Proof of Proposition 3. By (A11), it holds that κU(CSN; δ, ρ̃) = κL(CSN;−δ, ρ̃). Then the 195

formula (19) follows directly from (12) in Proposition 1 and the detailed calculations 196

provided in Appendix A.2, which is also summarized in (18). 197
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