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Simple Summary: Brain tumours are abnormal growth of cells in the human brain. Continuous 
effort is being made towards improving diagnosis and treatment options for such brain neoplasms. 
Manual classification and segmentation of imaging scans is tedious, time-consuming, and 
subjective. Over the last decade, the use of intelligent systems in the form of Clinical Decision 
Support Systems (CDSSs) to assist in identifying, classifying, and evaluating brain tumours has seen 
a rise. CDSS can be used as a supportive tool for clinicians to deal with complex medical decisions 
and improve healthcare delivery. This review aims to systematically identify different types of 
CDSSs used in brain tumour diagnosis and prognosis, through medical imaging. It analyses various 
CDSS tool types, techniques used, accuracy, and outcome, to provide the latest evidence available 
in this field of research. 

Abstract: The abnormal accumulation of cells in the human brain, if left untreated, may cause brain 
damage. Management and treatment of these tumours require an early and accurate diagnosis, 
while their prognostic characterisation can also be beneficial in the choice of care planning for the 
patient. CDSSs are being continuously developed and integrated into routine clinical practice as 
they assist clinicians and radiologists to deal with an enormous amount of medical data, reduce 
clinical errors, and improve diagnostic capabilities. They assist detection, classification, and grading 
of brain tumours as well as alerting physicians of requirement of change in treatment plans. The 
aim of this systematic review is to identify various CDSSs used in brain tumour diagnosis and 
prognosis, that rely on data captured by any imaging modality. Based on the 2020 Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, the literature 
search was conducted in PubMed and Engineering Village Compendex databases. This review 
examines various CDSS tool types, system features, techniques used, accuracy, and outcome, to 
provide the latest evidence available in the field of neuro-oncology. An overview of different types 
of CDSSs used to support clinical decision-making in the management and treatment of brain 
tumours, along with highlighting their benefits, challenges, and future perspectives has been 
provided.     

Keywords: clinical decision support system; brain tumour; brain neoplasms; diagnosis; prognosis; 
systematic review 

 

1. Introduction 

Brain tumours are abnormal and uncontrolled growth of cells in the human brain that affect 
usual brain functionality [1]. Brain tumours are divided into primary and secondary. Primary brain 
tumours originate in the brain and can be subdivided into benign (non-cancerous) and malignant 
(cancerous). Secondary brain tumours are cancerous cells expanding to the brain from other parts of 
the human body [2]. World Health Organization (WHO) classifies brain tumours into four grades. 
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Grades 1 and 2 consist of less severe tumours such as meningiomas, while Grades 3 and 4 consist of 
more severe ones such as gliomas [3]. Management and treatment of these brain neoplasms require 
an understanding of the location, size, and type of tumour. Various imaging modalities such as 
Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Computed 
Tomography (CT) are used in the diagnosis of brain tumours. MRI is usually preferred as it is non-
ionizing and non-invasive [4]. However, manual segmentation and classification of these images are 
tedious processes, prone to human error, and can be subjective. To address these challenges, Clinical 
Decision Support Systems (CDSSs) are being used as a supportive tool for radiologists and clinicians 
to aid in the diagnosis and prognosis of brain tumours [4].     

CDSSs are primarily designed for clinicians to use at-the-point of care shown in Figure 1. A 
conventional CDSS is comprised of a software designed to match patient characteristics with a 
computerised medical knowledge base and present a patient-specific recommendation or evaluation 
to the clinician for making an informed decision [5]. These computerised systems aid in early 
detection and characterisation of brain tumours by performing automatic tumour segmentation, 
differentiation, classification, and evaluation of brain imaging data [6].  

 

Figure 1. Simple diagram of a CDSS. (i) User at the point-of-care sends a healthcare query to the (ii) 
CDSS that matches (iii) patient record with the (iv) medical knowledge base and responds with an (v) 
output with clinical recommendations. 

Available literature on CDSSs, used specifically for brain tumours, is limited to the best of our 
knowledge. This systematic review is, to the best of our knowledge, the first of its kind to evaluate 
different types of CDSSs used both for brain tumour diagnosis and prognosis, through medical 
imaging data. The research question is to identify what CDSSs are being used in the diagnosis and 
prognosis of brain tumours, to summarise the techniques used, and to evaluate their accuracy and 
outcomes.     

2. Method 

The methodology has been divided into (i) search strategy—databases used; (ii) study 
selection—keywords, and inclusion and exclusion criteria; (iii) data extraction—pre-defined data 
extraction proforma; (iv) study quality assessment—to assess the quality of included studies; (v) data 
synthesis—reasons for conducting a narrative and semi-quantitate review.        

2.1. Search strategy 

The literature search was conducted systematically in two academic databases viz., PubMed and 
Engineering Village. Both databases provided all the relevant studies needed in this area of research. 
For identifying medical literature in PubMed, Medical Subject Headings (MeSH) terms were used— 
("decision support systems, clinical"[MeSH Terms] AND "Brain Neoplasms"[MeSH Terms]). In 
Engineering Village, both controlled vocabulary and general terms were used— (( (((((cancer)) OR 
((((({Tumors} WN CV) OR ({Oncology} WN CV))))))) AND ((((({Decision support systems} WN 
CV))))))) AND brain). Studies published only in the English language were considered in this review. 
The search was not bound by any time frame.  
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2.2. Study selection 

The systematic review was conducted according to the 2020 PRISMA protocol [7]. The PRISMA 
flowchart has been shown in Figure 2. The literature search was conducted without any timeframe 
to identify all studied published until May 2023.  

 

Figure 2. PRISMA flow diagram for study selection. 

Based on the purpose of this systematic review, there were 4 exclusion criteria (i) studies that 
did not use CDSS; (ii) studies that focused on comparing different methods/ techniques; (iii) studies 
that did not investigate brain tumours; (iv) studies that focused on the treatment of brain tumours. 
Additionally, papers that had insufficient information on results or limited/ poor methodology were 
also excluded.       

2.3. Data extraction 

Two authors independently performed data extraction based on a pre-defined data extraction 
proforma. Any conflicts or discrepancies between the authors were resolved by a third reviewer. 
Variables used for extraction of data were the year of study publication, study design, geographical 
location of the research conducted, sample size, modality used, CDSS features, techniques/ methods 
used, and CDSS output.               

2.4. Study quality assessment 

All studies included in this review have been assessed for the quality of their research. Keshav’s 
5 Cs viz., category, context, clarity, correctness, and contribution [8] were used to justify including 
papers in this review. Additionally, studies that had justifiable reasons for their sample size, patient 
selection criteria, and methodology used, were only considered.      

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 June 2023                   doi:10.20944/preprints202306.1636.v1

https://doi.org/10.20944/preprints202306.1636.v1


 4 

 

2.5. Data synthesis 

The identified studies were diverse in terms of their sample size, type of CDSS, and techniques 
used. Hence, a meta-analysis was not performed. Rather, both a narrative and semiquantitative 
summary of CDSSs used in brain tumour diagnosis and prognosis have been provided. Individual 
CDSSs have been broadly categorised, as and when necessary.      

3. Results 

All studies included in this review answer the research question; what are the available CDSSs 
being used in the diagnosis and prognosis of all types of brain tumours, what their features and 
techniques are, and finally what their accuracy and outcomes are. These are covered in the following 
sections.   

3.1. Search results 

The literature search conducted via two databases produced 146 studies out of which PubMed 
identified 36, while Engineering Village identified 111 studies. Automatic de-duplication in EndNote 
removed 4 studies while a manual scan removed an additional 14 duplicates, leaving 131 studies to 
be evaluated for the title and abstract screening Figure 2. Based on the title and abstract 113 articles 
were removed. Out of the remaining 18 studies for full-text assessment, only 1 did not fulfil all the 
inclusion criteria and thus was removed. Finally, 17 articles were shortlisted for this systematic 
review.  

3.2. Study characteristics 

All 17 studies identified were full-text articles (100%); there were no abstracts from conference 
presentations. The types of study design within the review have been documented in Table 1.  

Table 1. Study design. 

Study design Number of papers Percentage of papers (%) 

Prospective cohort study1 6 35 
Retrospective study 1 6 

Registry-based 10 59 
1 comprising of 1 parallel randomized pilot trial. 

The search was not filtered by any time frame to include all available studies in this area until 
30 May 2023. The distribution of studies published over time, and their geographical locations have 
been described in Figure 3 (a) and (b) respectively.  

  

(a)  

(b)  

Figure 3. Demographics of included studies: (a) Distribution of studies over the years; (b) Distribution 
of study geographies. 
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7 studies (41%) were based on publicly available datasets, 3 studies (18%) were conducted based 
on international datasets, 2 studies (12%) used regional data, and 5 studies (29%) were conducted at 
a single center.  

3.3. CDSSs used in the diagnosis and prognosis of brain tumours 

The different types of CDSSs identified through this review, alongside the sample size, modality, 
sub specific type of brain tumour, techniques, accuracy, and outcome have been listed in Table 2.  

Table 2. Type of CDSS, modalities, techniques, accuracy, and outcome. 

Ref 
CDSS 

description 

Sample 

size 

Modalit

y 

Brain 

tumour 

types 

Techniques used 
Accurac

y 
Outcome 

[9] 
Data-driven 
prognostic 

support 
42 MRI 

Diffuse low-
grade 

gliomas 

Linear and exponential 
mathematical models with 
coefficient of determination 

R2 and t-test to evaluate 
quality of model predictions 

89.00% 

Notifies 
clinicians of 
changes in 

tumour 
diameter and 

whether to 
continue/ stop 

treatment 

[10] 

Diagnostic 
support for 

the detection 
and 

classification 
of tumours 

Benign: 
training 75, 
testing 65 

Malignant: 
training 75, 
testing 65 

MRI All 

Denoising by the genetic 
median filter, segmentation 

by hierarchical fuzzy 
clustering, feature extraction 
by GLCM and Gabor feature, 

feature selection by lion 
optimization, and classifier 

by BSVM 

97.69% 

Analyses size 
and type of 

tumour, stage of 
cancer 

[11] 

Diagnostic 
support that 

identifies and 
grades 

tumours in 
terms of their 

severity 

Hospital: 
134, 

dataset: 80 
MRI 

Low-grade 
and high-

grade 
gliomas 

MRI pulse fusion, 
segmentation by adaptive 

thresholding, feature 
extraction by run length 

matrix, identification and 
classification by NB classifier 

96.47% 
Detects and 

specifies 
tumours 

[12] 

Diagnostic 
support is not 
integrated but 

ready to be 
used at local 
and remote 

level 

30 MRI All 

Segmentation by semi-
automated 3D segmentation 

method, feature extraction by 
BoW, classification by SVM 

99.00% 

Provides 
tumour 

detection, 
segmentation 

and 3D 
visualisation 

[13] 

Diagnostic 
support for 

detection and 
classification 
of tumours 

48 MRI 
Glioblastoma 

and 
metastases 

Feature extraction by 
Student’s t-test and 
correlation analysis; 

classifiers used QDA, NB, k-
NN, SVM and NNW 

97.92% 

Automatically 
differentiates 

between 
glioblastoma 

multiforme and 
solitary 

metastasis 

[14] 

A multi-stage 
classifier for 

MR spectra of 
brain tumours 
developed as 
part of a DSS 

81 
astrocytom

a, 32 
metastases, 

37 
meningiom

a, 6 

MRS All 
3 diagnostic classifiers used: 
LDA, decision trees, and k-

NN 
99.30% 

Provides 
accurate 

predictions and 
reduces 

classification 
errors 
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oligodendr
oglioma, 6 
lymphoma, 
5 primitive 
neuroectod

ermal 
tumour, 4 
schwanno

ma, 4 
haemangio
blastomas 

and 14 
healthy 

[15] 

Diagnostic 
support for 

the detection 
and 

classification 
of tumours 

- MRS All 
Pattern recognition and data 

visualisation by LDA 
90.00% 

Non-invasive 
tumour 

diagnosis and 
grading 

[16] 

Diagnostic 
support and 
qualitative 

evaluation of 
Curiam BT 

55 MRS All 
Fisher LDA and Peak 

Integration 
>83.00% 

Classification 
and grading of 
brain tumours 

[17] 

Diagnostic 
support: 

FASMA for 
brain tumour 
classification 

126 
MRI/ 
MRS 

Gliomas, 
solitary 

metastases, 
atypical 

meningioma
s 

SVM, LDA, k-NN and NB >80.00% 

Used advanced 
MRI techniques 

for brain 
tumour 

classification 

[18] 

Childhood 
cancer 

diagnosis by 
MIROR 

48 
MRI/MR

S 
All SVM and k-NN 

89% and 
93% 

Performs non-
region-specific 

quantitative 
analysis of brain 

imaging data 

[19] 

Diagnostic 
support for 
paediatric 

brain tumour 
characterisatio

n (part of 
HealthAgents) 

33 MRS 

Pilocytic 
astrocytoma, 
ependymom

a, 
medulloblast

oma 

Principal component 
analysis, linear discriminant 

analysis on MRS data 
94.00% 

Categorises 
children’s brain 

tumours 

[20] 

Diagnostic 
support for 

brain tumour 
diagnosis and 

prognosis 
(part of 

HealthAgents) 

182 MRS All LDA, SVM and LSVM >90.00% 
Diagnosis and 
management 

brain tumours 

[21] 

Diagnostic 
support 

automatic 
classification 
framework as 

a part of 
HealthAgents 

- MRS All 
Classifiers: LDA, KNN, LS-

SVM 
>80.00% 

Classification of 
brain tumours 
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[22] INTERPRET - MRS All 
short, long and concatenated 

short+long TE 
89.00% 

Diagnosis and 
grading of 
tumours 

[23] 

Diagnostic 
support and 
evaluation of 
INTERPRET 

2.0 

38 MRS All 
short, long and concatenated 

short+long TE 
87.00% 

Classification of 
brain tumours 

[24] 

Diagnostic 
support and 
evaluation of 
INTERPRET 

DSS v3 

From 
INTERPRE

T: 266 
From IDI-
Bellvitge: 

70 

MRS All 
LDA-based classifiers: short, 

long and concatenated 
short+long TE 

>69.84% 

Categorisation 
of MRS from 

abnormal brain 
mass 

[25] 

Diagnostic 
support for 

the detection 
and 

classification 
of tumours 

developed by 
INTERPRET 

project 

334 
MRI, 
MRS 

All LDA-classifier >90.00% 

Prediction of 
tumour classes 
and grading of 

tumours 

3.3.1. Diagnostic support systems 

MRI-based brain tumour classifier systems were proposed by [10,11]. Both studies utilised the 
publicly available Brain Tumor Segmentation (BraTS) dataset. Features were extracted by Gray Level 
Co-occurrence Matrix (GLCM) method and Run Length of Centralized Patterns (RLCP) respectively. 
Accuracy of classification of tumours performed by Boosting Support Vector Machine (BSVM) 
algorithm was 97.69% [10] as compared to 96.47% using Naïve Bayes (NB) [11]. When comparing the 
two classifiers, BSVM can be considered to have superior capabilities as it performs well with even 
with larger, high dimension datasets and the algorithm’s complexity does not increase with reducing 
training time. Another study by [12], based on a hospital dataset of 30 patients, with an accuracy of 
99.00% was able to determine size, shape, and location of tumour, utilised Speeded Up Robust 
Features (SURF) enhanced Bag of Words (BoW) feature extraction method combined with SVM 
classifier. The 3D visualisation capability of this CDSS outperformed available state-of-the-art tools 
such as ITK-SNAP and 3D-Doctor according to a subjective comparative analysis. Based on a 
subjective evaluation undertaken by two separate expert raters, the proposed diagnostic support 
system can be implemented at local and remote levels. Finally, a study by [13] proposed a 
computerised decision support framework with a sample size of 48 patients for automatic tumour 
discrimination between Glioblastoma Multiforme (GBM) and solitary Metastasis (MET) using MRI. 
The novel segmentation method (D-SEG) along with a neural networks-based classifier achieved an 
accuracy of 97.92%. However, using a semi-automatic segmentation method and a relatively smaller 
dataset can be seen as limitations of the proposed CDSS.  

Studies [14] and [15] used data from Magnetic Resonance Spectroscopy (MRS) for automatic 
classification of 1H MR spectra from brain tumour samples. The multi-stage classifier based on 
decision trees, LDA and k-NN, reduced bias and classification errors, and had superior prediction 
capabilities [14] as compared to using only LDA in [15]. Both studies successfully categorised 
tumours into benign vs. malignant, and low-grade vs. high-grade with higher than 90.00% 
classification accuracy.  

Paper [16] conducted a prospective parallel-randomized pilot study to evaluate Curiam BT—a 
CDSS for the diagnosis of brain tumours based on 1H MRS. Curiam BT included four predictive 
models: M1 with Short Echo Time (STE) classifier to discriminate between aggressive, meningioma, 
and low-grade glial tumours with an accuracy of 88%; M2 with both STE and Long Echo Time (LTE) 
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to discriminate between aggressive, meningioma, and low-grade glial tumours with an accuracy of 
92%; M3 with STE to discriminate between high-grade tumours and low-grade tumours with an 
accuracy of 83%; M4 with STE to discriminate between meningiomas and non-meningioma with an 
accuracy of 91%. All models were based on Fisher LDA and Peak Integration. The pilot study 
conducted with a sample size of 55 confirmed Curiam BT improved diagnostic accuracy and can be 
used as an effective tool to train and assist novice radiologists to diagnose brain tumours. To optimize 
the CDSS for routine practice, conducting a clinical trial with a larger sample size, and integrating 
the CDSS within the Picture Archiving and Communication System (PACS) of the hospital are a few 
recommendations provided by [16].  

Study [17] developed a Fast Spectroscopic Multiple Analysis (FASMA) system based on various 
combinations of multiparametric MRI data for brain tumour classification. This CDSS was designed 
with a SVM classifier and integrated data from 3T 1H-MRS, DWI, DTI and PWI, for characterisation 
of brain tumours. Highest accuracy in classification of tumours was obtained when all the above-
mentioned MR parameters are considered. It was also seen that k-NN and LDA had inferior 
classification accuracies as compared to SVM classifier. SVM produced an accuracy score of >90.00% 
in intra-tumoral area and >80.00% in peri-tumoral area. FASMA provides additional information 
regarding tumour characteristics and can be used as an assistive tool for tumour diagnosis and 
grading.  

Paper [18] designed a Modular Medical Image Region of Interest Analysis Tool and Repository 
(MIROR) for childhood cancer diagnosis. The study was conducted on a cohort of 48 children. The 
CDSS used advanced MRI data to differentiate between benign and malignant tumours. 10-fold 
cross-validation was performed to compare SVM and k-NN classifiers. When utilizing all extracted 
features, SVM based classification model achieved an accuracy of 89% while k-NN based model 
achieved an accuracy of 93%. The repository also aims to increase children’s brain tumour dataset 
and add medical information from previous cases to assist clinicians in decision making.    

The HealthAgents project, funded by the European Union, included studies [19], [20], and [21]. 
The HealthAgents network is a globally distributed repository of information and knowledge 
regarding brain tumour diagnosis and prognosis [20]. An interactive user interface of HealthAgents 
to facilitate classification of children’s brain tumours was designed by [19]. The study was conducted 
on a cohort of 33 children with cerebellar tumours. MR spectral data was used to provide diagnostic 
information on brain tumours. For a three-class classifier, principal component analysis followed by 
LDA achieved a classification accuracy of 91.00%. A leave-one-out analysis for two-class classifier 
achieved a classification accuracy of 94.00%. Through these techniques, clinicians are provided with 
flexibility to use MRS data for childhood brain tumour diagnosis. The first release of the 
HealthAgents DSS was presented in study [20]. It was based on a sample size of 182 with feature 
extraction performed by LDA, SVM and LSVM. STE and LTE models combined achieved >90.00% 
classification accuracy and had significant improvement over using models based on STE or LTE 
separately. The study concluded that in vivo MRS data when combined with ex vivo/ in vitro High-
Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS) and gene expression, has 
the potential to improve brain tumour classification and produce novel prognostic biomarkers [20]. 
A study conducted by [21] developed an independent automatic classification framework as a part 
of the pattern recognition technique development of the HealthAgents project. This study also 
suggested including HR-MAS or gene expression data such as DNA microarrays could improve the 
diagnostic capability of the proposed framework.  

International Network for Pattern Recognition of Tumours Using Magnetic Resonance 
(INTERPRET) DSS was evaluated by [22]. A multi-centre European collaboration from 2000 to 2002 
called the INTERPRET project developed a DSS to assist neuroradiologist who had no prior 
experience of using MRS data to diagnose and grade brain tumours. It was seen that STE classifier 
performed better than LTE with a classification accuracy of 89.00%. [23] evaluated the second version 
of INTERPRET DSS. This study confirmed the added value of using 1H MRS data for brain tumour 
characterisation. Version 2.0 is integrated with an additional long-TE classifier as opposed to only 
short-TE in version 1.0. To use Version 2.0 expert knowledge was not required in spectroscopy or any 
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specific protocol. [24] evaluated the third version of INTERPRET DSS. It had a larger embedded 
database, and improved diagnostic differentiation capabilities. Three LDA-based classifiers— short, 
long, and concatenated short+long TE differentiated between common types of tumours. The 
combined LTE and STE classifier achieved the highest accuracy with 89.20%. The CDSS also 
successfully differentiated between tumour and pseudo-tumoral disease. The combined LTE and STE 
achieved a classification accuracy of 92.10%. A study by [25] evaluated the INTERPRET prototype 
DSS to classify brain tumours of 334 patients based on in vivo 1H single-voxel spectral data of 
different types of brain tumours. The study concluded that using MRS data for brain tumour 
diagnosis over MRI data alone showed significant improvement in diagnosis. The combined use of 
LTE and STE also improved accuracy of classification. The LDA-based classifier integrated within 
this prototype DSS successfully differentiated between three tumour groups— meningiomas, LGGs 
and HGGs.   

3.3.2. Prognostic support systems 

Study [9] was the only work identified through this systematic review that designed a CDSS 
which predicts tumour diameters under Temozolomide (TMZ) chemotherapy and provides a 
prognosis on when to stop treatment. The study was conducted with a sample size of 42 patients with 
Diffuse Low-Grade Gliomas (DLGG) and was based on two mathematical models—linear and 
exponential. The input variables were tumour diameters and the time of acquisition of the MRI scan 
since the starting of the treatment. The linear model with an average accuracy of 89.00% prevailed. 
However, the limited number of available DLGG cases did not allow model validation on a separate 
dataset. Hence, increasing the size of the dataset and additionally including molecular factors that 
affect tumour growth are recommended.   

4. Discussion 

It should be emphasized that a CDSS does not completely substitute a clinician’s diagnostic 
decision, rather assists clinicians in dealing with a large amount of complex medical imaging data in 
a shorter time span. A well-designed CDSS not only improves diagnostic capabilities, but also should 
be easily implemented within routine clinical practice, optimizing care delivery and decision making 
[26].   

The various types of CDSSs identified through this review for brain tumour diagnosis and 
prognosis were Curiam BT [16], FASMA [17], MIROR [18], HealthAgents [19,20,21] and INTERPRET 
[22,23,24,25]. There have been some significant achievements during the development of such 
systems worth mentioning. While designing and developing INTERPRET, a vast repository of brain 
tumours was created containing 304 histopathological STE low-grade gliomas, meningiomas, and 
high-grade malignant tumours. Another achievement of this project was to define a data acquisition 
protocol to standardize data collection from different centers. MIROR helps in providing the latest 
techniques and findings in the diagnosis of brain tumours improving the skillset of the clinicians.  

A major area of concern is not just designing the CDSS software but also implementation and 
acceptance of use by clinicians in routine clinical practice. Acceptance of use will only be possible if 
the clinicians view CDSS both as a tool and a process. Clinicians are also more likely to use the CDSS 
if their own decision-making matches with the system’s [26]. The systems often lack transparency 
regarding how the output was achieved can be another reason why there is lack of user acceptance 
[27].  

Considering CDSSs as prognostic support systems, more research is needed due to a limited 
number of articles in this review to show the overall capability of such systems. More focus has been 
given on designing diagnostic support systems as opposed to prognostic support systems, which 
leaves the latter to be explored further.  

The strengths of this systematic review are the use of PRISMA protocol in reporting of studies, 
the use of Keshav’s 5Cs method in assessing quality of included studies, and the level of details 
extracted from the included studies. Not bound by a timeframe to include all relevant studies and 
having the search strategy highly specific on CDSS used in brain tumour diagnosis and prognosis 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 June 2023                   doi:10.20944/preprints202306.1636.v1

https://doi.org/10.20944/preprints202306.1636.v1


 10 

 

based on medical imaging data are other strengths of this review. However, a limitation should be 
mentioned. This review only considered studies published in English language; there could be others 
CDSSs being developed that are published in different languages.  

There is scope for future work that can be recommended, based on this systematic review. 
Presence of a global standard protocol may increase CDSSs translation into routine clinical practice. 
Additionally, including clinicians’ feedback, user needs and expectations while designing the CDSS 
may improve its acceptance at the point of care. Finally, if there is a stage where the CDSS reveals 
their decision-making process, it will allow clinicians to increase their engagement with the systems 
and accelerate CDSS adoption. This type of a multi-task CDSS can be fully embedded within a 
clinicians’ regular workflow. This will give rise to a more trainable system that is capable of accepting 
feedback, revise recommendations and provide alternative clinical decisions for improve healthcare 
delivery.        

5. Conclusions 

Management and treatment of brain tumours require an early and accurate diagnosis, while 
prognostic understanding can also be beneficial in the choice of care planning for the patient. 
Advances in neuro-oncology imaging techniques have improved both detection and treatment 
planning of these tumours. Leveraging advanced imaging technologies, vastly available medical 
knowledge, and patient-specific information, a CDSS provides evidence-based recommendations to 
assist clinicians at the point of care. It reduces medical errors, enhances diagnostic capabilities, and 
has the potential to improve healthcare delivery. Presence of a global standard or guideline specific 
to CDSSs on brain tumour diagnosis and prognosis is recommended. Increased effort must be taken 
not only in developing such CDSSs but also implementing them into routine clinical practice to 
increase clinicians’ engagement and CDSS adoption. To be able to do so, highlighting a few of areas 
of improvement are necessary. Although a CDSS improves diagnostic capabilities, and healthcare 
delivery, there is a lack of specific evidence or studies to support these claims. The absence of 
empirical data slows down both user acceptance and evaluation of actual impact of CDSS on brain 
tumour management. Instead of emphasizing on the advantages of implementing CDSS, highlighting 
its potential drawbacks or limitations could improve decision-making. Embedding CDSS into routine 
clinical practice may increase complexity, requiring additional funding and investment in latest 
technology, infrastructure, and training of healthcare professionals. With each patient condition 
being unique, a well-tailored patient-specific recommendation is needed which is a drawback of 
current CDSS as it lacks customization. Ethical and legal considerations such as patient privacy and 
safety, consent, and liability should be given importance alongside the technical aspects. Overall, to 
design and implement a CDSS, apart from highlighting potential benefits, providing empirical 
evidence, addressing drawbacks and challenges, and considering ethical and legal implications will 
increase CDSS usability and acceptance.  
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Abbreviations 

The following abbreviations have been used in this review. 
BSVM Boosting Support Vector Machine 
CDSS Clinical Decision Support System 
CT Computed Tomography 
DLGG Diffuse Low-Grade Glioma 
DSS Decision Support System 
FASMA Fast Spectroscopic Multiple Analysis 
GLCM Gray-Level Co-Occurrence Matrix 
HGG High-Grade Glioma 
HR-MAS High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance 
INTERPRET International Network for Pattern Recognition of Tumours Using MR 
k-NN K-Nearest Neighbors Algorithm 
LDA Linear Discriminant Analysis 
LGG Low-Grade Glioma 
LTE Long Echo Time 
MeSH Medical Subject Headings 
MIROR Modular Medical Image Region of Interest Analysis Tool and Repository 
MRI Magnetic Resonance Imaging 
MR Magnetic Resonance 
MRS Magnetic Resonance Spectroscopy 
NB Naïve Bayes 
NNW Neural Network 
PACS Picture Archiving and Communication System 
PET Positron Emission Tomography 
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
QDA Quadratic Discriminant Analysis 
STE Short Echo Time 
SVM Support Vector Machine 
TMZ Temozolomide 
WHO World Health Organization 
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