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Abstract: The fast and reliable processing of medical images is of paramount importance to adequately
generate data to feed machine learning algorithms that can prevent and diagnose health issues. Here
we benchmark different compressed sensing techniques applied to magnetic resonance imaging
as a means to reduce the acquisition time spent in the collection of data and signals that form the
image. We show that by using these techniques, it is possible to reduce the number of signals needed
and, therefore, substantially decrease the time to acquire the measurements. To this end, we have
considered and compared different algorithms: the Iterative Re-Weighted Least Squares, the Iterative
Soft Thresholding Algorithm, the Iterative Hard Thresholding Algorithm, the Primal Dual Algorithm
and the Log-Barrier Algorithm. We have implemented such algorithms in different analysis programs
that have been used to perform the reconstruction of the images and found that the Iterative Soft
Thresholding Algorithm gives the optimal results. We found that the images obtained with this
algorithm have less quality than the original ones, but the quality is good enough to distinguish each
body structure and detect any health problems.

Keywords: Compressed sensing, medical resonance imaging, IRLS, ISTA, IHTA, primal dual algo-
rithm, log-barriel algorithm

0. Introduction

As the years go by and the scientific knowledge increases and refines, theories are
updated and improved, giving rise to more reliable and efficient technological applications.
For instance, within the field of signals processing, in the old days a camera with # pixels,
needed 7 signals to form the image. In 1949, however, with the Shannon-Nyquist theorem
[1], it was shown that it was possible to form the same image with fewer signals. This
theorem states that it is feasible to recover a signal if it is uniformly sampled at a rate at least
two times faster than its Fourier bandwidth, i.e. it allows to reconstruct a continuous signal
with a discrete sequence of samples acquired. However, for some applications as radar
imaging or different imaging modalities outside visible wavelengths, the needed sampling
rate can be so high that for state-of-the-art samplers it is impossible to achieve such values.
Also, because of the high number of samples collected, it is necessary to compress them
[2]. In 2006, Donoho and the team composed by Romberg, Candes and Tao introduced
the concept known as compressed sensing (CS) [3,4], which substantially simplified the
acquisition process.

CS is an alternative technique to the Shannon-Nyquist sampling theorem. With this
approach, it is possible to reconstruct a signal from a few random measurement by making
use of some non linear techniques, provided that the original signal is compressible or
sparse. A sparse signal has most of its coefficients null and only a few contain all the
information. It is possible to obtain this kind of signal through a base transformation. For
example, a sinusoidal signal of a given frequency obtained with a voltmeter as a function
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of time is not sparse. However, if the Fourier Transform is applied, the signal has a peak
associated with that frequency. The rest of the values are zero. Therefore, in the Fourier
domain, it is sparse [5].

The main objective of CS is to reduce the number of coefficients required to obtain the
resolution and the desired quality for the representation of the object of interest. To achieve
this, it uses a mathematical function called norm. The norm I, of a vector x (vectorial
notation is shown in bold type) of length n is expressed as follows:

" 1y
lxllp = (Z |in”> 1)
i=1

In the case p = 0, the [y norm consists of the number of non-zero elements in the vector x.
The Iy norm (p = 1) gives as a result the sum of the elements of the vector. The I, norm is
widely used to compute Euclidean distance [6].

The CS problem can be described as the reconstruction of the vector x, of dimension #,
from the measurements y = Ax, of dimension m, and the random measurement matrix A,
known as sensing or measurement matrix, of dimensions mxn.

The solution to this problem depends on its typology, that is:

e If m>n and rank(A)=n (purely overdetermined linear system), the linear system is

solved via least squares:
x = (ATA) ATy )
Besides, the reconstruction error of y: ||y — Ax||5 is non-null.
* In the purely underdetermined case (m<n and rank(A)=m) there are an infinite set of
solutions that belong to a linear variety oriented by the null space of A. This is the

typical case of under-sampling, that is, the number of samples in A (length of y) are
less than the original size of x. In this case, the minimum I, norm solution writes:

xvn = AT(AAT) 1y 3)

since it does not have components in the null space of A. This solution is sparse in the
system of reference (R"” = ColA @ KerA).

The sparse problem treated in this paper consists in finding the sparser solution in the
lp norm, which is the same to impose sparsity in the canonic basis set of R":

x = min|[x|p subjectto y = Ax 4)

Minimization in norm [y requires an exhaustive search over all possible sparse combinations.
Since it requires a large computational cost, this minimization is replaced by the convex
minimization problem in /;. This problem is determined as:

x = min|x||; subjectto y= Ax ®)

and it is known as Basis Pursuit (BP). In more complex situations, the measurements
obtained are corrupted by an unknown noise, which is denoted as e. Therefore, y = Ax + e.
The reconstruction problem is written as follows:

x = min||x||; subjectto |y — Ax|2 <e, (6)

where ||e|| < e. This problem is known as BP Denoising (BPDN) [7].

This is equivalent to impose that the linear system y = Ax is incompatible due to
measurement noise. BPDN is a constrained problem whose solution can be approached by
the following unconstrained optimization problem:

x = miny|ly — Ax|2 + A[Ix|l1 )
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Figure 1. Example of MR image of the spinal column [13].

The parameters A and € are related but, generally, the relationship between them is not
analytical and cannot be estimated [8].

CS technique has several applications in many fields, e.g. underwater imaging [9],
wireless structural health monitoring [10] and 3D visualization of the iron oxidation state
in FeO/Fe304 [11]. In this paper, CS is used in medical imaging; in particular, with images
obtained by magnetic resonance imaging (MRI).

MRI is a non-invasive technique widely used in medicine to obtain medical images
needed to make a later diagnosis. This technique is based on the physical phenomenon
of resonance; it consist of the transition between different energy states when an atomic
nucleus is introduced in an external magnetic field of a characteristic frequency. This
frequency, known as Larmor frequency, corresponds to the precession frequency of the
protons inside the nucleus. When a magnetic field is applied, the protons absorb the energy
and promote to a higher level. Once the magnetic field is removed, the protons decay to the
ground state. MRI measures the time and energy released from this last transition. Because
of their surroundings, those two values will be different for each proton. Then, by applying
the Inverse Fourier Transform to the obtained data it is created the image with different
contrast for each component of the body [12], as shown in Fig. (1).

This technique allows to distinguish different components of the human body, in
particular soft tissues as muscles, tendons, ligaments, fats, etc. Not only that, it also makes
it possible to differentiate between bones and organs [12]. The images can be in any
direction or part and they can even be made of animals, for instance a mice [14]. Moreover,
MRI can be used as an spectroscopy technique in biochemistry: it allows to know the
three-dimensional and dynamic structure of biological molecules [15]. Additionally, its
main advantage over other techniques, such as computed tomography or X-rays, is its lack
of ionizing radiation, which makes MRI exams secure for the patient. Because of these
reasons, its multiple uses and its high resolution imaging, MRI is known as the jewel in the
crown in medical imaging [16].

Despite the many advantages mentioned before, MRI has some drawbacks: patients
with pacemaker or with metal prostheses can be hurt by the strong magnetic field (up to
3T), so they can not be examined. Also, because of the reduced space and the high level of
noise in the machine, it can generate stress or anxiety. In addition to these disadvantages,
there are many more safety precautions that must be taken in consideration in order to
perform an examination. In addition, maintenance of machine components and tests are
very expensive. Finally, it takes a lot of time to acquire the data necessary to construct the
image, approx. 40 minutes [17].

In this article we present a methodology to reduce the acquisition time of MRI by
using three different CS algorithms. We consider different images of MRI of the head and
reconstruct them with less measurements and, therefore, the acquisition time is reduced. In
the algorithms, we introduced a number of data smaller than the real image and measure
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the time the algorithm takes on the reconstruction and the error committed. This study
paves then the way for shorter exams in MRL

The article is organized as follows: in section 1 we describe the CS algorithms em-
ployed to reconstruct the image and how they can be applied in MRI. In section 2, we
present and discuss the results (reconstructed images, acquisition time and error). We finish
with the conclusions.

1. Materials and Methods

MRI receives the data of proton relaxation and stores it in the frequency space, so that
with the Inverse Fourier Transform it is possible to construct the image. The CS problem
applied to this case can be written as:

Yix1 = FmxnXuxt + M 11~ N(0,07) 8)

where y are the frequency samples collected by the machine, F is the Fourier measurement
matrix x is the image to be constructed and # is the noise randomly distributed. We have
to solve an inverse linear problem to recover the data that forms the image from the
measurements; we use the measurement matrix which associates a frequency to a value in
the grey scale. The object x can be an image in 2D or 3D but it is represented as a vector by
concatenation.

In the ideal case in which enough measurements are taken (n = m), Eq. (8) can be
solved by applying the Inverse Fourier Transform on the frequencies:

X = Fﬁly )

To reduce the acquisition time, less measurements are taken. Therefore, Eq. (8) has infinite
solutions which can be solved with minimization algorithms. In this article, to reconstruct
the image we use five possible methods: Iterative Re-weighted Least Squares (IRLS),
Iterative Soft Threshold (ISTA), Iterative Hard Threshold (IHTA), a primal dual algorithm
(PD) and a log barrier algorithm (LB). The first three algorithms belong to the category
of greedy algorithms. They have less accuracy in the reconstruction but is less expensive
and simpler. PD and LB are convex algorithms; the error is minor but it takes a lot of
computational resources [7]. All those algorithms shown below, are iterative because of the
large storage size of A.

1.1. Iterative Re-weighted Least Squares

The first algorithm, IRLS, solves the minimization problem without restrictions, Eq.(7).
To achieve this, it replaces the /; minimization with /; norm with a given weight represented
by the diagonal matrix W In each iteration k. This matrix is updated by:

W® = diag(|xM| 72 4 ) (10)

where v is the dumping factor which is reduced at each iteration. In order to obtain
the reconstructed signal, the algorithm solves Eq.(11), obtained from the unconstrained
lagrangian, until it reaches a certain number of iterations or the solution converges, i.e.
lly — Ax||2 < € where € is the minimum error [8].

x(k+1) — (W(k))71AT(A(W(k))71AT)7ly (11)

1.2. Iterative Soft Threshold Algorithm

Next algorithm, ISTA, solves the same minimization problem as the previous algorithm
(Eq.(7)). In this case, it is used the function called Soft Threshold:

x+T X< —T
soft(x, T) = 0 x| <t (12)
X—T xX>T
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This, showed in Fig.(2), tries to decrease the amplitude of the coefficients with noise. For
example, if the amplitude of the signal is small, the noise and the number of data which
provides information are of equal magnitude. The data contains little information and,
therefore, the function returns 0. For larger amplitudes, the noise is very small compared
to the intensity of the real signal, and thus the function subtracts the part associated with
noise [18].

Soft threshold rule (with 7 = 2)

Figure 2. Soft Threshold rule with T = 2 [8].

In order to obtain the reconstructed signal with this algorithm, it is necessary to
calculate the Landweber Iteration, which is defined as:

b = x) 1 %AT(y — Ax0) (13)

k+1

where a is the largest eigenvalue of the matrix AT A. The solution x**! is calculated with

the Soft Threshold rule, which is written in a more compacted way:

xHD) = signum(b(k))max(o, p®| — %) (14)
In each iteration, the value of A should be reduced in order to achieve convergence [8].
Over the years, ISTA have had a lot of improvements in order to reduce the adquisition
time or to get a better resolution. For example, changing the thresholding function to
equation Eq.(15), called p-thresholding function, the technique penalizes small coefficients
and shrinks more values to zero. If p = 1, the equation reduces to soft-thresholding (Eq.(12))
[19].

Gr,p(x) = sign(x)max(0, [x| — 7|x|P~1) (15)

Another algorithm which improves the convergence speed, which is ISTA’s main
problem, is called fast ISTA (FISTA) which relies on the simplicity of the computation of
the proximal map of /; norm. If the gradient algorithm is applied in Eq.(6, it is obtained the
following iterative equations:

20 = x (=1 R g ()| axk-D) — b(k)||2) (16)
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where t(k) > 0 is the stepsize updated in each iteration. Using this idea with the uncon-
strained problem (Eq.(7)) it is obtained an iterative scheeme which can be seen as a proximal
regularization of || Ax — b||?. It is written as:

® = ming [ [lx — (x*-D_
x mmx<2t(k)||x (x

(O (|| Ax"1 = 9| 2)) 12+ Al x] 1)

(17)

By using FISTA, the number of iterations required to obtain an optimal solution are less
than ISTA as it improves the convergence rate [20]. However, there is no simple solution to
the non-smooth part A||x||;. In order to solve this, it is possible to approximate this term
by its Moreau envelop, which is smooth [21]. This strategy is also used in projected ISTA
(pISTA) and projected FISTA (pFISTA), in which the unconstrained model is converted into
a much simpler form where the objective function can be separated and the orthogonal
projection operator is introduced[22].

It is clear that it has been proposed many ways to optimize MRI and its different
sequences that improves its stability, the memory consumption and the reconstruction time
[23], [24], but ISTA is still a good way for signal reconstruction because it stands out for its
simplicity.

1.3. Iterative Hard Threshold Algorithm

As mentioned in section 0, to solve the CS problem in the [y norm is very expensive.
However, IHTA handles this problem if the data has noise, i.e.,

x:minx||y—Ax||%—|—/\Hx||0 (18)
In this algorithm, it is defined the following function similar to ISTA:

x x| > T

0 x| <t (19)

hard(x, 1) = {

In this function, if the signal is of the same magnitude as the noise, it eliminates those
values; otherwise, it does not alter the value [8]. In this algorithm the Landweber Iteration
is also calculated by Eq.(13) and the solution is obtained by:

x*+1) = HardThreshold(|b")], %) (20)

1.4. Primal Dual Algorithm

PD algorithms for linear programming are used to solve equation Eq.(5) among others.
The standard form in linear programs is

miny(co,¥) subjectto Ax=y, fi(x)<0 (21)

.....

This algorithm finds the optimal x* and the dual vectors v* € R", A* € R", which satisfies
the Karush-Kuhn-Tucker conditions, by solving this system of nonlinear equations with
the Newton’s Method [25], [26]:

co + ATy* + ZA,'*C,' =0

1
Aiffi(z")=0, i=1,..,m (22)
Az" =y
fi(z") <0, i=1,..m
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So in the inner loop of the PD algorithm, Newton’s Method is applied. Conjugate gradients
are used in Eq.(22) in order to obtain the step direction Ax. Then, update the solution by
the next equation:

D) = 40 _ g Ax (23)

1.5. Log-Barrier Algorithm

The BPDN problem (Eq.(6)) can be modeled as Second-Order Cone Programs (SOCPs),
i.e., it can be written as a linear program Eq.(21) where f; represents a second-order conic.
This method consists of transforming the minimization problem into a series of linear
problems in y:

) 1
miny {(cg, x) + " ; —log(—fi(x)) (24)

subjectto Ax =y

Each one of this subproblems are solved with a high degree of accuracy with the Newton’s
method to obtain x(¥). In each iteration k, T* is updated so that T* > 781 [26].

1.6. Application of the algorithms to MRI

The previous algorithms have been used to reduce the acquisition time of MRI. Since
we were unable to access a MRI machine, we designed a code to read real MRI images,
decompose the data and store it as a vector x. This code, also generates the measurement
matrix A as a function to avoid memory problems due to the large size of the matrix.
The measurements that would be obtained in MRI y are evaluated through A and x. The
measurement matrix function calculates the Fourier Transform of x and randomly orders
its coefficients. We apply the algorithms to y and obtain the signal and the reconstructed
image %. Our code also allows to obtain the time it takes to perform the algorithms and the
error between the original and the reconstructed signal.

The aim of this article is to reduce the acquisition time and, therefore, the number of
measurements taken must be less than the number needed to construct the original image.
So, when the image is read, we randomly select a few values which will be stored in x.
Then, y is obtained and the signal £ reconstructed.

We have analysed several images with the algorithms to obtain the parameters of
time and error in function of the number of measures. With these results, we select the
best algorithm to perform the reconstruction applied to MRI and the minimum number of
measures needed to be able to distinguish all image components.

2. Results and discussion

This section presents the results after applying the CS algorithms on medical images
obtained with MRI. We analysed several images of the head of the human body obtained
from the database of the University of South Carolina [27].

One of the images used in the simulations is shown in Fig. (3) and corresponds to an
axial slice of the brain in the plane marked by the blue lines in Fig. (4). In it, the orbit of
the eyes can be distinguished at the bottom. Fat appears with a very intense signal, while
water and cerebrospinal fluid have a very low intensity.

The image is blurred in the left orbit, which is an example of an artifact. An artifact is
a distortion in the image that has no relation to the subject of the region of the studied body.
In this case, it has been generated due to the patient’s movement. [28].

Next, we present the images and the parameters obtained from the reconstruction,
time and error, for each algorithm as a function of the data taken from the original image.

In the reconstruction by IRLS, only the outline of the head and orbits are detected in
the first measurements, while the white matter is not distinguishable (Fig. (5a)). When 70%
of the data is available (Fig. (5b)), the white matter can be distinguished, although it has
little intensity. Also, the intensity of the orbits increases and the effect of the artifact starts
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Figure 3. MRI image of an axial slice of the brain. In the area below are the eye orbits [27].

Sagital Coronal

Figure 4. Images of a sagittal, coronal and 3D slice of the brain. The blue line shows the plane
corresponding to the image Fig. (3).
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to be noticed. If the algorithm is run with all the available data (Fig. (5c)), the resolution
at the edges increases, but the intensity of the white matter signal is lost, which makes its
identification more difficult.

As in IRLS, the ISTA algorithm detects first the areas of highest intensity in the first
measurements without distinguishing white matter (Fig. (5a)). If the number of input
data is increased, the resolution of the edges increases but it is still difficult to differentiate
the white matter (Fig. (5b)). Finally, the resolution increases until the shape of the fat is
detected (Fig. (5c)).

If it is employed IHTA for the reconstruction, when we use a 30% of the initial signal
values (Fig. (7a)), much more noise is detected in the inner part of the head, where the
white matter should be. In case of a 70% of measurements (Fig. (7b)), we obtain an image
similar to the same case with ISTA, but the white has more intense signals, which allows
to distinguish it better. The resolution increases as more data is added. However, when a
100% of data is reached (7c)), the white matter is not detected, it appears in black.

If we apply PD algorithm the object is much clearer with lower measurements. When
it is used 30% of the initial values (8a)), the structure inside the head can be recognized and
delimited, even though its low intensity. As the number of measurements is increased, the
images get better resolution so when we have 70% (8b)), the image is similar to the original
one. Finally, with 100% (8c)), the grey matter loses its intensity.

The images obtained with last algorithm, LB, are more blurred. With 30% of the
measurements (9a)) it is not posible to distinguish the structures. It the algorithm works
with 70% of the initial data (9b)), the image is reconstructed clearly. In the end, with all
100% of the data, the reconstruction is similar to the one obtained with PD algorithm.

The graph in Fig. (10) shows the time taken by the algorithms to reconstruct the image
as a function of the number of entered data. The IRLS maintains a constant time of 8 s
in all reconstructions. It solves the problem of reconstruction in the /; norm and it is the
fastest one. In case of the ISTA algorithm, which employs a minimization in /; norm, the
time decreases linearly from 100 s to approximately 50 s. The IHTA algorithm takes the
longer time in the reconstructionas it can be predicted since it solves the minimization
with Iy norm. Also,two peaks are obtained at 20% and 90% of the measurements with
IHTA. The convex algorithms, PD and LB, takes much more time than the greedy ones as
expected. The reconstruction time for PD is higher as the number of measuremets increases.
Its maximum value is 367 s. LB algorithm does not show a clear trend. It has three peaks,
at 20%, 40% and 90%, the latter being the smoothest one. Finally, with 100% this time
decreases to 285 s.

The error made in the reconstruction is found in the following Fig. (11). The IRLS error
decreases linearly. ISTA and IHTA are very similar: in both the error decreases with the
number of measurements, except when 90% of the measurements are reached, where the
error with IHTA increases abruptly. This is due to the fact that, as mentioned above, in this
last reconstruction it does not detect the signal related to the white matter and, therefore,
the error is very high. The error for PD and LB are higher than expected as they are convex
algorithms and the images reconstructed were quite similar to the original. Both algorithms
decrease the error similarly until 60%, where the error in PD is higher.

3. Conclusions

In this work, we have studied the CS techniques applied to images adquired with MRI.
We have developed several programs that allowed us to quickly and clearly reconstruct an
image. We started from a random signal with a smaller number of data than those needed
to construct the original image in the conventional way. Then, we generated a similar
image with a lower resolution. The algorithms chosen to perform this task were IRLS, ISTA,
IHTA, PD and LB.

From the analysis of the images reconstructed with these algorithms it can be con-
cluded that it is appropriate to use ISTA. Although it has an adequate computational time
and in some cases it may not provide the best possible resolution, it allows to distinguish
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(a) Reconstruction with IRLS using 30% of taken mesaure-
ments.

(b) Reconstruction with IRLS using 70% of taken mesaure-
ments.

(c) Reconstruction with IRLS using 100% of taken
mesaurements.

Figure 5. Reconstruction of the image in Fig. (3) using IRLS with 30% (a), 70% (b) and 100% (c) of
taken measurements.
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(a) Reconstruction with ISTA using 30% of taken mesaure-
ments.

(b) Reconstruction with ISTA using 70% of taken mesaure-
ments.

(c) Reconstruction with ISTA using 100% of taken
mesaurements.

Figure 6. Reconstruction of the image in Fig. (3) using ISTA with 30% (a), 70% (b) and 100% (c) of
taken measurements.
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(a) Reconstruction with IHTA using 30% of taken
mesaurements.

(b) Reconstruction with IHTA using 70% of taken
mesaurements.

(c) Reconstruction with IHTA using 100% of taken
mesaurements.

Figure 7. Reconstruction of the image in Fig. (3) using IHTA with 30% (a), 70% (b) and 100% (c) of
taken measurements.
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(a) Reconstruction with PD using 30% of taken mesaure-
ments.

(b) Reconstruction with PD using 70% of taken mesaure-
ments.

(c) Reconstruction with PD using 100% of taken mesaure-
ments.

Figure 8. Reconstruction of the image in Fig. (3) using PD with 30% (a), 70% (b) and 100% (c) of taken
measurements.
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(a) Reconstruction with LB using 30% of taken mesaure-
ments.

(b) Reconstruction with LB using 70% of taken mesaure-
ments.

(c) Reconstruction with LB using 100% of taken mesaure-
ments.

Figure 9. Reconstruction of the image in Fig. (3) using LB with 30% (a), 70% (b) and 100% (c) of taken
measurements.


https://doi.org/10.20944/preprints202306.1605.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 June 2023 doi:10.20944/preprints202306.1605.v1

15 of 17

Reconstruction time

600
o=
500 —k —
= 400 N A B g
= 2 N i
g \
E 300 g
200
100 Ty A — - . - N & .
— :_ -——— | e T
a o ] & =
1] 20 40 60 80 100
Measurements (%)
—&—|RLS ——ISTA ——|HTA PD ——ILB

Figure 10. Reconstruction time of Fig. (3) as a function of the number of measurements for each
algorithm.
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Figure 11. Error in the reconstruction of Fig. (3) as a function of the number of measurements for
each algorithm.
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each component if 70% or more of the measurements are taken. Although the IHTA algo-
rihtm has the highest resolution, it does not solve some images correctly and takes more
time perform the reconstruction. The IRLS algorithm has the shortest computational time,
but, like IHTA, it does not achieve enough accuracy. If there are less than 50% of the mea-
surements, it should be used PD algorithm, since its images are clearer and it can recover
the structures. LB algorithm takes too much time and does not give any improvement
compared to the other algorithms.

These algorithms can be applied to different parts of the human body and with
different MRI sequences as T7, T, or proton density. These sequences change the contrast
of the images, allowing to draw a distinction between components of the human body. The
images can also be reconstructed even if contrast agents were introduced.

The same CS technique studied in this article can be applied to other methods; for
example, computed tomography or X-ray. Although the acquisition time of these is much
shorter, it can still reduce the amount of radiation applied to the human body needed to
obtain an image.
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