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Article

Spatio-Temporal Patterns of the SARS-CoV-2
Epidemic in Germany

Hans H. Diebner !

1 Ruhr-Universitit Bochum, Dpt. of Medical Informatics, Biometry and Epidemiology; hans.diebner@rub.de

Abstract: Results from an explorative study revealing spatio-temporal patterns of the
SARS-CoV-2/COVID-19 epidemic in Germany are presented. We dispense with contestable model
assumptions and show the intrinsic spatio-temporal patterns of the epidemic dynamics. The analysis
is based on COVID-19 incidence data, which are age-stratified and spatially resolved at the county
level, provided by the Federal Government’s Public Health Institute of Germany (RKI) for public
use. Although the 400 county-related incidence time series show enormous heterogeneity both with
respect to temporal features as well as spatial distributions, the counties’ incidence curves organise
into well distinguished clusters that coincide with East and West Germany. The analysis is based
on dimensionality reduction, multidimensional scaling, network analysis, and diversity measures.
Dynamical changes are captured by means of difference-in-difference methods which are related
to fold changes of the effective reproduction numbers. The age-related dynamical patterns suggest
a considerably stronger impact of children, adolescents and seniors on the epidemic activity than
previously expected. Besides these concrete interpretations, the work mainly aims at providing an
atlas for spatio-temporal patterns of the epidemic which serves as a basis to be further explored with
the expertise from different disciplines, particularly sociology and policy makers. The study should
also be understood as a methodological contribution to getting a handle on the unusual complexity
of the COVID-19 pandemic.

Keywords: COVID-19; SARS-CoV-2; Epidemic Spatial Heterogeneity; Diversity; Spatio-Temporal
Patterns; Cluster Analysis

1. Introduction

For about 3 years, beginning in September 2019, the SARS-CoV-2/COVID-19 pandemic shook the
world in an almost unprecedented way ([1]). Three years after the outbreak, it is still not clear whether
the pandemic entered an endemic phase and how long a crisis-like situation will persist or re-emerge
([2]). There are still too many unknowns to be able to give clear prognoses, although the flood of
COVID-19 related publications is without example ([3,4]). Equally unprecedented is the fact that a high
proportion of the literature dealing with the pandemic is meta-scientific and/or meta-bibliographic in
nature or belongs to the sociology of behaviour or the sociology of science. Topics include discussions
of malicious or accidental miscommunication even within the scientific context ([5]). Contributions
address misconduct, but are themselves often characterized by sheer polemic, if not denunciation.
This fact may best be summarised that we face a harsh "COVID-19 infodemic" ([6]). No surprise that a
number of surveys and studies clearly points to a polarisation and radicalisation in public attitudes and
behaviour driven by a polarisation in elite rhetoric that hinders effective responses to the COVID-19
crisis ([7]) and gives rise to an increasing social Darwinism ([8]). Thus, health behaviour is increasingly
driven by political ideology ([9-11]) such that the resulting epidemic dynamics have become almost
unpredictable and uncontrollable.

In this paper, we take a closer look at the spatio-temporal dynamics of the epidemic in Germany.
Due to the aforementioned socio-behavioural imponderabilities, the problem is inherently systemic and
adaptive in that sense, that preventive measures including their associated compliances and epidemic
activity are bidirectionally related via nonlinear feedback loops. It follows, even if containment
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measures were precisely datable, one could not rule out the possibility that they would ultimately be
counteracted and even be changed to the opposite. The notation of a "self-disorganisation" suggests
itself. We here take the stance that the recorded, more or less objective incidences, should speak for
themselves since most of the aforementioned socio-behavioural determinants defy quantifiability. We
aim at presenting suitably quantified spatio-temporal patterns of the German epidemic activity in terms
of features of weekly recorded incidence time series at the relatively fine-grained spatial resolution
of German districts. In essence, our approach is explorative in that we invert the search direction:
striking spatio-temporal incidence patterns provide timestamps and spatial clues that point to external
determinants that trigger changes and allow for associations with prevailing social conditions.

"Systems thinking" is a collective term for very different conceptions of complex self-(dis)organised
systems ([12]), even if, strictly speaking, the term self-organisation was only used extensively in the
context of synergetics ([13]). The scientific nature of systems thinking has been questioned and it
has, apparently, been conceived as a hermeneutic process ([14,15]), thus belonging to the context of
discovery rather than to the context of justification in terms of Reichenbach’s partition of the epistemic
process ([16]). The pressing need to better understand the COVID-19 pandemic, and the sheer lack
of convincing and actionable evaluations, encouraged us to place greater emphasis on the benefits of
systems thinking. It is due to the very nature of complex systems that no unique optimal tool exists for
their analysis. Each analysis tool allows to take a particular look at the system and the combination
of such analyses reveals the different facets of the given complexity. Specifically, we derive diversity
measures based on entropy calculations, but also apply more recently introduced methods from the
field of network analysis. These include methods of dimensionality reduction, multidimensional
scaling, as well as cluster analyses. Taken together, we try to provide as comprehensive a picture of
the complexity of the pandemic as possible, using only available incidence data. Some facets of the
complexity of COVID-19 epidemic have been published recently ([17,18]) and we ask the readers to
combine these previous results mainly focusing on temporal features with the new findings presented
here, which put more emphasis on spatial patterns.

2. Materials and Methods

Throughout the paper, statistical calculations and creation of graphs were done with R ([19]).
Used R program packages are mentioned at the appropriate places.

2.1. General Settings and Nomenclature

In the following, contextually either the 400 German rural/urban districts (counties) or the 16
federal states are labelled by indexi =1,...,400 ori = 1,...,16, respectively. In graphs, however,
federal states are represented by the official 2-letter abbreviation (see the list of abbreviations in the
appendix). The age-specific incidences,

_ counts;(a,t)

lifa, 1) = popsize;(a)’

)
given by registered counts, counts;(a, t) per sub-population size, popsize;(a), at time point ¢ of counties
i =1,...,400 (or, depending on context, federal states i = 1,...,16) have been calculated from
the counts retrieved from the Robert Koch-Institute (RKI) database ([20]) and from the respective
age-specific sub-population sizes retrieved from [21]. Depending on the context, age a either refers
to the age classes (in years) [0,5), [5,12), [12,18), [18,30), [30,40), .. ., [70,80),80" or to kids := [0,18),
adults := [18,60), seniors := 60", respectively, and time ¢ is given by calendar date in weekly steps
from January 2020 through end of August 2022, i.e. we have t =1, ...,135 time steps. Of note, Berlin
is sub-divided into 12 administrative districts. Although COVID-19 counts are separately listed in
the RKI database with respect to these districts, we use aggregated data for Berlin constrained by the
database structure of the Census Bureau. Berlin as well as Hamburg thus function both as a single
county and as a federal state.
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2.2. t-sne

The "t-distributed stochastic neighbour embedding," in short t-sne, is a commonly applied
dimensionality reduction algorithm ([22]) with a precursor, called "SNE", introduce by [23]. For
a brief outline, assume that each of the 400 incidence time series corresponding to the 400 German
districts is represented as a point in a 135-dimensional vector space with 135 being the length of the
weekly sampled time series. SNE, and likewise t-sne, as applied here, reduces the 135-dimensional to a
2-dimensional vector space while preserving proximity of data points based on a distance or similarity
measure. Such a reduction in dimensionality needs to specify a so-called perplexity parameter, which,
in a nutshell, reflects the users taste of how quickly similarity should fade out with increasing distance,
i.e., which area is conceived as neighbourhood. This trick allows for a visual inspection of clustering
patterns in two dimensions, if any. Calculations are based on algorithms provided by [24].

2.3. UMAP and PCA

"Uniform manifold approximation and projection,” in short UMAP, has been introduced by
[25] as a dimensionality reduction algorithm that out-performs t-sne by means of preserving global
structures, at least such is the claim. However, comparative studies do not allow a definitive conclusion.
Analogously to t-sne, UMAP necessitates a free parameter, called n — neighbors, to be set, which defines
a custom range of neighbourhood. Both algorithms compete with the well-known method of principal
component decomposition/analysis (PCA) ([26]), which seeks for an optimal explanation of variability
after the decomposition while preserving the overall variance in the data. We present the results from
applications to the COVID-19 time series of all three algorithms side by side and conceive this as a
sensitivity analysis. Used algorithms are provided by [27,28]. The PCA algorithm is endowed with the
possibility to calculate normal data ellipses around a set of predefined data points, which are assumed
to constitute clusters. Therefore, an approximate (pseudo) confidence measure for the separability of
clusters is available.

2.4. Correlation Matrix and Hierarchical Clustering

Calculating pairwise correlation coefficients of the 16 federal state-specific incidence time series
can be conceived as a reduction to a 1-dimensional space since correlation is just a specific similarity
measure. Along with hierarchical clustering, a visualisation of the correlation matrix should essentially
yield the same information as a two-dimensional reduction, as long as specific structures that can only
be recognised by a specific algorithm are absent. Both Pearson as well as Kendall correlations are
calculated since it is common place, that Pearson is good in recognising linear correlations whereas
Kendall can also be applied to nonlinearly correlated data vectors. Thus, a comparison of the results
after the application of all suggested methods will decidedly bring added value in interpreting the
dynamic hallmarks of the epidemic. The correlation plots are created using the R-package provided
by [29]. Hierarchical cluster analysis is based on Ward’s minimum variance method, which aims at
finding compact, spherical clusters. Specifically, we use the "ward.D2" method, which means that
dissimilarities are squared before cluster updating, according the package manual.

2.5. Multidimensional Scaling and Network Graphs

Multidimensional scaling (MDS) is the umbrella term of a family of dimensionality reduction
algorithms. MDS aims at preserving distances or, conversely, proximities between data points. Note
that this differs from the t-sne neighborhood embedding, which clusters neighboured points tightly
in order to clearly visually separate the clusters. Here, we exclusively use non-metric MDS based
on spline tr?nsforrAnations. In other words, the spline function f transforms dissimilarities J;; to
disparities d;; via d;; = f(J;j). Corresponding dissimilarities in the low-dimensional space are then
found by minimising a so called stress function, which in essence is a function of the difference between
disparities in the original and the reduced space. For details cf. [30].
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Recently, MDS is found to be combined with graph visualisation with increasing popularity.
Based on a scalar measure of proximity between any pair of data points (here time series), as e.g.
correlation coefficients, the data points can still be represented in two dimensions in the form of nodes
(or vertices), where the scalar similarities determine the strength of the connecting edges. The spatial
arrangement of the nodes can then be based on similarities calculated by minimising the corresponding
stress function. Other, usually ambiguous arrangements are in use, which can be constrained by the
requirement of having non-overlapping nodes. Also popular is the simple arrangement of nodes into a
circle, whereby nodes assumed to share a cluster can be arranged such that they are adjacently located
on the circumference.

Although this type of presentation in form of a graph visualisation is suggestive to the eye of the
beholder and therefore prone to misinterpretation, it can flank the exploratory approach if one is aware
of the pitfalls. We present graphs which are based on correlation coefficients or on distances supplied
by a PCA, respectively. Moreover, after the application of a Gaussian graphical model using LASSO, a
partial correlation network can be derived, which reduces the number and strengths of the edges of the
graph to a relevant magnitude. Please cf. [30,31] for a detailed description of the graph visualisation
methods used here, including the Gaussian graphical model, referred to as "graphical LASSO."

Network graphs are commonly published together with so called centrality indicators. Network
strength, sometimes also referred to as degree centrality, assigns an importance score to each
node/vertex, which is, in our application, the sum of pairwise absolute values of correlations of
the given to all other nodes. Betweenness centrality measures quantify how strong given nodes build
bridges between other pairs of nodes. Closeness centrality scores each node based on their strengths
to all other nodes in the network. It is worth of note, that both betweenness and closeness do not
differ strongly from degree centrality, if the similarity of the nodes is measured in terms of correlations.
However, we will report these centrality measures for the sake of completeness. Expected influence,
occasionally called eigen centrality, measures a node’s influence onto the entire network. If correlations
are used for the quantification of similarities, the expected influence differs from network strength
only if positive and negative correlations are simultaneously present in the network, since expected
influence does not use absolute values when summing up the correlations.

2.6. Spatial Heterogeneity

Spatial Shannon entropy at time ¢ is given by

400 (a (a
S(a,t) =Y Li(a, 1) ln< Lia, ) ), ()

S Iia,t) 19 Ii(a, t)

from which a measure of diversity (or spatial heterogeneity), given by

e—Sat)

Dla,t) = =50~

with 0 < D(a,t) <1, 3)

can be calculated. The upper limit of 400 in the summation refers to the number of districts. However,
in order to detect possible differences between East and West Germany, the summation will also be
restricted to either the 75 East German or to the 325 West German districts. For details on interpreting
the diversity function confer [32], and for an analogous application within an epidemiological context
see [33]. Briefly, for a given age class a at time point ¢, equal incidences over all counties gives
maximum entropy hence maximum diversity D(a,t) = 1, however, generally D(a,t) < 1 since a
synchronisation of the epidemic activity across districts appears to be unlikely. Particularly in the
beginning of the epidemic with one or a few number of early index cases located within one or a few
number of districts, D(a, t) will be close to 0. Over the course of time, intervals with a more or less
homogeneous distribution of incidences across counties will probably alternate with asynchronous
epidemic activities, as a consequence of spatially unequally distributed index cases of new epidemic
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waves and differences in socio-behavioural conditions. Here, we focus on trends and abstain from
presenting statistical significance, i.e., confidence intervals for D(a, t) are ignored. In this regard, the
reported incidence data may substantially deviate from true incidences such that confidence intervals
would give rise to spurious certainty.

The following measure serves to capture changes in the dynamics of the epidemic in

district/federal state i,
L(t)
L(t—1
AAL(t) = i, @

Li(t-2)

i.e. fold changes of weekly fold changes in incidence, which has also been used in [34]. Equation 4 goes
to show the similarity to the weekly fold change in the effective reproduction number R;(t)/R;(t — 1)
of area i. Taking the logarithm yields

In (AAL(E)) = In (;(£)) — 21In (L;(t — 1)) + In (L(t — 2)), ®)

which is used in the following due to its favourable symmetry with respect to zero. For
convenience, In (R;(t)/R;(t — 1)) and In (AAI;(t)) is used interchangeably, whereby the first version
can straightforwardly be extended to comparisons of two areas i and j at a given point in time, i.e.
In (R;(t)/R;(t)) (for details cf. Equation 7 below).

With the exception of taking logarithms, Equation 5 bears resemblance to the so called
difference-in-difference method, which has frequently been used to identify causal effects of COVID-19
non-pharmaceutical interventions (cf. [35] for a review of the method and [36] for a systematic
review of applications within the scope of COVID-19). Within the latter context, the counterfactual
difference-in-difference method is applied to a setting which is assumed to be quasi-experimental in
nature. If I lp " and I_ip " denote average incidences taken over a period before or after a containment
measure has been mandated in district/federal state 7, respectively, then

= (1) (7 1) 0

measures the effect of the containment action when j refers to a district/federal state without a
corresponding mandate. Of note, Equation 6 does yield a reliable result if and only if areas i and j are
"structurally” comparable, i.e., if a common trend assumption (constant underlying differences) holds
(for details cf. [35]).

Supposedly, the individual counties exhibit individual epidemic dynamics, in particular as
a consequence of different (starting and stopping of) containment strategies, but also due to
inherent socio-structural conditions, hence creating and amplifying spatial heterogeneity. Equation 5,
therefore, serves as an auto-difference-in-difference method to detect dynamical change points.
It appears plausible that a district remains structurally "self-similar" over time such that the
auto-difference-in-difference is even more valid than the between-counties counterpart.

Specifically, as a consequence of the previous remarks, a special application of Equation 5 reads

Ri(t) ) _
In (Rj(f)) =[In(L(t)) —In(L(t—1))] — [ln (Ij(t)) —In (Ij(t — 1))] , ()

which goes to show the difference in the dynamics of two distinct areas at a given time point, hence
defining a "cross-difference-in-difference." If, e.g., two structurally similar districts i and j both follow
exactly the same non-pharmaceutic intervention schedule, Equation 7 should then yield a time series
constantly close to zero.

To complete, we use cross-correlation analyses based on Kendall’s correlation coefficient in
order to quantify mutual associations of the dynamical patterns of areas (counties or federal states,
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respectively) expressed via the associated auto-difference-in-difference time series. Hierarchical
clustering is applied in "Ward.D2" mode.

3. Results
3.1. German SARS-CoV-2 Epidemic Activity Geographically Clusters Into East and West

3.1.1. Allowing for a Visual Exploration Through Dimensionality Reduction

Dimensionality reduction of the 400 county-specific incidence time series leads to patterns within
the 2-dimensional target space as depicted in Figure 1. Remarkably, three different commonly used
reduction algorithms basically yield the same pattern: a clear separation into an Eastern and a Western
German cluster can be observed. Panels A and C each show a decomposition into two principal
components. The two panels differ only in the choice of subsets for which normal data ellipses have
been calculated. Panel A shows normal data ellipses for the two subsets of counties that belong to West
and East Germany, respectively, whereas panel C does show the ellipses for subsets corresponding to
the 16 federal states separately. The locations of the ellipses belonging to the five Eastern German States
can clearly be distinguished from the ellipses corresponding to Western German States. Although the
clusters slightly overlap, the East-West dichotomy is clearly visible.

This result also applies to the right panels of Figure 1, which show t-sne (panel B) and UMAP
(panel D) transformations, respectively. A few data points corresponding to Eastern German counties
are located at the periphery of the Western German cluster, however, the two centers of mass are clearly
separated.

3.1.2. Canonical Correlation Analysis Provides Added Values to the Findings

The aforementioned results can be confirmed by applying a canonical correlation analysis.
Correlation matrices corresponding to Pearson’s and Kendall’s correlation coefficients, respectively,
are depicted in Figure 2. Also shown are two clusters for each correlation matrix resulting from Ward’s
hierarchical cluster analysis. Application of the very same cluster algorithm does lead to a strict
separation of Eastern and Western German States when being applied to Kendall’s correlation matrix
(lower panel) in contrast to the application to Pearson’s correlation matrix (upper panel). Specifically,
hierarchical cluster analysis following a linear correlation analysis leads to the allocation of the two
West German states Bavaria (BY) and Baden-Wuerttemberg (BW) to the cluster otherwise dominated
by East German states. As we learned from dimensionality reduction above, points corresponding
to counties belonging to BY and BW, respectively, are located at the interface between East and West
German clusters (cf. Figure 1). Since the pairwise correlations of incidence time series cannot be
expected to be strictly linear, the hierarchical clustering following Kendall’s correlation appears to be
more convincing. It is compatible with what we learned from visual inspection of Figure 1.

3.1.3. Consolidation of the Observed Clusters Through Network Visualisation

Remarkably, the previous conclusions can also be confirmed in the form of network visualisations
(Figures 3 and 4) when being applied to incidence data aggregated to the federal state level. The
network shown in Figure 3 results from an MDS based on Kendall’s correlation coefficients. Specifically,
the edges between the vertices (federal states) represent partial (Kendall) correlations derived from
graphical LASSO (correlation strength mapped to line width, positive correlations are colored green,
negative red, respectively). Spatial arrangement results from similarities also calculated from Kendall’s
correlation coefficients, i.e. from the corresponding MDS. Once again, Eastern and Western German
states are clearly separated into well-distinct clusters.

Basing the spatial arrangement on principal components instead of correlations yields the network
structure depicted in Figure 4. The graph clearly tells us that one principal component would be
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sufficient to explain the variability of the time series. The nodes belonging to Western German states
relatively tightly cluster at one end of this component, whereas the nodes representing the Eastern
States extend over a greater length but are still well-separated from the Western German cluster.
Thickness and colour of edges obey the same rules as in Figure 3. Since PCA is based on a reduction
that optimizes variability, it may be conceived as the most evident result, taking into account, however,
that it results from linear modelling constraint by the corresponding assumptions. In summary, the
results from different approaches to dimensionality reduction are largely in agreement. Thus far, a
striking difference in the epidemic dynamics of East and West Germany can safely be concluded.

To conclude this section, four commonly communicated centrality indicators are presented in
Figure 5. Of note, these indicators are identical for the two networks presented in Figures 3 and 4 since
both networks are based on the same correlation matrix. All four indicators are similar, which is not
unusual for the given case of connections of nodes, which are not strictly binary (connected vs not
connected). Strength of a given node is simply the sum of the absolute values of all pairwise correlation
coefficients of this node within the entire network. However, the x-axes of all four centrality indicators
are transformed to z-scores rather than showing the raw values, which allows for a straightforward
comparison. Obviously, expected influence and strength make not much of a difference. Slight
differences between strength and expected influence, as can be observed e.g. for NW, stem from a
small number of low magnitude negative correlations considered when calculating expected influence.
Assume given a particular index node that sits between two nodes, which are not strongly correlated,
then a strong betweenness entails strong correlations for the index node with respect to the neighbored
nodes. As an example, Saxony-Anhalt (ST) does strongly correlate with both MV and TH, but without
a substantial correlation between the latter two federal states (cf. Figure 3). This substantially increases
betweenness of ST. However, overall betweenness and strength do not differ substantially for most of
the nodes. The same is true for closeness.

In summary, the indices may not contribute very much to the understanding of the prevailing
dynamics, nevertheless the reader should not be deprived of the information they provide - according
to the motto, no result is also a result.

3.2. Variability of County-Specific Fold Changes in Reproduction Numbers Correlates With Spatial
Heterogeneity

SARS-CoV-2 spatio-temporal heterogeneity in Germany is depicted in different facets in Figure 6.
To start with, age-independent incidence time series of all 400 German rural/urban districts (counties)
(Equation 1 aggregated over all age classes) by and large follow the same wave-like shape as observed
for the pan-German incidence curve (Equation 1 aggregated over all age classes and over all counties),
however, exhibiting rather wide variations in magnitude (see Figure 6A). Even on the level of the 16
federal states, the individual curves deviate considerably from each other. The ranges depicted in
Figure 6A give a vivid expression.

The variations of county-specific incidence curves are the result of continual dynamical changes
expressed by a dense series of spikes of weekly fold changes in the instantaneous effective reproduction
numbers as calculated from Equation 5 on the pan-German as well as on the county and federal state
levels, respectively, as shown in Figure 6B. Hardly surprising, these differences in oscillatory patterns
in the time domain show up as spatial heterogeneity expressed via the diversity measure calculated
from Equation 3 as shown in Figure 6C. A non-constant heterogeneity over time points to a residual
coherence between the auto-difference-in-difference time courses. Thereby, spatial heterogeneity has
been calculated and is presented both with and without stratification by three age classes (i.e., kids
(age < 18y), adults (18y < age < 60y), seniors (age > 60y), all ages).

As expected, at the outset of the German COVID-19 epidemic for all age classes, spatial diversity
starts at a value close to zero, followed by a rather steep increase roughly within the first 4 to 6 epidemic
weeks (Figure 6C). For all three age classes, the diversity curves show relatively sharp and short-lived
dips that begin shortly before the respective holiday periods of the 3 observation years. The slump is


https://doi.org/10.20944/preprints202306.1628.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 June 2023 doi:10.20944/preprints202306.1628.v1

9 of 28

particularly pronounced in 2020, only slightly smaller in 2021 and more moderate in 2022. These dips,
at least for 2020 and 2021, coincide with low incidence periods (Figure 6A) but also with periods of
high relative changes in reproduction numbers (Figure 6B). This behaviour also holds for some smaller
intermittent drops in diversity.

Indeed, the logarithm of the age-independent SARS-CoV-2 incidence time course (Figure 6A)
strongly correlates with age-independent diversity (Figure 6C) yielding Kendall coefficient 0.74 (p <
0.001). Likewise, the Kendall coefficient of correlation between the time course of the logarithmised
range of the age-independent auto-difference-in-difference taken over the counties (Figure 6B) and
age-independent diversity (Figure 6C) amounts to —0.6 with p < 0.001. Thereby, the first 9 weeks have
been removed from the time series due to unreliable diversity estimates at the outset of the epidemic.
The activity in 2022 is somewhat out of line overall, although the indicated behaviour continues at
least moderately.

3.3. Spatial Homogeneity of Child Incidence But Increased Overall Heterogeneity in the East

Remarkably, the diversity curve corresponding to the youngest age class (children and juveniles),
remains on top of the two other curves which correspond to the adults and seniors during the course of
time until the curves apparently converge towards the end of 2021. From roughly April 2022 onward,
diversity corresponding to the adult age class starts again to drop and, therefore, diverges from the
two other curves which remain in-phase at almost identical magnitudes.

If we calculate the diversities for West and East separately, we obtain the same ordering pattern
by age group (not explicitly shown). However, the diversity curves for West Germany are larger
in magnitude than those for East Germany over almost the entire time course. The difference of
diversity between West and East is depicted in Figure 6D, which remains positive most of the time. To
summarise the findings so far, increased variability of county-specific fold changes in reproduction
numbers correlates with increased spatial heterogeneity and coincides with a drop in incidence. East
German COVID-19 incidence exhibits a considerably stronger spatial heterogeneity than observed for
the West.

3.4. Decreasing Trend in Fold Changes in Reproduction Numbers

A closer look at the courses of age-independent rural state-specific fold changes in reproduction
numbers calculated according to Equation 5 reveals a clear overall trend in decreasing magnitudes
(Figure 7). Although later "epidemic waves" have much more pronounced magnitudes than early
"waves" (cf. Figure 6A), their rates of change appear to be more moderate. The 16 rural state-specific
auto-difference-in-difference curves are depicted in Figure 7A along with a 5-week-windowed envelope.
More concrete, at each point in time, t, the envelope is showing maximum and minimum values within
the window time [t — 5, t 4 5] (in weeks). The evolution of density curves as shown in Figure 7B further
clarifies this converging behaviour. The gradual narrowing of the densities, calculated per quarter, is
striking.

The district of Heinsberg, located in North Rhein-Westfalia (NW), is known for the first
"super-spreading” event which arguably sparked the COVID-19 epidemic in Germany (cf. [37]).
Unsurprisingly, after a quick rise of numbers of infected individuals, the first attempts to mitigate
the epidemic by means of lockdown orders took effect in NW which at least partially explains the
strong acceleration and deceleration during the first weeks of the epidemic. A similar pattern can be
observed for the second smallest federal state Saarland (SL) and the second most populous federal
state Bavaria (BY). The latter state is known to have seen the first SARS-CoV-2 index case (cf. [38]),
although without super-spreading event. Some states, particularly East German states as MV, ST, TH,
BB, SN (cf. the list of abbreviations), show moderate de-/accelerations during the first wave but more
pronounced changes in reproduction numbers during the second wave. In Baden-Wuerttemberg (BW)
the amplitude of fold changes in reproduction number remained strikingly low and approximately
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constant during the entire epidemic. Apparently, social conduct did not change considerably in BW
during the epidemic, although this is speculation.

To summarise, a common trend in the long run over all German federal states of decreasing
amplitudes of fold changes in reproduction numbers can be observed, however, there are state-specific
differences with respect to intermittent bursts.

3.5. Pronounced Fold Changes in Reproduction Numbers for the Younger and the Elder Cohorts

Throwing a glance onto age-stratified time courses of auto-difference-in-difference reveals striking
age-dependent differences. Figure 8 depicts the auto-difference-in-difference curves corresponding
to 5 arbitrarily chosen West German federal states separately for the 10 age classes. Likewise, the
age-specific auto-difference-in-difference curves for the 5 East German federal states (Berlin excluded)
are shown in Figure 9. The younger cohorts up to age 18y and the elder from age 60y upwards
unveil strong amplitudes of fold changes in reproduction numbers whereas the corresponding
amplitudes of the adult (medium aged) cohorts remain moderate throughout the epidemic. During
the epidemic, enormous efforts were made to protect the elderly. It is therefore easy to understand that
shelter-in-place or isolation orders showed greatest effect for the seniors compared to the employed
people. At the same time, the political controversies led to an inconsistent and erratically changing set
of rules and regulations. And this is just as true for the youngest cohort, the children and juveniles.
School closing orders have been replaced by school opening orders in a discordant and somewhat
haphazard fashion - a behaviour which has also been called "flying blind" ([39]). While the impact
of these discordant rules on the epidemic activity is of course speculative, it can safely be stated up
to this point that the de-/acceleration of this activity, i.e. the fold changes in reproduction speed, is
by far more pronounce for both the young and the elder subpopulation, but not so for the medium
aged adult cohort. In exactly this sense, kids and juveniles, as well as the seniors, are the driving
factors of the epidemic, at least for the West German federal states. For it is the case that a striking
difference between the West and the East German states can be observed. The differences between
the medium-aged and the other (junior and senior) cohorts are less strong or even absent for the East
German states. Within the West German set of states, Schleswig-Holstein (SH) is an exception in that
the oscillation of auto-difference-in-difference resembles the corresponding East German patterns.

In summary, both the younger (up to 18y) and the elder (60"y) cohorts show stronger changes in
SARS-CoV-2 reproduction numbers when being compared to the medium aged adult subpopulation.
In this sense, kids, juveniles, and seniors drive the epidemic stronger than working adults. We
hypothesise that containment and isolation measures are less actionable for working people. It is
perhaps more difficult to explain the East German dynamic patterns, which appear to be much more
similar with respect to age classes and, at the same time, show much more pronounced amplitudes for
the fold changes of the reproduction number. This finding is compatible with our results above derived
from cluster analyses. Our previous findings in [11] draw us to the conclusion that the well-known
political and socio-structural differences between East and West Germany are proper surrogates for
the underlying mechanisms.

3.6. Federal States Exhibit Dynamic Dissimilarities

As shown in the previous sections, the rates of change of the reproduction numbers calculated
per age class and per federal state in the course of time do produce age-dependent patterns but
appear also to exhibit state-dependent dynamical features. In this section, a closer look is taken at the
differences and similarities resulting from state-by-state comparisons. Equation 7 is considered an
appropriate time-dependent measure that captures mutual dynamic similarity. Indeed, Equation 7
can be conceived as a direct application of the original difference-in-difference concept. The logarithm
of the ratio defined in Equation 7 is expected to yield constantly zero if the dynamical features of the
two states under comparison are identical. Figure 10 depicts all pairwise comparisons with reference
state North Rhine-Westfalia (NW). Obviously, all 15 comparator states have a markedly different
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dynamical patterns at the outset (roughly the first 3-6 months) of the epidemic, with the most extreme
differences observed for SL and BY. For some of the comparator states, particularly HE, NI, and RP, the
pronounced initial oscillation fades out to a very small amplitude. A look at Figure 2 reveals that the
Kendall correlations of the incidence time series also go in the same direction, namely slightly smaller
coefficients for the NW-SL and NW-BY correlations, compared to the other three pair correlations
mentioned above. We hypothesise that the corresponding federal states exhibit a more coherent
dynamical pattern. The corresponding curves for each of the remaining 15 reference states are shown
in supplement S1.

For a more condensed or integral comparison, it is hypothesised that Kendall’s correlation
coefficient is another valid quantification that captures dynamical similarity. The resulting correlation
plot is shown in Figure 11. The correlation plot is ordered in hierarchical clustering mode using
agglomeration method "Ward.D2" as before, constraint by two clusters. Changing the agglomeration
method or the chosen number of clusters leads to a considerable fluctuation of clustering patterns (not
shown). It turns out that the canonical pairwise correlations of auto-difference-in-difference curves are
comparably less sensitive then the method defined by Equation 7 to detect shared dynamical patterns
of the federal states via hierarchical clustering.

4. Discussion

Only a couple of months after the pandemic outbreak of SARS-CoV-2/COVID-19, RJ Klement
presented a systemic picture including close to hundred components to build complex functional
relations ([40]). Although Klement’s network of "causal" relations is of rather wide scope and
included interactions within and between levels of organisation (i.e. macro-micro interactions), it
is still preliminary and far from exhaustive, as the author confirms. Klement thus contributed to a
hermeneutic discourse on the nature of the pandemic, i.e., to its better understanding, but the question
remains how such a complex picture can be operationalised. In practice, science is thrown back on
ambiguous reductionist views of a few interacting components. Unprecedentedly, the conception
of countermeasures based on both political as well as scientific criteria, indeed the entire culture of
communication, has been overshadowed by an intra-scientific scramble for interpretive sovereignty as
a consequence of this ambiguity ([41]). This completely derailed communication culture undoubtedly
itself added quite considerably to the pandemic-influencing mechanisms: an infodemic ([6]). At least
this important cluster of nodes should be added to Klement’s "causal” network.

The strategy followed here can be described as an attempt to largely dispense with model
assumptions and simply let the data speak for themselves. In this sense, the approach is non-parametric
and largely descriptive. The limitation of this approach is at the same time its strength. No causal
relationships, or even functional dependencies, are shown. An important note on this: causality
is an a priori, i.e., a fundamental principle that cannot be derived from empiricism - not even from
experimental empiricism. At best, a randomised controlled trial (RCT) provides evidence for functional
dependencies under very specific conditions. Less evidence is attributed to results of regressions in the
context of observational studies, even if the result thus obtained is highly self-evident. But be that as
it may, at the end of the day, the conclusion and, in our opinion, already the choice of study design,
including RCTs, is always already value-based (cf. [42]).

The semi-quantitative and broadly descriptive way of proceeding to assess age- and
county-specific COVID-19 incidence time series recorded in Germany reveal informative patterns.
Most striking is the fact, that the time series can be allocated to two geographic similarity classes
or clusters which coincide with the geopolitical division in East and West Germany. This confirms
findings based on regression analysis ([11]). The dependence of this clustering on the chosen measure
of similarity and reduction algorithm could give rise to a possible critique. However, this criticism can
be countered by the fact that 4 different methods produce the same results.

Spatial heterogeneity of COVID-19 incidence is waxing and waning in the course of time for each
age class, however, remains lowest for the youngest age class (children, adolescents) during the entire
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time course. To interpret this phenomenon as a spatially homogeneous background incidence of the
youngest age group may be going a bit too far, but a tendency in this direction is indicated. This view
is supported by findings of increased seroprevalence among school-aged children (cf. e.g. [43—46]
and references therein). Note, however, that a comparably lower virus load in children may lead to
underdetection which in turn might also bias the calculation of spatial diversity. Furthermore, in East
Germany we find a considerably larger spatial heterogeneity when being compared to West Germany.
Seen in the light of marked geopolitical differences between East and West (cf. [10]), this result may
appear less puzzling. In addition, it is in agreement with other spatio-temporal characteristics as
discussed in the following.

Temporal acceleration patterns do differ both geographically as well as age-related. Generally, for
all federal states the dynamical changes in terms of fold changes of reproduction number gradually
fade out in the course of time, although some intermittent bursts can be observed. Particularly striking
is the fact that the dynamics for Baden-Wuerttemberg (BW) are relatively flat over the entire observation
period. In sharp contrast, Saarland (SL), a very small federal state, does show the largest variability
in fold-changes of the reproduction number. The cross-difference-in-difference method applied to
all pairs of state-dependent incidence time series reveals patters of similarities and dissimilarites
that have to be discussed from the perspective of geopolitical differences, which is beyond the scope
of this contribution. However, we point to the observation that North Rhine-Westphalia (NW) and
Hesse (HE) do not only exhibit similarity both in terms of cross-difference-in-difference and Kendall
correlation, but these two federal states are also located in the center of the Western German cluster
derived from a network analysis (Figure 3). In this sense, NW and HE are "average states" with respect
to the SARS-CoV-2/COVID-19 epidemic. The reader is encouraged to throw a glance on the series of
figures in appendix S1. Among many other interesting patterns, Saarland (SL) exclusively shows very
pronounced mutual cross-difference-in-difference curves and, therefore, makes SL unique in a certain
sense.

In West Germany, children and juveniles as well as seniors do contribute more intensively to
de-/acceleration of the epidemic spread when being compared to the middle-aged class. Such a
difference cannot be observed in East Germany where all age classes equally strongly contribute to
fold-changes of the reproduction number. This result is in agreement with what has been found in
[18] using a different analytical approach which gives rise to the interpretation that children have a
significantly greater influence as a driver of the pandemic than previously suspected.

A possible explanation is the relatively unsteady dynamics of introduction and withdrawal of
containment measures for kids, particularly in schools and daycare facilities. The pronounced impact
of adults in the East on dynamical changes when being compared with the West German population
may be due to carelessness or differing socio-political attitudes. And, indeed, evidence is mounting
on how influential sociocultural aspects and personal beliefs are in relation to epidemic activity. For
a more profound discussion of this issue cf. [10,11,47-51]. Thus, with due caution we conclude
that varying containment measures and their compliance, as well as regular occurrences like school
vacations are much more instrumental to change the behaviour of non-adult people relevant for the
control of the epidemic reproduction number. We hypothesise, however, that the effects of school
openings are strongly confounded by the current local epidemic conditions, i.e. the current effective
reproduction numbers, and, even more important, by prevailing preparedness, facilities and reliance at
the schools and accountable local authorities. Thus, on the one hand, school opening can contribute to
combat the epidemic in case of a quick detection of an infection and a proximate shelter-in-place order.
On the other hand, school opening can worsen the situation in case of overwhelming infectivity and
concurrent lack of preparedness. The pronounced irregularity observed for the epidemic dynamics
corresponding to the young population teaches to shift the focus regarding control measures toward
children and adolescents. Further research is needed to better understand the causes behind the
observed irregularities.
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Whether the observed local differences can be attributed to real differences in incidences or rather
to locally different frequencies of testing, i.e. different numbers of undetected cases, is unclear (cf.
[52]). This is an unavoidable and probably the strongest limitation of evaluations that refer to publicly
available registered case numbers. The observed spatio-temporal intermittency, i.e. the irregular
alternation of phases, are presumably to some extent caused by the time-dependent detection ratio.
Moreover, the existence of a depensation effect leading to a "detection threshold" cannot be ruled out.
In other words, during a low incidence period, disposition to test might be particularly low, which
might in turn entail unrealistically many "zero events." To put this limitation in a slightly better light,
we point out that the interpretations given here are only suggestions anyway. The observed dynamic
patterns are objective, but the associated potential explanations, including changing vaccination rates
and the like, are not at all.

Finally, the lack of reliable data on all types of contact regulations does definitely limit the
explanatory power of our analysis. However, we are able to report intrinsic spatio-temporal patterns
of the epidemic that now can be linked to all types of socio-cultural occurrences that are suspected to
influence the transmission dynamics. We presented the results from an explorative study and want to
conclude by highlighting the captivating advantage of such a study: we let the data speak and did not
use contestable model assumptions.

5. Conclusions

We presented the results of an observational study of the German COVID-19 epidemic with all
the intrinsic limitations of such a secondary data analysis. With due caution, we conclude that children
and juveniles are the sub-populations which are predestined and most susceptible for successful
applications of protective measures. This can be inferred from the age-dependent spatio-temporal
patterns spotted in the COVID-19 epidemic activity. Furthermore, also inferred from the corresponding
spatio-temporal analysis, there exists a clear East-West difference in the epidemiological dynamics in
agreement with socio-structural differences reported elsewhere. Broadly speaking, the work provides
a kind of atlas for spatio-temporal patterns of the epidemic, which now need to be interpreted with
expertise from different disciplines. We encourage readers to combine the results presented here
with those in [17] and [18] to obtain an even more comprehensive picture on COVID-19 pandemic
dynamics. In particular, we urge sociologists and policy makers to associate the observed processes of
change with both sociocultural characteristics of individual regions and local policy-making processes.
Finally, we hope that our study can also make a methodological contribution to getting a handle on
the unusual complexity of the COVID-19 pandemic.
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Figure 1. County-specific total incidence time series after reduction to two dimensions. A) and
C) Principle component analysis (PCA) along with normal data ellipses embracing East and West
Germany (A) and the 16 federal states (C), respectively. X- and y-axes labels contain percentages
of explained variability by the corresponding component. B) Dimensionality reduction using t-sne
with perplexity = 30. Full circles point to incidence time series observed in East German counties,
whereas circled crosses refer to West German counties. D) Dimensionality reduction using UMAP with
n — neighbors = 10. Usage of markers as in B.
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Figure 2. Correlation matrix corresponding to the incidence time series with hierarchical clustering.
Upper panel: Heatmap-like depiction of correlation coefficients resulting from pairwise Pearson
correlations of federal state-specific incidence time series along with hierarchical clustering restricted
to two clusters. Lower panel: Correlation matrix as in the upper panel, however, calculated on the
basis of the Kendall’s correlation coefficients.


https://doi.org/10.20944/preprints202306.1628.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 June 2023 doi:10.20944/preprints202306.1628.v1

16 of 28

B8 East
@@Q . g V\?esst

Figure 3. Network visualisation of the federal state-specific incidence time series based on MDS. For
the spatial arrangement, similarities are calculated from Kendall’s correlation coefficients. Colour
(green corresponds to positive and red to negative correlations, respectively) and strengths of edges are
likewise derived from these coefficients.
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Figure 4. Network visualisation of the federal state-specific incidence time series based on MDS. For
the spatial arrangement, similarities are calculated from a PCA. Colour (green corresponds to positive

and red to negative correlations, respectively) and strengths of edges are likewise derived from these
coefficients.
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Figure 6. Spatio-temporal heterogeneity of SARS-CoV-2 incidence. A) Pan-German incidence, i.e.
weekly new cases by population size (black line), range spanned by state-specific incidence curves
(dark green area), and range spanned by the county-specific incidence curves (light green area). B)
Auto-difference-in-difference time series for the pan-German incidence (red bars), the 16 federal states
(black needles, slightly displaced for better visibility), and the 400 German counties (maximum to
minimum range). C) Age-stratified time courses of the spatial heterogeneity of incidences over 400
German counties given by Shannon’s diversity measure. D) West-East difference of diversity. A) and
C) Red and green rectangles show the first (MV or NW, resp.) and the last (BY or BW, resp.) summer
vacation in 2020, 2021, and 2022, respectively.
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Figure 7. Auto-difference-in-difference per federal state. A) Time series of

the

auto-difference-in-difference according to Equation 5 calculated per federal state (age- and

sex-aggregated) along with the corresponding summer vacations periods in 2020, 2021, and 2022

(green shaded areas) in descending order of variance. The curves are enclosed by a 5-week-windowed

envelope for visualising trends. B) Evolution of corresponding density functions calculated per quarter

for each auto-difference-in-difference curve.
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German federal states (horizontally arranged).
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Figure 9. Time series of age-dependent (age classes vertically ordered) auto-difference-in-difference

curves according to Equation 7 shown for the 5 Eastern German (excl. Berlin) federal states (horizontally

arranged).
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Figure 10. Time series of the cross-difference-in-difference according to Equation 7 calculated for NW

versus all 16 federal states. The empty NW-panel is kept to easily spot NW as the reference federal

state.
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Figure 11. Correlation matrix showing coefficients (in %) of pairwise Kendall’s cross-correlations of
auto-difference-in-difference time series In (AAI;(¢)) (Equation 5) corresponding to the pair of federal
states as indicated by the row and column labels, depicted in hierarchical (Ward.D2) clustering mode.
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The following abbreviations are used in this manuscript:

BB Brandenburg
BE Berlin
BW Baden Wiirttemberg (Baden-Wuerttemberg)
BY Bayern (Bavaria)
HB Hansestadt Bremen (Hanseatic City of Bremen)
HE Hessen (Hesse)
HH Hansestadt Hamburg (Hanseatic City of Hamburg)
MV Mecklenburg-Vorpommern (Mecklenburg-Western Pomerania)
NI Niedersachsen (Lower Saxony)
NW Nord-Rhein-Westfalen (North Rhine-Westphalia)
RP Rheinland-Pfalz (Rhineland-Palatinate)
SH Schleswig-Holstein (Schleswig-Holstein)
SL Saarland
SN Sachsen (Saxony)
ST Sachsen-Anhalt (Saxony-Anhalt)
TH Thiiringen (Thuringia)
Counties Land-/Stadtkreise (rural/urban districts),
local administrative districts (subdivisions of the federal states) in Germany
DE Deutschland (Germany)
EW East/West, used to label the categorical variable with values Eastern and Western

Germany, where East comprises the federal states BB, MV, SN, ST, TH.
Western Germany accounts for the remaining federal states.
FS, Fed. State  Bundesland (federal state)

agegrp age group or age class
RKI Robert Koch Institute (Federal Government’s Public Health Institute of Germany)
MDS Multidimensional Scaling
PCA Principal Component Analysis
-Ocm
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