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Simple Summary: Brain tumours are abnormal growth of cells in the human brain. Continuous
effort is being made towards improving diagnosis and treatment options for such brain neoplasms.
Manual classification and segmentation of imaging scans is tedious, time-consuming, and
subjective. Over the last decade, the use of intelligent systems in the form of Clinical Decision
Support Systems (CDSSs) to assist in identifying, classifying, and evaluating brain tumours has seen
a rise. CDSS can be used as a supportive tool for clinicians to deal with complex medical decisions
and improve healthcare delivery. This review aims to systematically identify different types of
CDSSs used in brain tumour diagnosis and prognosis, through medical imaging. It analyses various
CDSS tool types, techniques used, accuracy, and outcome, to provide the latest evidence available
in this field of research.

Abstract: The abnormal accumulation of cells in the human brain, if left untreated, may cause brain
damage. Management and treatment of these tumours require an early and accurate diagnosis,
while their prognostic characterisation can also be beneficial in the choice of care planning for the
patient. CDSSs are being continuously developed and integrated into routine clinical practice as
they assist clinicians and radiologists to deal with an enormous amount of medical data, reduce
clinical errors, and improve diagnostic capabilities. They assist detection, classification, and grading
of brain tumours as well as alerting physicians of requirement of change in treatment plans. The
aim of this systematic review is to identify various CDSSs used in brain tumour diagnosis and
prognosis, that rely on data captured by any imaging modality. Based on the 2020 Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, the literature
search was conducted in PubMed and Engineering Village Compendex databases. This review
examines various CDSS tool types, system features, techniques used, accuracy, and outcome, to
provide the latest evidence available in the field of neuro-oncology. An overview of different types
of CDSSs used to support clinical decision-making in the management and treatment of brain
tumours, along with highlighting their benefits, challenges, and future perspectives has been
provided.

Keywords: clinical decision support system; brain tumour; brain neoplasms; diagnosis; prognosis;
systematic review

1. Introduction

Brain tumours are abnormal and uncontrolled growth of cells in the human brain that affect
usual brain functionality [1]. Brain tumours are divided into primary and secondary. Primary brain
tumours originate in the brain and can be subdivided into benign (non-cancerous) and malignant
(cancerous). Secondary brain tumours are cancerous cells expanding to the brain from other parts of
the human body [2]. World Health Organization (WHO) classifies brain tumours into four grades.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Grades 1 and 2 consist of less severe tumours such as meningiomas, while Grades 3 and 4 consist of
more severe ones such as gliomas [3]. Management and treatment of these brain neoplasms require
an understanding of the location, size, and type of tumour. Various imaging modalities such as
Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Computed
Tomography (CT) are used in the diagnosis of brain tumours. MRI is usually preferred as it is non-
ionizing and non-invasive [4]. However, manual segmentation and classification of these images are
tedious processes, prone to human error, and can be subjective. To address these challenges, Clinical
Decision Support Systems (CDSSs) are being used as a supportive tool for radiologists and clinicians
to aid in the diagnosis and prognosis of brain tumours [4].

CDSSs are primarily designed for clinicians to use at-the-point of care shown in Figure 1. A
conventional CDSS is comprised of a software designed to match patient characteristics with a
computerised medical knowledge base and present a patient-specific recommendation or evaluation
to the clinician for making an informed decision [5]. These computerised systems aid in early
detection and characterisation of brain tumours by performing automatic tumour segmentation,
differentiation, classification, and evaluation of brain imaging data [6].

(iii) Patient record

— o :
(1) User o (ii) CDSS

r ) T
(v) Output < (iv) Medical knowledge base

Figure 1. Simple diagram of a CDSS. (i) User at the point-of-care sends a healthcare query to the (ii)
CDSS that matches (iii) patient record with the (iv) medical knowledge base and responds with an (v)

output with clinical recommendations.

Available literature on CDSSs, used specifically for brain tumours, is limited to the best of our
knowledge. This systematic review is, to the best of our knowledge, the first of its kind to evaluate
different types of CDSSs used both for brain tumour diagnosis and prognosis, through medical
imaging data. The research question is to identify what CDSSs are being used in the diagnosis and
prognosis of brain tumours, to summarise the techniques used, and to evaluate their accuracy and
outcomes.

2. Method

The methodology has been divided into (i) search strategy—databases used; (ii) study
selection—keywords, and inclusion and exclusion criteria; (iii) data extraction—pre-defined data
extraction proforma; (iv) study quality assessment— to assess the quality of included studies; (v) data
synthesis—reasons for conducting a narrative and semi-quantitate review.

2.1. Search strategy

The literature search was conducted systematically in two academic databases viz., PubMed and
Engineering Village. Both databases provided all the relevant studies needed in this area of research.
For identifying medical literature in PubMed, Medical Subject Headings (MeSH) terms were used —
("decision support systems, clinical'[MeSH Terms] AND "Brain Neoplasms'[MeSH Terms]). In
Engineering Village, both controlled vocabulary and general terms were used— (( (((((cancer)) OR
((((({Tumors} WN CV) OR ({Oncology} WN CV))))))) AND ((((({Decision support systems} WN
CV))))))) AND brain). Studies published only in the English language were considered in this review.
The search was not bound by any time frame.
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2.2. Study selection

The systematic review was conducted according to the 2020 PRISMA protocol [7]. The PRISMA
flowchart has been shown in Figure 2. The literature search was conducted without any timeframe
to identify all studied published until May 2023.

[ Identification of studies via 2 databases

o
g Record&s identified Records removed before screening:
= om: Automatic deduplication on
:g PubNI_ed (n_z 36) EndNote records removed (n=4)
E Engineer:mg Manual deduplication records
% Village (n=111) removed (n-12)

Total (n=147)
—
) Records excluded based on title and

abstract screening (n=113)
Records screened

Reasons:
(n=131) Not focused onbrainimaging (n=42)
Comparing different methods (n=29)
l No CDSY/ proposed algorithm (n=42)

Reports sought for
retrieval (n=18)

|

Reports assessed for
eligibility (n=18)

Reports not retrieved (n=0)

Screening

Reports excluded based on full text
assessment:

Comparing different methods (n=1)

Studies included in
review

(n=17)

Included

Figure 2. PRISMA flow diagram for study selection.

Based on the purpose of this systematic review, there were 4 exclusion criteria (i) studies that
did not use CDSS; (ii) studies that focused on comparing different methods/ techniques; (iii) studies
that did not investigate brain tumours; (iv) studies that focused on the treatment of brain tumours.
Additionally, papers that had insufficient information on results or limited/ poor methodology were
also excluded.

2.3. Data extraction

Two authors independently performed data extraction based on a pre-defined data extraction
proforma. Any conflicts or discrepancies between the authors were resolved by a third reviewer.
Variables used for extraction of data were the year of study publication, study design, geographical
location of the research conducted, sample size, modality used, CDSS features, techniques/ methods
used, and CDSS output.

2.4. Study quality assessment

All studies included in this review have been assessed for the quality of their research. Keshav’s
5 Cs viz., category, context, clarity, correctness, and contribution [8] were used to justify including
papers in this review. Additionally, studies that had justifiable reasons for their sample size, patient
selection criteria, and methodology used, were only considered.
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2.5. Data synthesis

The identified studies were diverse in terms of their sample size, type of CDSS, and techniques
used. Hence, a meta-analysis was not performed. Rather, both a narrative and semiquantitative
summary of CDSSs used in brain tumour diagnosis and prognosis have been provided. Individual
CDSSs have been broadly categorised, as and when necessary.

3. Results

All studies included in this review answer the research question; what are the available CDSSs
being used in the diagnosis and prognosis of all types of brain tumours, what their features and
techniques are, and finally what their accuracy and outcomes are. These are covered in the following
sections.

3.1. Search results

The literature search conducted via two databases produced 146 studies out of which PubMed
identified 36, while Engineering Village identified 111 studies. Automatic de-duplication in EndNote
removed 4 studies while a manual scan removed an additional 14 duplicates, leaving 131 studies to
be evaluated for the title and abstract screening Figure 2. Based on the title and abstract 113 articles
were removed. Out of the remaining 18 studies for full-text assessment, only 1 did not fulfil all the
inclusion criteria and thus was removed. Finally, 17 articles were shortlisted for this systematic
review.

3.2. Study characteristics

All 17 studies identified were full-text articles (100%); there were no abstracts from conference
presentations. The types of study design within the review have been documented in Table 1.

Table 1. Study design.

Study design Number of papers Percentage of papers (%)
Prospective cohort study! 6 35
Retrospective study 1 6
Registry-based 10 59

! comprising of 1 parallel randomized pilot trial.

The search was not filtered by any time frame to include all available studies in this area until
30 May 2023. The distribution of studies published over time, and their geographical locations have
been described in Figure 3 (a) and (b) respectively.
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Figure 3. Demographics of included studies: (a) Distribution of studies over the years; (b) Distribution
of study geographies.
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7 studies (41%) were based on publicly available datasets, 3 studies (18%) were conducted based
on international datasets, 2 studies (12%) used regional data, and 5 studies (29%) were conducted at
a single center.

3.3. CDSSs used in the diagnosis and prognosis of brain tumours

The different types of CDSSs identified through this review, alongside the sample size, modality,
sub specific type of brain tumour, techniques, accuracy, and outcome have been listed in Table 2.

Table 2. Type of CDSS, modalities, techniques, accuracy, and outcome.

Brai
CDSS Sample Modalit rain . Accurac
Ref ... . tumour Techniques used Outcome
description size y
types
Notifies
linici ¢
Linear and exponential CCE: rcllaerésii
Data-driven Diffuse low- mathematical models with tunfour
[91 prognostic 42 MRI grade coefficient of determination 89.00% ..
. diameter and
support gliomas R? and t-test to evaluate
: - whether to
quality of model predictions )
continue/ stop
treatment
Denoising by the genetic
Diagnostic Benign: median filter, segmentation
support for training 75, by hierarchical fuzzy Analyses size
the detection testing 65 clustering, feature extraction and type of
10 MRI All 97.69%
[10] and Malignant: by GLCM and Gabor feature, ° tumour, stage of
classification training 75, feature selection by lion cancer
of tumours  testing 65 optimization, and classifier
by BSVM
Di ti
1aghostic MRI pulse fusion,
support that Low-grade segmentation by adaptive
identifies and Hospital: and }i h %hreshol din yfeatupre Detects and
[11]  grades 134, MRI & 107Cins 96.47%  specifies
. grade extraction by run length
tumoursin dataset: 80 . .. e tumours
. gliomas matrix, identification and
terms of their e »
. classification by NB classifier
severity
Di ti
1agnqs N Provides
support is not . .
. Segmentation by semi- tumour
integrated but automated 3D segmentation detection
[12] ready to be 30 MRI All gmen 99.00% v
used at local method, feature extraction by segmentation
BoW, classification by SVM and 3D
and remote . -
visualisation
level
Automatically
Diagnostic Feature extraction by differentiates
support for Glioblastoma Student’s t-test and between
[13] detection and 48 MRI and correlation analysis; 97.92%  glioblastoma
classification metastases classifiers used QDA, NB, k- multiforme and
of tumours NN, SVM and NNW solitary
metastasis
. 81 .
A multi-stage Provides
- astrocytom
classifier for . . ... accurate
MR spectra of a, 32 3 diagnostic classifiers used: redictions and
[14] . p metastases, MRS All LDA, decision trees, and k- 99.30% P
brain tumours reduces
37 NN e
developed as . classification
meningiom
errors

t of a DSS
partof a a6
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[16]

(18]

(19]

[21]

Diagnostic
support for
the detection
and
classification
of tumours
Diagnostic
support and
qualitative
evaluation of
Curiam BT

Diagnostic
support:
FASMA for
brain tumour
classification

Childhood
cancer
diagnosis by
MIROR

Diagnostic
support for
paediatric
brain tumour
characterisatio
n (part of
HealthAgents)
Diagnostic
support for
brain tumour
diagnosis and
prognosis
(part of
HealthAgents)
Diagnostic
support
automatic
classification
framework as
a part of
HealthAgents

oligodendr
oglioma, 6
lymphoma,
5 primitive
neuroectod
ermal
tumour, 4
schwanno
ma, 4
haemangio
blastomas
and 14
healthy

55

126

48

33

182

MRS

MRS

MRI/
MRS

MRI/MR

S

MRS

MRS

MRS

Non-invasive

Pattern recognition and data tumour
All .009
visualisation by LDA 90.00% diagnosis and
grading
Classification
Fisher LDA P
All 1sher a.n d Peak >83.00% and grading of
Integration .
brain tumours
CS;EEIZ:S' Used advanced
metastas?;s MRI techniques
. " SVM, LDA, k-NN and NB  >80.00% for brain
atypical
.. tumour
meningioma e
s classification
Performs non-
region-specific
89% and
All SVM and k-NN o 9/ 3 ;n quantitative
° analysis of brain
imaging data
Pilocytic
t t
Zs ;’2;}’ r(::ri Principal component Categorises
pendy analysis, linear discriminant 94.00% children’s brain
medulloblast analysis on MRS data tumours
oma
Diagnosis and
All LDA,SVM and LSVM  >90.00% management
brain tumours
All Classifiers: LDA, KNN, LS- >80.00% Classification of

SVM brain tumours
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7
Diagnosis and
hort, 1
[22] INTERPRET - MRS A shortlongand concatenated g o, grading of
short+long TE
tumours
Diagnostic
support and e -
[23] evaluation of 38 MRS All short, long and concatenated 87.00% Clas§1f1cat10n of
INTERPRET short+long TE brain tumours
2.0
Diagnostic From
support and INEE;I;RE LDA-based classifiers: short, Coaftiflzgsfj:;n
[24] evaluation of Fro;n DI MRS All long and concatenated >69.84% abnormal brain
INTERPRET Bellvitae: short+long TE mass
DSS v3 &8¢
70
Diagnostic
support for
the dertlzctlon Prediction of
and MR, - tumour classes
[25] classification 334 All LDA-classifier >90.00% .
of tUmOUrs MRS and grading of
developed by tumours
INTERPRET
project

3.3.1. Diagnostic support systems

MRI-based brain tumour classifier systems were proposed by [10,11]. Both studies utilised the
publicly available Brain Tumor Segmentation (BraTS) dataset. Features were extracted by Gray Level
Co-occurrence Matrix (GLCM) method and Run Length of Centralized Patterns (RLCP) respectively.
Accuracy of classification of tumours performed by Boosting Support Vector Machine (BSVM)
algorithm was 97.69% [10] as compared to 96.47% using Naive Bayes (NB) [11]. When comparing the
two classifiers, BSVM can be considered to have superior capabilities as it performs well with even
with larger, high dimension datasets and the algorithm’s complexity does not increase with reducing
training time. Another study by [12], based on a hospital dataset of 30 patients, with an accuracy of
99.00% was able to determine size, shape, and location of tumour, utilised Speeded Up Robust
Features (SURF) enhanced Bag of Words (BoW) feature extraction method combined with SVM
classifier. The 3D visualisation capability of this CDSS outperformed available state-of-the-art tools
such as ITK-SNAP and 3D-Doctor according to a subjective comparative analysis. Based on a
subjective evaluation undertaken by two separate expert raters, the proposed diagnostic support
system can be implemented at local and remote levels. Finally, a study by [13] proposed a
computerised decision support framework with a sample size of 48 patients for automatic tumour
discrimination between Glioblastoma Multiforme (GBM) and solitary Metastasis (MET) using MRL
The novel segmentation method (D-SEG) along with a neural networks-based classifier achieved an
accuracy of 97.92%. However, using a semi-automatic segmentation method and a relatively smaller
dataset can be seen as limitations of the proposed CDSS.

Studies [14] and [15] used data from Magnetic Resonance Spectroscopy (MRS) for automatic
classification of '"H MR spectra from brain tumour samples. The multi-stage classifier based on
decision trees, LDA and k-NN, reduced bias and classification errors, and had superior prediction
capabilities [14] as compared to using only LDA in [15]. Both studies successfully categorised
tumours into benign vs. malignant, and low-grade vs. high-grade with higher than 90.00%
classification accuracy.

Paper [16] conducted a prospective parallel-randomized pilot study to evaluate Curiam BT —a
CDSS for the diagnosis of brain tumours based on 'H MRS. Curiam BT included four predictive
models: M1 with Short Echo Time (STE) classifier to discriminate between aggressive, meningioma,
and low-grade glial tumours with an accuracy of 88%; M2 with both STE and Long Echo Time (LTE)


https://doi.org/10.20944/preprints202306.1636.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 June 2023 doi:10.20944/preprints202306.1636.v1

to discriminate between aggressive, meningioma, and low-grade glial tumours with an accuracy of
92%; M3 with STE to discriminate between high-grade tumours and low-grade tumours with an
accuracy of 83%; M4 with STE to discriminate between meningiomas and non-meningioma with an
accuracy of 91%. All models were based on Fisher LDA and Peak Integration. The pilot study
conducted with a sample size of 55 confirmed Curiam BT improved diagnostic accuracy and can be
used as an effective tool to train and assist novice radiologists to diagnose brain tumours. To optimize
the CDSS for routine practice, conducting a clinical trial with a larger sample size, and integrating
the CDSS within the Picture Archiving and Communication System (PACS) of the hospital are a few
recommendations provided by [16].

Study [17] developed a Fast Spectroscopic Multiple Analysis (FASMA) system based on various
combinations of multiparametric MRI data for brain tumour classification. This CDSS was designed
with a SVM classifier and integrated data from 3T 'H-MRS, DWI, DTI and PW]I, for characterisation
of brain tumours. Highest accuracy in classification of tumours was obtained when all the above-
mentioned MR parameters are considered. It was also seen that k-NN and LDA had inferior
classification accuracies as compared to SVM classifier. SVM produced an accuracy score of >90.00%
in intra-tumoral area and >80.00% in peri-tumoral area. FASMA provides additional information
regarding tumour characteristics and can be used as an assistive tool for tumour diagnosis and
grading.

Paper [18] designed a Modular Medical Image Region of Interest Analysis Tool and Repository
(MIROR) for childhood cancer diagnosis. The study was conducted on a cohort of 48 children. The
CDSS used advanced MRI data to differentiate between benign and malignant tumours. 10-fold
cross-validation was performed to compare SVM and k-NN classifiers. When utilizing all extracted
features, SVM based classification model achieved an accuracy of 89% while k-NN based model
achieved an accuracy of 93%. The repository also aims to increase children’s brain tumour dataset
and add medical information from previous cases to assist clinicians in decision making.

The HealthAgents project, funded by the European Union, included studies [19], [20], and [21].
The HealthAgents network is a globally distributed repository of information and knowledge
regarding brain tumour diagnosis and prognosis [20]. An interactive user interface of HealthAgents
to facilitate classification of children’s brain tumours was designed by [19]. The study was conducted
on a cohort of 33 children with cerebellar tumours. MR spectral data was used to provide diagnostic
information on brain tumours. For a three-class classifier, principal component analysis followed by
LDA achieved a classification accuracy of 91.00%. A leave-one-out analysis for two-class classifier
achieved a classification accuracy of 94.00%. Through these techniques, clinicians are provided with
flexibility to use MRS data for childhood brain tumour diagnosis. The first release of the
HealthAgents DSS was presented in study [20]. It was based on a sample size of 182 with feature
extraction performed by LDA, SVM and LSVM. STE and LTE models combined achieved >90.00%
classification accuracy and had significant improvement over using models based on STE or LTE
separately. The study concluded that in vivo MRS data when combined with ex vivo/ in vitro High-
Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS) and gene expression, has
the potential to improve brain tumour classification and produce novel prognostic biomarkers [20].
A study conducted by [21] developed an independent automatic classification framework as a part
of the pattern recognition technique development of the HealthAgents project. This study also
suggested including HR-MAS or gene expression data such as DNA microarrays could improve the
diagnostic capability of the proposed framework.

International Network for Pattern Recognition of Tumours Using Magnetic Resonance
(INTERPRET) DSS was evaluated by [22]. A multi-centre European collaboration from 2000 to 2002
called the INTERPRET project developed a DSS to assist neuroradiologist who had no prior
experience of using MRS data to diagnose and grade brain tumours. It was seen that STE classifier
performed better than LTE with a classification accuracy of 89.00%. [23] evaluated the second version
of INTERPRET DSS. This study confirmed the added value of using '"H MRS data for brain tumour
characterisation. Version 2.0 is integrated with an additional long-TE classifier as opposed to only
short-TE in version 1.0. To use Version 2.0 expert knowledge was not required in spectroscopy or any
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specific protocol. [24] evaluated the third version of INTERPRET DSS. It had a larger embedded
database, and improved diagnostic differentiation capabilities. Three LDA-based classifiers— short,
long, and concatenated short+long TE differentiated between common types of tumours. The
combined LTE and STE classifier achieved the highest accuracy with 89.20%. The CDSS also
successfully differentiated between tumour and pseudo-tumoral disease. The combined LTE and STE
achieved a classification accuracy of 92.10%. A study by [25] evaluated the INTERPRET prototype
DSS to classify brain tumours of 334 patients based on in vivo 'H single-voxel spectral data of
different types of brain tumours. The study concluded that using MRS data for brain tumour
diagnosis over MRI data alone showed significant improvement in diagnosis. The combined use of
LTE and STE also improved accuracy of classification. The LDA-based classifier integrated within
this prototype DSS successfully differentiated between three tumour groups— meningiomas, LGGs
and HGGs.

3.3.2. Prognostic support systems

Study [9] was the only work identified through this systematic review that designed a CDSS
which predicts tumour diameters under Temozolomide (TMZ) chemotherapy and provides a
prognosis on when to stop treatment. The study was conducted with a sample size of 42 patients with
Diffuse Low-Grade Gliomas (DLGG) and was based on two mathematical models—linear and
exponential. The input variables were tumour diameters and the time of acquisition of the MRI scan
since the starting of the treatment. The linear model with an average accuracy of 89.00% prevailed.
However, the limited number of available DLGG cases did not allow model validation on a separate
dataset. Hence, increasing the size of the dataset and additionally including molecular factors that
affect tumour growth are recommended.

4. Discussion

It should be emphasized that a CDSS does not completely substitute a clinician’s diagnostic
decision, rather assists clinicians in dealing with a large amount of complex medical imaging data in
a shorter time span. A well-designed CDSS not only improves diagnostic capabilities, but also should
be easily implemented within routine clinical practice, optimizing care delivery and decision making
[26].

The various types of CDSSs identified through this review for brain tumour diagnosis and
prognosis were Curiam BT [16], FASMA [17], MIROR [18], HealthAgents [19,20,21] and INTERPRET
[22,23,24,25]. There have been some significant achievements during the development of such
systems worth mentioning. While designing and developing INTERPRET, a vast repository of brain
tumours was created containing 304 histopathological STE low-grade gliomas, meningiomas, and
high-grade malignant tumours. Another achievement of this project was to define a data acquisition
protocol to standardize data collection from different centers. MIROR helps in providing the latest
techniques and findings in the diagnosis of brain tumours improving the skillset of the clinicians.

A major area of concern is not just designing the CDSS software but also implementation and
acceptance of use by clinicians in routine clinical practice. Acceptance of use will only be possible if
the clinicians view CDSS both as a tool and a process. Clinicians are also more likely to use the CDSS
if their own decision-making matches with the system’s [26]. The systems often lack transparency
regarding how the output was achieved can be another reason why there is lack of user acceptance
[27].

Considering CDSSs as prognostic support systems, more research is needed due to a limited
number of articles in this review to show the overall capability of such systems. More focus has been
given on designing diagnostic support systems as opposed to prognostic support systems, which
leaves the latter to be explored further.

The strengths of this systematic review are the use of PRISMA protocol in reporting of studies,
the use of Keshav’s 5Cs method in assessing quality of included studies, and the level of details
extracted from the included studies. Not bound by a timeframe to include all relevant studies and
having the search strategy highly specific on CDSS used in brain tumour diagnosis and prognosis
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based on medical imaging data are other strengths of this review. However, a limitation should be
mentioned. This review only considered studies published in English language; there could be others
CDSSs being developed that are published in different languages.

There is scope for future work that can be recommended, based on this systematic review.
Presence of a global standard protocol may increase CDSSs translation into routine clinical practice.
Additionally, including clinicians’ feedback, user needs and expectations while designing the CDSS
may improve its acceptance at the point of care. Finally, if there is a stage where the CDSS reveals
their decision-making process, it will allow clinicians to increase their engagement with the systems
and accelerate CDSS adoption. This type of a multi-task CDSS can be fully embedded within a
clinicians’ regular workflow. This will give rise to a more trainable system that is capable of accepting
feedback, revise recommendations and provide alternative clinical decisions for improve healthcare
delivery.

5. Conclusions

Management and treatment of brain tumours require an early and accurate diagnosis, while
prognostic understanding can also be beneficial in the choice of care planning for the patient.
Advances in neuro-oncology imaging techniques have improved both detection and treatment
planning of these tumours. Leveraging advanced imaging technologies, vastly available medical
knowledge, and patient-specific information, a CDSS provides evidence-based recommendations to
assist clinicians at the point of care. It reduces medical errors, enhances diagnostic capabilities, and
has the potential to improve healthcare delivery. Presence of a global standard or guideline specific
to CDSSs on brain tumour diagnosis and prognosis is recommended. Increased effort must be taken
not only in developing such CDSSs but also implementing them into routine clinical practice to
increase clinicians” engagement and CDSS adoption. To be able to do so, highlighting a few of areas
of improvement are necessary. Although a CDSS improves diagnostic capabilities, and healthcare
delivery, there is a lack of specific evidence or studies to support these claims. The absence of
empirical data slows down both user acceptance and evaluation of actual impact of CDSS on brain
tumour management. Instead of emphasizing on the advantages of implementing CDSS, highlighting
its potential drawbacks or limitations could improve decision-making. Embedding CDSS into routine
clinical practice may increase complexity, requiring additional funding and investment in latest
technology, infrastructure, and training of healthcare professionals. With each patient condition
being unique, a well-tailored patient-specific recommendation is needed which is a drawback of
current CDSS as it lacks customization. Ethical and legal considerations such as patient privacy and
safety, consent, and liability should be given importance alongside the technical aspects. Overall, to
design and implement a CDSS, apart from highlighting potential benefits, providing empirical
evidence, addressing drawbacks and challenges, and considering ethical and legal implications will
increase CDSS usability and acceptance.
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BSVM Boosting Support Vector Machine

CDSS Clinical Decision Support System

CT Computed Tomography

DLGG Diffuse Low-Grade Glioma

DSS Decision Support System

FASMA Fast Spectroscopic Multiple Analysis

GLCM Gray-Level Co-Occurrence Matrix

HGG High-Grade Glioma

HR-MAS High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance
INTERPRET International Network for Pattern Recognition of Tumours Using MR
k-NN K-Nearest Neighbors Algorithm

LDA Linear Discriminant Analysis

LGG Low-Grade Glioma

LTE Long Echo Time

MeSH Medical Subject Headings

MIROR Modular Medical Image Region of Interest Analysis Tool and Repository
MRI Magnetic Resonance Imaging

MR Magnetic Resonance

MRS Magnetic Resonance Spectroscopy

NB Naive Bayes

NNW Neural Network

PACS Picture Archiving and Communication System

PET Positron Emission Tomography

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
QDA Quadratic Discriminant Analysis

STE Short Echo Time

SVM Support Vector Machine

T™Z Temozolomide

WHO World Health Organization
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