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Abstract. To predict the remaining useful life (RUL) of proton exchange membrane fuel cell
(PEMFC) in advance, a prediction method based on the voltage recovery model and Bayesian
optimization of a multi-kernel relevance vector machine (MK-RVM) is proposed in this paper. First,
the empirical mode decomposition (EMD) method was used to preprocess the data, and then the
MK-RVM was used to train the model. Then, the Bayesian optimization algorithm was used to
optimize the weight coefficient of the kernel function to complete the parameter update of the
prediction model, and the voltage recovery model was added to the prediction model to realize the
rapid and accurate prediction of the RUL of PEMFC. Finally, the method proposed in this paper
was applied to the open data set of PEMFC provided by FCLAB, and the prediction accuracy of the
RUL of PEMFC was obtained by 95.35%, which showed that the method had good generalization
ability and verified the accuracy of the prediction for the RUL of PEMFC.

Keywords: Remaining useful life; Empirical mode decomposition; Bayesian optimization
algorithm; Multi-kernel relevance vector machine; PEMFC

1. Introduction

As a leading technology of clean and renewable energy, PEMFC has the advantages of high
energy conversion efficiency and less environmental pollution. At present, PEMFC has been
developing rapidly in the fields of distributed power generation, power networks, fixed power
generation, and automotive energy, which is the key direction of future new energy development
and has a good market prospect. Despite this, PEMFC still has the problems of short service life and
high production cost, which seriously affect the commercial application and popularization of
PEMEC. In addition to the breakthrough innovation in electrochemical materials, RUL prediction
research is also one of the feasible methods to improve the life of PEMFC, because it can predict the
life state of the reactor in advance and thus improve the service life. Carrying out RUL prediction
based on PEMFC has gradually become a hot topic for researchers.

At present, according to the research of relevant literature, the model-driven method, data-
driven method, and hybrid model method are the main methods for RUL prediction of PEMFC. The
model-driven method is to use the empirical model or the mechanism model for the RUL of PEMFC.
Koltsova [1] proposed a mechanism model of electrochemical reaction area decay, which is only
suitable for laboratory studies. Robin [2] improved on this basis and established the Pt catalyst’s
dissolution mechanism model and the voltage attenuation’s semi-mechanism model. The fusion of
the two mechanism models effectively improved the RUL prediction accuracy of PEMFC.

The data-driven method is to realize the RUL prediction of PEMFC by monitoring the status of
the reactor system. Silva [3] proposed a PEMFC degradation prediction method based on the
Adaptive Neuro-Fuzzy Inference System (ANFIS) and evaluated the method by predicting the
output voltage variation of PEMFC under constant operating conditions. Wu [4] proposed a PEMFC
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performance degradation prediction method based on adaptive RVM and used an adaptive kernel
width determination algorithm to predict the RUL of PEMFC.

The hybrid model method combines the advantages of various models to improve the prediction
accuracy of the RUL of the reactor to a greater extent. Cheng [5] proposed a prediction method based
on the Least Square Support Vector Machine (LSSVM) and Regularized Particle Filter (RPF), which
improved the RUL prediction accuracy of PEMFC. Hao Liu [6] proposed a short-term prediction
method for PEMFC based on the Group Method of Data Handling (GMDH) and Wavelet Analysis
(WA). Two sets of PEMFC aging experimental data were used to verify the effectiveness of the
method under different current load conditions, and more accurate prediction accuracy was
obtained.

Although the method based on the mechanism model has high prediction accuracy, it is often
difficult to obtain an accurate mechanism model. The data-driven method overcomes the difficulty
of obtaining the mechanism model, but it requires a large number of standard data sets for training,
and the quality of the data sets has a great impact on the accuracy of the prediction. The method
based on the hybrid model combines the mechanism model and the data drive, takes the long and
avoids the short, solves the life prediction problem of both effectively, and improves the accuracy of
prediction. Therefore, aiming at the life performance characteristics of PEMFC, this paper proposes
an RUL prediction method based on the hybrid model and uses the data set provided by FCLAB to
verify the accuracy and effectiveness of this method.

2. Data set analysis and preprocessing

2.1. PEMFC experimental data set

In this paper, the data set FC1 of the PEMFC reactor experiment published by FCLAB Laboratory
in the IEEE PHM 2014 Data Challenge is selected. Operating conditions of PEMFC: temperature is
controlled at about 60°C, the load current is controlled at 70A, and relative humidity is controlled at
about 50%. The data set includes multi-dimensional data such as reactor voltage, output current,

hydrogen flow rate, and hydrogen inlet and outlet temperature. Part of the data set is shown in Figure
1.
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Figure 1. Part of the data set of PEMFC.
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2.2. PEMFC performance degradation index

PEMEC itself has the characteristics of nonlinear and time-varying, while the system has
multiple inputs and multiple outputs, which is a typical complex nonlinear control object. The
variables that can be monitored include gas flow, pressure, temperature, output voltage, output
current, and output power. The PEMFC data set used in this paper has as many as 24 dimensions. To
clarify the relationship between data variables of each dimension and fuel cell performance
degradation, and determine the index that can best represent the performance degradation of the
reactor, Person correlation analysis was carried out on the data of each dimension in the data set, and
the correlation matrix between variables was shown in Figure 2.

By observing the correlation matrix diagram among the variables, it can be found that the output
voltage of the reactor has an obvious negative correlation with the time. In the RUL prediction
research of PEMFC, because the output voltage of the reactor is the most easily obtained data, most
research methods measure the degradation of the reactor performance through the attenuation of the
output voltage of the reactor and take the output voltage of the reactor as the indicator of the
performance degradation of PEMFC. Therefore, the output voltage of PEMFC is also taken as the
performance degradation index of the reactor.
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Figure 2. Data set variable correlation matrix diagram.

2.3. EMD denoising

Through correlation analysis, the output voltage is determined as the performance degradation
index, but there are 143862 original output voltage data, the fluctuation between adjacent output
voltage data is too small, and the calculation time required for model training is too long, so it is
necessary to sample the original data at equal time intervals. Considering the stable operation of the
reactor for 1154h and the reduction of the calculation burden, 1h is selected as the sampling interval.
Because the original voltage data contains a lot of noise and voltage spikes, if these abnormal
deviations are not dealt with, it will produce a large calculation error in the training and prediction
of the model.

EMD performs signal decomposition according to the time scale characteristics of the data itself,
without pre-setting any basis function, and overcomes the problem that the basic function has no
adaptability. EMD is a processing method to stabilize non-stationary signals. It decomposes the
fluctuations and trends of different scales in the signal step by step to produce a series of data series
with different characteristic scales. Each series is called an intrinsic mode function IMF. In EMD, it is
assumed that any signal can be decomposed into several linear or nonlinear IMF components, the
local number of zeros is the same as the number of extreme values, and the upper and lower envelope
is locally symmetric about the time axis.
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EMD needs to first find all the extreme points of the signal, connect the local maximum points
into the upper envelope through the cubic spline curve, and connect the local minimum points into
the lower envelope, the upper and lower envelope contains all the data points, and find the average
value m () of the upper and lower envelope.

ml (t) — emax (t) ;‘ emin (t)

(¢) is the upper envelope and e, (¢) is the lower envelope.

@™

Among them, e

max

The original signal x(¢) is sieved, and the original signal subtracts the mean envelope to get the
intermediate signal C(¥) .

C,(t) = x(t) = m, (1) @

Determine whether the middle signal C,(f) meets the two conditions of IMF: the number of
extreme points and the number of zero points in the entire time course is equal or at most 1 difference;
At any time, the average value of the upper envelope formed by local maximum points and the lower
envelope formed by local minimum points is zero, that is, the upper and lower envelope are locally
symmetric concerning the time axis. If so, the signal is an IMF weight; If not, the above steps are
repeated until the decomposed signal meets the IMF condition after K times to obtain the first IMF
component /, () of the original signal.

Ce () =m (1) = C, (D1, (1) 3)
n()=x(0)=1,() 4)

Among them, /,(¢) represents the IMF component of the highest frequency in the original
signal x(¢), and the remaining component 7(¢) is obtained by subtracting /,(#) from the original
signal x(¢).

The second IMF component /,(f) can be obtained by screening 7(f), and the remaining
component #(f) can be obtained by subtracting /,(f) from #(f). And so on, until the last
remaining component 7,(f) can no longer be decomposed.

1) = R (O~ 1,(0) ®)

After n iterations, 7,(f) becomes a monotone function, the remaining component 7,(f)
becomes a residual component, and the sum of all IMF components and residual components is the
original signal x() .

EMD has obvious advantages in processing non-stationary and nonlinear data and is suitable
for analyzing nonlinear and non-stationary signal sequences with high signal-to-noise ratios.

Therefore, this paper uses the EMD method to de-noise the sampled output voltage data and the

output voltage data after EMD de-noising is shown in Figure 3.

3.38 T
——0Origin Data
336 —EMD Data

3.34

3321

Voltage/V
w
N w
==} w

o

N

o
T

3.22

321

3.18

0 200 400 600 800 1000 1200
Time/h

Figure 3. Output voltage data after EMD denoising.
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3. Global prediction framework

3.1. MK-RVM model

Multi-kernel learning based on RVM combines kernel functions with different characteristics, to
obtain the advantages of multiple kernel functions, and can combine the characteristics of global and
local kernel functions when dealing with complex data, to improve the learning and generalization
ability of RVM.

The multi-kernel function Ks(x,z) is the linear combination of the linear kernel function
K,(x,z), Gaussian kernel function K,(x,z), polynomial kernel function K;(x,z), and Sigmoid
kernel function K,(x,z), which is used to describe the global and local trend of battery capacity
degradation. Its mathematical expression is shown in equation 6:

Ks(x,2) =w K (x,2) + W, K, (x,2) + W3 K3 (X, 2) + W K4 (%, 2) (6)

Among them, w;, w,, w; and w, are the weight, and is also the key of MK-RVM. Since there

is no reasonable and universal criterion for setting the weight coefficient of the kernel function, it is
often determined based on empirical selection, experimental comparison, large-scale search, or cross-
verification method. Therefore, this paper introduces a Bayesian optimization algorithm, which takes
the minimum Root Mean Square Error (RMSE) as the optimization objective, and realizes the
parameter self-optimization of the weight coefficient of the kernel function.

RMSE=,/%i<x(i)—§(i»2 @)

Among them, x(i) represents the actual voltage of the reactor, x(i) represents the predicted

voltage of the reactor.

3.2. Bayesian optimization algorithm

The Bayesian optimization algorithm belongs to the black box optimization algorithm, which
updates the posterior probability distribution based on the known observation points and the prior
probability distribution of the objective function to ensure the optimal weight coefficient of the kernel
function. Bayesian optimization goals are defined as:

Xpin = argmin, . f(x) (8)
Among them, x,, is the final result of parameter optimization, and f(x) is the objective
function to be optimized.
Set the parameter to be optimized as X ={x,,x,,...,x,}, After Bayesian optimization iteration,
the data set is D, ={(x,, f(x,)), (x,, f(x,)),....(x,, f(x,))} . Suppose that the observation points of the
Gauss process obey the Gaussian distribution as follows:

f(x,)~ GP(u(x,,,), D (%, %,) )

Among them, B is the covariance matrix:
k(x,x) - k(x,x,)
Z (X5 %,) = ’ : (10)
k(x,,x) - k(x,,x,)
According to Bayes’ theorem:
P(f (x| f (e )ooP(f () | S (6, DPCS(,.0)) (11)
Continuous iterative updates make x,,, =x,,, ultimately ensuring optimal parameters. The

algorithm flow is as follows:
Input: objective function f(x), collection function «;

Output: parameter vector x*;
1. Initialize parameter vector x,;
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2 for t=12,...,T do.

3. Maximize the collection function & to get the next evaluation point: x,,, =argxeX max a(x|D);
4. Evaluate the objective function value y,,, = f(x,,,)+€,,;

5. Integrate data: D,,, =DU(x,,,,»,,,), and update the probabilistic proxy model;

6. end for '

3.3. Voltage recovery model

When conducting fuel cell experiments, FCLAB not only needs to monitor the output voltage
and working condition of the reactor in real time but also needs to measure the polarization curve
and electrochemical impedance spectrum. Therefore, a reactor start-stop operation is performed at
an interval of about 160h during the experiment. The start-stop operation time of the reactor is shown

in Table 1.
Table 1. Start-stop operation time of PEMFC.
Start-stop Number 1 2 3 4 5 6 7
Time /h 48 185 348 515 658 823 991

Since the time interval of the FCLAB start-stop reactor is relatively fixed, the corresponding
voltage recovery model can be established according to the voltage recovery degree of the start-stop
time point in the training data, and the voltage recovery prediction of the predicted data start-stop
point can be realized. According to the start-stop voltage recovery data of FCLAB, this paper chooses
the double-exponential empirical model as the start-stop voltage recovery model of the reactor, as
shown in Formula 12. The comparison between the recovery amplitude of the model at the start-stop
time point and the actual result is shown in Figure 4.

X, =X +1-exp(r, 1)+ 7y -exp(r; - 1) (12)

Among them, c¢ is the start-stop operation time, r is the model parameter.
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Figure 4. Dual exponential voltage recovery model fitting.

3.4. Prediction framework

As the main force of clean energy, fuel cells have higher requirements for the detection and
management of their health status. To further improve the prediction accuracy of fuel cells, this paper
takes voltage as a health indicator and proposes a method for predicting the RUL of PEMFC based
on the voltage recovery model and Bayesian optimization MK-RVM. The overall framework of the
prediction method is shown in Figure 5 below.
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Figure 5. Framework of overall prediction methods.

The overall prediction process is as follows:

Step 1: By correlation analysis, the output voltage of the PEMFC is selected as the performance
degradation index of the reactor.

Step 2: The original voltage data is denoised by EMD. The denoised data is bounded by the
prediction starting point 7, and divided into training data sets and test data sets.

Step 3: Put the training data after data preprocessing into the training model of MK-RVM to
train, and judge whether the RUL prediction starting point is reached. If the prediction starting point
is reached, the model parameters of MK-RVM are estimated; otherwise, the model training is
continued.

Step 4: The model parameters of MK-RVM are optimized by Bayesian, and the model parameters
are updated by Gaussian process regression and maximized acquisition function.

Step 5: The RMSE of the reactor predicted voltage is taken as the objective function of Bayesian
optimization. If RMSE reaches the minimum, the optimal kernel function weight coefficient is
obtained; Otherwise, return to Step 4 to continue updating model parameters.

Step 6: Using the weight coefficient of the optimal kernel function obtained by Bayesian
optimization, the MK-RVM prediction model is updated.

Step 7: Determine whether the start-stop time point 7 of the reactor is reached. If the start-stop
time point is reached, add the voltage recovery model to the MK-RVM prediction model; Otherwise,
the RUL of the PEMFC is predicted directly.

Step 8: Determine whether the predicted voltage value of MK-RVM reaches the threshold 7,
of RUL. If it reaches the voltage value of the RUL of PEMFC, output the predicted RUL of the reactor;
Otherwise, continue to predict the voltage value of the PEMFC.

Step 9: The uncertainty expression of RUL is realized through repeated testing to reduce the
contingency of prediction and improve the generalization ability of the model.

4. Experiment and discussion

4.1. RUL

FCLAB provides limited experimental data on fuel cell life, so this paper chooses 3.22V voltage
as the failure threshold of the reactor, that is, 95.9% of the initial total voltage, and the failure time of
the reactor is 808h. In addition, this paper chooses to set the prediction starting point as 550h, training
data as [0,550h], test data as [551,1154], and the corresponding RUL time as 258h.

During the experiment, the training data is first put into the MK-RVM for training, and then the
RMSE of voltage prediction is used as the objective function of Bayesian optimization, and the weight
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coefficient of the kernel function is self-optimized by the Bayesian optimization algorithm. When the
optimal solution is close and tends to be stable, the optimal weight coefficient of the kernel function
is obtained. In the RUL prediction stage, the optimal kernel function weight coefficient is substituted
into the prediction model. The uncertainty expression of the predicted result can better guide the
RUL prediction of the reactor than the single estimated result. To avoid the contingency of the
prediction results of MK-RVM, the confidence of the prediction results can be verified by repeated
prediction of the model many times, and the confidence interval with a 95% significance level is
added to the parameter estimation process and prediction process. The prediction results are shown

in Figure 6.
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Figure 6. RUL prediction results.

Adding the voltage recovery model of reactor start-stop can effectively improve the accuracy of
RUL prediction and help capture the trend of reactor voltage decay. The subsequent experimental
analysis only considers the prediction results under the addition of the recovery model.

4.2. Prediction result analysis

To evaluate the reliability and validity of RUL prediction results, this paper selected Mean
Square Error (MAE), RMSE, and Relative Accuracy (RA) as a model performance evaluation index,
MAE and RMSE mainly reflect the overall deviation between the predicted value and the true value,
RA is the relative prediction accuracy of RUL.

MAE = %Z| x(i) = x(i) | (13)
i=1

RA=(1-

[RUL=RUL\ 1 009 (1.1)
RUL

Among them, x(i) is the actual voltage value of the reactor, the predicted voltage value of the

pile, RUL is the actual remaining using life of the pile, and RUL is the predicted remaining service
life of the reactor.

The prediction results based on the voltage recovery model and MK-RVM are shown in Table 2.
When the prediction starting point is set to 550h, the predicted and actual RUL values are 270h and
258h, respectively. The MK-RVM algorithm after Bayesian optimization greatly shortens the running
time and is conducive to the fast prediction of PEMFC in long-term operation. The MK-RVM
algorithm adding the voltage recovery model greatly improves the prediction accuracy and is
conducive to the accurate prediction of PEMFC in long-term operation.
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Table 2. Prediction outcome evaluation.

Algorithm MAE RMSE RA Confidence interval
MK-RVM 0.0198 0.0237 72.31% 325h
Bayesian optimization MK-RVM 0.0114 0.0156 84.79% 148 h

Voltage recovery model

0.0048 0.0069 95.359 56 h
Bayesian optimization MK-RVM &

4.3. Discuss

It is difficult to accurately predict the RUL of PEMFC, which is affected by many environmental
factors in actual operation. Through EMD denoising, the overall attenuation trend of the voltage can
be restored to a large extent. However, due to the uncertainty fluctuation of the output voltage, it is
necessary to train the training set several times during the training of MK-RVM to improve the
prediction accuracy of RUL. By using the Bayesian optimization algorithm, the RMSE of MK-RVM is
taken as the objective function, which can realize the parameter self-optimization of the weight
coefficient of kernel function, and obtain higher prediction accuracy and faster computing efficiency.

According to the experimental data in Table 2, RMSE, RA, and confidence interval based on
voltage recovery model and Bayesian optimization MK-RVM are far superior to the other two algorithms,
which are more suitable for the long-term RUL prediction of PEMFC and have better generalization
ability.

5. Conclusion

In this paper, according to the PEMFC data set provided by FCLAB, a prediction method based
on the voltage recovery model and Bayesian optimization MK-RVM is proposed to predict the RUL
of PEMEC. In the whole prediction framework, EMD de-noising of the training data is firstly carried
out, then MK-RVM is used for model training, and then the Bayesian optimization algorithm is
adopted to realize parameter self-optimization of the weight coefficient of the kernel function, and
then the optimal weight coefficient of the kernel function is updated to the prediction model, and
finally, the voltage recovery model is added to the prediction model. The prediction accuracy of the
RUL of PEMEFC is greatly improved. This method can not only realize the long-term prediction of the
RUL of PEMFC but also realize the accurate prediction, which has great practical value.

6. Patents

This work was supported in part by the National Natural Science Foundation of China under
Grant 62204019.
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