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Article 
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Abstract: Barth Syndrome, a rare X-linked disorder affecting 1:300,000 live births, results from defects in 

Tafazzin, an acyltransferase that remodels cardiolipin and is essential for mitochondrial respiration. Barth 

Syndrome patients develop cardiomyopathy, muscular hypotonia and cyclic neutropenia during childhood, 

rarely surviving to middle age. At present, no effective therapy exists and downstream transcriptional effects 

of Tafazzin dysfunction are incompletely understood. To identify novel, cell-specific, pathological pathways 

that mediate heart dysfunction, we performed single-nucleus RNA-sequencing (snRNA-seq) on wild-type (WT) 

and Tafazzin-knockout (Taz-KO) mouse hearts. We determined differentially expressed genes (DEGs) and 

inferred predicted cell-cell communication networks from these data. Surprisingly, DEGs were distributed 

heterogeneously across the cell types, with fibroblasts, cardiomyocytes, endothelial cells, macrophages, 

adipocytes and pericytes exhibiting the greatest number of DEGs between genotypes. One differentially 

expressed gene was detected for the lymphatic endothelial and mesothelial cell types, while no significant 

DEGs were found in the lymphocytes. A Gene Ontology (GO) analysis of these DEGs showed cell-specific 

effects on biological processes such as fatty acid metabolism in adipocytes and cardiomyocytes, increased 

translation in cardiomyocytes, endothelial cells and fibroblasts, in addition to other cell-specific processes. 

Analysis of ligand-receptor pair expression, to infer intercellular communication patterns, revealed the 

strongest dysregulated communication involved adipocytes and cardiomyocytes. For the knockout hearts, 

there was a strong loss of ligand-receptor pair expression involving adipocytes, and cardiomyocyte expression 

of ligand-receptor pairs underwent reorganization. These findings suggest that adipocyte and cardiomyocyte 

mitochondria may be most sensitive to mitochondrial Tafazzin deficiency and that rescuing adipocyte 

mitochondrial dysfunction, in addition to cardiomyocyte mitochondrial dysfunction, may provide therapeutic 

benefit in Barth Syndrome patients. 

Keywords: Tafazzin; barth syndrome; single-nucleus RNA-sequencing; cardiomyopathy; 

mitochondria; gene expression; metabolism 

 

1. Introduction 

Barth Syndrome (BTHS), a rare X-linked mitochondrial disorder affecting 1:300,000 live births, 

is characterized by childhood onset cardiomyopathy, skeletal myopathy, cyclic neutropenia and 

premature death. To date, no efficacious therapy exists. The affected gene encodes Tafazzin, an inner 

mitochondrial membrane-associated transacylase and critical regulator of mitochondrial membrane 

composition. Tafazzin remodels the mitochondrial membrane phospholipid, cardiolipin, from its 

immature monolyso-isoform (MLCL) to its mature isoform (CL). At the organellar level, 

mitochondria lacking functional Tafazzin display altered cristae structure, reduced oxygen 
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consumption, increased reactive oxygen species generation, altered substrate utilization and an 

elevated MLCL to CL ratio (reviewed in [1-3]). Failure to remodel cardiolipin to its mature form 

affects mitochondrial inner membrane curvature, resulting in failure to form electron transport 

protein supercomplexes [4,5]. Disease-causing mutations in Tafazzin are present throughout the 

molecule, and can affect protein localization, protein stability and enzymatic activity [6-9]. Although 

genomically encoded, Tafazzin is transported across the outer mitochondrial membrane and then 

localized to the inner mitochondrial membrane, directed by specific peptide domains [10, 11]. The 

molecular, cellular, tissue, organ and physiological mechanisms by which Tafazzin mutations 

propagate dysfunction across multiscale networks are poorly understood, and a deeper 

understanding of the components of these networks will likely provide fundamental advances in 

knowledge of mitochondrially-associated disease mechanisms and the development of targeted 

therapies for mitochondrial disorders such as BTHS.  

Single-cell RNA-sequencing methods have facilitated the analysis of cell-specific gene 

expression, cellular diversity and intercellular communication in a wide variety of tissues and across 

a wide variety of species—including human and mouse hearts—for both normal and diseased 

conditions [12-21]. As a first step in identifying transcriptional networks and pathological pathways 

that mediate the effects of Tafazzin deficiency in the heart at the single-cell level, we have performed 

single-nuclei transcriptomics on heart tissue extracted from a Tafazzin knockout (Taz-KO) mouse 

model of Barth Syndrome [22]. We have identified differentially expressed genes by genotype for 

specific cell populations and have found that fibroblasts, cardiomyocytes, endothelial cells, 

macrophages, adipocytes and pericytes demonstrate the largest numbers of DEGs. We correlated 

these cell-specific DEGs with potentially important biological processes through a Gene Ontology 

(GO) analysis and found cell-specific perturbations in metabolic pathways. We also analyzed ligand-

receptor (L-R) pair gene expression to infer intercellular communication networks and identified 

extensive alterations in potential communication patterns, notably involving adipocytes. 

2. Results 

2.1. Tafazzin Deficiency is not Associated with a Disease-Specific Cell Population in the Heart   

Whole hearts from 4 WT and 4 KO mice were used to generate the snRNA-seq dataset [17-20]. 

To identify the major cell types present in our data, we performed cell and gene-level quality control, 

followed by sample integration and graph-based clustering as described in Materials and Methods 

[23-30]. The integrated dataset, consisting of 75, 051 nuclei, revealed a total of 35 distinct clusters, 

represented by the Uniform Manifold Approximation and Projection (UMAP) plot shown in 

Supplemental Figure S1. The 35 clusters represented 12 major cell types found in the heart (Figure 

1A, B). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 June 2023                   doi:10.20944/preprints202306.1603.v1

https://doi.org/10.20944/preprints202306.1603.v1


 3 

 

 

Figure 1. Single-nucleus RNA-Sequencing of wild type and Tafazzin-knockout hearts reveals diverse 

cell types but no genotype-specific cell population or differences in distribution of major cell types: 

(A) UMAP plot of major cell types of the heart identified in the dataset. Each dot represents a single 

nucleus colored by its cell type identity; (B) Dot plot showing expression of known cell markers for 

identified cell types; (C) Distribution of cell types for each genotype. 

Analysis of the distribution of these cell types per genotype revealed that all major cell types 

were represented by each genotype and no disease-specific cell clusters were present (S2). There were 

no significant differences between genotypes in the cell type distribution (Figure 1C), as determined 

by calculating the cell type diversity statistic (data not shown) [31]. The nuclei counts for each cell 

type for each genotype is listed in Supplemental Table ST1. 

Major Cell Types Identified:  

• Adipocytes (ADIPO); 

• B-Lymphocytes (BLYMPH); 

• Cardiomyocytes (CM); 
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• Dendritic Cells (DC); 

• Endothelial Cells (EC);  

• Fibroblasts (FB); 

• Lymphatic Endothelial Cells (LEC); 

• Macrophages (MAC); 

• Mesothelial Cells (MES); 

• Pericytes (PC); 

• Smooth Muscle Cells (SM); 

• T-Lymphocytes (TLYMPH) 

2.2. Tafazzin Deficiency is Associated with Differential Expression of Genes that Varies by Cell Type and is 

Associated with Alterations in Multiple Biological Processes 

We performed differential expression testing between Taz-KO and WT cells within each cell 

type using a generalized linear model framework as described in Materials and Methods [26-29, 32]. 

Genes were considered to be differentially expressed if the absolute value of their log2fold-change 

was greater than 0.58 (adjusted P-value < 0.001). Surprisingly, DEGs were distributed 

heterogeneously, with fibroblasts, cardiomyocytes, endothelial cells, macrophages, adipocytes and 

pericytes exhibiting the greatest number of DEGs between genotypes; the lymphatic endothelial and 

mesothelial cell types each only had one differentially expressed gene detected and none were 

detected in the lymphocytes, dendritic cells or smooth muscle cells (Table 1). The full list of DEGs for 

each cell type are listed in supplemental table ST2.  

Table 1. Number of Differentially Expressed Genes Detected in Each Cell Type 

Cell Type  Upregulated Downregulated Total 

Adipocyte 16 8 24 

B-Lymphocyte 0 0 0 

Cardiomyocyte 154 141 295 

Dendritic 0 0 0 

Endothelial 121 21 142 

Fibroblast 296 75 371 

Lymphatic Endothelial 1 0 1 

Macrophage 33 0 33 

Mesothelial 1 0 1 

Pericyte 17 5 22 

Smooth Muscle 0 0 0 

T-Lymphocyte 0 0 0 
1 Number of significantly up or downregulated genes in Taz-KO cells with adjusted P-values < 0.001 and 

|average log2fold-change | > 0.58. 

To further understand the biological context of these DEGs and identify potential cell-specific 

dysregulated pathways associated with Tafazzin deficiency, we also performed a gene ontology over-

representation test for biological process terms, on the sets of upregulated (increased expression in 

Taz-KO) and downregulated (decreased expression in Taz-KO) DEGs within each cell type. Over-

represented terms for upregulated genes in the adipocytes largely involved lipid metabolic processes, 

such as acetyl-CoA and fatty acid synthesis, and were driven by the genes Acly, Fasn, Insig1, and 

Elovl6. Interestingly, fatty acid metabolism and specifically fatty acid beta-oxidation mapping genes 

such as Hadhb, Hadha, Acaa2, Acacb, and Acadm were downregulated in cardiomyocytes. 

Downregulated genes in adipocytes mapped only to one term—regulation of cell morphogenesis 

involved in differentiation—which was again conversely upregulated in the cardiomyocytes. Other 

terms mapping to the upregulated genes in cardiomyocytes included tRNA aminoacylation which 
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were driven by the upregulation of aminoacyl-tRNA synthetase genes. Downregulated genes in the 

cardiomyocytes also mapped to circulatory system and muscle contraction related terms. 

Upregulated DEGs in the endothelial and fibroblast cell types mapped to the greatest number of gene 

ontology terms among the various cell types. As with the cardiomyocytes, upregulated terms for the 

fibroblasts and endothelial cells included those related to protein translation such as ribosome 

biogenesis. Regulation of vasculature development and Wnt signaling processes were 

downregulated in the endothelial cells and fibroblasts respectively. The upregulated gene set for 

macrophages mapped to extracellular matrix organization terms and in pericytes the upregulated 

genes mapped to the regulation of cell killing and protein folding, with both terms being driven by 

heat shock family proteins such as Hsp90ab1 and Hspa8. Zero terms mapped to the downregulated 

gene set in pericytes. Protein folding terms were common to the upregulated gene sets of fibroblasts, 

macrophages, and endothelial cells in addition to pericytes (Figure 2). The full list of GO terms over-

represented by gene sets that are upregulated and downregulated for each cell type are listed in 

supplemental table ST3.    
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Figure 2. A Gene Ontology analysis of differentially expressed genes reveals cell-specific differences 

in multiple biological processes associated with Tafazzin deficiency: (A) Dot plot of over-represented 

biological process terms, by cell type, for genes upregulated in Taz-KO cells. Only the top 3 terms, by 

count for each cell type, are displayed; (B) Dot plot of over-represented biological process terms, by 

cell type, for genes downregulated in Taz-KO cells. Only the top 3 terms, by count for each cell type, 

are displayed; (C) Heatmaps showing scaled expression of genes associated with select over-

represented ontology terms. Asterisks indicate differentially expressed genes with adjusted P-values 

< 0.001 and |average log2 fold change| > 0.58. 

2.2. Tafazzin Deficiency is Associated with Alterations in General and Cell-Specific Ligand-Receptor Pair 

Gene Expression   

To determine how Tafazzin deficiency affects potential communication between the major cell 

types, we performed a ligand-receptor (L-R) pair gene expression analysis comparing the two 

genotypes, as described in Materials and Methods [33]. Through this analysis, 9,011 dysregulated 

pairs were identified, with 7,237 pairs downregulated and 1,774 pairs upregulated in the Taz-KO 

condition. A tabular listing of the numbers of dysregulated ligands and receptors for each cell type 

is shown in Table 2. A graphical representation of these significantly dysregulated L-R interactions, 

separated by upregulation or downregulation in the Taz-KO cells, are shown in Figure 3. 

Table 2. Number of Significantly Dysregulated Ligands and Receptors by Cell Type. 

 

Cell Type  

Downregulated Upregulated 

Ligands Receptors Ligands Receptors 

Adipocyte 2009 2289 0 0 

B-Lymphocyte 0 0 0 0 

Cardiomyocyte 1162 1295 676 974 

Dendritic 0 0 0 0 

Endothelial 749 622 204 217 

Fibroblast 680 679 226 143 

Lymphatic 

Endothelial 
661 541 142 114 

Macrophage 716 635 213 132 

Mesothelial 555 452 157 95 

Pericyte 620 476 156 99 

Smooth Muscle 85 248 0 0 

T-Lymphocyte 0 0 0 0 

Total 7237 7237 1774 1774 
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Figure 3. A ligand-receptor pair expression analysis reveals downregulation of many predicted cell-

cell interactions in Taz-KO cells. The number of significantly dysregulated ligand-receptor 

interactions between two cell types are graphically represented by the thickness of lines connecting 

two circles (cell types) and the color of a line reflects the cell type from which the ligands are being 

broadcasted from. Dysregulated communication that is downregulated in the Taz-KO cells are shown 

on the left and dysregulated communication that is upregulated in the Taz-KO cells are shown on the 

right. 

Notably, adipocytes were associated with the largest number of dysregulated ligand-receptor 

interactions, and all significant pairs involving this cell type—as either the broadcasting or receiving 

cell type—were downregulated, suggesting a major disruption of cell-cell signaling involving 

adipocytes occurs among Tafazzin-deficient cells. Cardiomyocytes expressed the second largest 

number of dysregulated L-R pairs.  For the remaining cell types with significantly dysregulated 

communication, this pattern of more downregulated than upregulated L-R pairs held, and there were 

no significant interactions involving B-lymphocytes, T-lymphocytes or dendritic cells.  

Given that the major shares of dysregulated communication involve the adipocyte and 

cardiomyocyte cell types (Figure 4A), we performed another Gene Ontology over-representation 

analysis on the dysregulated ligands and receptors for each of the communicating cell type pairs that 

included adipocytes or cardiomyocytes (Figure 4). For adipocyte signaling, there was a broad 

downregulation of kinase activity and peptidyl-tyrosine phosphorylation with CM, EC, FB, LEC, 

MAC, MES, and PC cells. Phospholipase C activating signaling was downregulated in adipocyte 

communication with other adipocytes and PI3K communication was downregulated between 

adipocytes and smooth muscle cells (Figure 4B). Interestingly, for cardiomyocyte signaling the GO 

analysis revealed both a broad upregulation and downregulation of peptidyl-serine and peptidyl-

threonine phosphorylation. This concordance among terms represented by opposing upregulated 

and downregulated signaling L-R pairs may be attributable to the broader nature of these biological 

process terms. For example, when looking at the specific up and downregulated gene sets that 

contributed to the GO term “Peptidyl-Serine Phosphorylation”, there was only a 34% overlap in the 

contributing gene lists (Figure 4C, D). Other cell-pair-specific ontology terms associated with 

cardiomyocyte signaling included upregulation of cell growth driven by signaling between CMs and 

FBs, upregulation of muscle cell proliferation driven by CM and MAC signaling, and downregulation 

of ossification driven by communication between cardiomyocytes and LECs, PCs, and other CMs 

(Figure 4C). A table of all significantly dysregulated L-R pairs can be found in supplemental table 

ST4. 
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Figure 4. A biological process gene ontology analysis of dysregulated ligand-receptor pairs reveals 

differences in communication associated with Tafazzin deficiency: (A) Number of dysregulated pairs 

between two communicating cell types; (B) Dot plot of over-represented biological process terms, by 

cell type, for all genes contributing to dysregulated signaling involving adipocytes. Only the top 3 

terms, by count for each cell type pair, are displayed; (C) Dot plot of over-represented biological 

process terms, by cell type, for all genes contributing to up or downregulated signaling involving 

cardiomyocytes. Only the top 3 terms, by count for each cell type pair, are displayed; (D) Venn 

diagram showing overlap of genes of dysregulated ligand-receptor pairs that contribute to the GO 

term “Peptidyl-Serine Phosphorylation” in up and down regulated L-R pairs involving 

cardiomyocytes. 
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3. Discussion 

Barth Syndrome has long been known to result from mitochondrial dysfunction due to abnormal 

Tafazzin-dependent cardiolipin remodeling in the inner mitochondrial membrane that alters the 

efficiency of mitochondrial respiration (reviewed in [1-3]). Clinically, the disease manifests primarily 

in the heart, skeletal muscle and blood through the development of cardiomyopathy, skeletal 

myopathy, and cyclic neutropenia. Since mitochondria are present in all cells, the underlying 

susceptibility of specific cell types to dysfunction associated with Tafazzin deficiency has not been 

established–although the effects on striated muscle have been assumed to occur from the high energy 

requirements and increased mitochondrial numbers associated with these tissues. Here we report the 

first single nuclei transcriptomic analysis of hearts from Tafazzin-knockout mice that model Barth 

Syndrome [22, 34]. As expected, Tafazzin loss of function is associated with widespread changes in 

cardiomyocyte gene expression, but other observed changes in adipocytes, fibroblasts, endothelial 

cells, macrophages, and pericytes were not anticipated. Analysis of predicted cell-cell communication 

networks through modeling ligand-receptor pair gene expression was notable for a marked 

downregulation of cell-cell interactions across all cell types in the Taz-KO condition. Given the 

sensitivity of this cell-cell communication analysis to differences in the product of a ligand and 

receptor’s expression across many cell type pairs, the contrast in the number of identified 

dysregulated L-R pairs compared to the number of identified DEGs per individual cell type may be 

expected. The predicted loss of cell-cell communication has also been noted in other conditions such 

as hypertrophic cardiomyopathy [17, 19, 20].  

In a healthy heart, fatty acid metabolism serves as the primary pathway by which ATP levels, 

and therefore the heart’s contractile ability, is sustained; alterations in energy metabolism, and 

specifically fatty acid metabolism, have been observed in association with heart failure [35]. Prior 

studies have shown that in young BTHS patients myocardial fatty acid extraction and uptake is 

significantly reduced [36]. Here we report that in a mouse model of BTHS, alterations in fatty acid 

metabolism in the heart are cell type specific. Genes associated with fatty acid synthesis, such as those 

encoding the acetyl-CoA synthesis enzyme Acly, the fatty acid synthase Fasn, and the fatty acid 

elongase Elovl6, have increased expression in Taz-KO adipocytes, while those associated with fatty 

acid beta oxidation enzymes such as Hadhb, Hadha, Acaa2, Acacb, and Acadm are downregulated 

specifically in KO cardiomyocytes. Proteomic studies of cardiac mitochondria isolated from WT and 

Taz-shRNA-knockdown mice have implicated dysregulation of CoA-dependent fatty acid 

metabolism in BTHS through the downregulation of multiple enzymes involved in fatty acid 

oxidation [37]. We observed some concordance with this study in downregulation of CoA 

metabolism genes such as the medium-chain acyl-CoA dehydrogenase Acadm and the long-chain 

acyl-CoA synthetase Acsl1 in our Taz-KO cardiomyocytes [37]. The significance of the observed 

increase across many of the other cell types in expression of genes relating to protein translation and 

folding is unclear but may be related to a mitochondrial and protein homeostatic stress response in 

the Tafazzin deficient cells [38-41]. The common over-representation of post-translational 

modification and kinase activity Gene Ontology terms associated with dysregulated ligand-receptor 

pairs suggest phosphoproteomic studies of this BTHS model may also provide further insight to the 

biological pathways that are disrupted because of Tafazzin deficiency.   

4. Materials and Methods 

4.1. Generation of Single-Nuclei RNA-Seq Datasets from Tafazzin Knockout Mouse Hearts 

Whole hearts from four WT and four Taz-KO mice were minced, cryopreserved, and then 

processed for snRNA-seq library generation and next generation sequencing as described previously 

[17-20] using commercially available reagents (10x Genomics). The Tafazzin-knockout mouse used 

in this study has been described previously [22, 34]. All libraries were generated with tissue from 9-

week-old mice.   
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4.2. Clustering of Cells by Gene Expression Pattern, Assignment of Cell Type Identity, and Determination of 

Cell Type Distribution 

Sequencing reads, including intronic, were processed using Cell Ranger version 6.0.1 using the 

mm10-2020-A reference transcriptome [23]. Quality control measures were performed to correct for 

ambient RNA contamination (SoupX version 1.6.2)[24], and reduce doublets (DoubletFinder version 

2.0.3)[25], followed by gene and cell-level filtering. When correcting for ambient RNA contamination, 

empty droplets with 2-10 transcripts (UMIs) were used to estimate the background expression profile 

and 0.2 was added to the estimated contamination fraction. For gene-level quality control, genes 

detected in fewer than 10 cells and all genes mapping to the mitochondrial genome were removed. 

Additionally, cells with  fewer than 800 transcripts (nCount_RNA) or fewer than 250 genes 

(nFeature_RNA) were removed. Normalization, selection of the top 2000 highly variable genes, 

scaling, and linear dimension reduction (PCA) were performed on a merged dataset using the R 

package, Seurat 4.3.0 [26-29]. To enable the identification of shared cell types across cells from 

different genotypes, Harmony version 0.1.0 was used to generate a common reduced dimensional 

embedding from the merged dataset  [30]  followed by running Seurat's UMAP, Nearest Neighbor, 

and clustering functions using the first 15 principal components from these data [26-29]. The 

clustering resolution of 0.9 was chosen using the subsampling-based approach ChooseR [42]. The 

expression of known cell-specific gene markers was used to identify major cell types, as has been 

done previously [14, 16-19]. To further refine cell assignments, such as distinguishing specific 

myeloid or lymphoid cell populations, Seurat's FindSubCluster function was utilized [26-29]. To 

determine whether the cell type distribution varied between WT and Taz-KO hearts, we calculated 

the Cell Type Diversity Statistic [31].   

4.3. Differential Expression Analysis 

Differentially expressed genes between WT and Taz-KO cells, for each cell type, were 

determined using MAST, a generalized linear model framework that uses the proportion of genes 

expressed in a single cell as a covariate to account for both technical and biological sources of 

variation [32]. The MAST framework was implemented through Seurat’s FindMarkers function, 

adjusting for individual mouse variation using the "latent.vars” argument [26-29]. Genes were 

considered differentially expressed if the absolute value of their log2fold-change was greater than 

0.58 (adjusted P-value < 0.001). A biological process Gene Ontology analysis was conducted for each 

set of upregulated and downregualted DEGs, for each cell type, using the compareCluster function 

of clusterProfiler version 3.18.1[43]. All genes that passed gene-level quality control filtering were 

used for the background set (“universe” argument).  

4.2. Cell-Cell Communication Analysis  

To identify potential cardiac cell–cell communication differences between WT and Taz-KO 

mouse hearts, we used scLR, a statistical method for examining dysregulated L-R interactions, 

between two conditions, that models the distribution of ligand and receptor expression and accounts 

for intersample variance and small sample size [33].  The curated set of L-R pairs used for 

comparison was obtained from the Omnipath database [44]. Cell communication networks were 

plotted using igraph version 1.3.5 [45]. Lines in our cell networks connect two cell types (circles) and 

represent statistically significant dysregulated ligand–receptor pairs (i.e., cell–cell communication 

between a broadcasting (ligand) and recipient (receptor) cell types). Line color in our networks 

represents the broadcasting ligand source cell type. Line thickness is proportional to the number of 

dysregulated ligand–receptor pairs associated between two communicating cell types. The Gene 

Ontology analysis of differentially expressed ligand-receptor pairs involving adipocytes or 

cardiomyocytes was performed using the enrichGO function of clusterProfiler [43].   
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5. Conclusions 

Barth Syndrome cardiomyopathy has been associated with profound alterations in 

mitochondrial and contractile function but determination of cellular mechanisms that mediate the 

effects of Tafazzin deficiency beyond mitochondrial dysfunction, and the contribution of 

nonmyocytes to the cardiomyopathic phenotype have not been fully elucidated. Here we report that 

Tafazzin loss of function in a mouse model of Barth Syndrome results in distinct alterations in 

cardiomyocyte gene expression and we also identify adipocyte dysfunction as a potential contributor 

to Barth Syndrome cardiomyopathy potentially through dysregulated fatty acid metabolism.  
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www.mdpi.com/xxx/s1, Figure S1: UMAP plot of Cells Labeled by Cluster; Figure S2: UMAP plot of Cells 
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ST2: Differentially Expressed Genes by Cell Type; Table ST3: Gene Ontology Terms Associated with 

Differentially Expressed Genes; Table ST4: Dysregulated Ligand Receptor Pairs. 
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