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Abstract: The fast and reliable processing of medical images is of paramount importance to adequately 1

generate data to feed machine learning algorithms that can prevent and diagnose health issues. Here 2

we benchmark different compressed sensing techniques applied to magnetic resonance imaging 3

as a means to reduce the acquisition time spent in the collection of data and signals that form the 4

image. We show that by using these techniques, it is possible to reduce the number of signals needed 5

and, therefore, substantially decrease the time to acquire the measurements. To this end, we have 6

considered and compared different algorithms: the Iterative Re-Weighted Least Squares, the Iterative 7

Soft Thresholding Algorithm, the Iterative Hard Thresholding Algorithm, the Primal Dual Algorithm 8

and the Log-Barrier Algorithm. We have implemented such algorithms in different analysis programs 9

that have been used to perform the reconstruction of the images and found that the Iterative Soft 10

Thresholding Algorithm gives the optimal results. We found that the images obtained with this 11

algorithm have less quality than the original ones, but the quality is good enough to distinguish each 12

body structure and detect any health problems. 13

Keywords: Compressed sensing, medical resonance imaging, IRLS, ISTA, IHTA, primal dual algo- 14

rithm, log-barriel algorithm 15

0. Introduction 16

As the years go by and the scientific knowledge increases and refines, theories are 17

updated and improved, giving rise to more reliable and efficient technological applications. 18

For instance, within the field of signals processing, in the old days a camera with n pixels, 19

needed n signals to form the image. In 1949, however, with the Shannon-Nyquist theorem 20

[1], it was shown that it was possible to form the same image with fewer signals. This 21

theorem states that it is feasible to recover a signal if it is uniformly sampled at a rate at least 22

two times faster than its Fourier bandwidth, i.e. it allows to reconstruct a continuous signal 23

with a discrete sequence of samples acquired. However, for some applications as radar 24

imaging or different imaging modalities outside visible wavelengths, the needed sampling 25

rate can be so high that for state-of-the-art samplers it is impossible to achieve such values. 26

Also, because of the high number of samples collected, it is necessary to compress them 27

[2]. In 2006, Donoho and the team composed by Romberg, Candès and Tao introduced 28

the concept known as compressed sensing (CS) [3,4], which substantially simplified the 29

acquisition process. 30

CS is an alternative technique to the Shannon-Nyquist sampling theorem. With this 31

approach, it is possible to reconstruct a signal from a few random measurement by making 32

use of some non linear techniques, provided that the original signal is compressible or 33

sparse. A sparse signal has most of its coefficients null and only a few contain all the 34

information. It is possible to obtain this kind of signal through a base transformation. For 35

example, a sinusoidal signal of a given frequency obtained with a voltmeter as a function 36

Version June 21, 2023 submitted to Mathematics https://www.mdpi.com/journal/mathematics

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 June 2023                   doi:10.20944/preprints202306.1605.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-7392-4648
https://orcid.org/0000-0002-4758-2832
https://doi.org/10.20944/preprints202306.1605.v1
http://creativecommons.org/licenses/by/4.0/


Version June 21, 2023 submitted to Mathematics 2 of 17

of time is not sparse. However, if the Fourier Transform is applied, the signal has a peak 37

associated with that frequency. The rest of the values are zero. Therefore, in the Fourier 38

domain, it is sparse [5]. 39

The main objective of CS is to reduce the number of coefficients required to obtain the 40

resolution and the desired quality for the representation of the object of interest. To achieve 41

this, it uses a mathematical function called norm. The norm lp of a vector x (vectorial 42

notation is shown in bold type) of length n is expressed as follows: 43

‖x‖p =

(

n

∑
i=1

|xi|
p

)1/p

(1)

In the case p = 0, the l0 norm consists of the number of non-zero elements in the vector x. 44

The l1 norm (p = 1) gives as a result the sum of the elements of the vector. The l2 norm is 45

widely used to compute Euclidean distance [6]. 46

The CS problem can be described as the reconstruction of the vector x, of dimension n, 47

from the measurements y = Ax, of dimension m, and the random measurement matrix A, 48

known as sensing or measurement matrix, of dimensions mxn. 49

The solution to this problem depends on its typology, that is: 50

• If m>n and rank(A)=n (purely overdetermined linear system), the linear system is 51

solved via least squares: 52

x = (AT A)−1 ATy (2)

Besides, the reconstruction error of y: ‖y − Ax‖2 is non-null. 53

• In the purely underdetermined case (m<n and rank(A)=m) there are an infinite set of 54

solutions that belong to a linear variety oriented by the null space of A. This is the 55

typical case of under-sampling, that is, the number of samples in A (length of y) are 56

less than the original size of x. In this case, the minimum l2 norm solution writes: 57

xMN = AT(AAT)−1y (3)

since it does not have components in the null space of A. This solution is sparse in the 58

system of reference (Rn = ColA
⊕

KerA). 59

The sparse problem treated in this paper consists in finding the sparser solution in the 60

l0 norm, which is the same to impose sparsity in the canonic basis set of Rn: 61

x = min‖x‖0 subject to y = Ax (4)

Minimization in norm l0 requires an exhaustive search over all possible sparse combinations. 62

Since it requires a large computational cost, this minimization is replaced by the convex 63

minimization problem in l1. This problem is determined as: 64

x = min‖x‖1 subject to y = Ax (5)

and it is known as Basis Pursuit (BP). In more complex situations, the measurements 65

obtained are corrupted by an unknown noise, which is denoted as e. Therefore, y = Ax + e. 66

The reconstruction problem is written as follows: 67

x = min‖x‖1 subject to ‖y − Ax‖2 ≤ ǫ, (6)

where ‖e‖ ≤ ǫ. This problem is known as BP Denoising (BPDN) [7]. 68

This is equivalent to impose that the linear system y = Ax is incompatible due to 69

measurement noise. BPDN is a constrained problem whose solution can be approached by 70

the following unconstrained optimization problem: 71

x = minx‖y − Ax‖2
2 + λ‖x‖1 (7)
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Figure 1. Example of MR image of the spinal column [13].

The parameters λ and ǫ are related but, generally, the relationship between them is not 72

analytical and cannot be estimated [8]. 73

CS technique has several applications in many fields, e.g. underwater imaging [9], 74

wireless structural health monitoring [10] and 3D visualization of the iron oxidation state 75

in FeO/Fe3O4 [11]. In this paper, CS is used in medical imaging; in particular, with images 76

obtained by magnetic resonance imaging (MRI). 77

MRI is a non-invasive technique widely used in medicine to obtain medical images 78

needed to make a later diagnosis. This technique is based on the physical phenomenon 79

of resonance; it consist of the transition between different energy states when an atomic 80

nucleus is introduced in an external magnetic field of a characteristic frequency. This 81

frequency, known as Larmor frequency, corresponds to the precession frequency of the 82

protons inside the nucleus. When a magnetic field is applied, the protons absorb the energy 83

and promote to a higher level. Once the magnetic field is removed, the protons decay to the 84

ground state. MRI measures the time and energy released from this last transition. Because 85

of their surroundings, those two values will be different for each proton. Then, by applying 86

the Inverse Fourier Transform to the obtained data it is created the image with different 87

contrast for each component of the body [12], as shown in Fig. (1). 88

This technique allows to distinguish different components of the human body, in 89

particular soft tissues as muscles, tendons, ligaments, fats, etc. Not only that, it also makes 90

it possible to differentiate between bones and organs [12]. The images can be in any 91

direction or part and they can even be made of animals, for instance a mice [14]. Moreover, 92

MRI can be used as an spectroscopy technique in biochemistry: it allows to know the 93

three-dimensional and dynamic structure of biological molecules [15]. Additionally, its 94

main advantage over other techniques, such as computed tomography or X-rays, is its lack 95

of ionizing radiation, which makes MRI exams secure for the patient. Because of these 96

reasons, its multiple uses and its high resolution imaging, MRI is known as the jewel in the 97

crown in medical imaging [16]. 98

Despite the many advantages mentioned before, MRI has some drawbacks: patients 99

with pacemaker or with metal prostheses can be hurt by the strong magnetic field (up to 100

3T), so they can not be examined. Also, because of the reduced space and the high level of 101

noise in the machine, it can generate stress or anxiety. In addition to these disadvantages, 102

there are many more safety precautions that must be taken in consideration in order to 103

perform an examination. In addition, maintenance of machine components and tests are 104

very expensive. Finally, it takes a lot of time to acquire the data necessary to construct the 105

image, approx. 40 minutes [17]. 106

In this article we present a methodology to reduce the acquisition time of MRI by 107

using three different CS algorithms. We consider different images of MRI of the head and 108

reconstruct them with less measurements and, therefore, the acquisition time is reduced. In 109

the algorithms, we introduced a number of data smaller than the real image and measure 110
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the time the algorithm takes on the reconstruction and the error committed. This study 111

paves then the way for shorter exams in MRI. 112

The article is organized as follows: in section 1 we describe the CS algorithms em- 113

ployed to reconstruct the image and how they can be applied in MRI. In section 2, we 114

present and discuss the results (reconstructed images, acquisition time and error). We finish 115

with the conclusions. 116

1. Materials and Methods 117

MRI receives the data of proton relaxation and stores it in the frequency space, so that 118

with the Inverse Fourier Transform it is possible to construct the image. The CS problem 119

applied to this case can be written as: 120

ym×1 = Fm×nxn×1 + ηm×1 η ∼ N(0, σ2) (8)

where y are the frequency samples collected by the machine, F is the Fourier measurement 121

matrix x is the image to be constructed and η is the noise randomly distributed. We have 122

to solve an inverse linear problem to recover the data that forms the image from the 123

measurements; we use the measurement matrix which associates a frequency to a value in 124

the grey scale. The object x can be an image in 2D or 3D but it is represented as a vector by 125

concatenation. 126

In the ideal case in which enough measurements are taken (n = m), Eq. (8) can be 127

solved by applying the Inverse Fourier Transform on the frequencies: 128

x = F−1y (9)

To reduce the acquisition time, less measurements are taken. Therefore, Eq. (8) has infinite 129

solutions which can be solved with minimization algorithms. In this article, to reconstruct 130

the image we use five possible methods: Iterative Re-weighted Least Squares (IRLS), 131

Iterative Soft Threshold (ISTA), Iterative Hard Threshold (IHTA), a primal dual algorithm 132

(PD) and a log barrier algorithm (LB). The first three algorithms belong to the category 133

of greedy algorithms. They have less accuracy in the reconstruction but is less expensive 134

and simpler. PD and LB are convex algorithms; the error is minor but it takes a lot of 135

computational resources [7]. All those algorithms shown below, are iterative because of the 136

large storage size of A. 137

1.1. Iterative Re-weighted Least Squares 138

The first algorithm, IRLS, solves the minimization problem without restrictions, Eq.(7). 139

To achieve this, it replaces the l1 minimization with l2 norm with a given weight represented 140

by the diagonal matrix W In each iteration k. This matrix is updated by: 141

W(k) = diag(|x
(k)
i |−

1
2 + γ) (10)

where γ is the dumping factor which is reduced at each iteration. In order to obtain 142

the reconstructed signal, the algorithm solves Eq.(11), obtained from the unconstrained 143

lagrangian, until it reaches a certain number of iterations or the solution converges, i.e. 144

‖y − Ax‖2 < ǫ where ǫ is the minimum error [8]. 145

x(k+1) = (W(k))−1 AT(A(W(k))−1 AT)−1y (11)

1.2. Iterative Soft Threshold Algorithm 146

Next algorithm, ISTA, solves the same minimization problem as the previous algorithm 147

(Eq.(7)). In this case, it is used the function called Soft Threshold: 148

soft(x, τ) =







x + τ x < −τ

0 |x| ≤ τ

x − τ x > τ

(12)
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This, showed in Fig.(2), tries to decrease the amplitude of the coefficients with noise. For 149

example, if the amplitude of the signal is small, the noise and the number of data which 150

provides information are of equal magnitude. The data contains little information and, 151

therefore, the function returns 0. For larger amplitudes, the noise is very small compared 152

to the intensity of the real signal, and thus the function subtracts the part associated with 153

noise [18]. 154

Figure 2. Soft Threshold rule with τ = 2 [8].

In order to obtain the reconstructed signal with this algorithm, it is necessary to 155

calculate the Landweber Iteration, which is defined as: 156

b(k) = x(k) +
1

a
AT(y − Ax(k)) (13)

where a is the largest eigenvalue of the matrix AT A. The solution xk+1 is calculated with 157

the Soft Threshold rule, which is written in a more compacted way: 158

x(k+1) = signum(b(k))max(0, |b(k)| −
λ

2a
) (14)

In each iteration, the value of λ should be reduced in order to achieve convergence [8]. 159

Over the years, ISTA have had a lot of improvements in order to reduce the adquisition 160

time or to get a better resolution. For example, changing the thresholding function to 161

equation Eq.(15), called p-thresholding function, the technique penalizes small coefficients 162

and shrinks more values to zero. If p = 1, the equation reduces to soft-thresholding (Eq.(12)) 163

[19]. 164

Gτ,p(x) = sign(x)max(0, |x| − τ|x|p−1) (15)

Another algorithm which improves the convergence speed, which is ISTA’s main 165

problem, is called fast ISTA (FISTA) which relies on the simplicity of the computation of 166

the proximal map of l1 norm. If the gradient algorithm is applied in Eq.(6, it is obtained the 167

following iterative equations: 168

x(k) = x(k−1) − t(k)∇(||Ax(k−1) − b(k)||2) (16)
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where t(k) > 0 is the stepsize updated in each iteration. Using this idea with the uncon- 169

strained problem (Eq.(7)) it is obtained an iterative scheeme which can be seen as a proximal 170

regularization of ||Ax − b||2. It is written as: 171

x(k) = minx

(

1

2t(k)
||x − (x(k−1)−

t(k)∇(||Ax(k−1) − b(k)||2))||2 + λ||x||1
)

(17)

By using FISTA, the number of iterations required to obtain an optimal solution are less 172

than ISTA as it improves the convergence rate [20]. However, there is no simple solution to 173

the non-smooth part λ||x||1. In order to solve this, it is possible to approximate this term 174

by its Moreau envelop, which is smooth [21]. This strategy is also used in projected ISTA 175

(pISTA) and projected FISTA (pFISTA), in which the unconstrained model is converted into 176

a much simpler form where the objective function can be separated and the orthogonal 177

projection operator is introduced[22]. 178

It is clear that it has been proposed many ways to optimize MRI and its different 179

sequences that improves its stability, the memory consumption and the reconstruction time 180

[23], [24], but ISTA is still a good way for signal reconstruction because it stands out for its 181

simplicity. 182

1.3. Iterative Hard Threshold Algorithm 183

As mentioned in section 0, to solve the CS problem in the l0 norm is very expensive. 184

However, IHTA handles this problem if the data has noise, i.e., 185

x = minx‖y − Ax‖2
2 + λ‖x‖0 (18)

In this algorithm, it is defined the following function similar to ISTA: 186

hard(x, τ) =

{

x |x| > τ

0 |x| ≤ τ
(19)

In this function, if the signal is of the same magnitude as the noise, it eliminates those 187

values; otherwise, it does not alter the value [8]. In this algorithm the Landweber Iteration 188

is also calculated by Eq.(13) and the solution is obtained by: 189

x(k+1) = HardThreshold(|b(k)|,
λ

2a
) (20)

1.4. Primal Dual Algorithm 190

PD algorithms for linear programming are used to solve equation Eq.(5) among others. 191

The standard form in linear programs is 192

minx〈c0, x〉 subject to Ax = y, fi(x) ≤ 0 (21)

where each of the fi=1,...,m is a linear functional fi(x) = 〈ci, x〉+ di for ci ∈ R
n and di ∈ R. 193

This algorithm finds the optimal x∗ and the dual vectors ν∗ ∈ R
n, λ∗ ∈ Rn, which satisfies 194

the Karush-Kuhn-Tucker conditions, by solving this system of nonlinear equations with 195

the Newton’s Method [25], [26]: 196

c0 + ATν∗ + ∑
i

λi
∗ci = 0

λi
∗ fi(z

∗) = 0, i = 1, ..., m

Az∗ = y

fi(z
∗) ≤ 0, i = 1, ..., m

(22)
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So in the inner loop of the PD algorithm, Newton’s Method is applied. Conjugate gradients 197

are used in Eq.(22) in order to obtain the step direction ∆x. Then, update the solution by 198

the next equation: 199

x(k+1) = x(k) − α∆x (23)

1.5. Log-Barrier Algorithm 200

The BPDN problem (Eq.(6)) can be modeled as Second-Order Cone Programs (SOCPs), 201

i.e., it can be written as a linear program Eq.(21) where fi represents a second-order conic. 202

This method consists of transforming the minimization problem into a series of linear 203

problems in y: 204

minx〈c0, x〉+
1

τk ∑
i

− log(− fi(x))

subject to Ax = y

(24)

Each one of this subproblems are solved with a high degree of accuracy with the Newton’s 205

method to obtain x(k). In each iteration k, τk is updated so that τk
> τk−1 [26]. 206

1.6. Application of the algorithms to MRI 207

The previous algorithms have been used to reduce the acquisition time of MRI. Since 208

we were unable to access a MRI machine, we designed a code to read real MRI images, 209

decompose the data and store it as a vector x. This code, also generates the measurement 210

matrix A as a function to avoid memory problems due to the large size of the matrix. 211

The measurements that would be obtained in MRI y are evaluated through A and x. The 212

measurement matrix function calculates the Fourier Transform of x and randomly orders 213

its coefficients. We apply the algorithms to y and obtain the signal and the reconstructed 214

image x̂. Our code also allows to obtain the time it takes to perform the algorithms and the 215

error between the original and the reconstructed signal. 216

The aim of this article is to reduce the acquisition time and, therefore, the number of 217

measurements taken must be less than the number needed to construct the original image. 218

So, when the image is read, we randomly select a few values which will be stored in x. 219

Then, y is obtained and the signal x̂ reconstructed. 220

We have analysed several images with the algorithms to obtain the parameters of 221

time and error in function of the number of measures. With these results, we select the 222

best algorithm to perform the reconstruction applied to MRI and the minimum number of 223

measures needed to be able to distinguish all image components. 224

2. Results and discussion 225

This section presents the results after applying the CS algorithms on medical images 226

obtained with MRI. We analysed several images of the head of the human body obtained 227

from the database of the University of South Carolina [27]. 228

One of the images used in the simulations is shown in Fig. (3) and corresponds to an 229

axial slice of the brain in the plane marked by the blue lines in Fig. (4). In it, the orbit of 230

the eyes can be distinguished at the bottom. Fat appears with a very intense signal, while 231

water and cerebrospinal fluid have a very low intensity. 232

The image is blurred in the left orbit, which is an example of an artifact. An artifact is 233

a distortion in the image that has no relation to the subject of the region of the studied body. 234

In this case, it has been generated due to the patient’s movement. [28]. 235

Next, we present the images and the parameters obtained from the reconstruction, 236

time and error, for each algorithm as a function of the data taken from the original image. 237

In the reconstruction by IRLS, only the outline of the head and orbits are detected in 238

the first measurements, while the white matter is not distinguishable (Fig. (5a)). When 70% 239

of the data is available (Fig. (5b)), the white matter can be distinguished, although it has 240

little intensity. Also, the intensity of the orbits increases and the effect of the artifact starts 241
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Figure 3. MRI image of an axial slice of the brain. In the area below are the eye orbits [27].

Figure 4. Images of a sagittal, coronal and 3D slice of the brain. The blue line shows the plane

corresponding to the image Fig. (3).
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to be noticed. If the algorithm is run with all the available data (Fig. (5c)), the resolution 242

at the edges increases, but the intensity of the white matter signal is lost, which makes its 243

identification more difficult. 244

As in IRLS, the ISTA algorithm detects first the areas of highest intensity in the first 245

measurements without distinguishing white matter (Fig. (5a)). If the number of input 246

data is increased, the resolution of the edges increases but it is still difficult to differentiate 247

the white matter (Fig. (5b)). Finally, the resolution increases until the shape of the fat is 248

detected (Fig. (5c)). 249

If it is employed IHTA for the reconstruction, when we use a 30% of the initial signal 250

values (Fig. (7a)), much more noise is detected in the inner part of the head, where the 251

white matter should be. In case of a 70% of measurements (Fig. (7b)), we obtain an image 252

similar to the same case with ISTA, but the white has more intense signals, which allows 253

to distinguish it better. The resolution increases as more data is added. However, when a 254

100% of data is reached (7c)), the white matter is not detected, it appears in black. 255

If we apply PD algorithm the object is much clearer with lower measurements. When 256

it is used 30% of the initial values (8a)), the structure inside the head can be recognized and 257

delimited, even though its low intensity. As the number of measurements is increased, the 258

images get better resolution so when we have 70% (8b)), the image is similar to the original 259

one. Finally, with 100% (8c)), the grey matter loses its intensity. 260

The images obtained with last algorithm, LB, are more blurred. With 30% of the 261

measurements (9a)) it is not posible to distinguish the structures. It the algorithm works 262

with 70% of the initial data (9b)), the image is reconstructed clearly. In the end, with all 263

100% of the data, the reconstruction is similar to the one obtained with PD algorithm. 264

The graph in Fig. (10) shows the time taken by the algorithms to reconstruct the image 265

as a function of the number of entered data. The IRLS maintains a constant time of 8 s 266

in all reconstructions. It solves the problem of reconstruction in the l2 norm and it is the 267

fastest one. In case of the ISTA algorithm, which employs a minimization in l1 norm, the 268

time decreases linearly from 100 s to approximately 50 s. The IHTA algorithm takes the 269

longer time in the reconstructionas it can be predicted since it solves the minimization 270

with l0 norm. Also,two peaks are obtained at 20% and 90% of the measurements with 271

IHTA. The convex algorithms, PD and LB, takes much more time than the greedy ones as 272

expected. The reconstruction time for PD is higher as the number of measuremets increases. 273

Its maximum value is 367 s. LB algorithm does not show a clear trend. It has three peaks, 274

at 20%, 40% and 90%, the latter being the smoothest one. Finally, with 100% this time 275

decreases to 285 s. 276

The error made in the reconstruction is found in the following Fig. (11). The IRLS error 277

decreases linearly. ISTA and IHTA are very similar: in both the error decreases with the 278

number of measurements, except when 90% of the measurements are reached, where the 279

error with IHTA increases abruptly. This is due to the fact that, as mentioned above, in this 280

last reconstruction it does not detect the signal related to the white matter and, therefore, 281

the error is very high. The error for PD and LB are higher than expected as they are convex 282

algorithms and the images reconstructed were quite similar to the original. Both algorithms 283

decrease the error similarly until 60%, where the error in PD is higher. 284

3. Conclusions 285

In this work, we have studied the CS techniques applied to images adquired with MRI. 286

We have developed several programs that allowed us to quickly and clearly reconstruct an 287

image. We started from a random signal with a smaller number of data than those needed 288

to construct the original image in the conventional way. Then, we generated a similar 289

image with a lower resolution. The algorithms chosen to perform this task were IRLS, ISTA, 290

IHTA, PD and LB. 291

From the analysis of the images reconstructed with these algorithms it can be con- 292

cluded that it is appropriate to use ISTA. Although it has an adequate computational time 293

and in some cases it may not provide the best possible resolution, it allows to distinguish 294
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(a) Reconstruction with IRLS using 30% of taken mesaure-
ments.

(b) Reconstruction with IRLS using 70% of taken mesaure-
ments.

(c) Reconstruction with IRLS using 100% of taken
mesaurements.

Figure 5. Reconstruction of the image in Fig. (3) using IRLS with 30% (a), 70% (b) and 100% (c) of

taken measurements.
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(a) Reconstruction with ISTA using 30% of taken mesaure-
ments.

(b) Reconstruction with ISTA using 70% of taken mesaure-
ments.

(c) Reconstruction with ISTA using 100% of taken
mesaurements.

Figure 6. Reconstruction of the image in Fig. (3) using ISTA with 30% (a), 70% (b) and 100% (c) of

taken measurements.
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(a) Reconstruction with IHTA using 30% of taken
mesaurements.

(b) Reconstruction with IHTA using 70% of taken
mesaurements.

(c) Reconstruction with IHTA using 100% of taken
mesaurements.

Figure 7. Reconstruction of the image in Fig. (3) using IHTA with 30% (a), 70% (b) and 100% (c) of

taken measurements.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 June 2023                   doi:10.20944/preprints202306.1605.v1

https://doi.org/10.20944/preprints202306.1605.v1


Version June 21, 2023 submitted to Mathematics 13 of 17

(a) Reconstruction with PD using 30% of taken mesaure-
ments.

(b) Reconstruction with PD using 70% of taken mesaure-
ments.

(c) Reconstruction with PD using 100% of taken mesaure-
ments.

Figure 8. Reconstruction of the image in Fig. (3) using PD with 30% (a), 70% (b) and 100% (c) of taken

measurements.
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(a) Reconstruction with LB using 30% of taken mesaure-
ments.

(b) Reconstruction with LB using 70% of taken mesaure-
ments.

(c) Reconstruction with LB using 100% of taken mesaure-
ments.

Figure 9. Reconstruction of the image in Fig. (3) using LB with 30% (a), 70% (b) and 100% (c) of taken

measurements.
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Figure 10. Reconstruction time of Fig. (3) as a function of the number of measurements for each

algorithm.

Figure 11. Error in the reconstruction of Fig. (3) as a function of the number of measurements for

each algorithm.
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each component if 70% or more of the measurements are taken. Although the IHTA algo- 295

rihtm has the highest resolution, it does not solve some images correctly and takes more 296

time perform the reconstruction. The IRLS algorithm has the shortest computational time, 297

but, like IHTA, it does not achieve enough accuracy. If there are less than 50% of the mea- 298

surements, it should be used PD algorithm, since its images are clearer and it can recover 299

the structures. LB algorithm takes too much time and does not give any improvement 300

compared to the other algorithms. 301

These algorithms can be applied to different parts of the human body and with 302

different MRI sequences as T1, T2 or proton density. These sequences change the contrast 303

of the images, allowing to draw a distinction between components of the human body. The 304

images can also be reconstructed even if contrast agents were introduced. 305

The same CS technique studied in this article can be applied to other methods; for 306

example, computed tomography or X-ray. Although the acquisition time of these is much 307

shorter, it can still reduce the amount of radiation applied to the human body needed to 308

obtain an image. 309
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