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Abstract: The Principle of Indifference (“PI”:  the simplest non-informative prior in Bayesian probability) has 

been shown to lead to paradoxes since Bertrand (1889). Von Mises (1928) introduced the “Wine/Water Paradox” 
as a resonant example of a “Bertrand paradox”, and which has been presented as demonstrating that the PI 
must be rejected. We now resolve these paradoxes by a Maximum Entropy (MaxEnt) treatment of the PI that 

also includes information provided by Benford’s “Law of Anomalous Numbers” (1938). We show that the PI 
should be understood to represent a family of informationally-identical MaxEnt solutions; each solution being 

identified with its own explicitly justified boundary condition. In particular, our solution of the Wine/Water 

Paradox exploits Benford’s Law to construct a non-uniform distribution representing the universal constraint 

of scale invariance, which is a physical consequence of the Second Law of Thermodynamics.  

Keywords: scale invariance; quantitative geometrical thermodynamics; lagrange multipliers 

 

Introduction 

Benford’s Law [1] is the peculiar observation that in many real-life sets of numerical data, the 

leading digit is likely to be small. It was first observed by Simon Newcomb in 1881 [2], who 

commented: “That the ten digits do not occur with equal frequency must be evident to anyone making much 

use of logarithm tables, and noticing how much faster the first pages wear out than the last ones”. Although 
this is an expected statistical phenomenon [3], the reasons for it are remarkably obscure and there 

remain a number of open problems [4]. Benford’s Law has since generated significant interest, 
including treatments that highlight its connections with entropy: Iafrate et al. (2015) [5] showed that 

the Law is derivable from a statistical mechanics treatment, with Don Lemons (2019) [6] extending 

their treatment to explicitly show the connection with thermodynamics.  

It has become clear that Benford’s Law is associated with scale invariance, although Berger & 
Hill [4] give a simple counterexample for the (false) statement that “To be Benford, a random variable or 

dataset needs to cover at least several orders of magnitude”.  Nevertheless, since we have demonstrated 
the validity of Quantitative Geometrical Thermodynamics (QGT) with an Euler-Lagrange variational 

calculus framework underpinning its Maximum Entropy (MaxEnt) approach to hyperbolic systems 

ranging over 35 orders of magnitude [7] (or more [8]), we expect such scale invariance to be present 

whenever the Second Law of Thermodynamics is at work. And we therefore also expect Benford’s 
Law with its logarithmic character to be ubiquitous (consistent with the fundamental and universal 

character of the Second Law) and indeed a “proxy” for the Second Law complete with all the entailed 
physical limitations and constraints. 

The Principle of Indifference (PI) is the simplest non-informative prior in Bayesian probability, 

mandating that, in the absence of any relevant evidence to the contrary, all possible outcomes should 

be treated as equally probable. “The Principle of Indifference is a symmetry principle stating [that] logical 

symmetries should be reflected, in the absence of any discriminating information, in uniform a priori 

probability distributions” (Howson & Urbach, 2006 [9]). 

However, Joseph Bertrand showed in 1889 [10] that the PI leads to apparent paradoxes for 

problems which have infinite sets of possible outcomes.  Nicholas Shackel (2007) [11] analysed 
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Bertrand’s Paradox (including Jaynes’ treatment of it [12]) concluding that in such cases it continues 

to refute the PI. Of course, the first of the “plague of infinities” of the PI is introduced at the outset, 
since a uniform probability distribution entails a MaxEnt distribution characterised by an infinite 

temperature (since temperature is inversely proportional to the Lagrange multiplier of the MaxEnt 

formulation: see Discussion below).   

The Wine/Water Paradox was introduced by Von Mises (1928) [13] as a resonant example of a 

“Bertrand paradox”, and has recently been re-analysed by Mikkelson [14] who concludes that the 

paradox is resolved if the symmetries of the problem are taken properly into account. 

Briefly, an instance of the “Wine/Water Paradox” is given by Mikkelson [14] as: 
There is a certain quantity of liquid.  All that we know about the liquid is that it is composed 

entirely of water and wine, and that the ratio of wine:water (w) is between ⅓ and 3. So ⅓ ≤ w ≤ 3.  

Now, what is the probability that w ≤ 2? 

Different ways of stating the Principle of Indifference give different answers to this question, 

and so the Wine/Water Paradox apparently represents an important counterexample to the PI, 

playing “a curiously pivotal role in this discussion. Everyone seems to agree [that the Wine/Water Paradox] 

has no solution [and therefore that the PI] has fallen into serious disrepute among probability theorists” [14], 
even suggesting “that the principle of indifference must be totally rejected” (Jaynes 1973 [12]; although he 
also says: “the principle of indifference has been unjustly maligned in the past; what is needed was not blanket 

condemnation, but recognition of the proper way to apply it”). Bas van Fraassen also thinks there is a 
fundamental failure of the PI: “Probability is not uniquely assignable on the basis of a Principle of 

Indifference” [15]. 

In the language of Bayesian analysis, if a problem definition is to be considered complete and 

self-consistent then it requires a complete specification of the prior information as well as the data, such 

that logical analysis from different points of view should lead to exactly the same solution.  

Howson & Urbach [9] have stated that the PI “is a symmetry principle”, and associated with this 
property is Jaynes’ [12] idea of transformation group theory being applied to statistical problems 

invoking the PI; in particular, the assumption that changing the parameters (including the scale) of a 

problem should not change the state of knowledge. Such symmetry principles underlies both Special 

and General Relativity, where the hyperbolic rotations associated with Minkowski space-time form 

such a transformation group.  

There are curious parallels with the statistical mechanical calculation of the thermodynamic 

entropy of a physical system, which depends on the granularity chosen to analyse the system under 

consideration. Elements of the system smaller than the graining represent the microstates of the 

system, which can be ignored since their permutations do not change the value of the entropy 

calculated. It is the macrostates of the system that represent the observational structure of the system. 

In any case, when discussing ignorance of a system, it is the Principle of Maximum Entropy 

(MaxEnt) that is important, particularly when a system is considered to be underdetermined. From a 

thermodynamical perspective this is equivalent to the associated Lagrange multipliers being assigned 

a value of zero, which should be recognised as equivalent to assuming an infinite system temperature 

(as briefly mentioned above and elaborated in the Discussion below). Such an assumption is both 

unphysical and also unjustified per se on informational grounds (since if we are completely ignorant 

of the temperature we cannot assume any definite value). The MaxEnt principle is applied to systems 

associated with the minimum of information. Howson & Urbach [9] make a clear statement to this 

effect:   "Jaynes's [MaxEnt treatment] appeals...to the criterion...of minimum information: ...the least 

information... or... the fewest assumptions..." As Jaynes himself puts it: “How do we find the prior 

representing ‘complete ignorance’? ... the maximum entropy principle will lead to a definite, parameter-

independent method of setting up prior distributions [such that] we express complete ignorance by assigning a 

uniform prior probability density” [12].  

We regard this unjustified implicit assumption of infinite system temperature as being at the 

root of the disrepute of the PI and intend to approach the problem rather differently, invoking 

Benford’s Law as an explicit “proxy” for a more physical application of the Second Law allowing the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 June 2023                   doi:10.20944/preprints202306.1551.v1

https://doi.org/10.20944/preprints202306.1551.v1


 3 

 

relevant MaxEnt parameters (including the Lagrange multiplier, but see Discussion) to be properly 

determined and entailing physically consistent solutions.  

It is interesting that Benford’s Law has not (to our knowledge) yet been applied to this class of 
problems. It is curious that Jaynes, who did so much to propose and support the principle of 

Maximum Entropy neither saw the contradiction of effectively employing a specific (infinite) 

temperature for the assumption of a uniform prior probability density, nor exploited Benford’s Law 
(which he was clearly aware of, citing it multiple times in his book on probability theory [16]). 

Resolution of the Wine/Water Paradox  

We want to know what is the median ratio W of the wine:water volume ratios v/u, v′/u′ (choosing 

two representative ratios from the distribution), where for convenience (and without any loss of 

generality) we assume v, v′, u and u′ are appropriately integer quantities, such that there’s an equal 
probability of the wine:water ratios being above and below that median point. The key issue here is 

that an equivalent answer must be obtained for the symmetrical problem expressed using the inverse 

water:wine ratios, u/v and u′/v′. For convenience we assume v′/u′> v/u but of course, the inverse 

(symmetrical) assumption v′/u′< v/u may also be made. The wine:water ratio w can therefore be 

placed between the limits: 

v/u ≤ w ≤ v′/u′ (1a) 
If the original statement of the problem does not employ integer values in Equation (1a) for the 

limits of w (such as in Mikkelson’s example), then it can be transformed by multiplying by a common 
factor so that the limits are integers. Multiplying the wine:water ratio w by uu′, so as to define a 
transformed variable x=wuu′, then the limits of the scaled variable x (which now no longer represents 

a ratio quantity) are given by: 

u′v ≤ x ≤ uv′ (1b) 

For any number system of base B, Benford’s Law states that the leading digit N for any number 

represented in that base B has a relative probability p(N) of occurrence of: 

p N( ) = log
B

1+ 1

N

æ
èç

ö
ø÷  (2a) 

Since we also need to analyse the reciprocal quantities we choose our base B as the product: 𝐵 = (𝑢 + 1)(𝑢′ + 1)(𝑣 + 1)(𝑣′ + 1) (2b) 

The limit quantities P≡u′v and Q≡uv′ (seen, in effect, in Equation (1b)) may be taken without any 

loss of generality to be, respectively, their own leading digit representation in the base B, so that by 

Benford’s law the natural probabilities of occurrence of P and Q are: 

p P( ) = log
B

1+ 1

P

æ
èç

ö
ø÷  (3a) 

p Q( ) = log
B

1+ 1

Q

æ
èç

ö
ø÷  (3b) 

We can immediately write the ratio of these two probabilities as: 

p P( )
p Q( ) =

log
B

1+1 P( )
log

B
1+1 Q( ) =

ln 1+1 P( )
ln 1+1 Q( )  (4) 

where for convenience we employ the natural logarithm. The most basic MaxEnt distribution (that 

is, the probability distribution with the fewest possible extraneous assumptions or constraints) is the 

negative exponential distribution so that the MaxEnt probability distribution for the scaled variable 

x is:  

p(x)=Aexp(−λx) (5a) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 June 2023                   doi:10.20944/preprints202306.1551.v1

https://doi.org/10.20944/preprints202306.1551.v1


 4 

 

where λ is indistinguishable from a Lagrange multiplier.  That is to say, the parameter λ can be 

considered here to represent the physical constraint of scale invariance that has been introduced into 

the problem formulation by the ubiquitous influence of the Second Law of Thermodynamics. For x 

lying between the two numbers P and Q (as per Equation (1b)): 

  

Ae- l x dx

P

Q

ò =1

 (5b) 

hence: 

  

A = l
e

- l P - e
- l Q

 (5c) 

It is clear that the MaxEnt distribution Aexp(-λx) is underdetermined since it has two variables, 

A and λ, but only one constraint (Equation (5b)). This under-determination for Aexp(-λx) can be 

thought to have generated the Wine/Water Paradox, since a unique designation for each of A and λ 

was not available. But, asserting Benford’s Law and recasting Equation (4) with the help of Equation 

(5a): 

p P( )
p Q( ) =

exp - l P( )
exp - l Q( ) =

ln 1+1 P( )
ln 1+1 Q( )  (6) 

Thus Equation (6) represents a new independent relation allowing for the unique determination 

of the exponential parameter λ, and thence the most likely (MaxEnt) distribution for the parameter 

x, since Equation (5c) can then be used to uniquely determine A. Note that it’s clear that λ≠0 unless 
P=Q; that is to say, only the trivial case (and, in effect, a null Wine/Water proposition) leads to what 

might be considered the uniform probability distribution (with λ=0) conventionally associated with 

the PI.  

Thus, the initial aspect of von Mises’ conundrum can now be straightforwardly solved; that is to 
say, the value for the median probability is given by the value x=X, where X (with P £ X £ Q ) is 

uniquely determined by the condition: 

  

Ae- l x dx

P

X

ò = Ae- l x dx

X

Q

ò = 1

2
 (7a) 

using the LHS of Equation (7a) leads to a closed solution for X: 

  

X = - 1

l
ln e

- l P - l
2A

æ
èç

ö
ø÷  (7b) 

Transforming back into the ratio w, leads to a median wine:water ratio given by W=X/uu′: 

𝑊 = −1𝑢𝑢′𝜆 ln (e−𝜆𝑃 − 𝜆2𝐴)     (7c) 

Considering now the reciprocal ratios, and in particular the reciprocal variable y (≡1/w), then the 

relative proportions of water and wine are now considered to be u/v and u′/v′, such that (for u/v> 

u′/v′) we have: 

u′/v′ ≤ y ≤ u/v (8a) 

Then, as before we may without any loss of generality multiply the appropriate relative inverse 

ratios u/v and u′/v′, by the factor vv′ so as to ensure integer quantities obeying Benford’s law as per 
Eqs.3, and thereby consider the scaled variable z≡vv′y, such that (assuming again a MaxEnt 

probability distribution for z) we have: 
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u′v
 
 ≤ z ≤ uv′ 

 
 (8b) 

or indeed 

P
 
 ≤ z ≤ Q 

 
 (8c) 

with: 

p(z)=Cexp(−z) (8d) 

With the resulting limit quantities P≡u′v and Q≡uv′ still applying and the MaxEnt equation 
Equation (8d) equivalent to Equation (5a), it is also now clear that C≡A and ≡λ, such that it is also 

clear that the median point corresponds to the same equation Equation (7b). That is, the problem has 

the same solution (as required) as for its inverse (mutatis mutandis). 

Discussion 

In applying this theory to the Wine/Water Paradox using Mikkelson’s parameters (1≤ x ≤ 9, 

transferring to integer numbers simply by multiplying Mikkelson’s range by a factor 3) we now have 
the means to find the value of W such that there is an equal probability of the actual ratio being above 

or below W. The above analysis reveals that the solution to the Water-Wine Paradox is given by 

(solving Equation (6)): λ=0.235481801 (9a) 
with the associated value for A given by: 

A=0.35142409 (9b) 
The median value W is found from Equation (7c) to be:  

W=1.11420745 (9c) 
This median value of the probability distribution represents the ratio of Wine/Water such that 

there is an equal probability of the actual ratio being above or below that value. As required, the 

inverse problem has the same median value.  

It is of interest to note that the median probability point associated with W is not unity (that is, 

equal quantities of water and wine). This is an interesting aspect to the Wine/Water problem, that 

invites some comment. In particular, we note that in our integer terms of P and Q, then Mikkelson’s 
parameters are equivalent to the range lying between 1 and 9, with a mid-point of 3, corresponding 

to the ‘geometric’ mid-point. Clearly the general result that W be unity would in turn imply that the 

solution for W is the geometric mean, which is attractive since it appears scaleless. However, the 

geometric mean doesn’t actually conform to the logarithmic (hyperbolic) nature of the universe, as 
exemplified by the entropic basis of the Second Law (see Parker & Jeynes 2019 [17], Equation (1b)).  

Equation (1) shows that Benford’s Law is also “logarithmic” in the same way, which is why we called 
it a “proxy” for the Second Law. When considering the median probability from the perspective of 
physical quantities, the logarithmic calculation for W (as per Equation (7c)) is the more meaningful 

physical approach.  

Although not exactly the same, the velocity addition rule of Special Relativity offers a related 

(hyperbolic) means to combine two velocities; similarly, the addition of optical Fresnel-based 

reflection amplitudes (with phase properties) for the overall probability amplitude of the reflection 

from a multilayer dielectric stack also follows a hyperbolic tangent (tanh) addition formalism (see 

Corzine et al. [18]); that is, neither a geometric nor an arithmetic addition in both these cases.  As is 

well-known, the science of probability has always tended to defy intuition by offering unexpected 

and surprising solutions: the Monty Hall problem (see Enßlin et al. 2019 [19]; Enßlin & Westerkamp 

2019 [20]) being just one example of many; while Edwin Jaynes also delighted in exploiting the 

Maximum Entropy machinery to objectively solve problems (such as the loaded dice, see Jaynes 1978 

[21], Jaynes 1982 [22]) in a manner aimed at disconcerting those unfamiliar with these methods. 

Jeffrey Mikkelson [14] considers that he has “dissolved” the Wine/Water paradox by 
“epistemically” distinguishing between “primary” and “derivative” facts. We have shown that 
explicitly invoking Benford’s Law yields a more clear cut (and satisfactory) resolution. 
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Marc Burock [23] doesn’t like Mikkelson’s solution since he regards it as silently introducing 
extra information.  Instead, he draws attention to “the joint sample space of a ratio and its inverse” and 
claims that applying the PI to this space resolves the paradox.  In our opinion this can be regarded 

as a sort of scale invariance which we implement explicitly using Benford’s Law. 
For the question “What is the probability P* that w ≤ 2?”, we again multiply Mikkelson’s 

parameters by 3 and calculate the integrated probability for P≤x≤6, with P=1: 𝑃∗ = ∫ 𝐴e−𝜆𝑥d𝑥6
𝑃 = −𝐴𝜆 [𝑒−𝜆𝑥]𝑃6 = −𝐴𝑒−𝜆𝑃𝜆 {𝑒−(6−𝑃)𝜆 − 1} = 0.81595117 (10) 

Michael Deakin’s is a sophisticated discussion [24] of both Mikkelson’s and Burock’s 
conclusions.  He points out that Mikkelson finds P

∗
= 5/6=0.833 where Burock finds P

∗
= 0.764 (from 

Equation (10) above we find P
∗
= 0.816). He concludes that the problem as posed may have any 

solution in the interval ½ ≤ P
∗≤ 1. We regard the problem as rather better-posed than he thinks it is, 

with a definite solution supplied by the extra information intrinsic to Benford’s Law. 
John Norton comments,  very plausibly: “If our initial ignorance is sufficiently great, there are so 

many ways to be indifferent that that the resulting equalities contradict the additivity of the probability 

calculus. We can properly assign equal probabilities in a prior probability distribution only if our ignorance is 

not complete and we know enough to be able to identify which is the right partition of the outcome space over 

which to exercise indifference” [25].  His is a paper on “probabilistic epistemology”, but here we prefer 
to avoid epistemological questions in favour of explicit physics (although it is not always possible to 

avoid metaphysics [26]). 

We have above repeatedly alluded to the issue of Lagrange multipliers, an issue which 

highlights an apparently unphysical aspect to the most basic form of the Principle of Indifference (PI). 

The point here is that the Maximum Entropy method looks for stationary solutions of the system 

Lagrangian given the constraints, which constraints may be represented by the (constant scalar) 

“Lagrange multipliers”.  It is a standard result (see for example Caticha 2008 [27] Eq.5.38) that, for 

the Boltzmann distribution, the Lagrange multiplier representing the energy conservation constraint 

is inversely proportional to the temperature; and our Equation (5a) features the parameter λ that is 

indistinguishable from such a Lagrange multiplier.  It is also obvious that for uniform distributions 

(such as that generally implied by the PI: all such systems are necessarily the same, that is, the relevant 

probability distributions are independent of particular constraints), the Lagrange multipliers must be 

zero.  This in turn implies an (unphysical) infinite system temperature. Here we draw attention to 

this problem, while using Benford’s Law to select one of the family of Maximum Entropy solutions, 

one with a parameter that is equivalent to a non-zero Lagrange multiplier.  This problem has a 

solution not given by a uniformly distributed probability function, as one would intuitively expect 

from the PI.  Perhaps this has been such a persistent Paradox precisely because the simplest form of 

the principle of indifference as applied to the Wine/Water paradox entails a trivial solution (P=Q) 

even though the probability functions of sensible solutions are not distributed uniformly, even as 

they remain MaxEnt solutions. 

Conclusions 

We have shown that the value of λ obtained explicitly (Equation (6)) resolves the Water/Wine 

paradox, being based on a more physically realistic expression of the Principle of Indifference, and 

which remains valid even when the problem is expressed in a different (but symmetrical) manner. 

The “paradox” is one famous example of a class of paradoxes described by Bertrand, and its 
resolution here for one case is expected to resolve the other cases too mutatis mutandis. 

We regard the “paradox” as appearing paradoxical because it is ostensibly underdetermined as 
stated, so that different solutions seem valid for an apparently well-posed problem. This 

underdetermination is an expression of unrecognised and unstated priors disturbing the analysis; 

while it is, of course, well-known that a correct Bayesian analysis must also correctly state all the prior 

knowledge of the system.  
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We solve the “paradox” by explicitly supplying the missing prior (in the form of Benford’s Law): 
namely, the condition of scale invariance. Other commentators have also noticed this prior but have 

treated it metaphysically.  Here we treat it physically. 

Our treatment shows that the Principle of Indifference does not necessarily imply a uniform 

probability distribution as one usually expects. This is because a uniform distribution implies a null 

Lagrange multiplier, which in turn implies an (unphysical) infinite system temperature.  But note 

also that a null Lagrange multiplier also implies an independence of relevant constraints; this 

independence having been (illegitimately) smuggled in as a further (unacknowledged) implicit 

assumption. We have shown rigorously that the explicit assumption of scale invariance required by 

the Second Law and implemented using Benford’s Law allows a distinct and consistent Maximum 
Entropy solution to the Wine/Water problem with a non-zero Lagrange multiplier explicitly 

evaluated. 

Author Contributions: Conceptualization: Michael Parker and Chris Jeynes; Formal analysis: 

Michael Parker; Methodology: Michael Parker; Writing – original draft: Michael Parker and Chris 

Jeynes; Writing – review & editing: Michael Parker and Chris Jeynes. 
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