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Abstract: In this paper, an iterative procedure to find the solution of a nonlinear structural model
is introduced. The model presents different multiplicities where parameters are randomly selected
within a solvability region. To achieve this aim, a class of multipoint fixed-point iterative schemes for
single roots is modified to find multiple roots, reaching the fourth order of convergence. Complex
discrete dynamics techniques are employed to select the members with the most stable performance.
The structural problem, as well as some academic problems involving multiple roots, are solved
numerically to verify the theoretical analysis, robustness and applicability of the proposed scheme.

Keywords: nonlinear problems; iterative methods; stability; order of convergence; unified parameter
plane; multiple roots

1. Introduction

Nonlinearity usually arise in structural models [1,2]. In particular, materials such as reinforced
concrete (HCR) involve nonlinear stress-strain relationships in the mechanical model. The application
of these model implementations usually calls for the application of numerical approaches to find
solutions of the related nonlinear equations f (x) = 0, where f : I ⊆ R → R, such as Newton-type
methods [3]. The most appropriate algorithm for solving a nonlinear problem is usually a balance
between computational cost and precision [4]. Nevertheless, in spite of the highly nonlinear character
of the problem, it is however possible to increase the efficiency of the method by previously defining a
solvability domain, which is derived by using algebraic procedures.

Newton’s method cannot be applied at a point where the first derivative cancels out. Graphically
it means that the tangent line to the curve f (x) at this point is horizontal, and therefore it does not
intersect the x-axis.

Let x∗ be a multiple root of f (x) = 0 with multiplicity m, then it is also a multiple root of f ′(x) = 0
of multiplicity (m − 1), of f ′′(x) = 0 with multiplicity (m − 2), and so on [5]. The fact that the function
does not change sign precludes the use of methods that use intervals. At multiple roots, not only f (x),
but also f ′(x) approaches zero, which affects Newton’s method since its denominator includes the
first derivative. In general, iterative procedures to solve nonlinear equations with single roots reduce
their order of convergence when the equations have multiple roots (m > 1), or even diverge.

Many authors have proposed modifications to Newton’s method. Two of the best-known are
Rall’s method [6]

xk+1 = xk − m
f (xk)

f ′(xk)
, k = 0, 1, 2, . . . (1)
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and Schroder’s method [7]

xk+1 = xk −
f (xk) f ′(xk)

[ f ′(xk)]2 − f (xk) f ′′(xk)
, k = 0, 1, 2, . . . (2)

.
Most iterative methods for finding multiple roots require knowing the multiplicity m in advance.

Despite m is not usually known, several authors have described different ways to estimate its value [8].
Based on the previous study [9] of the multipoint fixed point class of fourth-order iterative

schemes

yk = xk −
2
3

f (xk)

f ′(xk)
,

xk+1 = xk − G(η)
f (xk)

f ′(xk)
, k = 0, 1, 2, . . . ,

(3)

where G(η) is a real function of variable η =
f ′(yk)

f ′(xk)
that satisfies G′′′(1) is bounded and G′′(1) = 9

4 ,

G′(1) = − 3
4 and G(1) = 1. We propose the iterative scheme for solving nonlinear equations with

m > 1

yk = xk − a
f (xk)

f ′(xk)
,

xk+1 = xk − G(η)
f (xk)

f ′(xk)
, k = 0, 1, 2, . . . ,

(4)

where a is a real parameter, and G(η) is the weight function of variable η =

(
f ′(xk)

f ′(yk)

) 1
m−1

.

The manuscript is organized as follows. Section 2 introduces the steel constitutive model. Section
3 covers the convergence analysis of the introduced family (4). Section 4 carries out the stability
analysis of the family. Finally, Section 5 verifies the applicability of the new family solving the steel
constitutive model, and comparing the performance of the introduced methods with known ones that
are present in the literature.

2. Resolvability of the steel model

Various authors [10–12] regard a steel reinforcement rigidified by the concrete adhered to it, also
known as the "embedded bar model". Such approach, the named Refined Compression Field Theory
(RCFT) [13], involves in the steel model an equilibrium constraint that accounts for the tensile stiffening
action of the concrete between joints. As a consequence, a nonlinear equality is entered into the steel
constitutive equation in terms of the apparent creep deflection. The later theory would predict the
mean stress of an embedded bar as a dependence of the mean strain (i.e., as measured over a given
span that included a variety of cracks) in the following way:

σs,av =





fy −
Ac

As

fct

1 +
√

3.6Mεs,av
, εs,av ≥ εmax,

Esεs,av, εs,av < εmax,
(5)

with

εmax =
fy

Es
− fct Ac

Es As

(
1 +

√
3.6Mεmax

) , (6)

being Es the elastic modulus of steel, fy the yield point of steel, fct the tensile resistance of concrete,
sigmas,av and sigmact,av the mean tensile stresses in the strengthening steel and in the concrete,
respectively, As is the cross-section of the steel bars, Ac is the mean deformation in the reinforcing bar,
Ac is the surface area of concrete adhered to the bar which participates in the tensile stiffening action
and M is a value that is dependent on the physical characteristics. The previous statement is based
stress balance between a cracked section, where only reinforcement is contributing, and a general
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section, where both reinforcement and the surrounded concrete are participating. Figure 1 represents
the schematic.

Figure 1. Profiles of average stresses (sigmact,av and sigmast,av) and area of prescribed tensile stiffening
(Ac) actually attached to the steel.

Technical Codes [14] suggest a value for Ac equal to the area surrounding the bar at a distance no
greater than 7.5 from the center of the bar, being the diameter of the bar. It is found that for certain
specimens (namely those with high values of the ratio fct/ρ, where ρ is the reinforcing ratio) when
this value is taken, it is not feasible to obtain a real positive solution for the effective yield stress ǫmax

defined in (5). Furthermore, if the solvability analysis is stated in accordance with the variables fct and
max, and the area value Ac is increased monotonically, beyond a given value of this area, the bijection
is broken between fct and max (uniqueness problem). Later, for higher area values of Ac up to the
prescribed values by the technical codes, one reaches the lack of real solution (existence problem) [15].
Thus, the internal stress equilibrium along the cracked element is not found.

In [15], we determine through algebraic methods the greatest value of the area Ac for in which
the constitutive model of the embedded steel has at least one real positive solution. In this regard, the
greatest part of the tensile stiffening area which can be considered to maintain the solvability of the
constitutive model (that is, to preserve the internal force equilibrium, so that by increasing the concrete
involvement, the steel tension is reduced) is expressed by the coefficient

λ =
As fy

Ac fct


2

3
+

√(
1 + 10.8Mǫy

)3

48.6Mǫy


 (7)

where ǫy = fy/Es is considered to be the deflection corresponding to the yield strength of the steel.
Thus, the coefficient λ is the boundary of the solvability domain for the constitutive model of the
embedded steel suggested by the RCFT. As this region is only derived from algebraic calculations, it
can be applicable to any experimentally based approach to the tensile stiffening model of concrete.

The above limit, for some design cases, may be below the value required by the technical codes
for the area Ac, so therefore the region of resolubility is well within the design range required by the
technical codes. In fact, various studies [13,16,17] indicate the appropriateness of correcting the tensile
stiffening area to correct the shear performance of reinforced concrete elements, especially for high
shear deformations, where technical codes underestimate the tensile stiffness of the concrete.

3. Convergence Analysis of the proposed class

In this section, the convergence analysis of family (4) is performed.

Theorem 1. Let us consider f : I ⊆ R → R be a differentiable enough function in an open interval I and let

x∗ ∈ I be a multiple root of f (x) = 0, with multiplicity m > 1. Let also G(η) be a real function satisfying

G (µ) = m, G′ (µ) =
−(a − m)2(−1 + m)m

a(a − 2m + am)
, G′′ (µ) =

m4(2 − 2m − m2 + m3)

4(2 + m)
, and |G′′′ (µ) | < +∞,

being µ =
m

m − a
. If a =

2m

2 + m
and x0 is an initial guess close enough to x∗, then the class of schemes (4)

satisfies
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ek+1 =

(
c3

1
3(m − 1)3m10(m + 2)2

(
m5 (m9 + 3m8 − m7 − 11m6 + 6m5 + 8m4 − 42m3+

36m2 + 48m − 48
)
− 32G′′′(µ)(m + 2)2)− c2c1

m
+

c3m

(m + 2)2

)
e4

k +O(e5
k).

has fourth-order of convergence, where η =

(
f ′(xk)

f ′(yk)

) 1
m−1

, ck =
m!

(m + 1)!
f (m+k)(x∗)
f (m)(x∗)

, k = 2, 3, . . ., and

ek = xk − x∗.

Proof. Let x∗ be a multiple zero of f with multiplicity m. By hypothesis, f can be expanded using the
Taylor series for f (xk) and f ′(xk) about x∗,

f (xk) =
f (m)(x∗)

m!
em

k (1 + ekc1 + e2
kc2 + e3

kc3 + e4
kc4) +O(e5

k),

f ′(xk) =
f (m)(x∗)

m!
em−1

k

(
m + (m + 1)ekc1 + (m + 2)e2

kc2 + (m + 3)e3
kc3
)
+O(e4

k).

From these expressions, we get the expansion of first step

yk − x∗ =
(

1 − a

m

)
ek +

ac1

m2 e2
k +

−a(1 + m)c2
1 + 2amc2

m3 e3
k+

a

m4

(
(1 + m)2c3

1 − m(4 + 3m)c1c2 + 3m2c3
)

e4
k +O(e5

k).

Expanding in Taylor’s series f ′(yk), around x∗,

f ′(yk) =
f (m)(x∗)

m!
ym−1

k

(
m + (m + 1) (yk − x∗) c1 + (m + 2) (yk − x∗)2 c2+

(m + 3) (yk − x∗)3 c3

)
+O(e4

k),

and then,

η =
m

m − a
− a(a − 2m + am)c1

(a − m)2(−1 + m)m
ek−

a

2(a − m)3(m − 1C)2m2

(
c2

1

(
a3(m + 1)2 − 2a2(m + 1)2(2m − 1)+

am
(
3m3 + 12m2 − 5m − 6

)
− 6m2 (m2 − 1

))
−

2c2(m − 1)
(
a3(m + 2)− 4a2m(m + 2) + 3am2(m + 4)− 6m3)) e2

k−
a

6(m − 1)3m4(a − m)4

(
6c3(m − 1)2m(a − m)2 (a3(m + 3)− 4a2m(m + 3)+

6am2(m + 3)− 12m3)− 6c2c1(m − 1)m
(
a5 (m2 + 3m + 2

)
−

2a4 (3m3 + 9m2 + 5m − 2
)
+ a3m

(
15m3 + 43m2 + 16m − 20

)
−

2a2m2 (8m3 + 30m2 + 3m − 20
)
+ 2am3 (3m3 + 22m2 + m − 20

)
−

4m4 (3m2 + m − 4
))

+ c3
1

(
a5(m + 1)3(2m − 1)− 6a4m(m + 1)2 (2m2 + m − 2

)
+

3a3m(m + 1)2 (10m3 + 3m2 − 13m + 2
)
−

2a2m2 (16m5 + 52m4 − 21m3 − 50m2 − 5m + 12
)
+

12am3 (m5 + 7m4 − 3m3 − 10m2 + 2m + 3
)
− 24m4 (m2 − 1

)2
))

e3
k +O(e4

k),

that is, η tends to µ = m
m−a when k → ∞. We expand G(η) about µ = m

m−a ,

G(η) ≈ G(µ) + G′(µ) (η − µ) +
1
2

G′′(µ) (η − µ)2 +
1
6

G′′′(µ) (η − µ)3 ,
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and the error equations yields

ek+1 =

(
1 − G(µ)

m

)
ek +

(
G(µ) +

aG′(µ)(a − 2m + am)

(a − m)2(−1 + m)

)
c1

m2 e2
k −

1
2(m − 1)2m3(a − m)4

(
−a2c2

1G′′(µ)(am + a − 2m)2

+a
(

G′(µ)(a − m)
(

c2
1

(
a3(m + 1)2 − 2a2(m + 1)2(2m − 1)

+am
(

3m3 + 12m2 − 5m − 6
)
− 6m2

(
m2 − 1

))

−2c2(m − 1)
(

a3(m + 2)− 4a2m(m + 2) + 3am2(m + 4)− 6m3
))

−ac2
1G′′(µ)(am + a − 2m)2

)
+ aG′(µ)(a − m)

(
c2

1

(
a3(m + 1)2

−2a2(m + 1)2(2m − 1) + am
(

3m3 + 12m2 − 5m − 6
)
− 6m2

(
m2 − 1

))

−2c2(m − 1)
(

a3(m + 2)− 3am2(m + 4)− 6m3
))

−2G(µ)(m − 1)2(a − m)4
(

c2
1(m + 1)− 2c2m

)

−4ac2
1G′(µ)(m − 1)(am + a − 2m)(a − m)2

)
e3

k +O(e4
k).

To make null the coefficients of ek and e2
k (and achieve third-order of convergence) the values of

G(µ) and G′(µ) must satisfy

G(µ) = m, G′(µ) = − (a − m)2(−1 + m)m

a(a − 2m + am)
.
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In this case, the error equation depends on a and G′′(µ):

ek+1 =
1

2m3

(
c1

(
−2m2 − a2G′′(µ)(a − 2m + am)2

(m − 1)2(a − m)4 +

m

(m − 1)(a − m)(a − 2m + am)

((
6a − 2a3

)
m − a3 +

(
4a2 − 12a

)
m3 + 2a2+

(
−a3 + 6a2 + 5a − 6

)
m2 + (6 − 3a)m4

))
+ c2

(
1

a − 2m + am

(
−2
(
−a2 + 6a − 2

)
m2+

4a2m − 2(3a − 6)m3
)))

e3
k −

1
6(m − 1)3m4(m − a)6(am + a − 2m)

(
6c3(m − 1)3m

(
a2(m + 3) −

3am(m + 3) + 6m2
)
(a − m)7 − 6c1c2(m − 1)(a − m)2

(
a7(m − 1)m(m + 1)(m + 2) +

a6(m + 2)
(

G′′(µ)(m + 1)2 − 8m4 − m3 + 12m2 − 3m
)
+ a5m((m − 1)(25m4 + 87m3 +

48m2 − 40m)− G′′(µ)(m + 1)(m + 2)(3m + 7)) + 2a4m2(G′′(µ)(9m2 + 26m + 19)−
(m − 1)m(2m + 3)(m(10m + 27)− 19)) + a3m3((m − 1)(35m4 + 193m3 + 102m2 −
180m)− 12G′′(µ)(3m + 4)) + a2m4(24G′′(µ)− (m − 1)m(16m3 + 129m2 + 87m − 166)) +

3am6
(

m4 + 14m3 + m2 − 44m + 28
)
− 6(m − 1)2m7(m + 3)

)
+

c3
1

(
a9(m − 1)(m + 1)3(2m − 1) + a8(m + 1)2

(
3G′′(µ)(m + 1)2 + 7m3 + 10m2 + 17m − 24

)
−

a7(m + 1)2
(

3G′′(µ)(m(5m + 8)− 3)(m + 1) + G′′′(µ)(m + 1)2 − 84m5 + 6m4 + 210m3−

144m2 + 12m
)
+ a6m(m + 1)2(3G′′(µ)(7m3 + 40m2 + 17m − 24) + 8G′′′(µ)(m + 1)−

(m − 1)m(196m3 + 275m2 − 497m + 96))− a5m2
(

3G′′(µ)(3m4 + 50m3 + 118m2 − 14m−

77)(m + 1) + 24G′′′(µ)(m + 1)2 − 2(m − 1)(140m6 + 581m5 + 198m4 − 691m3 − 256m2 +

168m)) + a4m3(6G′′(µ)(m(m(m(9m + 65) + 77)− 49)− 62) + 32G′′′(µ)(m + 1)−
3(m − 1)m(84m5 + 445m4 + 169m3 − 671m2 − 193m + 222)) +

2a3m4(−6G′′(µ)(m + 1)(−25 + 18m + 9m2)− 8G′′′(µ) + (m − 1)m(70m5 + 499m4 +

264m3 − 959m2 − 248m + 402)) + a2(m − 1)m5(24G′′(µ)(3m + 4)− m(44m5 + 461m4 +

387m3 − 1141m2 − 331m + 588) + 3a(m − 1)2m7(2m4 + 41m3 + 96m2 − 31m − 80)−
6(m − 1)3m8(m + 1)(2m + 7)

))
e4

k +O(e5
k).

Solving the following system to get order of convergence four,

−2m2 − a2G′′(µ)(a − 2m + am)2

(m − 1)2(a − m)4 +

m

(m − 1)(a − m)(a − 2m + am)

((
6a − 2a3)m − a3 +

(
4a2 − 12a

)
m3+

2a2 +
(
−a3 + 6a2 + 5a − 6

)
m2 + (6 − 3a)m4) = 0,

−2
(
−a2 + 6a − 2

)
m2 + 4a2m − 2(3a − 6)m3 = 0,

−4m2 − 2m(−6m3 + a3(2 + m)− 4a2m(2 + m) + 3am2(4 + m))

(a − m)(a − 2m + am)
= 0,





it results

G′′(µ) =
m4(2 − 2m − m2 + m3)

4(2 + m)
, a =

2m

2 + m
.
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Therefore, the error equation of (4) is

ek+1 =

(
c3

1
3(m − 1)3m10(m + 2)2

(
m5 (m9 + 3m8 − m7 − 11m6 + 6m5 + 8m4 − 42m3+

36m2 + 48m − 48
)
− 32G′′′(µ)(m + 2)2)− c2c1

m
+

c3m

(m + 2)2

)
e4

k +O(e5
k).

4. Stability analysis

In this section, we carry out the study of stability, in the context of complex dynamics, we study
the convergence of the family on polynomials with multiplicity different from one.

4.1. Basic Dynamical Concepts

In this section the dynamical performance of the iterative schemes described in (4) is analyzed.
Previously, some concepts are recalled [18,19]. Let R : Ĉ → Ĉ be a rational function, where Ĉ is the
Riemann sphere. The orbit of a point z0 ∈ Ĉ is defined as the successive application of the operator R

on that point, determined by the set {z0, R(z0), R2(z0), . . . , Rn(z0), . . .}, where Rn(z0) refers to apply n

times R to z0. In this case, R is calculated by applying the family of iterative schemes on p(z), a low
degree polynomial.

A fixed point zF ∈ Ĉ of R is kept invariant after the application of the operator, satisfying
R(zF) = zF.It should be noted that, while all roots of the quadratic polynomial are fixed points of the
operator R, we can find fixed points of R being not roots of p(z); then, these points are called strange
fixed points. Any fixed point is classified as

• attracting, if |R′(zF)| < 1,
• superattracting, if R′(zF) = 0,
• repelling, if |R′(zF)| > 1, or
• parabolic or neutral, if |R′(zF)| = 1.

In this context, R′(zF) is called the stability function of fixed points zF.
On the other hand, the attractor basins [20] define the final status of the orbit of any point in the

complex plane after repeated application of the R operator. The basins of attraction of a attractive fixed
point zF ∈ Ĉ are then defined as the collection of pre-images of any order satisfying

A(zF) = {z0 ∈ Ĉ : Rn(z0) → zF, n → +∞}.

Moreover, a point zc is called a critical point of R if R′(zc) = 0. The asymptotical behavior of the
critical points is a key fact for analyzing the stability of the method. Previous results [21] set that at least
one critical point appears in each immediate basin of attraction, that is, in the connected component of
the basin of attraction containing the attractor. Let us also remark that superattracting fixed points are
indeed critical points. Moreover, those critical points that are not roots of p(z) are called free critical
points.

The Fatou set of the rational function R, F (R), is the set of points z ∈ Ĉ which orbits are tending
to an attractor . Its complementary set in z ∈ Ĉ is the Julia set, J (R). So that the basin of attraction of
any fixed point pertains to the Fatou set and the boundaries of these basins of attraction pertain to the
Julia set.
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Henceforth, the dynamical behavior of fourth-order parametric family (4) on cubic polynomial
p(z) = (z − α)2(z − β), where α, β ∈ C, is analyzed. The weight function is

G(η) = m − (a − m)2(−1 + m)m

a(a − 2m + am)
(η − µ)+

m4(2 − 2m − m2 + m3)

8(2 + m)
(η − µ)2 +

G′′′(µ)
6

(η − µ)3,
(8)

where a =
2m

2 + m
and µ =

m

m − a
.

A rational function Op(z) is obtained, depending on the parameter G′′′(µ) of class (4), named
from now on G3, and also on the roots α and β. To get a simpler operator, we use the conjugacy map
[22] given by the Möbius transformation

M(z) =
z − α

z − β
, M−1(z) =

zβ − α

z − 1
,

that satisfies
M(∞) = 1, M(α) = 0, M(β) = ∞,

yielding a rational function that does not longer depend on α and β, and it is conjugated to OG3(z)

(and therefore, with equivalent dynamical behavior)

OG3(z) =
(

M ◦ Op ◦ M−1
)
(z) = z4 P(z, G3)

Q(z, G3)
,

where P(z, G3) = (312 − 8G3 + (1014 − 24G3)z + (1368 − 12G3)z2 + (1050 + 16G3)z3 + (546 +

6G3)z4 + (198 − 6G3)z5 + (42 + G3)z6 + 6z7) and Q(z, G3) = 768 + 2496z + 2928z2 + 1140z3 − (726 +
8G3)z4 − (1176+ 24G3)z5 − (678+ 12G3)z6 − (204− 16G3)z7 − (24− 6G3)z8 + (12− 6G3)z9 + G3z10.

Solving the OG3(z) = z equation yields the fixed points of the rational function: z = 0 and z = ∞

arise from the roots of the polynomial prior to the map of Möbius. The asymptotic behavior of all fixed
points has a key role in the stability of the iterative methods involved since its convergence to fixed
points other than the roots is a major disadvantage for an iterative approach.

A straightforward result of the Möbius map applied on this rational function is the inverse
conjugation,

1
OG3(z)

= OG3

(
1
z

)
.

Then:

• If zF is a fixed point of OG3(z), that is OG3(z
F) = zF, then also its conjugate 1/zF is, OG3(1/zF) =

1/zF.
• z = 1 is always an strange fixed point of OG3(z), coming from the divergence of the original

operator except maybe for some specific values of the parameters that simplify the operator.
• Given two conjugate fixed points, both have the same character, since their stability function

coincides as
O′

G3(z
F) = 1/O′

G3(z
F).

4.2. Performance of the strange fixed points

The stability of strange fixed points depends on G3. Now, the stability of z = 1 is stated.

Theorem 2. The stability of the strange fixed point z = 1 is

• attracting, if |G3 − 168| > 1152,
• repelling, if |G3 − 168| < 1152,
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• parabolic, if |G3 − 168| = 1152,
• not a fixed point, if G3 = 168.

Proof. z = 1 is an strange fixed point of OG3(z) if G3 6= 168. Fixed point z = 1 is attracting if

∣∣O′
G3(1)

∣∣ =
∣∣∣∣

−1152
−168 + G3

∣∣∣∣ < 1 ↔ 1152 < |−168 + G3| .

Finally, if G3 satisfies |G3 − 168| < 1152, then O′
G3(1) > 1 and z = 1 is a repelling point. It is

parabolic in O′
G3(1) = 1.

Figure 2. Stability region of z=1.

Theorem 3. The roots of T(x) = −768 − 3264x − 6192x2 + (−7020 − 8G3)x3 + (−5280 − 24G3)x4 +

(−2736 − 12G3)x5 + (−1008 + 16G3)x6 + (−258 + 6G3)x7 + (−36 − 6G3)x8 + (−6G3)x9 are strange

fixed points of OG3(z), different from z = 1, and are denoted by fi(G3), i=1,2,...,9. Moreover, four of them are

superatracting for some values of G3 (and attracting around these values of G3):

• f1(G3) is superattracting for values of G3 ≈ {1.49735, 15.9586, 1242.25},
• f2(G3) is superattracting for values of G3 ≈ 1.10566 ± 0.31755i,
• f4(G3) is superattracting for values of G3 ≈ 1.11091 ± 0.314158i,
• f7(G3) is superattracting for values of G3 ≈ −576.219 ± 61.5856i and 1.10884 ± 0.315802i, and
• f3(G3), f5(G3), f6(G3), f8(G3) and f9(G3) are repelling, with independence of the value of parameter

G3.

In Figure 3, the stability function of OG3(z) is observed. Let us remark that complex values of G3
inside region |G3 − 168| < 1152 define fourth-order iterative schemes whose numerical performance
do not include divergence.
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Figure 3. Regions of stability corresponding to fi(G3), i=1,2,...,11.

In addition, the existence of free critical points is essential for the stability of the family of iterative
methods.

4.3. Critical points and parameter planes

To calculate the critical points, we get

O′
G3(z) =

R(z, G3)
S(z, G3)

,

where R(z, G3) = 6z3(4 + 5z + 2z2 + z3)2(G3(−2 − 2z + z2)2(−64 − 108z + 80z2 + 94z3 − 46z4 −
53z5 − 12z6 + z7) + 6(1664 + 6656z + 10788z2 + 8583z3 + 2748z4 − 876z5 − 1404z6 − 741z7 − 192z8 −
14z9 + 4z10)) and S(z, G3) = (768 + 2496z + 2928z2 + 1140z3 − 2(363 + 4G3)z4 − 24(49 + G3)z5 −
6(113 + 2G3)z6 + 4(−51 + 4G3)z7 + 6(−4 + G3)z8 − 6(−2 + G3)z9 + G3z10)2.

Since the order of the convergence of our iterative class of methods is greater than two, those
fixed points from the original roots of p(z), i.e., z = 0 and z = ∞, are both critical points as well. In the
next result, the remaining critical points, called free critical points, are also determined.

Theorem 4. The set of free critical points cri, i = 1, 2, . . . , 13, of fixed point operator OG3(z) is composed

by cr1 = −1, cr2 =
1
2
(−1 + i

√
15), cr3 =

1
2
(−1 + i

√
15) which are preimages of the strange fixed point

z = 1 and the roots of the polynomial t(x) = 9984 − 256G3 + (39936 − 944G3)x + (64728 − 544G3)x2 +

(51498 + 1272G3)x3 + (16488 + 936G3)x4 + (−5256 + 1008G3)x5 + (−8424 − 768G3)x6 + (−4446 +

186G3)x7 + (−1152 + 174G3)x8 + (−84 − 5G3)x9 + (24 − 16G3)x10 + G3x11.

Since cr1, cr2 and cr3 are preimages of z = 1, only the parameter planes of cri, i = 3, 4, . . . , 13 are
obtained. The parameter plane represents if, taking an initial guess equal to the free critical point, its
orbit converges or not. In this case, each point of the plane refers a value of G3 ∈ Ĉ, that is, a member
of family (4). Instead of representing the 11 parameter planes, we just represent the unified parameter
plane [21] for the sake of simplicity. White points represent convergence to any of the roots, while
black points represent convergence to a different point or even divergence. The unified parameter
plane is shown in Figure 4.
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(a) (b)

Figure 4. Unified parameter plane: (a) complete, (b) a detail in Re{G3} ∈ [−100, 300],Im{G3} ∈
[−300, 300].

Let us remark the broad white region of Figure 4. Taking a white point guarantees the selection of
a stable method.

5. Numerical performance

In this section, model (6) and different academic problems are solved by means of the iterative
class (4), having the weight function described in (8) with G′′′(µ) = 0,

yk = xk −
2m

2 + m

f (xk)

f ′(xk)
,

xk+1 = xk −
(

m +
m3(m − 1)

4
(η − µ)+

m4(2 − 2m − m2 + m3)

8(2 + m)
(η − µ)2

)
f (xk)

f ′(xk)
, k = 0, 1, 2, . . . ,

(9)

where µ =
m + 2

m
. The calculations have been performed in Matlab R2022b using variable precision

arithmetics with 1000 digits of mantissa, on a computer equipped with a Intel® Core™ i5-5200U CPU
2.20GHz. Tables that show the numerical performance collect the residuals |xk+1 − xk| and | f (xk+1)|
after convergence. Moreover, a computational estimation of the order of convergence ρ̃ [23] is obtained
as

p ≈ ρ̃ =
ln (| f (xk+1)|/| f (xk)|)
ln (| f (xk)|/| f (xk−1)|)

, k = 2, 3, . . .

When the components of vector ρ̃ do not tend to any real value, it is marked as ’-’.

5.1. Model

To find the value of εmax of (6), the equation is rewritten as

f (εmax) = εmax −
fy

Es
+

fct Ac

Es As

(
1 +

√
3.6Mεmax

) . (10)

The values of the parameters are in the ranges displayed in Table 1,
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Table 1. Ranges for input parameters of (10).

Input Range

Es (GPa) [195, 205]

fy (MPa) [400, 500]

fct (MPa) [25, 50]

As (mm2) [40, 1200]

Ac (mm2) [9000, 52000]

M (mm) [500, 2800]

Table 2 shows the numerical performance of method (9) for solving the model (10). The stopping
criterion is set when | f (xk+1)| < 10−16, taking as initial guess the value x0 = 9

4000 .

Table 2. Numerical performance of problem (10) for x0 =
9

4000
.

| f (xk+1)| |xk+1 − xk| Solution Iterations ρ̃

2.95289e-19 0.0000138391 0.000635604 2 -
5.24395e-19 0.0000198302 0.000517161 2 -
1.46768e-19 0.0000207393 0.000446156 2 -
1.78237e-19 0.0000156739 0.000598853 2 -
5.2808e-19 0.0000151498 0.000600228 2 -
4.71609e-20 0.0000209598 0.000412874 2 -
1.09408e-19 0.000014158 0.000604944 2 -
2.25264e-19 0.0000205114 0.000525394 2 -
3.27036e-19 0.0000173992 0.000537687 2 -
1.94702e-19 0.0000180554 0.00045173 2 -
4.56095e-19 0.0000154389 0.000583336 2 -
1.24265e-19 0.0000190569 0.000542714 2 -
3.81289e-19 0.0000209862 0.000472623 2 -
1.46367e-19 0.0000150232 0.000568954 2 -
1.4193e-19 0.0000203555 0.000516532 2 -

As deduced from Table 2, for initial guesses close to the solution, the results are successful. The
method converges in 2 iterates to the solution for the used values of the parameters. The value of ρ̃ can
not be displayed since the number of iterates is lower than three.

Table 3 shows the effect of assuming an initial estimate further away from the root. In this case,
x0 = 1

100 and the stopping criterion remains as in the previous case.
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Table 3. Numerical performance of problem (10) for x0 =
1

100
.

| f (xk+1)| |xk+1 − xk| Solution Iterations ρ̃

2.9442e-19 0.00000168032 0.000635604 3 2.02379
4.70146e-19 0.00000684629 0.000517161 3 2.85371
4.27661e-20 0.00000803271 0.000446156 3 3.29596
1.81752e-19 0.00000260127 0.000598853 3 2.30058
5.25702e-19 0.00000220132 0.000600228 3 2.11224
1.78977e-19 0.00000883971 0.000412874 3 3.23475
1.0831e-19 0.00000160411 0.000604944 3 2.09545
1.45139e-19 0.00000858088 0.000525394 3 3.16438
3.3873e-19 0.00000347839 0.000537687 3 2.42474
2.15411e-19 0.00000336737 0.00045173 3 2.48239
4.59028e-19 0.00000223758 0.000583336 3 2.13696
9.06593e-20 0.00000589335 0.000542714 3 2.91293
2.69372e-19 0.00000885897 0.000472623 3 3.14682
1.48509e-19 0.00000182173 0.000568954 3 2.13834
2.15643e-19 0.00000799412 0.000516532 3 3.06402

The results of Table 3 show the good performance of the method, since it has converged to the
solution in 3 iterates. The value of ρ̃ differs from the theoretical one because in three iterations it has
not been able to stabilize.

5.2. Academical problems

From now on, we are solving the following nonlinear equations with multiple roots:

• Φ1(x) =
(

e−x − 1 +
x

5

)3
, whose root is x∗ ≈ 4.9651 of multiplicity m = 3, taking as initial guess

x0 = 26,
• Φ2(x) = x2ex − sin(x) + x, whose root is x∗ = 0 of multiplicity m = 2, taking as initial guess

x0 = 10, and
• Φ3(x) = (x2 − ex − 3x + 2)5, whose root is x∗ ≈ 0.2575 of multiplicity m = 5, taking as initial

guess x0 = −6.

The stopping criteria is set when | f (xk+1)| < 10−200. The solution obtained with (9) is compared with
the solutions applying Rall’s (1) and Schroder’s (2) methods, named O4, RA and SC, respectively. Table
4 collects the results, where "nc" denotes that the method does not converge.

Table 4. Numerical performance of problems Φ1(x), Φ2(x), and Φ3(x).

Problem Method | f (xk+1)| |xk+1 − xk| Iterations ρ̃

Φ1(x)
RA 5.067e-307 1.5112e-50 6 2
SC 4.4598e-315 6.8690e-52 6 2
O4 0 7.2526e-44 4 3.9991

Φ2(x)
RA 2.0809e-311 2.7992e-78 15 2
SC nc nc nc -
O4 0 2.5147e-65 8 4.0000

Φ3(x)
RA 6.3688e-289 2.5494e-29 14 2
SC 2.6371e-307 3.6995e-31 9 2
O4 0 1.2030e-40 8 4.0004

The results of Table 4 illustrate how competitive method O4 is with respect to Rall’s and Schroder’s
methods. In the three problems, the value of | f (xk+1)| and the number of iterations improve concerning
the classical methods. Moreover, the ρ̃ value matches the theoretical one.
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6. Conclusions

In this paper, we have developed a parametric family of fourth-order numerical methods for
solving a constitutive equation of reinforced concrete (6) with multiple roots. A dynamical analysis
has been performed to select the best members of the family. For a particular method, its performance
is compared with other known multiroot methods, obtaining the solution in fewer iterations with a
higher order of convergence.
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