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Equations with Nonlinear Noise†
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Department of Mathematics, School of Science, Hohai University, Nanjing, Jiangsu 210098, China

Abstract: At present paper, we aim to study the long-time behavior of a stochastic semi-
linear degenerate parabolic equation on bounded or unbounded domain and driven by a non-
linear noise and defined. Since the theory of pathwise random dynamical systems can not be
applied directly to the equation with nonlinear noise, first, we establish the existence of weak
pullback mean random attractors for the equation by applying the theory of mean-square ran-
dom dynamical systems; then, we prove the existence of (pathwise) pullback random attractors
for the Wong-Zakai approximate system of the equation. In addition, we establish the upper
semicontinuity of pullback random attractors for the Wong-Zakai approximate system of the
equation under consideration driven by a linear multiplicative noise.
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1 Introduction

We consider the following stochastic semi-linear degenerate parabolic equation:





∂u

∂t
− div(σ(x)∇u) + λu+ f(x, u) = g(t, x) + h(t, x, u)

dW

dt
, t > τ,

u(τ, x) = uτ (x), τ ∈ R,

u(t, x)|∂O = 0, t > τ,

(1.1)

whereO ⊆ R
N (N ≥ 2) is an arbitrary (bounded or unbounded) domain, λ is positive constants,

W is a two-sided Hilbert space valued cylindrical Wiener process or a two-side real-valued
Wiener process, the drift term f and diffusion term h are nonlinear functions with respect to
u, the given function g(t, x) ∈ L2

loc(R, L
2(O)). In addition, the variable nonnegative coefficient
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σ(x) is allowed to have at most a finite number of (essential) zeros at some points, which is
understood the degeneracy of (1.1). As in [3, 8], we assume that the nonnegative function
σ(x) : O → R

+ ∪ {0} satisfies the following hypotheses:

(Hα) σ ∈ L1
loc(O) and for some α ∈ (0, 1), lim inf

x→z
|x− z|−ασ(x) > 0 for every z ∈ O, when the

domain O is bounded;

(Hα,β) σ satisfies condition (Hα) and lim inf
|x|→∞

|x|−βσ(x) > 0 for some β > 2, when the domain

O is unbounded.

The conditions (Hα) and (Hα,β) indicates that the diffusion coefficient σ(x) is extremely
irregular.

One of the most important things in studying evolution partial differential equations is
to investigate the long-time behavior of solutions of the equations. In this process, attractors
are the ideal objects. At present, abundant results, both in abstract context and concrete
models, have been established for the deterministic infinite-dimensional dynamical systems,
see, e.g. monographs [2, 14, 25] and papers [3, 4, 11]. However, when one considers the
random influences on the systems under investigation, which are always presented as stochastic
partial differential equations, and tries to establish the existence of attractors for them, the
theory on deterministic infinite-dimensional system can not be applied directly. On the one
hand, the stochastic dynamical systems are non-autonomous, and one can not obtain uniform
(w.r.t stochastic time symbol) absorbing set as the deterministic case as in e.g. [14]; on the
other hand, owing to the influences of stochastic driving system, one can not obtain the fixed
invariant set for stochastic dynamical system in general.

In order to overcome these drawbacks, Flandoli etc. in [9, 10] introduce the theory of
pathwise random dynamical systems and (pathwise) random attractors for the autonomous
stochastic equations, in which the random attractor is a family of compact sets depending on
random parameters and has some invariant property under the action of the random dynamical
system. Recent theory in [12, 27] are related to non-autonomous pathwise random dynamical
systems and pullback random attractors for non-autonomous stochastic equations, where the
pullback random attractor is a family of compact sets depending on both random parameters
and deterministic time symbols. Up to now, there are many results on the existence and
uniqueness of random attractor, one can refer to [16, 20, 36, 37] for the autonomous stochastic
equations and [22, 28, 30, 37] for the non-autonomous stochastic equations. In addition, for the
result about random attractors for equation (1.1) with linear noise, see, e.g. [5, 13, 16, 36, 37].

However, when one investigates the dynamics of stochastic evolution equations driven by
nonlinear noise, the existence of random attractors can not be established directly, since the
serious challenge is that the existence of random dynamical system is unknown in general for
these kinds of systems. As far as it is known, up to now there are two ways to over come
this difficulty in some sense. One method is to investigate the dynamic behavior of the Wong-
Zaki approximate system corresponding to original equation. For example, Lu and Wang in
[21] get the existence of pullback random attractor for the Wong-Zakai approximate system
of a stochastic reaction-diffusion equation with the nonlinear noise in some bounded spatial
domain, and later, Wang et al. in [34] extend the result of [21] to unbounded domains by
using the method of tail estimates. The another method is established by Kloeden et al. in
[18] and Wang in [31], that is, they extend the concept of pathwise random attractor to mean

2

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 June 2023                   doi:10.20944/preprints202306.1433.v1

https://doi.org/10.20944/preprints202306.1433.v1


context and establish the corresponding existence theory of mean random attractor for random
dynamical system. There are some relevant works, see e.g. [32, 33].

The first purpose of this article is to establish the existence of weak pullback mean random
attractors for Eq. (1.1) by using the theory of [31]. Toward this end, we first need to get
the existence and uniqueness of solution for Eq. (1.1). Unlike reference [31], the existence
of solution for Eq. (1.1) can not be obtained directly by using the abstract result (Theorem
4.2.4) in [24] since the drift term f(x, u) is allowed to be polynomial growth of arbitrary order
with respect to u in this article. We aim to prove the existence and uniqueness of the solution
for Eq. (1.1) by using the approach of [32], in which the author prove existence of solutions
for a stochastic reaction-diffusion equations involving drift term f(x, t, u) with polynomial
growth of any order and nonlinear diffusion term σ(t, u), and the embedding Hk(RN ) →֒
Lp(RN ) for 2 ≤ p ≤ 2N

N−2k (N ≥ 2k) plays an essential role in this proof. Hence, we show
the embedding result of the corresponding Sobolev space with weight σ(x) in Section 2. In
Section 3, we show the solution generate a mean random dynamical system and establish
the existence of weak pullback random attractors for Eq. (1.1). We shall remark that since
the mean random dynamical system is defined on the Banach space Lp(Ω, X) consisting of
all Bochner integrable functions and corresponding probability space (Ω,F , P ) lacks some
topological structure, we only get the weakly compact property and weakly attracting property
of mean random attractors for (1.1) in L2(Ω, X).

The second goal is to investigate dynamic behavior of the Wong-Zakai approximate system
for Eq. (1.1). We prove the existence of pullback random attractor for the Wong-Zakai
approximate system for equation (1.1) with nonlinear diffusion term h(t, x, u), which is allowed
to be polynomial growth, and we also show that the pullback random attractor of Wong-Zaki
approximation for Eq. (1.1) converges to the attractor of Eq. (1.1) as the size of approximation
tends to zero, when h(t, x, u) is equal to u. This work will be done in section 4. We remark
that when we prove the pullback asymptotic compactness, we use method of weighted sobolev
spaces to overcome the non-compactness of usual Sobolev embeddings in the case of unbounded
domain, which is different from that of [21].

In what follows of this article, the constant C represents some positive constant and may
change from line to line.

2 Preliminaries

2.1 Functional setting

In this subsection, we introduce some function spaces and present some embedding results,
which will be used in our proof.

Throughout this article, we let (X, ‖ · ‖X) be a separable Banach space and Lp(Ω,F ;X)
(1 < p <∞) be the Banach space consisting of all strongly measurable and Bochner integrable
functions Ψ from Ω to X such that

‖Ψ‖Lp(Ω,F ;X) = (

∫

Ω
‖Ψ‖pXdp)

1

p < +∞. (2.1)

Denote by (Ω,F , {Ft}t∈R,P) the complete filtered probability space satisfying the usual condi-
tion, i.e., {Ft}t∈R is an increasing right continuous family of sub-σ-algebras of F that contains
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all P-null sets. We use Lp(Ω,Ft;X) to represent the subspace of Lp(Ω,F ;X), which consists
of all functions belonging to Lp(Ω,F ;X) and being strongly Ft-measurable. For simplicity of
notation, we denote by ‖ · ‖ the norm in L2(O) and L2(Ω,Ft;L

2(O)).
To investigate Eq. (1.1), we introduce the weighted Sobolev space D1,2

0 (O, σ) defined by
the completion of C∞

0 (O) with norm ‖ · ‖
D

1,2
0

(O,σ)
,

‖u‖
D

1,2
0

(O,σ)
:= (

∫

O
σ(x)|∇u|2dx)

1

2 . (2.2)

And one can easily check that D1,2
0 (O, σ) is a Hilbert space with the inner product (·, ·)σ

(u, v)σ :=

∫

O
σ(x)∇u∇vdx. (2.3)

If condition (Hα) (or (Hα,β) on unbounded domain) holds, the operator A = −div(σ(x)∇u)
is positive and self-adjoint with domain defined by

D(A) := {u ∈ D
1,2
0 (O, σ) : Au ∈ L2(O)}.

Furthermore, one can easily observe that if σ satisfies (Hα) and (Hα,β), then there exists a
finite set A = {a1, a2, · · · , ak} ⊆ Ō and δ, r > 0 such that the balls Bi = Br(ai), i = 1, 2, · · · , k,
are disjoint and

σ(x) ≥ δ|x− ai|
α for x ∈ Bi ∩ Ω, i = 1, 2, · · · , k, (2.4)

σ(x) ≥ δ for x ∈ Ω\ ∪i Bi, (2.5)

and moreover, if Ω is unbounded, then there exists R > 0 such that

σ(x) ≥ δ|x|β for x ∈ Ω, |x| > R. (2.6)

The following spaces will also be needed:

• Dp(A) := {u ∈ D
1,2
0 (O, σ) : Au ∈ Lp(O)};

• D−1
0 (O, σ):= the dual space of D1,2

0 (O, σ);

• Hm
0 (O, σ):= the closure of C∞

0 (O) with norm ‖ · ‖Hm(O,σ), defined by

‖u‖2Hm(O,σ) :=
∑

1≤|κ|≤m

∫

O
σ(x)|Dκu|2dx+

∫

O
|u|2dx, m ∈ N

+,

where κ = (κ1, κ2, · · · , κN ) is a multi-index of order |κ| = κ1 + κ2 + · · ·+ κN .

Lemma 2.1 ([19]) There exists a constant c1 such that the following inequality holds true for
all u ∈ C∞

0 (RN ),

(∫

RN

|u|2
∗

αdx
) 1

2
∗

α ≤ c1

( ∑

|κ|=m

∫

RN

|x|α|Dκu|2dx
) 1

2

,

where 2∗α = 2N
N+2α−2m with N − 2m ≥ 0.
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Lemma 2.2 Let σ(x) satisfy assumption (Hα) (or (Hα,β) on unbounded domain). Then there
exists a constant c2 such that

(∫

O
|u|2

∗

αdx
) 1

2
∗

α ≤ c2

( ∑

|κ|=m

∫

O
σ(x)|Dκu|2dx

) 1

2

, for every u ∈ C∞
0 (O).

Proof. By using Lemma 2.1, the Rellich-Kondrachov Theorem, and the General Sobolev
inequality, we can get the conclusion of Lemma 2.2 in the similar way as in the proof of
Proposition 2.5 in [8]. We omit the process here. 2

The following embedding results play an important role in our proof in Section 3 and
Section 4.

Lemma 2.3 ([8]) Let σ(x) satisfies assumption (Hα) (or (Hα,β) on unbounded domain). Then

it holds the compact embedding D1,2
0 (O, σ) →֒→֒ L2(O).

Lemma 2.4 Let σ(x) satisfies assumption (Hα) (or (Hα,β) on unbounded domain). Then it
holds the continuous embedding

Hm
0 (O, σ) →֒ Lp(O), for 2 ≤ p ≤ 2∗α.

Proof. Note that 2∗α > 2 for α ∈ (0, 1). Then we can get by the interpolation theorem and
Lemma 2.2 that

‖u‖Lp(O) ≤ C‖u‖θ‖u‖1−θ

L2
∗

α (O)
≤ C‖u‖Hm(O,σ), for any u ∈ Hm

0 (O, σ),

where θ = 2(2∗α−p)
p(2∗α−2) . The proof is completed. 2

2.2 Theory of Random Attractors

In this subsection, we introduce some definitions and known results about weak pullback
mean random attractors and pullback random attractors.

Definition 2.1 A family of mappings Φ = {Φ(t, τ) : t ∈ R
+, τ ∈ R} is called mean random

dynamical system on Lp(Ω,F ;X) over (Ω,F , {Ft}t∈R,P) if the following conditions hold for
all τ ∈ R and t, s ∈ R

+:

(i) Φ(t, τ) maps Lp(Ω,Fτ , X) to Lp(Ω,Ft+τ , X);

(ii) Φ(0, τ) is the identity operator on Lp(Ω,Fτ , X);

(iii) Φ(t+ s, τ) = Φ(t, τ + s) ◦ Φ(s, τ).

Let D = {D(τ) ⊆ Lp(Ω,Fτ ;X) : τ ∈ R} be a family of nonempty bounded sets and D0 be a
collection of such families satisfying some conditions. The collection D0 is said to be inclusion-
closed if D = {D(τ) : τ ∈ R} ∈ D0, then every family O = {O(τ) : O(τ) ⊆ D(τ), τ ∈ R} ∈ D0.

5
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Definition 2.2 A family of sets K = {K(τ) : τ ∈ R} ∈ D0 is called a D0-pullback absorbing
set for Φ on Lp(Ω,F ;X) over (Ω,F , {Ft}t∈R,P) if for every τ ∈ R and D ∈ D0, there exists
T = T (τ,D) > 0 such that

Φ(t, τ − t,D(τ − t)) ⊆ K(τ), ∀t ≥ T.

Moreover, if K(τ) is a weakly compact nonempty subset of Lp(Ω,Fτ ;X) for each τ ∈ R, then
K = {K(τ) : τ ∈ R} is said to be a weakly compact D0-pullback absorbing set for Φ.

Definition 2.3 A family of sets K = {K(τ) : τ ∈ R} ∈ D0 is said to be a D0-pullback
weakly attracting set of Φ on Lp(Ω,F ;X) over (Ω,F , {Ft}t∈R,P) if for each τ ∈ R,D ∈ D0

and every weak neighborhood Nw(K(τ)) of K(τ) in Lp(Ω,Fτ ;X), there exists some T =
T (τ,D,Nw(K(τ))) > 0 such that

Φ(t, τ − t,D(τ − t)) ⊆ Nw(K(τ)), ∀t ≥ T.

Definition 2.4 We say a family A = {A(τ) : τ ∈ R} ∈ D0 is a weak D0-pullback mean
random attractor for Φ on Lp(Ω,F ;X) over (Ω,F , {Ft}t∈R,P) if it satisfies the following
properties:

• Weak compactness: for any τ ∈ R, A(τ) is a weakly compact subset of Lp(Ω,Fτ ;X).

• Pullback weak attraction: for any τ ∈ R, A(τ) is a D0-pullback weakly attracting set of
Φ.

• Minimality: for any τ ∈ R, the family A is the minimal element of D0 in the sense that
if B = {B(τ) : τ ∈ R} ∈ D0 is another weakly compact D0-pullback weakly attracting
set of Φ, then A(τ) ⊆ B(τ).

The following result about the existence and uniqueness of weak D0-pullback mean random
attractors for Φ on Lp(Ω,F ;X) over (Ω,F , {Ft}t∈R,P) comes from [31].

Lemma 2.5 Suppose that D0 is an inclusion-closed collection of some families of nonempty
bounded subsets of Lp(Ω,F ;X) and Φ is a weak mean random dynamical system on Lp(Ω,F ;X)
over (Ω,F , {Ft}t∈R,P). If Φ possesses a weakly compact D0-pullback absorbing set K ∈ D0 on
Lp(Ω,F ;X) over (Ω,F , {Ft}t∈R,P), then Φ possesses a unique weak D0-pullback mean random
attractor A ∈ D0 on Lp(Ω,F ;X) over (Ω,F , {Ft}t∈R,P), which is given by

A(τ) = Ωw(K, τ) =
⋂

r≥0

⋃

t≥r

Φ(t, τ − t,K(τ − t))
w

, ∀τ ∈ R,

where the closure is taken with respect to the weak topology of Lp(Ω,Fτ ;X).

Denote by D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} a family of nonempty bounded subsets of X and
D1 a collection of such families satisfying some conditions. Let (Ω,F ,P, {θt}t∈R) be a metric
dynamical system. We now introduce the pathwise random dynamical systerm as in [6, 9, 27].

Definition 2.5 A mapping Ψ : R+ × R × Ω × X 7→ X is said to be a continuous pathwise
random dynamical system (or a continuous cocycle) onX over (Ω,F , P, {θt}t∈R) if the following
conditions hold for all τ ∈ R, ω ∈ Ω and t, s ∈ R

+,
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(i) Ψ(·, τ, ·, ·) : R+ × Ω×X 7→ X is (B(R+)×F × B(X),B(X))-measurable;

(ii) Ψ(0, τ, ω, ·) is the identity operator on X;

(iii) Ψ(t+ s, τ, ω, ·) = Ψ(t, τ + s, θsω, ·) ◦Ψ(s, τ, , ω, ·);

(iv) Ψ(t, τ, ω, ·) : X 7→ X is continuous.

Definition 2.6 A family K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1 is said to be a D1-pullback
absorbing set for a cocycle Ψ if for every τ ∈ R, ω ∈ Ω and D ∈ D1, there exists some
T = T (τ,D, ω) > 0 such that

Ψ(t, τ − t, θ−tω,D(τ − t, θ−tω)) ⊆ K(τ, ω) for all t ≥ T.

Moreover, If for every τ ∈ R and ω ∈ Ω,K(τ, ω) is a closed nonempty subset of X and is
measurable in ω with respect to F , then K is said to be a closed measurable D1-pullback
absorbing set for Ψ.

Definition 2.7 We say that cocycle Ψ is D1-pullback asymptotically compact in X if for
every τ ∈ R and ω ∈ Ω, the sequence

{Ψ(tn, τ − tn, θ−tnω, xn)}
∞
n=1 has a convergent subsequence in X,

as tn → +∞, and xn ∈ B(τ − tn, θ−tnω) with {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1.

Definition 2.8 A family A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1 is said to be a D1-pullback
random attractor for Ψ if the following properties hold for all τ ∈ R and ω ∈ Ω

(i) Measurability and Compactness: A is measurable in ω with respect to F and A(τ, ω) is
compact in X;

(ii) Invariance: A is invariant in the sense that Ψ(t, τ, ω,A(τ, ω)) = A(τ + t, θtω), ∀t ≥ 0;

(iii) Pullback attracting: A attracts D1 in the sense that for any D ∈ D1,

lim
t→+∞

distX(Ψ(t, τ − t, θ−tω,D(τ − t, θ−tω)),A(τ, ω)) = 0,

where distX is the Hausdorff semi-distance in X.

3 Mean Random Attractors for Stochastic Semi-

linear Degenerate Parabolic Equation

Let U be a separable Hilbert space and L2(U,L
2(O)) be the Hilbert space consisting of

all Hilbert-Schmidt operators from U to L2(O) with norm ‖ · ‖L2(U,L2(O)). We consider the

7
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following non-autonomous stochastic semi-linear degenerate parabolic equation defined on any
bounded or unbounded domain O ⊆ R

N :




∂u

∂t
− div(σ(x)∇u) + λu+ f(x, u) = g(t, x) + h(t, u)

dW

dt
, t > τ,

u(τ, x) = uτ (x), τ ∈ R,

u(t, x)|∂O = 0, t > τ,

(3.1)

where W is a two-sided U -valued cylindrical Wiener process defined on the complete filtered
probability space (Ω,F , {Ft}t∈R,P), while σ(x), λ and g(t, x) are the same as described in
Section 1. In this section, the stochastic term in Eq. (3.1) is understood in the sense of Itô
integration. Since the Itô integral is martingale, it is convenient for us to take expectation and
get the existence of weak pullback mean random attractor.

Let O be a bounded domain (or an unbounded domain) and let the nonnegative function
σ(x) satisfy (Hα) (or (Hα,β)). We assume that f : O×R 7→ R is a smooth nonlinear function
such that f(x, 0) = 0 and for all x ∈ O and u ∈ R,

∂f

∂u
(x, u) ≥ −φ1(x), (3.2)

f(x, u)u ≥ a1|u|
p − φ2(x), (3.3)

|f(x, u)| ≤ a2|u|
p−1 + φ3(x), (3.4)

where a1, a2, a3, p > 2 are positive constants, and φ1(x) ∈ L∞(O) with φ1(x) ≥ 0, φ2(x) ∈
L1(O), φ3(x) ∈ Lp1(O) with 1

p
+ 1

p1
= 1. We also assume f(x, u) is locally Lipschitz continuous

in u, i.e., for each bounded interval I ⊆ R, there is aI > 0 such that

|f(x, u1)− f(x, u2)| ≤ aI |u1 − u2|, ∀x ∈ O, u1, u2 ∈ I. (3.5)

Assume h : R× Ω× L2(O) 7→ L2(U,L
2(O)) satisfies the following conditions:

(A1) For any t ∈ R, ω ∈ Ω and u ∈ L2(O), there are positive constants a3 <
1
2λ and L such

that

‖h(t, ω, u)‖2L2(U,L2(O)) ≤ a3‖u‖
2 + L. (3.6)

(A2) For each r > 0, there is a positive constant ar depending on r such that for every t ∈ R,
ω ∈ Ω, and u, v ∈ L2(O) with ‖u‖ ≤ r and ‖v‖ ≤ r,

‖h(t, ω, u)− h(t, ω, v)‖2L2(U,L2(O)) ≤ ar‖u− v‖2. (3.7)

Moreover, we suppose that for each given u ∈ L2(O), σ(·, ·, u) : R × Ω 7→ L2(U,L
2(O)) is

progressively measurable.
We now show the solution of Eq. (3.1) can define a mean random dynamical system. The

definition of solution for Eq. (3.1) is given as follows in this case.

Definition 3.1 Let uτ ∈ L2(Ω,Fτ ;L
2(O)) and T > τ . A L2(O)-valued Ft-adapted stochastic

process u is called a solution of (3.1) on [τ, T ] with initial data uτ if

u ∈ L2(Ω, C([τ, T ];L2(O))) ∩ L2(Ω× [τ, T ];D1,2
0 (O, σ)) ∩ Lp(Ω× [τ, T ];Lp(O))
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and P-a.s. satisfies

(u(t),ζ) +

∫ t

τ

(σ(x)∇u,∇ζ)ds+ λ

∫ t

τ

(u, ζ)ds+

∫ t

τ

∫

O
f(u)ζdxds =

∫ t

τ

(g(s), ζ)ds

+

∫ t

τ

(h(s, u)dW (s), ζ), ∀t ∈ [τ, T ], ζ ∈ D
1,2
0 (O, σ) ∩ Lp(O).

Using Lemma 2.3, Lemma 2.4, we can get the following result in a similar way that have
been used in [32].

Lemma 3.1 Let T > τ and uτ ∈ L2(Ω,Fτ ;L
2(O)). If conditions (3.2)-(3.7) hold, then there

exists a unique solution to Eq. (3.1) in the sense of Definition 3.1. Besides,

E( sup
t∈[τ,T ]

‖u(t)‖2) <∞. (3.8)

Note that u ∈ L2(Ω, C([τ, T ];L2(O))) for all T > τ , which implies that u ∈ C([τ,∞);L2(Ω,
L2(O))). Thus we can define the mean random dynamical system Φ for Eq. (3.1) on
L2(Ω,F ;L2(O)) by

Φ(t, τ, uτ ) = u(t+ τ, τ, uτ ), t > 0, τ ∈ R,

where uτ ∈ L2(Ω,Fτ ;L
2(O)) and u is the solution of system (3.1) with initial data uτ .

Let D = {D(τ) ⊆ L2(Ω,Fτ ;L
2(O)) : τ ∈ R} be a family of nonempty bounded sets. A

family D is said to be tempered if for any ν > 0, there is

lim
τ→−∞

eντ sup
u∈D(τ)

‖u‖2 = 0. (3.9)

We denote by D0 the collection of all tempered families of nonempty bounded subsets of
L2(Ω,Fτ ;L

2(O)), that is,

D0 = {D = {D(τ) ⊆ Lp(Ω,Fτ ;L
2(O)) : D(τ) 6= ∅, bounded, τ ∈ R} : D satisfies (3.9)}.

From now on, we assume:
∫ τ

−∞
eλs‖g(s, ·)‖2ds < +∞, ∀τ ∈ R. (3.10)

To get the existence of tempered random attractors, we further assume:

lim
τ→−∞

eντ
∫ 0

−∞
eλs‖g(s+ τ, ·)‖2ds = 0, ∀ν > 0. (3.11)

To investigate the existence of weak D0-pullback mean random attractors for Eq. (3.1), we
need the uniform estimate of solutions, and by the following result, we can construct a weakly
compact D0-pullback absorbing set for Φ.

Lemma 3.2 Suppose (3.2)-(3.7) and (3.10) hold. Then for every τ ∈ R and D ∈ D0, there
exists some T = T (τ,D) > 0 such that for all t ≥ T and uτ−t ∈ D(τ − t), the solution u to
Eq. (3.1) satisfies

E(‖u(τ, τ − t, uτ−t)‖
2) ≤M +M

∫ 0

−∞
eλs‖g(s+ τ)‖2ds, (3.12)

where M is a positive constant independent of τ and D.

9
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Proof. By the Itô formula, we obtain from (3.1) that for each r ≥ τ − t,

‖u(r, τ − t, uτ−t)‖
2 + 2

∫ r

τ−t

‖u(s, τ − t, uτ−t)‖
2
D

1,2
0

(O,σ)
ds+ 2λ

∫ r

τ−t

‖u(s, τ − t, uτ−t)‖
2ds

+ 2

∫ r

τ−t

∫

O
f(x, u(s, τ − t, uτ−t))u(s, τ − t, uτ−t)dxds

=‖uτ−t‖
2 + 2

∫ r

τ−t

(g(s), u(s, τ − t, uτ−t))ds+

∫ r

τ−t

‖h(s, u(s, τ − t, uτ−t))‖
2
L2(U,L2(O))ds

+ 2

∫ r

τ−t

(u(s, τ − t, uτ−t), h(s, u(s, τ − t, uτ−t))dW (s)), (3.13)

Taking the expectation on both sides of (3.13), we get, for almost all r ≥ τ − t, that

E(‖u(r, τ − t, uτ−t)‖
2) + 2

∫ r

τ−t

E(‖u(s, τ − t, uτ−t)‖
2
D

1,2
0

(O,σ)
)ds

+ 2λ

∫ r

τ−t

E(‖u(s, τ − t, uτ−t)‖
2)ds+ 2

∫ r

τ−t

E
(∫

O
f(x, u(s, τ − t, uτ−t))u(s, τ − t, uτ−t)dx

)
ds

=E(‖uτ−t‖
2) + 2

∫ r

τ−t

E(g(s), u(s, τ − t, uτ−t))ds

+

∫ r

τ−t

E(‖h(s, u(s, τ − t, uτ−t))‖
2
L2(U,L2(O)))ds. (3.14)

Thus, for almost all r ≥ τ − t, we have

d

dr
E(‖u(r, τ − t, uτ−t)‖

2) + 2E(‖u(r, τ − t, uτ−t)‖
2
D

1,2
0

(O,σ)
)

+2λE(‖u(r, τ − t, uτ−t)‖
2) + 2E

(∫

O
f(x, u(r, τ − t, uτ−t))u(r, τ − t, uτ−t)dx

)

= 2E(g(r), u(r, τ − t, uτ−t))

+E(‖h(r, u(r, τ − t, uτ−t))‖
2
L2(U,L2(O))). (3.15)

Now, we estimate each item on the right-hand side of (3.15). By (3.3) we have that

∫

O
f(u(r, τ − t, uτ−t))u(r, τ − t, uτ−t)dx

≥a1

∫

O
|u(r, τ − t, uτ−t)|

pdx− ‖φ2‖L1(O), (3.16)

which implies

2E
(∫

O
f(u(r, τ − t, uτ−t))u(r, τ − t, uτ−t)dx

)

≥2a1E(‖u(r, τ − t, uτ−t)‖
p

Lp(O))− 2‖φ2‖L1(O). (3.17)

Note that

(g(r), u(r, τ − t, uτ−t))

10
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≤
λ

4
‖u(r, τ − t, uτ−t)‖

2 +
1

λ
‖g(r)‖2, (3.18)

which implies that

2E(g(r), u(r, τ − t, uτ−t))

≤
λ

2
E(‖u(r, τ − t, uτ−t)‖

2) +
2

λ
‖g(r)‖2. (3.19)

We deduce from (3.15)-(3.19) and (3.6) that, for almost all r ≥ τ − t,

d

dr
E(‖u(r, τ − t, uτ−t)‖

2) + λE(‖u(r, τ − t, uτ−t)‖
2)

≤
2

λ
‖g(r)‖2 + 2‖φ2‖L1(O) + L. (3.20)

Applying Gronwall’s inequality to (3.20), we get

E(‖u(r, τ − t, uτ−t)‖
2)

≤eλ(τ−t−r)E(‖uτ−t)‖
2) +

1

λ
(2‖φ2‖L1(O) + L) + e−λr

∫ r

τ−t

eλs
2

λ
‖g(s)‖2ds. (3.21)

Then we get that

E(‖u(τ, τ − t, uτ−t)‖
2)

≤e−λtE(‖uτ−t‖
2) +

1

λ
(2‖φ2‖L1(O) + L) + e−λτ 2

λ

∫ τ

−∞
eλs‖g(s)‖2ds. (3.22)

Since uτ−t ∈ D(τ − t) and D = {D(τ) : τ ∈ R} ∈ D0, we get

e−λτeλ(τ−t)E(‖uτ−t‖
2) → 0 as t→ +∞.

Therefore, there exists T = T (τ,D) > 0 such that for all t ≥ T ,

e−λtE(‖uτ−t‖
2) ≤ 1. (3.23)

By (3.22) and (3.23), we get, for all t ≥ T , there exists some positive constant M independent
of τ and D such that

E(‖u(τ, τ − t, uτ−t)‖
2) ≤M +M

∫ 0

−∞
eλs‖g(s+ τ)‖2ds.

This completes the proof. 2

Corollary 3.1 Let (3.2)-(3.7) and (3.10)-(3.11) hold. Then the mean random dynamical
system Φ for Eq. (3.1) possesses a weakly compact D0-pullback absorbing set K0 = {K0(τ) :
τ ∈ R} ∈ D0, which is given by,

K0(τ) = {u ∈ L2(Ω,Fτ ;L
2(O)) : E(‖u‖2) ≤ R0(τ)}, (3.24)

where

R0(τ) :=M +M

∫ 0

−∞
eλs‖g(s+ τ)‖2ds (3.25)

with M being the same constant as in Lemma 3.2.

11

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 June 2023                   doi:10.20944/preprints202306.1433.v1

https://doi.org/10.20944/preprints202306.1433.v1


Proof. We know that for each τ ∈ R,K0(τ) in (3.24) is a bounded and closed convex
subset of L2(Ω,Fτ ;L

2(O)), and therefore it is weakly compact in L2(Ω,Fτ ;L
2(O)). Lemma

3.2 indicates that for every τ ∈ R and D ∈ D0, there exists T = T (τ,D) > 0 such that

Φ(t, τ − t,D(τ − t)) ⊆ K0(τ), ∀t ≥ T. (3.26)

In addition, from (3.11) and (3.25), we get for any ν > 0

lim
τ→−∞

eντ sup
u∈K0(τ)

‖u‖ = 0,

that is K0 ∈ D0. Hence, K0 is a weakly compact D0-pullback absorbing set for Φ. 2

Theorem 3.1 Suppose (3.2)-(3.7) and (3.10)-(3.11) hold. Then the mean random dynamical
system Φ for problem (3.1) possesses a unique weak D0-pullback mean random attractor Ā0 =
{Ā0(τ) : τ ∈ R} ∈ D0 in L2(Ω,F ;L2(O)) over (Ω,F , {Ft}t∈R,P).

Proof. From Lemma 2.5 and Corollary 3.1, we can easily get the existence and uniqueness
of weak D0-pullback mean random attractor Ā0 ∈ D0 of Φ for Eq. (3.1). 2

4 Wong-ZaKai Approximations of Stochastic Semi-

linear Degenerate Parabolic Equation

In this section, we consider the following stochastic semi-linear degenerate parabolic equa-
tion





∂u

∂t
− div(σ(x)∇u) + λu+ f(x, u) = g(t, x) + h(t, x, u) ◦

dW

dt
, t > τ,

u(τ, x) = uτ (x), τ ∈ R,

u(x, t)|∂O = 0, t > τ.

(4.1)

Here W = ω(t) is a two-sided real-valued Wiener process on a probability space and the other
terms are the same as described in section 1. The symbol “ ◦ ” indicates that the stochastic
term in Eq. (4.1) is understood in the sense of Stratonovich’s integration.

We remark that, in this section, we consider the stochastic term of Eq. (4.1) in the sense of
Stratonovich’s integration because the Stratonovich’s interpretation is more appropriate than
Itô’s when we consider the pathwise dynamical behavior (fixed any ω ∈ Ω) of the Wong-Zakai
approximate system corresponding to the equation (see [35] for details).

4.1 Random dynamical systems for Wong-Zakai Approxima-

tions

In this subsection, we first define a continuous cocycle Ψ for Wong-Zakai approximate
system of Eq. (4.1), and then prove that there exists a unique pullback random attractor for
the cocycle Ψ.
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Let O be a bounded domain (or an unbounded domain) and let the nonnegative function
σ(x) satisfy (Hα) (or (Hα,β)). In what follows, We assume that f : O × R 7→ R is a smooth
nonlinear function such that for all x ∈ O and u ∈ R,

f(x, u)u ≥ α1|u|
p − β1(x), (4.2)

|f(x, u)| ≤ α2|u|
p−1 + β2(x), (4.3)

∂f(x, u)

∂u
≥ α3|u|

p−2 − β3(x), (4.4)

where p > 2, α1, α2, α3 are positive numbers, β1(x) ∈ L1(O), β2(x) ∈ Lp1(O) with 1
p1
+ 1

p
= 1,

β3(x) ∈ L∞(O). Let h be a continuous function and for all t, u ∈ R, x ∈ O, satisfy

|h(t, x, u)| ≤ ψ1(t, x)|u|
q−1 + ψ2(t, x), (4.5)

|
∂

∂u
h(t, x, u)| ≤ ψ3(t, x)|u|

q−2 + ψ4(t, x), (4.6)

where 2 ≤ q < p, ψ1 ∈ L
p

p−q

loc (R;L
p

p−q

loc (O)) and ψ2 ∈ L
p1
loc(R;L

p1(O)), and ψ3, ψ4 ∈ L∞(R;L∞(O)).
In the sequel, let (Ω,F ,P) be the classical Wiener probability space, where

Ω = C0(R,R) := {ω ∈ C(R,R) : ω(0) = 0} (4.7)

with the open compact topology. The Brownian motion has the formW (t, ω) = ω(t). Consider
the Wiener shift θt on the probability space (Ω,F , P ) defined by

θtω(·) = ω(t+ ·)− ω(t). (4.8)

Then from [1], we get that (Ω,F ,P, {θt}t∈R) is a metric dynamical system and there exists a
{θt}t∈R-invariant subset Ω̃ ⊆ Ω of full P measure such that for each ω ∈ Ω̃,

ω(t)

t
→ 0 as t → ±∞. (4.9)

For brevity, we identify the space Ω̃ with Ω. For any given δ 6= 0, define the random variable
Gδ by

Gδ(ω) =
ω(δ)

δ
, ∀ω ∈ Ω. (4.10)

We get from (4.8) and (4.10) that

Gδ(θtω) =
ω(t+ δ)− ω(t)

δ
and

∫ t

0
Gδ(θsω)ds =

∫ t+δ

t

ω(s)

δ
ds+

∫ 0

δ

ω(s)

δ
ds. (4.11)

By the continuity of ω and (4.11), the following result have been proved in [21].
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Lemma 4.1 Let τ ∈ R, T > 0, and ω ∈ Ω. Then for each ǫ > 0, there is a constant
δ′ = δ′(ǫ, τ, ω, T ) > 0 such that for every 0 < |δ| < δ′ and t ∈ [τ, τ + T ],

|

∫ t

0
Gδ(θsω)ds− ω(t)| < ǫ. (4.12)

Let’s consider the Wong-Zakai approximate system of Eq. (4.1):





∂u

∂t
+ (−div(σ(x)∇u)) + λu+ f(x, u) = g(t, x) + h(t, x, u)Gδ(θtω), t > τ,

u(τ, x) = uτ (x), τ ∈ R,

u(x, t)|∂O = 0, t > τ.

(4.13)

Notice that system (4.13) can be viewed as deterministic equation parameterized by ω ∈ Ω.
Let assumptions (4.2)-(4.6) hold, and then by the Galerkin method similar to [3], we can prove
that for any ω ∈ Ω, τ ∈ R and uτ ∈ L2(O), Eq. (4.13) possesses a unique solution

u(·, τ, ω, uτ ) ∈ C([τ,∞);L2(O)) ∩ L2
loc((0,∞);D1,2

0 (O, σ)) ∩ Lp
loc((0,∞);Lp(O)). (4.14)

In addition, the solution u(·, τ, ω, uτ ) is continuous in uτ ∈ L2(O) and is
(
F ,B(L2(O))

)
-

measurable in ω ∈ Ω. Hence, we can define a continuous cocycle Ψ : R+ × R× Ω× L2(O) 7→
L2(O) by

Ψ(t, τ, ω, uτ ) = u(t+ τ, τ, θ−τω, uτ ), ∀ τ ∈ R, t > 0, ω ∈ Ω, uτ ∈ L2(O). (4.15)

Let D1 = {D1(τ, ω) : τ ∈ R, ω ∈ Ω} be a family of bounded nonempty subsets of L2(O). A
family D1 is said to be tempered if for any ν > 0, τ ∈ R and ω ∈ Ω, there is

lim
t→−∞

eνt sup
u∈D(τ+t,θtω)

‖u‖ = 0.

We denote by D1 the class of all tempered families of nonempty bounded subsets of L2(O).
Now, we devote to prove existence of D1-pullback random attractors for the cocycle Ψ

corresponding to Eq. (4.13) in L2(O).

Lemma 4.2 Suppose (4.2)-(4.6) and (3.10)-(3.11) hold. Then the continuous cocycle Ψ of
problem (4.13) possesses a closed measurable D1-pullback absorbing set K1 = {K1(τ, ω) : τ ∈
R, ω ∈ Ω} ∈ D1, which is given by

K1(τ, ω) = {u ∈ L2(O) : ‖u‖2 ≤ R(τ, ω)}, (4.16)

where

R(τ, ω) =M1 +M1

∫ 0

−∞
eλs(‖g(s+ τ)‖2 + |Gδ(θsω)|

p

p−q + |Gδ(θsω)|
p1)ds (4.17)

with M1 is a positive constant independent of τ, ω and D1.
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Proof. We first prove that, for any given τ ∈ R and ω ∈ Ω, K1(τ, ω) given by (4.16) is a
pullback absorbing set for the cocycle Ψ. Taking inner product of Eq. (4.13) with u in L2(O),
we get

1

2

d

dt
‖u‖2 + ‖u‖2

D
1,2
0

(O,σ)
+ λ‖u‖2 +

∫

O
f(x, u)udx

=(g, u) + Gδ(θtω)

∫

O
h(t, x, u)udx. (4.18)

By (4.2) we obtain that
∫

O
f(x, u)udx ≥ α1

∫

O
|u|pdx− ‖β1‖L1(O). (4.19)

By (4.5) and Young’s inequality, we get

Gδ(θtω)

∫

O
h(t, x, u)udx

≤|Gδ(θtω)|

∫

O
(|ψ1(t, x)||u|

q + |ψ2(t, x)||u|)dx

≤
α1

2

∫

O
|u|pdx+ C

∫

O
|ψ1(t, x)Gδ(θtω)|

p

p−q dx+ C

∫

O
|ψ2(t, x)Gδ(θtω)|

p1dx

≤
α1

2

∫

O
|u|pdx+ C|Gδ(θtω)|

p

p−q ‖ψ1(t)‖
p

p−q

L
p

p−q
+ C|Gδ(θtω)|

p1‖ψ2(t)‖
p1
Lp1

≤
α1

2

∫

O
|u|pdx+ C|Gδ(θtω)|

p

p−q + C|Gδ(θtω)|
p1 . (4.20)

From Cauchy’s inequality, we have

(g(t, x), u) ≤
λ

2
‖u‖2 +

1

2λ
‖g‖2. (4.21)

Therefore, it follows easily from (4.18)-(4.21) that

d

ds
‖u‖2 + 2‖u‖2

D
1,2
0

(O,σ)
+ λ‖u‖2 + α1‖u‖

p

Lp(O)

≤2‖β1‖L1(O) +
1

λ
‖g‖2 + C|Gδ(θsω)|

p

p−q + C|Gδ(θsω)|
p1 . (4.22)

Multiplying (4.22) by eλs, replacing ω by θ−τω and then integrating with respect to s over
(τ − t, τ) with t ≥ 0, we get that

‖u(τ, τ − t, θ−τω, uτ−t)‖
2 + 2

∫ τ

τ−t

eλ(s−τ)‖u(s, τ − t, θ−τω, uτ−t)‖
2
D

1,2
0

(O,σ)
ds

+ α1

∫ τ

τ−t

eλ(s−τ)‖u‖pLpds

≤e−λt‖uτ−t‖
2 +

2‖β1‖L1(O)

λ
+

1

λ

∫ τ

τ−t

eλ(s−τ)‖g(s)‖2ds

+ C

∫ τ

τ−t

eλ(s−τ)(|Gδ(θs−τω)|
p

p−q + |Gδ(θs−τω)|
p1)ds
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≤e−λt‖uτ−t‖
2 +

2‖β1‖L1(O)

λ
+

1

λ

∫ 0

−∞
eλs‖g(s+ τ)‖2ds

+ C

∫ 0

−∞
eλs(|Gδ(θsω)|

p

p−q + |Gδ(θsω)|
p1)ds. (4.23)

The last two integrals in (4.23) are well defined due to (3.10), (4.9), (4.11) and the continuity
of ω. For every uτ−t ∈ D1(τ − t, θ−tω) and D1 = {D1(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1, we have

lim sup
t→+∞

e−λt‖uτ−t‖
2 = 0. (4.24)

Hence, there exists some T1 = T1(σ, τ, ω,D1) > 0 such that for all t ≥ T1,

‖u(τ, τ − t, θ−τω, uτ−t)‖
2 + 2

∫ τ

τ−t

eλ(s−τ)‖u(s, τ − t, θ−τω, uτ−t)‖
2
D

1,2
0

(O,σ)
ds

+ α1

∫ τ

τ−t

eλ(s−τ)‖u‖pLpds

≤1 +
2‖β1‖L1(O)

λ
+

1

λ

∫ 0

−∞
eλs‖g(s+ τ)‖2ds+ C

∫ 0

−∞
eλs(|Gδ(θsω)|

p

p−q + |Gδ(θsω)|
p1)ds

≤M1 +M1

∫ 0

−∞
eλs(‖g(s+ τ)‖2 + |Gδ(θsω)|

p

p−q + |Gδ(θsω)|
p1)ds, (4.25)

where M1 is a positive constant independent of τ, ω and D1. Then by (4.25) we get that, for
every τ ∈ R, ω ∈ Ω and every D1 ∈ D1, K1(τ, ω) given by (4.16) satisfies

Ψ(t, τ − t, θ−tω,D1(τ − t, θ−tω)) ⊆ K1(τ, ω).

We next prove that K1 ∈ D1. Let ν be an arbitrary positive constant. Then for each τ ∈ R

and ω ∈ Ω, we can get from (4.17) that

eνt‖K1(τ + t, θtω)‖
2 ≤ eνtR(τ + t, θtω)

=M1e
νt +M1e

νt

∫ 0

−∞
eλs

(
‖g(s+ t+ τ)‖2 + |Gδ(θs+tω)|

p

p−q + |Gδ(θs+tω)|
p1
)
ds. (4.26)

First, we can get from (3.11) that

lim
t→−∞

eνt
∫ 0

−∞
eλs‖g(s+ τ + t)‖2ds

= lim
t→−∞

e−λτeνt
∫ τ

−∞
eλs‖g(s+ t)‖2ds = 0. (4.27)

Let ν̃ = min{λ, ν}, and then we can get from (4.9) and (4.11) that for any t ≤ 0,

eνt
∫ 0

−∞
eλs(|Gδ(θs+tω)|

p

p−q + |Gδ(θs+tω)|
p1)ds

≤

∫ t

−∞
eν̃s(|Gδ(θsω)|

p

p−q + |Gδ(θsω)|
p1)ds. (4.28)
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Note that ∫ 0

−∞
eν̃s(|Gδ(θsω)|

p

p−q + |Gδ(θsω)|
p1)ds < +∞,

which implies that

∫ t

−∞
eν̃s(|Gδ(θsω)|

p

p−q + |Gδ(θsω)|
p1)ds→ 0 as t→ −∞. (4.29)

It follows from (4.26)-(4.29) that K1 is tempered, i.e. K1 ∈ D1. Moreover, since for each
τ ∈ R, R(τ, ·) : Ω 7→ R is (F ,B(R))-measurable, then K1(τ, ·) is also measurable. Hence,
K1 ∈ D1 is a closed measurable D1-pullback absorbing set for Ψ. The proof is completed. 2

Lemma 4.3 Let (4.2)-(4.6) hold. Then for each τ ∈ R, t > τ , ω ∈ Ω and for each bounded
sequence {u0,n}

∞
n=1 ⊆ L2(O), the sequence {u(t, τ, ω, u0,n)}

∞
n=1 possesses a convergent subse-

quence in L2(O).

Proof. Taking T > t, and integrating (4.22) over [τ, T ], we can get that

{u(·, τ, ω, u0,n)}
∞
n=1 is bounded in Lp

(
(τ, T );Lp(O)

)
∩ L2

(
(τ, T );D1,2

0 (O, σ)
)
. (4.30)

We can also infer from (4.3), (4.5) and (4.30) that, for s ∈ [τ, T ],

{f(·, u(·, τ, ω, u0,n))}
∞
n=1 and {h(·, ·, u(·, τ, ω, u0,n))Gδ(θsω)}

∞
n=1

are bounded in Lp1((τ, T );Lp1(O)). (4.31)

Then it follows from (4.30), (4.31), and Eq. (4.13), that

{
∂

∂t
u(·, τ, ω, u0,n)}

∞
n=1 is bounded in L2

(
(τ, T );D−1,2

0 (O, σ)
)
+ Lp1

(
(τ, T );Lp1(O)

)
. (4.32)

By Lemma 2.3, we note that the embedding D1,2
0 (O, σ) →֒ L2(O) is compact (in both cas-

es of bounded and unbounded domain). Then we can get from (4.30), (4.32) and Aubin-
Lions compactness lemma that there exist some w ∈ L2((τ, T );L2(O)) and a subsequence of
{u(s, τ, ω, u0,n)}

∞
n=1 such that

u(·, τ, ω, u0,nk
) → w in L2((τ, T );L2(O)). (4.33)

By choosing a further subsequence (relabelled the same), we infer from (4.33) that

u(s, τ, ω, u0,nk
) → w(s) in L2(O), a.e. s ∈ [τ, T ]. (4.34)

Finally, since t ∈ (τ, T ), we can by the continuity of solutions on initial data in L2(O) and
(4.34) get

u(t, τ, ω, u0,nk
) = u(t, s, ω, u(s, τ, ω, u0,nk

)) → u(t, s, ω, w(s)),

i.e., u(t, τ, ω, u0,n) possesses a convergent subsequence in L2(O). We complete the proof. 2

Lemma 4.4 Suppose (4.2)-(4.6) and (3.10) hold. Then the continuous cocycle Ψ for Eq.
(4.13) is D1-pullback asymptotically compact in L2(O).
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Proof. For any τ ∈ R, ω ∈ Ω, D1 = {D1(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1, tn → +∞ as n→ ∞ and
u0,n ∈ D1(τ−tn, θ−tnω), we shall prove the sequence Ψ(tn, τ−tn, θ−tnω, u0,n) has a convergent
subsequence in L2(O). Note that tn → +∞ as n → ∞ and u0,n ∈ D1(τ − tn, θ−tnω). We can
get from Lemma 4.2 that there exist N1 = N1(τ, ω,D1) > 0 such that for all n ≥ N1 that

‖u(τ, τ − tn, θ−τω, u0,n)‖ ≤ C(τ, ω), (4.35)

which implies that

{u(τ, τ − tn, θ−τω, u0,n)}
∞
n=1 is bounded in L2(O). (4.36)

It follows from (4.36) and Lemma 4.3 that the sequence

{u(τ, τ − tn, θ−τω, u0,n)}
∞
n=1 is precompact in L2(O),

which along with Ψ(tn, τ − tn, θ−tnω, u0,n) = u(τ, τ − tn, θ−τω, u0,n), it implies the result. 2

Theorem 4.1 Suppose (4.2)-(4.6) and (3.10)-(3.11) hold. Then the continuous cocycle Ψ
associated with system (4.13) possesses a unique D1-pullback random attractor A = {A(τ, ω) :
τ ∈ R, ω ∈ Ω} ∈ D1 in L2(O).

Proof. From Lemma 4.2, Lemma 4.4 as well as [34, Proposition 2.1], the existence of unique
D1-pullback random attractor A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1 follows.

2

4.2 Stochastic Semi-linear Degenerate Parabolic Equation Driv-

en by linear Multiplicative Noise

In this subsection, we discuss the following stochastic semi-linear degenerate parabolic
equation:





∂u

∂t
− div(σ(x)∇u) + λu+ f(x, u) = g(t, x) + u ◦

dw

dt
, t > τ,

u(τ, x) = uτ (x), τ ∈ R,

u(x, t)|∂O = 0, t > τ,

(4.37)

and consider the following Wong-Zakai approximate system for Eq. (4.37):





∂uδ

∂t
− div(σ(x)∇uδ) + λuδ + f(x, uδ) = g(t, x) + uδGδ(θtω), t > τ,

uδ(τ, x) = uδ,τ (x), τ ∈ R,

uδ(x, t)|∂O = 0, t > τ.

(4.38)

We will investigate the relations between the solutions of Eq. (4.37) and Eq. (4.38). To
this end, we need to transform the stochastic equation (4.37) into a pathwise deterministic
one. Let

v(t, τ, ω) = e−ω(t)u(t, τ, ω), (4.39)
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with
vτ = e−ω(τ)uτ .

Then by (4.37) and (4.39), we get





∂v

∂t
+Av + λv + e−ω(t)f(x, u) = e−ω(t)g(t, x), t > τ,

u(τ, x) = uτ (x), τ ∈ R,

u(x, t)|∂O = 0, t > τ,

(4.40)

where Av = −div(σ(x)∇v). We also introduce a similar transform for Eq. (4.38) as we did
for Eq. (4.37). Let

vδ(t, τ, ω, vδ,τ ) = e−
∫ t

0
Gδ(θrω)druδ(t, τ, ω, uδ,τ ) (4.41)

with
vδ,τ = e−

∫ τ

0
Gδ(θrω)druδ,τ .

Then we have




∂vδ

∂t
+Avδ + λvδ + e−

∫ t

0
Gδ(θrω)drf(x, uδ) = e−

∫ t

0
Gδ(θrω)drg(t, x), t > τ,

v(τ, x) = vδ,τ (x), τ ∈ R,

v(x, t)|∂O = 0, t > τ.

(4.42)

For any ω ∈ Ω, τ ∈ R and vτ ∈ L2(O), let (4.2)-(4.4) hold. Then by the classic Galerkin
method, we can get the existence and uniqueness of solution v(·, τ, ω, υτ ) ∈ C([τ,∞), L2(O))
for system (4.40). In addition v(·, τ, ω, υτ ) is continuous in vτ ∈ L2(O) and is (F ,B(L2(O)))-
measurable in ω ∈ Ω. Thus, we can define a continuous cocycle Ψ̃0 : R+ × R× Ω× L2(O) 7→
L2(O) for system (4.37) by

Ψ̃0(t, τ, ω, uτ ) = u(t+ τ, τ, θ−τω, uτ ) = eω(t)−ω(−τ)v(t+ τ, τ, θ−τω, vτ ). (4.43)

Similarly, we can also define a continuous cocycle Ψ̃δ(t, τ, ω, uδ,τ ) for system (4.38).

Lemma 4.5 Assume (4.2)-(4.4) and (3.10)-(3.11) hold. Then the continuous cocycle Ψ̃0 for
system (4.37) possesses a closed measurable D1-pullback absorbing set B̃0 = {B̃0(τ, ω) : τ ∈
R, ω ∈ Ω} ∈ D1, which is given by

B̃0(τ, ω) = {u ∈ L2(O) : ‖u‖2 ≤ R̃0(τ, ω)}, (4.44)

where

R̃0(τ, ω) = 4

∫ 0

−∞
e

3

2
λs−2ω(s)(

1

λ
‖g(s+ τ)‖2 + ‖β1‖L1(O))ds. (4.45)

Proof. Taking inner product of Eq. (4.40) with v(t, τ, ω) = e−ω(t)u(t, τ, ω), we have

1

2

d

dt
‖v‖2 + ‖v‖2

D
1,2
0

(O,σ)
+ λ‖v‖2 + e−ω(t)

∫

O
f(x, u)vdx = e−ω(t)(g, v). (4.46)
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It follows from (4.2) and (4.39) that

e−ω(t)

∫

O
f(x, u)vdx > α1e

−2ω(t)‖u‖p
Lp(O) − ‖β1‖L1(O)e

−2ω(t). (4.47)

By Cauchy’s inequality, we obtain

e−ω(t)(g, v) 6
λ

4
‖v‖2 +

1

λ
e−2ω(t)‖g‖2. (4.48)

Then combining (4.46)-(4.48), we have

d

ds
‖v‖2 + 2‖v‖2

D
1,2
0

(O,σ)
+

3

2
λ‖v‖2 + 2α1e

−2ω(s)‖u‖p
Lp(O)

62‖β1‖L1(O)e
−2ω(s) +

2

λ
e−2ω(s)‖g‖2. (4.49)

Multiplying e
3

2
λs on both sides of (4.49) and then integrating with respect to s over [τ − t, τ ]

with t > 0, we get

‖v(τ,τ − t, ω, vτ−t‖
2 + 2

∫ τ

τ−t

e
3

2
λ(s−τ)‖v‖2

D
1,2
0

(O,σ)
ds+ 2α1

∫ τ

τ−t

e
3

2
λ(s−τ)−2ω(s)‖u‖p

Lp(O)ds

≤2‖β1‖L1(O)

∫ τ

τ−t

e
3

2
λ(s−τ)−2ω(s)ds+

2

λ

∫ τ

τ−t

e
3

2
λ(s−τ)−2ω(s)‖g(s)‖2ds+ ‖vτ−t‖

2e−
3

2
λt.

(4.50)

Replacing ω in (4.50) by θ−τω and using

u(s, τ − t, θ−τω, uτ−t) = e(ω(−τ+s)−ω(−τ))v(s, τ − t, θ−τω, uτ−t), (4.51)

we get that

‖u(τ, τ − t, θ−τω, uτ−t)‖
2e2ω(−τ) + 2α1

∫ τ

τ−t

e
3

2
λ(s−τ)−2(ω(−τ+s)−ω(−τ))‖u‖p

Lp(O)ds

+ 2

∫ τ

τ−t

e
3

2
λ(s−τ)e−2ω(s−τ)+2ω(−τ)‖u‖2

D
1,2
0

(O,σ)
ds

≤2‖β1‖L1(O)

∫ τ

τ−t

e
3

2
λ(s−τ)−2(ω(−τ+s)−ω(−τ))ds+ e2ω(−τ)−2ω(−t)‖uτ−t‖

2e−
3

2
λt

+
2

λ

∫ τ

τ−t

e
3

2
λ(s−τ)−2(ω(−τ+s)−ω(−τ))‖g(s)‖2ds. (4.52)

Then from (4.52), we get

‖u(τ, τ − t, θ−τω, uτ−t)‖
2 + 2α1

∫ 0

−∞
e

3

2
λs−2ω(s)‖u‖p

Lp(O)ds

+ 2

∫ 0

−∞
e

3

2
λse−2ω(s)‖u‖2

D
1,2
0

(O,σ)
ds

≤2‖β1‖L1(O)

∫ 0

−∞
e

3

2
λs−2ω(s)ds+

2

λ

∫ 0

−∞
e

3

2
λs−2ω(s)‖g(s+ τ)‖2ds
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+ e−2ω(−t)e−
3

2
λt‖uτ−t‖

2. (4.53)

By (3.10) and (4.9), we have

2

∫ 0

−∞
e

3

2
λs−2ω(s)(

1

λ
‖g(s+ τ)‖2 + ‖β1‖L1(O))ds <∞. (4.54)

Note that if uτ−t ∈ D1(τ − t, θ−tω) and D1 ∈ D1, then by (4.9) we have

lim sup
t→+∞

e−2ω(−t)e−
3

2
λt‖uτ−t‖

2 = 0. (4.55)

Then there exists some T4 = T4(τ, ω,D1) > 0 such that for all t ≥ T4,

e−2ω(−t)e−
3

2
λt‖uτ−t‖

2 ≤ 2

∫ 0

−∞
e

3

2
λs−2ω(s)(

1

λ
‖g(s+ τ)‖2 + ‖β1‖L1(O))ds, (4.56)

which along with (4.43) implies that

Ψ̃0(t, τ − t, θ−tω,D(τ − t, θ−tω)) ⊆ B̃0(τ, ω), ∀t ≥ T4,

where B̃0(τ, ω) is given by (4.44). In addition, by (3.11), (4.9) and the continuity of ω(t), we
can easily get that B̃0 is tempered, that is, B̃0 ∈ D1. Hence, B̃0 ∈ D1 is a closed measurable
D1-pullback absorbing set for Ψ̃0. The proof is completed. 2

Theorem 4.2 Suppose (4.2)-(4.4) and (3.10)-(3.11) hold. Then the continuous cocycle Ψ̃0

for system (4.37) is D1-pullback asymptotically compact and possesses a unique D1-pullback
random attractor Ã0 = {Ã0(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1 in L2(O).

Proof. The proof of D1-pullback asymptotical compactness of cocycle Ψ0 in L2(O) is similar
to that of Lemma 4.4. And then by [34, Proposition 2.1] and Lemma 4.5, we can easily get
the cocycle Ψ0 possesses a unique D1-pullback random attractor A0. 2

Lemma 4.6 Suppose (4.2)-(4.4) and (3.10)-(3.11) hold. Then the continuous cocycle Ψ̃δ for
Eq. (4.38) possesses a closed measurable D1-pullback absorbing set B̃δ = {B̃δ(τ, ω) : τ ∈ R, ω ∈
Ω} ∈ D1,

B̃δ(τ, ω) = {uδ ∈ L2(O) : ‖uδ‖
2 ≤ R̃δ(τ, ω)}, (4.57)

where

R̃δ(τ, ω) = 4

∫ 0

−∞
e

3

2
λse2

∫
0

s
Gδ(θrω)dr(

1

λ
‖g(s+ τ)‖2 + ‖β1‖L1(O))ds. (4.58)

In addition, we have for every τ ∈ R and ω ∈ Ω

lim
δ→0

R̃δ(τ, ω) = R̃0(τ, ω), (4.59)

where R̃0(τ, ω) is given by (4.45).
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Proof. By (4.42) we get

1

2

d

dt
‖vδ‖

2 + ‖vδ‖
2
D

1,2
0

(O,σ)
+ λ‖vδ‖

2 +

∫

O
e−

∫ t

0
Gδ(θrω)drf(x, uδ)vδdx

= e−
∫ t

0
Gδ(θrω)dr(g, vδ). (4.60)

By (4.2) and (4.41), we get

−

∫

O
e−

∫ t

0
Gδ(θrω)drf(x, uδ)vδdx

≤− α1e
−2

∫ t

0
Gδ(θrω)dr‖uδ‖

p

Lp(O) + ‖β1‖L1(O)e
−2

∫ t

0
Gδ(θrω)dr. (4.61)

By Cauchy’s inequality, we obtain

e−
∫ t

0
Gδ(θrω)dr(g, vδ) ≤

λ

4
‖vδ‖

2 +
1

λ
e−2

∫ t

0
Gδ(θrω)dr‖g‖2. (4.62)

Then it follows from (4.60)-(4.62) that

d

ds
‖vδ‖

2 + 2‖vδ‖
2
D

1,2
0

(O,σ)
+

3

2
λ‖vδ‖

2 + 2α1e
−2

∫ s

0
Gδ(θrω)dr‖uδ‖

p

Lp(O)

≤ 2e−2
∫ s

0
Gδ(θrω)dr(

1

λ
‖g‖2 + ‖β1‖L1(O)). (4.63)

For all τ ∈ R, t ∈ R
+ and ω ∈ Ω, multiplying e

3

2
λs and then integrating with respect to s from

τ − t to τ , we have

‖vδ(τ, τ − t, ω, vδ,τ−t)‖
2 + 2

∫ τ

τ−t

e
3

2
λ(s−τ)‖vδ‖

2
D

1,2
0

(O,σ)
ds

+ 2α1

∫ τ

τ−t

e
3

2
λ(s−τ)e−2

∫ s

0
Gδ(θrω)dr‖uδ‖

p

Lp(O)ds

≤e−
3

2
λt‖vδ,τ−t‖

2 + 2

∫ τ

τ−t

e
3

2
λ(s−τ)e−2

∫ s

0
Gδ(θrω)dr(

1

λ
‖g(s)‖2 + ‖β1‖L1(O))ds. (4.64)

Replacing ω in (4.64) by θ−τω, we get

‖vδ(τ,τ − t, θ−τω, vδ,τ−t)‖
2 + 2

∫ τ

τ−t

e
3

2
λ(s−τ)‖vδ‖

2
D

1,2
0

(O,σ)
ds

+ 2α1

∫ τ

τ−t

e
3

2
λ(s−τ)e−2

∫ s

0
Gδ(θr−τω)dr‖uδ‖

p

Lp(O)ds

≤e−
3

2
λt‖vδ,τ−t‖

2 + 2

∫ τ

τ−t

e
3

2
λ(s−τ)e−2

∫ s

0
Gδ(θr−τω)dr(

1

λ
‖g(s)‖2 + ‖β1‖L1(O))ds. (4.65)

By (4.41) and (4.65) we get

‖uδ(τ, τ − t, θ−τω, uδ,τ−t)‖
2

≤e−
3

2
λte2

∫ τ

τ−t
Gδ(θr−τω)dr‖uδ,τ−t‖

2

+ 2

∫ τ

τ−t

e
3

2
λ(s−τ)e2

∫ τ

s
Gδ(θr−τω)dr(

1

λ
‖g(s)‖2 + ‖β1‖L1(O))ds
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≤e−
3

2
λte2

∫
0

−t
Gδ(θrω)dr‖uδ,τ−t‖

2

+ 2

∫ 0

−∞
e

3

2
λs+2

∫
0

s
Gδ(θrω)dr(

1

λ
‖g(s+ τ)‖2 + ‖β1‖L1(O))ds. (4.66)

By (3.10), (4.9), (4.11) and the continuity of ω(t) we get

2

∫ 0

−∞
e

3

2
λs+2

∫
0

s
Gδ(θrω)dr(

1

λ
‖g(s+ τ)‖2 + ‖β1‖L1(O))ds <∞. (4.67)

Note that if uδ,τ−t ∈ D1(τ − t, θ−tω) and D1 ∈ D1, then by (4.9), (4.11) and the continuity of
ω(t), we get

lim sup
t→+∞

e−
3

2
λte2

∫
0

−t
Gδ(θrω)dr‖uδ,τ−t‖

2 = 0, (4.68)

which implies that there exists T5 = T5(τ, ω,D1, δ) > 0 such that for all t ≥ T5,

e−
3

2
λte2

∫
0

−t
Gδ(θrω)dr‖uδ,τ−t‖

2

≤2

∫ 0

−∞
e

3

2
λs+2

∫
0

s
Gδ(θrω)dr(

1

λ
‖g(s+ τ)‖2 + ‖β1‖L1(O))ds. (4.69)

By (4.66)-(4.69), we get

‖uδ(τ, τ − t, θ−τω, uδ,τ−t)‖
2 ≤ 4

∫ 0

−∞
e

3

2
λs+2

∫
0

s
Gδ(θrω)dr(

1

λ
‖g(s+ τ)‖2 + ‖β1‖L1(O))ds. (4.70)

In other words, we get for all t ≥ T5,

uδ(τ, τ − t, θ−τω,D(τ − t, θ−tω)) ⊆ B̃δ(τ, ω), (4.71)

where B̃δ(τ, ω) is given by (4.57). In addition, B̃δ is tempered due to (3.11), (4.9), (4.11).
Therefore, B̃δ is a closed measurable D1-pullback absorbing set of Ψδ. The proof of (4.59) is
similar to that of [21, Lemma 3.7] and the details are omitted here. 2

Theorem 4.3 Suppose (4.2)-(4.4) and (3.10)-(3.11) hold. Then the cotinuous cocycle Ψ̃δ for
Eq. (4.38) is D1-pullback asymptotically compact and possesses a unique D1-pullback random
attractor Ãδ = {Ãδ(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1 in L2(O).

Proof. The proof is similar to that of Theorem 4.2. 2

Now, we show the solution of Eq. (4.38) converges to the solution of Eq. (4.37) as δ → 0.
Toward this end, we further assume the following assumption hold: there exists some α4 > 0
such that for all x ∈ O, u ∈ R,

|
∂f

∂u
(x, u)| ≤ α4(1 + |u|p−2). (4.72)

Lemma 4.7 Suppose (4.2)-(4.4) and (3.10)-(3.11) hold. Let u and uδ be the solutions of Eq.
(4.37) and Eq. (4.38), respectively, with initial data uτ and uδ,τ . If uδ,τ → uτ in L2(O) as
δ → 0, then for every τ ∈ R, ω ∈ Ω and T > 0, there exists some δ̃0 = δ̃0(τ, ω, T ) > 0 such
that for any 0 < |δ| < δ̃0 and t ∈ [τ, τ + T ], uδ(t, τ, ω, uδ,τ ) → u(t, τ, ω, uτ ) in L

2(O).

23

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 June 2023                   doi:10.20944/preprints202306.1433.v1

https://doi.org/10.20944/preprints202306.1433.v1


Proof. Let ξ = vδ − v and then we have

1

2

d

dt
‖ξ‖2 + ‖ξ‖2

D
1,2
0

(O,σ)
+ λ‖ξ‖2

=

∫

O
(e−ω(t)f(x, u)− e−

∫ t

0
Gδ(θrω)drf(x, uδ))ξdx+ (e−

∫ t

0
Gδ(θrω)dr − e−ω(t))(g(t), ξ). (4.73)

By using (4.3)-(4.4) and (4.72), we have

(e−ω(t)f(x, u)− e−
∫ t

0
Gδ(θrω)drf(x, uδ))ξ

=
(
e−ω(t)f(x, eω(t)v)− e−ω(t)f(x, vδe

ω(t))
)
ξ +

(
e−ω(t)f(x, vδe

ω(t))− e−
∫ t

0
Gδ(θrω)drf(x, vδe

ω(t))
)
ξ

+
(
e−

∫ t

0
Gδ(θrω)drf(x, vδe

ω(t))− e−
∫ t

0
Gδ(θrω)drf(x, vδe

∫ t

0
Gδ(θrω)dr)

)
ξ

=
∂f

∂s
(e−ω(t)(veω(t) − vδe

ω(t)))ξ + f(x, vδe
ω(t))(e−ω(t) − e−

∫ t

0
Gδ(θrω)dr)ξ

+ e−
∫ t

0
Gδ(θrω)drvδ(e

ω(t) − e
∫ t

0
Gδ(θrω)dr)

∂f

∂s
ξ

=−
∂f

∂s
ξ2 + f(x, vδe

ω(t))ξ(e−ω(t) − e−
∫ t

0
Gδ(θrω)dr) + vδ(e

ω(t)−
∫ t

0
Gδ(θrω)dr − 1)

∂f

∂s
ξ

≤ | β3 | |ξ|
2 +

(
α2e

(p−1)ω(t)|vδ|
p−1|ξ|+ |β2||ξ|

)∣∣e−ω(t) − e−
∫ t

0
Gδ(θrω)dr

∣∣

+ α4

∣∣∣1− eω(t)−
∫ t

0
Gδ(θrω)dr

∣∣∣
(
|vδ|

p−1
∣∣∣eω(t) + e

∫ t

0
Gδ(θrω)dr

∣∣∣
p−2

|ξ|+ |vδ||ξ|
)
. (4.74)

From Lemma 4.1, we find that for any ǫ > 0, there exists some δ̃1 = δ̃1(ǫ, τ, ω, T ) > 0 such
that

|1− eω(t)−
∫ t

0
Gδ(θrω)dr| < ǫ, |e−ω(t) − e−

∫ t

0
Gδ(θrω)dr| < ǫ, ∀0 < |δ| < δ̃1, t ∈ [τ, τ + T ]. (4.75)

It follows from (4.74) and (4.75) that

∫

O
(e−ω(t)f(x, u)− e−

∫ t

0
Gδ(θrω)drf(x, uδ))ξdx ≤ C‖ξ‖2 + Cǫ(‖vδ‖

p

Lp(O) + ‖v‖p
Lp(O) + 1).

(4.76)

By Cauchy’s inequality, we have

(e
∫ t

0
Gδ(θrω)dr − e−ω(t))(g(t), ξ) ≤

∣∣e
∫ t

0
Gδ(θrω)dr − e−ω(t)

∣∣(1
2
‖g‖2 +

1

2
‖ξ‖2). (4.77)

Combing (4.73)-(4.77), we get

d

dt
‖ξ‖2 ≤ C‖ξ‖2 + Cǫ(‖vδ‖

p

Lp(O) + ‖v‖p
Lp(O) + ‖g‖2 + 1). (4.78)

Applying Gronwall’s inequality to (4.78), we get for all 0 < |δ| < δ̃1 and t ∈ [τ, τ + T ],

‖ξ(t)‖2 ≤eC(t−τ)‖ξ(τ)‖2 + CǫeC(t−τ)

∫ t

τ

(
1 + ‖vδ(s, τ, ω, vδ,τ )‖

p

Lp(O)

+ ‖v(s, τ, ω, vτ )‖
p

Lp(O) + ‖g(s)‖2
)
ds. (4.79)
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By (4.39), (4.41), (4.50), (4.64) and (4.79), we get that there exists some δ̃2 ∈ (0, δ̃1) and
c̃1 = c̃1(τ, T, ω) > 0 such that for all 0 < |δ| < δ̃2 and t ∈ [τ, τ + T ],

‖vδ(t, τ, ω, vδ,τ )− v(t, τ, ω, vτ )‖
2

≤ec̃1(t−τ)‖vδ,τ − vτ‖
2 + c̃1ǫe

c̃1(t−τ)
(
1 + ‖vτ‖

2 + ‖vδ,τ‖
2 +

∫ t

τ

‖g(s)‖2ds
)
. (4.80)

Using (4.39) and (4.41) again, we get

‖uδ(t, τ, ω, uδ,τ )− u(t, τ, ω, uτ )‖

≤‖vδ(t, τ, ω, vδ,τ )− v(t, τ, ω, vτ )‖
∣∣∣e

∫ t

0
Gδ(θrω)dr

∣∣∣+
∣∣∣e

∫ t

0
Gδ(θrω)dr − eω(t)

∣∣∣‖v(t, τ, ω, vτ )‖. (4.81)

Note that uδ,τ = vδ,τe
∫ τ

0
Gδ(θrω)dr and uτ = vτe

ω(τ). Then by the continuity of ω(t), (4.12),
(4.50), and (4.80)-(4.81), we can obtain the desired convergence. 2

Lemma 4.8 Suppose (4.2)-(4.4) and (3.10)-(3.11) hold. For any given τ ∈ R, T > 0 and
ω ∈ Ω, if δn → 0 and un ∈ Ãδn(τ, ω), then the sequence {un}

∞
n=1 has a convergent subsequence

in L2(O).

Proof. By using Lemma 2.3 and the similar method as that of Lemma 3.10 in [21], we can
get the result. 2

Theorem 4.4 Suppose (4.2)-(4.3) and (3.10)-(3.11) hold. Then for any given τ ∈ R and
ω ∈ Ω, the following relationship holds:

lim
δ→0

dL2(O)(Ãδ(τ, ω), Ã0(τ, ω)) = 0.

Proof. By Lemma 4.5 and Lemma 4.6, we obtain that, for any τ ∈ R and ω ∈ Ω,

lim
δ→0

‖B̃δ(τ, ω)‖
2 = ‖B̃0(τ, ω)‖

2 ≤ B̃0(τ, ω),

where B̃0(τ, ω) is given by (4.45) and B̃0 = {B̃0(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1. Let δ → 0
and uδ → uτ , and then from Lemma 4.7, we get, for every τ ∈ R, t ∈ R

+, and ω ∈ Ω, that
Ψδ(τ, t, ω, uδ,τ ) → Ψ0(τ, t, ω, uτ ) in L2(O). Then, by Lemma 4.8 and Theorem 3.1 in [28] we
can get the result. 2
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