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Al:ﬂstract: At present paper, we aim to study the long-time behavior of a stochastic semi-
linear degenerate parabolic equation on bounded or unbounded domain and driven by a non-
linear noise and defined. Since the theory of pathwise random dynamical systems can not be
applied directly to the equation with nonlinear noise, first, we establish the existence of weak
pullback mean random attractors for the equation by applying the theory of mean-square ran-
dom dynamical systems; then, we prove the existence of (pathwise) pullback random attractors
for the Wong-Zakai approximate system of the equation. In addition, we establish the upper
semicontinuity of pullback random attractors for the Wong-Zakai approximate system of the
equation under consideration driven by a linear multiplicative noise.
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1 Introduction

We consider the following stochastic semi-linear degenerate parabolic equation:

% —div(o(z)Vu) + Au+ f(z,u) = g(t,z) + h(t, z, u)%’ T
AN T eR, (1.1)
u(t, z)|go =0, T

where O C RY(NN > 2) is an arbitrary (bounded or unbounded) domain, A is positive constants,
W is a two-sided Hilbert space valued cylindrical Wiener process or a two-side real-valued
Wiener process, the drift term f and diffusion term A are nonlinear functions with respect to
u, the given function g(¢,z) € L2 (R, L?>(0)). In addition, the variable nonnegative coefficient
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o(x) is allowed to have at most a finite number of (essential) zeros at some points, which is

understood the degeneracy of (1.1). As in [3| [§], we assume that the nonnegative function

o(z) : O — Rt U {0} satisfies the following hypotheses:

(Ha) o € LL_(O) and for some a € (0,1), lim_inf |z — 2|70 (x) > 0 for every z € O, when the
r—Zz

domain O is bounded,;

(Hap) o satisfies condition (H,) and liminf |z|~Po(x) > 0 for some 8 > 2, when the domain

|z| =00
O is unbounded.

The conditions (H,) and (Ha,p) indicates that the diffusion coefficient o(x) is extremely
irregular.

One of the most important things in studying evolution partial differential equations is
to investigate the long-time behavior of solutions of the equations. In this process, attractors
are the ideal objects. At present, abundant results, both in abstract context and concrete
models, have been established for the deterministic infinite-dimensional dynamical systems,
see, e.g. monographs [2 14, 25] and papers [3, 4, 11]. However, when one considers the
random influences on the systems under investigation, which are always presented as stochastic
partial differential equations, and tries to establish the existence of attractors for them, the
theory on deterministic infinite-dimensional system can not be applied directly. On the one
hand, the stochastic dynamical systems are non-autonomous, and one can not obtain uniform
(w.r.t stochastic time symbol) absorbing set as the deterministic case as in e.g. [14]; on the
other hand, owing to the influences of stochastic driving system, one can not obtain the fixed
invariant set for stochastic dynamical system in general.

In order to overcome these drawbacks, Flandoli etc. in [9] [10] introduce the theory of
pathwise random dynamical systems and (pathwise) random attractors for the autonomous
stochastic equations, in which the random attractor is a family of compact sets depending on
random parameters and has some invariant property under the action of the random dynamical
system. Recent theory in [12, 27] are related to non-autonomous pathwise random dynamical
systems and pullback random attractors for non-autonomous stochastic equations, where the
pullback random attractor is a family of compact sets depending on both random parameters
and deterministic time symbols. Up to now, there are many results on the existence and
uniqueness of random attractor, one can refer to [16, 20, 36} 37] for the autonomous stochastic
equations and [22], 28] B0, [37] for the non-autonomous stochastic equations. In addition, for the
result about random attractors for equation with linear noise, see, e.g. [5, 13, 16 36l B37].

However, when one investigates the dynamics of stochastic evolution equations driven by
nonlinear noise, the existence of random attractors can not be established directly, since the
serious challenge is that the existence of random dynamical system is unknown in general for
these kinds of systems. As far as it is known, up to now there are two ways to over come
this difficulty in some sense. One method is to investigate the dynamic behavior of the Wong-
Zaki approximate system corresponding to original equation. For example, Lu and Wang in
[21] get the existence of pullback random attractor for the Wong-Zakai approximate system
of a stochastic reaction-diffusion equation with the nonlinear noise in some bounded spatial
domain, and later, Wang et al. in [34] extend the result of [2I] to unbounded domains by
using the method of tail estimates. The another method is established by Kloeden et al. in
[18] and Wang in [31], that is, they extend the concept of pathwise random attractor to mean
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context and establish the corresponding existence theory of mean random attractor for random
dynamical system. There are some relevant works, see e.g. [32, [33].

The first purpose of this article is to establish the existence of weak pullback mean random
attractors for Eq. by using the theory of [31]. Toward this end, we first need to get
the existence and uniqueness of solution for Eq. . Unlike reference [31], the existence
of solution for Eq. can not be obtained directly by using the abstract result (Theorem
4.2.4) in [24] since the drift term f(z,u) is allowed to be polynomial growth of arbitrary order
with respect to u in this article. We aim to prove the existence and uniqueness of the solution
for Eq. by using the approach of [32], in which the author prove existence of solutions
for a stochastic reaction-diffusion equations involving drift term f(z,¢,u) with polynomial
growth of any order and nonlinear diffusion term o(t,u), and the embedding H*(RY)
LP(RN) for 2 < p < 285 (N > 2k) plays an essential role in this proof. Hence, we show
the embedding result of the corresponding Sobolev space with weight o(z) in Section 2. In
Section 3, we show the solution generate a mean random dynamical system and establish
the existence of weak pullback random attractors for Eq. . We shall remark that since
the mean random dynamical system is defined on the Banach space LP(2, X) consisting of
all Bochner integrable functions and corresponding probability space (2, F, P) lacks some
topological structure, we only get the weakly compact property and weakly attracting property
of mean random attractors for in L2(Q, X).

The second goal is to investigate dynamic behavior of the Wong-Zakai approximate system
for Eq. . We prove the existence of pullback random attractor for the Wong-Zakai
approximate system for equation with nonlinear diffusion term h(¢, z, u), which is allowed
to be polynomial growth, and we also show that the pullback random attractor of Wong-Zaki
approximation for Eq. converges to the attractor of Eq. as the size of approximation
tends to zero, when h(t,z,u) is equal to w. This work will be done in section 4. We remark
that when we prove the pullback asymptotic compactness, we use method of weighted sobolev
spaces to overcome the non-compactness of usual Sobolev embeddings in the case of unbounded
domain, which is different from that of [21].

In what follows of this article, the constant C' represents some positive constant and may
change from line to line.

2 Preliminaries

2.1 Functional setting

In this subsection, we introduce some function spaces and present some embedding results,
which will be used in our proof.

Throughout this article, we let (X, || - ||x) be a separable Banach space and LP(Q2, F; X)
(1 < p < 00) be the Banach space consisting of all strongly measurable and Bochner integrable
functions ¥ from  to X such that

1
19 rrn) = ( /Q 1%]/%dp)F < +oo. (2.1)

Denote by (Q, F, {F: }er, P) the complete filtered probability space satisfying the usual condi-
tion, i.e., {F;}+er is an increasing right continuous family of sub-o-algebras of F that contains
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all P-null sets. We use LP(2, F;; X) to represent the subspace of LP(£2, F; X), which consists
of all functions belonging to LP(Q2, F; X) and being strongly JF;-measurable. For simplicity of
notation, we denote by || - || the norm in L?(O) and L?(Q, F;; L*(0)).

To investigate Eq. , we introduce the weighted Sobolev space D(l)’2((’), o) defined by
the completion of C§°(O) with norm || - HD(l)’Q((’),U)’

— 29,3
el i 0y = € /O o ()| Vu[2dz). (2.2)
And one can easily check that Déﬂ(o, o) is a Hilbert space with the inner product (-, ),
(U, V) := / o(x)VuVudz. (2.3)
o

If condition (Hq) (or (Ha,s) on unbounded domain) holds, the operator A = —div(o(z)Vu)
is positive and self-adjoint with domain defined by

D(A) := {u € Dy*(0,0) : Auc L*(O)}.

Furthermore, one can easily observe that if o satisfies (o) and (Ha,), then there exists a
finite set A = {a1, a2, -+ ,a;} € O and d, r > 0 such that the balls B; = B,(a;),i =1,2,--- |k,
are disjoint and

o(x) >dlx —a;|* forz e B;NQ, i=1,2,--- ,k, (2.4)
o(x) >0 for x € Q\ U; By, (2.5)

and moreover, if {2 is unbounded, then there exists R > 0 such that
o(z) > 6|x|’ for x € Q, |z| > R. (2.6)

The following spaces will also be needed:

o DP(A):={uec Dy*(0,0): Au € LP(0)};

° Do_l((’), 0):= the dual space of D(l)’Q(O, o);

e H{*(O,0):= the closure of C§°(O) with norm || - || gm0 ), defined by

HU’H%{""(O,U) = Z /Oa(a:)|D“u|2d:c+/O lu|*dz, m € NT,
1<|k|<m
where k = (K1, ke, -, ky) is a multi-index of order |k| = k1 + Ko + -+ + KN

Lemma 2.1 ([19]) There exists a constant ¢1 such that the following inequality holds true for
all u € C°(RY),

1 1
([ Pan) e [ Jaleiorupas)”
|k|=m

where 27, = J\H-;% with N —2m > 0.
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Lemma 2.2 Let o(x) satisfy assumption (Hq) (or (Ha,g) on unbounded domain). Then there
exists a constant co such that

(/(/)\u]%ld:v>212 < 02< Z /(Qa(x)]D”uIQd:U);, for every u € C3°(O).

|re|=m

Proof. By using Lemma the Rellich-Kondrachov Theorem, and the General Sobolev
inequality, we can get the conclusion of Lemma [2.2] in the similar way as in the proof of
Proposition 2.5 in [§]. We omit the process here. O

The following embedding results play an important role in our proof in Section 3 and
Section 4.

Lemma 2.3 ([§]) Let o(x) satisfies assumption (Ha) (or (Ha,g) on unbounded domain). Then
it holds the compact embedding Dé’Q((’), o) == L*(0).

Lemma 2.4 Let o(x) satisfies assumption (Ha) (or (Ha,g) on unbounded domain). Then it
holds the continuous embedding

Hy'(O,0) — LP(O), for2<p<2.

Proof. Note that 2} > 2 for a € (0,1). Then we can get by the interpolation theorem and

Lemma [2.2] that
[ull Lr(o) < CHUIIGHUIIE;f(O) < Cllullam(o,0), for any u € Hy"(O, o),
where 6 = ig‘}:’;; The proof is completed. O

2.2 Theory of Random Attractors

In this subsection, we introduce some definitions and known results about weak pullback
mean random attractors and pullback random attractors.

Definition 2.1 A family of mappings ® = {®(¢,7) : t € RT,7 € R} is called mean random
dynamical system on LP(Q2, F; X) over (2, F,{F:}ier, P) if the following conditions hold for
allT € Rand t,s € R*:

(i) @(t,7) maps LP(Q, Fr, X) to LP(Q), Fiyr, X);
(ii) @(0,7) is the identity operator on LP(Q, Fr, X);
(iii) P(t+s,7) = P(t, 7+ s) 0 P(s,7).
Let D = {D(7) C LP(Q, Fr; X) : 7 € R} be a family of nonempty bounded sets and Dy be a

collection of such families satisfying some conditions. The collection Dy is said to be inclusion-
closed if D = {D(7) : 7 € R} € Dy, then every family O = {O(7) : O(7) C D(7),7 € R} € Dy.
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Definition 2.2 A family of sets K = {K(7) : 7 € R} € Dy is called a Dy-pullback absorbing
set for ® on LP(Q, F; X) over (Q, F,{Fi}icr, P) if for every 7 € R and D € Dy, there exists
T =T(7,D) > 0 such that

o(t,7—t,D(t—1t)) C K(r), Vt>T.

Moreover, if K(7) is a weakly compact nonempty subset of LP(§2, F.; X) for each 7 € R, then
K = {K(1) : 7 € R} is said to be a weakly compact Dy-pullback absorbing set for ®.

Definition 2.3 A family of sets K = {K(7) : 7 € R} € Dy is said to be a Dy-pullback
weakly attracting set of ® on LP(Q2, F; X) over (Q, F,{F;}er, P) if for each 7 € R, D € Dy
and every weak neighborhood N*(K(7)) of K(7) in LP(Q, Fr; X), there exists some T =
T(r,D,N*(K(7))) > 0 such that

O(t,7 —t,D(r — 1)) CNY(K(r)), Vt>T.

Definition 2.4 We say a family A = {A(7) : 7 € R} € Dy is a weak Dy-pullback mean
random attractor for ® on LP(Q, F; X) over (Q,F,{Fi}icr,P) if it satisfies the following
properties:

e Weak compactness: for any 7 € R, A(7) is a weakly compact subset of LP(Q, Fr; X).

e Pullback weak attraction: for any 7 € R, A(7) is a Dy-pullback weakly attracting set of
.

e Minimality: for any 7 € R, the family A is the minimal element of Dy in the sense that
if B={B(7): 7 € R} € Dy is another weakly compact Dy-pullback weakly attracting
set of @, then A(7) C B(1).

The following result about the existence and uniqueness of weak Dy-pullback mean random
attractors for ® on LP(2, F; X)) over (Q, F, {Fi }er, P) comes from [31].

Lemma 2.5 Suppose that Dy is an inclusion-closed collection of some families of nonempty
bounded subsets of LP(, F; X) and ® is a weak mean random dynamical system on LP(Q, F; X)
over (Q, F,{Fi}ter, P). If ® possesses a weakly compact Dy-pullback absorbing set K € Dy on
LP(Q, F; X) over (2, F,{Fi}ier, P), then ® possesses a unique weak Dy-pullback mean random
attractor A € Dy on LP(Q2, F; X) over (Q, F,{Fi}ier, P), which is given by

Alr) = (K, 7) = J ot —LK(r—1) ,VrER,

r>0t>r
where the closure is taken with respect to the weak topology of LP(Q, Fr; X).

Denote by D = {D(1,w) : 7 € R,w € Q} a family of nonempty bounded subsets of X and
D; a collection of such families satisfying some conditions. Let (Q, F, P, {0;}:cr) be a metric
dynamical system. We now introduce the pathwise random dynamical systerm as in [6} 9} 27].

Definition 2.5 A mapping ¥ : RT x R x 2 x X ~ X is said to be a continuous pathwise
random dynamical system (or a continuous cocycle) on X over (2, F, P, {0: }icr) if the following
conditions hold for all T € R, w € 2 and ¢,s € RT,
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Ty ) i RTX QO x X = X is (B(RT) x F x B(X), B(X))-measurable;

(

(0, 7,w,-) is the identity operator on X;
(t+s,T,w, ) =V(t, T+ 8,0sw,) o U(s,T,,w,");
(

t,7,w,-) : X — X is continuous.

Definition 2.6 A family K = {K(7,w) : 7 € R,w € Q} € Dy is said to be a Di-pullback
absorbing set for a cocycle W if for every 7 € Ryw € Q and D € Dy, there exists some
T =T(r,D,w) > 0 such that

U(t, 7 —t,0_w,D(t —t,0_w)) C K(r,w) forall t>T.

Moreover, If for every 7 € R and w € Q, K(7,w) is a closed nonempty subset of X and is
measurable in w with respect to F, then K is said to be a closed measurable D-pullback
absorbing set for V.

Definition 2.7 We say that cocycle ¥ is D;-pullback asymptotically compact in X if for
every 7 € R and w € 2, the sequence

{U(ty, T — tn,0_t,w,xy)}o>; has a convergent subsequence in X,

as t, — +o00, and z,, € B(T — ty,,0_4,w) with {B(1,w) : 7 € R,w € Q} € D;.

Definition 2.8 A family A = {A(T,w) : 7 € R,w € Q} € D; is said to be a D;-pullback
random attractor for V¥ if the following properties hold for all 7 € R and w €

(i) Measurability and Compactness: A is measurable in w with respect to F and A(7,w) is
compact in X;

(ii) Invariance: A is invariant in the sense that U(t, 7, w, A(T,w)) = A(T + ¢, Qw), Vt > 0;
(iii) Pullback attracting: A attracts D; in the sense that for any D € Dy,

t—11+m distx (¥ (¢, 7 — t,0_4w,D(T — t,0_w)), A(T,w)) = 0,

where dist x is the Hausdorff semi-distance in X.

3 Mean Random Attractors for Stochastic Semi-
linear Degenerate Parabolic Equation

Let U be a separable Hilbert space and Lo(U, L?(O)) be the Hilbert space consisting of
all Hilbert-Schmidt operators from U to L?(©O) with norm || - | 2.(v,22(0))- We consider the
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following non-autonomous stochastic semi-linear degenerate parabolic equation defined on any
bounded or unbounded domain @ C RV

ou dw

e div(o(z)Vu) + M+ f(z,u) = g(t, z) + h(t, u)ﬁ7 t>T,
U(T,ZL‘) = UT(x)7 T €R, (31)
ult, D)oo = 0, -

where W is a two-sided U-valued cylindrical Wiener process defined on the complete filtered
probability space (2, F,{F:}er, P), while o(z), A and ¢(¢,z) are the same as described in
Section 1. In this section, the stochastic term in Eq. is understood in the sense of Ito
integration. Since the It0 integral is martingale, it is convenient for us to take expectation and
get the existence of weak pullback mean random attractor.

Let O be a bounded domain (or an unbounded domain) and let the nonnegative function
o(z) satisfy (Ha) (or (Ha,p)). We assume that f: O x R — R is a smooth nonlinear function
such that f(z,0) =0 and for all z € O and u € R,

of

%(%U) > —¢1(x), (3.2)
[l w)u > arful” — ¢2(x), (3.3)
|f (2, u)| < agluP~! + ¢3(x), (3.4)

where aq, az, asz, p > 2 are positive constants, and ¢1(x) € L*(0O) with ¢1(x) > 0, ¢o(x) €
LY(0), ¢3(x) € LP(O) with %—i— p% = 1. We also assume f(x,u) is locally Lipschitz continuous
in u, i.e., for each bounded interval I C R, there is a; > 0 such that

|f(z,u1) — f(z,u2)| < arlur —uz|, Vo € O, uy, ug € I. (3.5)
Assume h : R x Q x L2(0) + Ly(U, L?(0)) satisfies the following conditions:

(Aq) For any t € R, w € Q and u € L?(0), there are positive constants az < %/\ and L such
that

1,0, 0) |2, 01200y < aslull® + L. (3.6)

(A2) For each r > 0, there is a positive constant a, depending on r such that for every t € R,
w € Q, and u, v € L2(0) with ||u|| < r and [jv]| < 7,

|h(t, w,u) — h(t,w, U)H%Q(U7L2(O)) < ay|lu— vl (3.7)
Moreover, we suppose that for each given u € L*(O), o(-,-,u) : R x Q — Ly(U, L?(0)) is
progressively measurable.

We now show the solution of Eq. (3.1)) can define a mean random dynamical system. The
definition of solution for Eq. (3.1)) is given as follows in this case.

Definition 3.1 Let u, € L?(Q, F-; L*(0)) and T > 7. A L?(O)-valued Fi-adapted stochastic
process u is called a solution of (3.1)) on [, 7] with initial data u, if

u e L*(Q,C([r, T); L*(0))) N LA(Q x [, T); Dy*(O,0)) N LP( x [r, T); LP(O))

8
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and P-a.s. satisfies
(u(t),()—i—/ (U(a:)Vu,VC)ds—i-)\/ (u,C)ds—i—/ /Of(u)Cdxds—/(g(s),C)ds
+ /t(h(s,u)dW(s), ), Vt € [r,T], ¢ € D*(0,0) N LP(O).

Using Lemma Lemma we can get the following result in a similar way that have
been used in [32].

Lemma 3.1 Let T > 7 and u, € L*(Q, Fr; L2(O)). If conditions (3.2)-(3.7) hold, then there
exists a unique solution to Eq. (3.1)) in the sense of Definition . Besides,

E( sup [lu(t)[*) < oo. (3-8)
telr, T
Note that u € L?(Q, C([r,T]; L*(0))) for all T > 7, which implies that u € C([r, 00); L*(€,
L%*(0))). Thus we can define the mean random dynamical system ® for Eq. (3.1) on
L*(Q, F; L*(0)) by
O(t,7,ur) =u(t+7,7,ur), t>0,7€R,
where u, € L?(Q, F,; L?>(O)) and u is the solution of system (3.1)) with initial data u..
Let D = {D(7) C L?(Q, F,; L*(0)) : 7 € R} be a family of nonempty bounded sets. A
family D is said to be tempered if for any v > 0, there is
lim e’" sup [ul/* = 0. (3.9)

T =00 u€D(T)
We denote by Dy the collection of all tempered families of nonempty bounded subsets of
L2(Q, Fr; L2(0)), that is,
Dy = {D = {D(7) C LP(Q, Fr; L*(0)) : D(1) # 0, bounded, 7 € R} : D satisfies (3.9)}.

From now on, we assume:

[ M lats. IPas < +os, vre®. (5,10

—00
To get the existence of tempered random attractors, we further assume:
0
lim eW/ Mg(s +7,-)|2ds = 0, Vv > 0. (3.11)

T——00 oo

To investigate the existence of weak Dy-pullback mean random attractors for Eq. (3.1]), we
need the uniform estimate of solutions, and by the following result, we can construct a weakly
compact Dy-pullback absorbing set for .

Lemma 3.2 Suppose (3.2)-(3.7) and (3.10) hold. Then for every 7 € R and D € Dy, there
exists some T = T(1,D) > 0 such that for all t > T and ur—y € D(T —t), the solution u to

Eq. (3.1) satisfies
0
EWWJ—MHMW§M+M/ P lgs + )]s, (3.12)
—oo

where M is a positive constant independent of T and D.
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Proof. By the It6 formula, we obtain from (3.1]) that for each r > 7 — ¢,

r r
”U(T,T—t,u.r_t)||2+2/ ||u(877__t7u7'—t)”i)é,2(oa)ds+2)‘/ |‘u(5’7—_t7uT—t)||2dS
T—t ’ T—t

.
+ 2/ / f($, ’LL(S, T —t, qut))U(S, T —1t, uq-,t)dmds
T—t JO
=lur—el* + Q/T_t(g(s),u(s,T —t,ur—¢))ds + /T_t (s, w(s, 7 =t ur )7 00200 48
+2 / (u(s, 7 — t,ur—¢), h(s,u(s, 7 — t,ur;))dW(s)), (3.13)
T—t

Taking the expectation on both sides of (3.13]), we get, for almost all » > 7 — ¢, that

r

Bt~ tur ) +2 [ B(lu(s,m =ty o,)ds

T—t

+ 2)\/ E(||u(s, T —t,ur;_¢)||*)ds + 2/ E(/ flz,u(s, 7 —t,ur—))u(s, 7 —t, uT_t)da:>ds
T—t1 T—t (@)
T
) +2 [ Elgls)uls,7  turi))ds
T—t
+ [ Bl uts,m =t ) 120 (3.14)

Thus, for almost all » > 7 — ¢, we have

d
o Elulr,m = tour )?) + 2B(Ju(r, 7 =t ur)|

F2NE(|Ju(r, 7 — t,ur—¢)||*) + 2E</ flzyu(r,m —t,ur—y))u(r, 7 —t, uT,t)dzv)
@
=2E(g(r),u(r, 7 — t,ur—))
+E(|h(ryu(r, T — t,ur—t)) H%Q(U’LQ(O))). (3.15)

2 )
D% (0,0)

Now, we estimate each item on the right-hand side of . By we have that
/(9 flu(r, —tyur—y))u(r, 7 — t,ur—¢)da
>a, /O fu(r, 7 — t,ur_)Pdz — léll1c0), (3.16)
which implies

2E</ flu(r,m —tyur—y))u(r, ™ —t, uT_t)da:>
@]
>2a1 E(||u(r, 7 = t, ur—) |75 0y) — 2ll¢2ll21(0)- (3.17)

Note that
(g(r),u(r,7 —t,u;—))

10
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A 1
< lu(r, 7 = toue)|* + X||g(r)||2a (3.18)
which implies that
2E(g(7“), ’LL(’I“, T = t7 qut))

A 2
< E(lu(r,m = t,ur)[*) + Xllg(r)ll2- (3.19)
We deduce from (3.15)-(3.19)) and (3.6) that, for almost all » > 7 — ¢,
d
3 Elutr, =, ur—)|[*) F AE(Ju(r, 7 — t,ur—)|?)
2
<3lg(I* + 2l éallzr o) + L- (3.20)

Applying Gronwall’s inequality to (3.20)), we get
E(llu(r, 7 —t,ur—)[?)

<X ) ) + 5 @l + D+ e [ Mg @2
Then we get that
B(lu(r, 7 = tur—0) )
<N B(lurl?) + 3ol + D +e V5 [ MlaPds (322

Since u;—y € D(1 —t) and D = {D(7) : 7 € R} € Dy, we get

e MATDE(ur]|?) =0 as t— 4oo.

Therefore, there exists T'= T'(7, D) > 0 such that for all t > T,

e ME(|Jur—||?) < 1. (3.23)

By (3.22)) and (3.23)), we get, for all t > T, there exists some positive constant M independent
of 7 and D such that

0
E(|lu(r, T — t,uT_t)HQ) <M+ M/ e)‘ng(s + 7')”2(18.
—0o0

This completes the proof. O

Corollary 3.1 Let (3.2)-(3.7) and (3.10)-(3.11) hold. Then the mean random dynamical
system ® for Eq. (3.1) possesses a weakly compact Dy-pullback absorbing set Ky = {Ko(7) :

T € R} € Dy, which is given by,
Ko(t) = {u € L*(Q, Fr; L2(0)) : E(||ul|?) < Ro(7)}, (3.24)

where
0
Ro(r) =M + M/ e |g(s 4 7)|%ds (3.25)

with M being the same constant as in Lemma|3.2,

11
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Proof. We know that for each 7 € R, Ko(7) in (3.24]) is a bounded and closed convex
subset of L%(Q, Fr; L?(0)), and therefore it is weakly compact in L?($, Fr; L?(O)). Lemma
indicates that for every 7 € R and D € Dy, there exists T'= T'(7, D) > 0 such that

O(t, 7 —t,D(r —t)) C Ko(1), Vt > T. (3.26)
In addition, from and , we get for any v > 0
lim e’ sup |ul| =0,
T weKo(r)
that is Ky € Dy. Hence, Ky is a weakly compact Dy-pullback absorbing set for ®. O

Theorem 3.1 Suppose (3.2)-(3.7) and (3.10)-(3.11)) hold. Then the mean random dynamical

system ® for problem (3.1)) possesses a unique weak Do-pullback mean random attractor Ay =
{Ao(T) : T € R} € Dy in L*(Q, F; L*(O)) over (, F,{Fi}icr, P).

Proof. From Lemma [2.5 and Corollary we can easily get the existence and uniqueness
of weak Dy-pullback mean random attractor Ay € Dy of ® for Eq. (3.1)). O

4 Wong-ZaKai Approximations of Stochastic Semi-
linear Degenerate Parabolic Equation

In this section, we consider the following stochastic semi-linear degenerate parabolic equa-

tion
d
gﬁ: —div(o(x)Vu) + Au+ f(z,u) = g(t,x) + h(t,z,u) o d—Vf, t>T,
U(Tax) = U/T(:U), T e R, (41)
u(z, t)lao =0, t>T.

Here W = w(t) is a two-sided real-valued Wiener process on a probability space and the other
terms are the same as described in section 1. The symbol “o” indicates that the stochastic
term in Eq. is understood in the sense of Stratonovich’s integration.

We remark that, in this section, we consider the stochastic term of Eq. in the sense of
Stratonovich’s integration because the Stratonovich’s interpretation is more appropriate than
It6’s when we consider the pathwise dynamical behavior (fixed any w € §2) of the Wong-Zakai
approximate system corresponding to the equation (see [35] for details).

4.1 Random dynamical systems for Wong-Zakai Approxima-
tions

In this subsection, we first define a continuous cocycle ¥ for Wong-Zakai approximate
system of Eq. (4.1), and then prove that there exists a unique pullback random attractor for
the cocycle W.

12
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Let O be a bounded domain (or an unbounded domain) and let the nonnegative function
o(x) satisfy (Ha) (or (Ha,s)). In what follows, We assume that f : O x R — R is a smooth
nonlinear function such that for all z € O and u € R,

flz,w)u > aq|ul? — Bi(x), (4.2)
|f (@, u)] < alufP™ + Ba(), (4.3)
af(aIUj u) > 043|U’p72 _ B3(37)7 (44)

where p > 2, a1, ag, as are positive numbers, 8 (z) € L'(0), fa(x) € LP(O) with pile% =1,
Bs(x) € L>(0O). Let h be a continuous function and for all t,u € R, x € O, satisfy

|h(t7$7u)| < wl(ta I)|u|q_1 + ¢2(t,93)a (45)

2t )] < il )l + ), (4.6)

_p_ _p_
where 2 < g < p,¢1 € L *(R; L 7 (0)) and ¢y € LY (R; LP1(0)), and ¢3, ¢4 € L¥(R; L<(0)).

In the sequel, let (2, F,P) be the classical Wiener probability space, where
Q2 =CyH(R,R) :={w e C(R,R) : w(0) = 0} (4.7)

with the open compact topology. The Brownian motion has the form W (¢,w) = w(t). Consider
the Wiener shift 6; on the probability space (2, F, P) defined by

O (-) = w(t + ) — w(t). (4.8)

Then from [I], we get that (2, F, P, {0;}cr) is a metric dynamical system and there exists a
{0 }+cr-invariant subset Q@ C Q) of full P measure such that for each w € Q,

w(t)

—~ 0 as t — Zoo. (4.9)
For brevity, we identify the space Q with Q. For any given § # 0, define the random variable
Gs by
)
Gs(w) = wg), Vwe Q. (4.10)

We get from (4.8) and (4.10]) that

—w t t 60.) s Ow s
gé(gtw):w(t—i_é()s(t) and /0 g(;(esw)ds:/t+ g)dS—i-/(s Es)ds. (4.11)

By the continuity of w and (4.11)), the following result have been proved in [21].

13
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Lemma 4.1 Let 7 € R, T > 0, and w € Q. Then for each € > 0, there is a constant
8 =8 (e,7,w,T) > 0 such that for every 0 < |§| < ¢ and t € [r,7+ T],

| /Ot G5(0sw)ds — w(t)] < e. (4.12)

Let’s consider the Wong-Zakai approximate system of Eq. (4.1)):

5 + (=div(o(z)Vu)) + Au+ f(x,u) = g(t,z) + h(t,z,u)Gs(Ow), t > T,
u(T,z) = ur(x), T € R, (4.13)
u(xat)‘aozoy t>T.

Notice that system (4.13)) can be viewed as deterministic equation parameterized by w € Q.
Let assumptions (4.2)-(4.6)) hold, and then by the Galerkin method similar to [3], we can prove
that for any w € Q, 7 € R and u, € L?(0), Eq. (4.13]) possesses a unique solution

u(-, 7w, ur) € C([r, 00); L2(0)) N LE.((0,00); D?(0, 0)) N LE

loc loc

((0,00); LP(O)).  (4.14)

In addition, the solution u(-,7,w,u,) is continuous in u, € L*(0) and is (F,B(L*(0)))-
measurable in w € . Hence, we can define a continuous cocycle ¥ : RT x R x Q x L?(0)
L*(0) by

U(t, T, w,ur) =u(t+7,7,0_;w,ur), V7TER t>0,weN, u € LQ(O). (4.15)

Let Dy = {Di(r,w) : 7 € R,w € Q} be a family of bounded nonempty subsets of L?(0). A
family D; is said to be tempered if for any v > 0, 7 € R and w € €2, there is

lim " sup llu|| = 0.
t——00 wED(T+t,0:w)

We denote by D; the class of all tempered families of nonempty bounded subsets of L?(0).
Now, we devote to prove existence of Di-pullback random attractors for the cocycle ¥

corresponding to Eq. (#.13)) in L?(O).

Lemma 4.2 Suppose (4.2))-(4.6) and (3.10)-(3.11) hold. Then the continuous cocycle ¥ of
problem (4.13) possesses a closed measurable Dy-pullback absorbing set K1 = {K1(T,w) : T €

R,w € Q} € Dy, which is given by
Ki(r.w) = {ue L*(0) : |u|?* < R(r,w)}, (4.16)

where

0 P
R(r,w) = My + My / e (llg(s + 7)1 +1Gs(sw) 77 + |G5(Bsw) [P*)ds (4.17)

—00

with My is a positive constant independent of T,w and Dy.

14


https://doi.org/10.20944/preprints202306.1433.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 June 2023 doi:10.20944/preprints202306.1433.v1

Proof. We first prove that, for any given 7 € R and w € Q, K;(7,w) given by (4.16) is a
pullback absorbing set for the cocycle ¥. Taking inner product of Eq. (#.13) with u in L?(0O),

we get
o gl + Tl o+ Xl + [ Fa,u)uds
2dt 0 (00 o’
=(g,u) + Q(;(Htw)/ h(t,z,u)udz. (4.18)
@
By we obtain that
/ f(z,u)udz > ozl/ [ulPdz — |81l L1 (0)- (4.19)
@] @

By and Young’s inequality, we get
Gs(6w) /Oh(t,m,u)udas
S\Ga(GtW)\/O(!wl(t,fﬂ)HUIqu|¢2(t,ﬂf)|\UI)d$
G e+ [ ponlta)Gs(0) Fide+C [ fin(t.a)Gs(6r) s
/ [ulPda + C|Gs(Buw) |77 1 (¢ )II” 5+ 1G5 () [42(8) 7
S? /(9 |u|Pdz + C’|g(g(9tw)|ﬁ + C|Gs(Ow)|P*. (4.20)
From Cauchy’s inequality, we have
A 2 1 2
(9(t,2), ) < Sllull®+ 51 llgll” (4.21)

Therefore, it follows easily from (4.18))-(4.21]) that

d 2 2
— 2
=l + 2|ul

20y Ml + arul o

1 p_
<2810y +  Igll* + €105 (0:0) 77 + C1Gs ()P (4.22)

Multiplying ([#.22) by e**, replacing w by 6_,w and then integrating with respect to s over
(r—t,7) with ¢t > 0, we get that

i
—t,6_ P +2 Ms=) —t,6_ )2 d
L AR O S B SR

+ o / A u|?,ds
T—t
_ 281llLv o)y 1 [T eer
ey St I MO

+c/ =G5 (Bar) |77 + (G5 (Burio) s

15
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] 2Abiliey 1[0
<e Ml + SO 1 L [ Mg+ )l

+c/ (1G5 (0:0) 75 + [Gs(Bs0) P )dis (4.23)

The last two integrals in are well defined due to , ., and the continuity
of w. For every u,_; € D1(7' —t,0_4w) and Dy = {D4 (T, w) TeRwe Q} € Dy, we have

lim sup e |u, _¢||* = 0. (4.24)
t——4o00

Hence, there exists some 77 = Ty (0, 7,w, D1) > 0 such that for all ¢t > T,

)
—t,0_ _DIIF+2 Als—) —t,0_ RIE: d
Jutror = .0t ur )P 42 [ A o7 = 0l s

)
ton / A w2, ds
T—t

2 1 1 /0
<t A 4 L jgls s rras+ € [ (Gaoals® + igs(0)as
0 P
<M+ My [ (lgs )1 + 1G5(6) 7 +105(6.))ds, (4.25)

where M is a positive constant independent of 7, w and Dj. Then by (4.25) we get that, for
every 7 € R, w € Q and every Dy € Dy, K;(1,w) given by (4.16]) satisfies

U(t, T —t,0_yw,Di(r —t,0_w)) C Ki(1,w).

We next prove that K1 € D;. Let v be an arbitrary positive constant. Then for each 7 € R
and w € Q, we can get from (4.17) that

e”t||K1(7' +t,0,w) H2 < thR(T +t,0,w)
0
=Mie"" + Mye” /

—00

s (Hg(s +t+7)|? + ’gé(es_i_tW)’ﬁ + |Q§(95+tw)]p1>ds. (4.26)

First, we can get from (3.11]) that

0
Jim e”t/ Mlg(s + 7+ 0)||%ds
—o

t——o0

.
= lim e_)‘Te”t/ e*|lg(s +t)||>ds = 0. (4.27)
—o0

t——00

Let 7 = min{\, v}, and then we can get from and (4.11)) that for any ¢ <0,

0 P

[ G0 7T+ 105(Beris) s
¢ ~ D

< [ 9s(0) 7 + G5O (1.29)

—0o0
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Note that .
/ e (|G5(0sw) |77 + |Gs (Bsw) [P )ds < +o00,

—00

which implies that

t
/ o7 (1 (050) |75 + [Gs(0s)|P)ds — 0 as t — —oo. (4.29)

—00

It follows from (4.26))-(4.29)) that K; is tempered, i.e. K; € D;. Moreover, since for each
T € R, R(1,-) : @ — R is (F,B(R))-measurable, then K;(7,-) is also measurable. Hence,
K1 € D is a closed measurable Di-pullback absorbing set for ¥. The proof is completed. O

Lemma 4.3 Let (4.2)-(4.6)) hold. Then for each 7 € R, t > 7, w € Q and for each bounded
sequence {up,}°2, C L*(O), the sequence {u(t,T,w,up,)}, possesses a convergent subse-
quence in L*(O).

Proof. Taking T > t, and integrating (4.22]) over [r,T], we can get that
{u(-, 7, w,u0,)}o2; is bounded in LP((7,T); LP(O)) N LQ((T, T); D(l)’Z((’), o). (4.30)
We can also infer from (4.3)), (4.5) and (4.30) that, for s € [, T,

{fCul, 7w, u00) ks and {A(, - uls, 7w, u0,n))Gs(05w) FnZa
are bounded in LP'((7,T'); LP*(O)). (4.31)

Then it follows from (4.30), (4.31), and Eq. (4.13), that
{%u(-ﬁ,w,uo,n)};ﬁl is bounded in L*((7,T); DO_L2(O,O')) + LP'((,T); LP(0)).  (4.32)

By Lemma we note that the embedding Dé’Z(O,O’) — L?(0) is compact (in both cas-
es of bounded and unbounded domain). Then we can get from ([(.30), and Aubin-
Lions compactness lemma that there exist some w € L?((7,T); L?>(O)) and a subsequence of
{u(s, 7,w,u0,) 22 such that

u(-, 7, w, Uo ) — w in L2((7,T); L*(0)). (4.33)
By choosing a further subsequence (relabelled the same), we infer from (4.33)) that
u(s, T, w, ug n,, ) — w(s) in L*(0), ae. s € [r,T]. (4.34)

Finally, since t € (7,T), we can by the continuity of solutions on initial data in L?(O) and

(4.34) get
w(t, T, w, uon,) = u(t, s,w,u(s, 7,w,ugn,)) = u(t,s,w, w(s)),

i.e., u(t, T, w, up,) possesses a convergent subsequence in L?(0). We complete the proof. O

Lemma 4.4 Suppose (4.2)-(4.6) and (3.10) hold. Then the continuous cocycle ¥ for Eq.
[@.13) is Dy-pullback asymptotically compact in L*(O).
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Proof. Foranyt € R,w € Q, D1 = {Di(1,w) : 7 € R,w € Q} € Dy, t,, = 400 asn — oo and
uo,n € Di(T—ty,0_4,w), we shall prove the sequence V(t,,, 7 —t,, 0, w, up ) has a convergent
subsequence in L?(0). Note that t,, — +00 as n — oo and ug,, € D1(T — tp, 0_s,w). We can
get from Lemma that there exist Ny = Ni(7,w, D1) > 0 such that for all n > N; that

lu(r, T — tn, 0_rw,uppn)|| < C(1,w), (4.35)
which implies that
{u(T, 7 — tn, 0_rw, upn) }22; is bounded in L*(0). (4.36)
It follows from and Lemma that the sequence
{u(r, 7 — tn,0_rw, upn)}22 is precompact in L?(O),

which along with W(t,, 7 —tp, 0_¢,w,uon) = (7,7 — ty, 0_rw,ug ), it implies the result. O

Theorem 4.1 Suppose ([1.2)-[.6) and (3.10)-(3.11) hold. Then the continuous cocycle ¥
associated with system (4.13)) possesses a unique D1-pullback random attractor A = { A(T,w) :

T €R,we Q} €Dy in L*(0).

Proof. From Lemma Lemma as well as [34, Proposition 2.1], the existence of unique
D;-pullback random attractor A = {A(T,w) : 7 € R,w € 2} € D; follows.
O

4.2 Stochastic Semi-linear Degenerate Parabolic Equation Driv-
en by linear Multiplicative Noise

In this subsection, we discuss the following stochastic semi-linear degenerate parabolic

equation:
0 d
8—1; —div(o(x)Vu) + Au+ f(z,u) = g(t,x) + uo d—f, t>rT,
u(r, 7) = us(2), reR, (4:37)
u(x7t)|8(9 = 07 t> T,

and consider the following Wong-Zakai approximate system for Eq. (4.37):

Ous

5~ div(e@)Vus) + Aus + f(z,u5) = g(t, @) + usGs(Ow), >,
us(T, ) = ué,r(l'), T € R, (4.38)

We will investigate the relations between the solutions of Eq. (4.37) and Eq. (4.38). To
this end, we need to transform the stochastic equation (4.37) into a pathwise deterministic
one. Let

o(t, T, w) = e Oyt 7,w), (4.39)
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with
vy =e “’(T)uT
Then by (4.37)) and ( -, we get
gt + Av+ x4 e O fzu) = e Wyt x), t>T,
u(r, x) = ur(z), T € R, (4.40)
u(z,t)|go =0, t> T,

where Av = —div(o(z)Vv). We also introduce a similar transform for Eq. (4.38)) as we did

for Eq. (4.37). Let
vs(t, T, w,v5,) =€ Jo g‘;(erw)d’"u(;(t, T, W, Us 7 ) (4.41)

with

Vg = e Jo Gllreddry

Then we have

v

8756 + Avs + dvs + e~ Jo 95(6r) drf(z,us) = e Jo 95(6:) drgt,z), t>r,

o(r2) = vs(2), )
v(x,t)|so =0, t>T.

For any w € Q, 7 € R and v, € L*(0), let (4.2)-(4.4) hold. Then by the classic Galerkin
method, we can get the existence and uniqueness of solution v(-, 7,w, v,) € C([r, 00), L*(O))
for system (4.40). In addition v(-,7,w,v,) is continuous in v, € L*(0) and is (F, B(L*(0)))-
measurable in w € Q. Thus, we can define a continuous cocycle ¥y : Rt x R x Q x L2(0) —

L?(0) for system (4.37) by
\Tfo(t, T, wour) = u(t+7,7,0_rw,ur) = ew(t)_w(_T)v(t +7,7,0_rw,v;). (4.43)
Similarly, we can also define a continuous cocycle \ng(t, T,w, us,;) for system (4.38]).

Lemma 4 5 Assume ) and ( ) hold. Then the continuous cocycle T, for
system ) possesses a closed measumble D1 pullback absorbing set By = {Bo(’]’ w):T €

Rwe Q} € Dl, which is given by
Bo(r,w) = {u € L*(O) : ||[u||* < Ro(r,w)}, (4.44)

where

D 0 3 As—2w(s) 1 2

Ro(r,w) =4 [ e (KMlgs + D"+ 181l L1 0))ds. (4.45)
Proof. Taking inner product of Eq. ([#.40) with v(t, 7,w) = e “®u(t, 7,w), we have

30+ Iy o)+ A0l 0 [ @ upoda = O(g ). (240

2 @
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It follows from (4.2)) and (4.39) that
e w® /O @, wvdz > are™ Ol o) = 181110, (4.47)

By Cauchy’s inequality, we obtain

—w A 1 _ w
e™®(g,v) < Z”U”2+ ~e 20| g)%. (4.48)

A
Then combining (4.46])-(4.48]|), we have

d 3 _
0l + 2ol Bz ) + SAIIE + 2012 ],

070-)

—2w(s 2 _ w(s
<2[|B1ll 10y ()+Xe 2| g2, (4.49)

Multiplying 2% on both sides of (4.49) and then integrating with respect to s over [r — ¢, 7]
with ¢ > 0, we get

Tos s—T Tos s—7)—2w(s
lo(rr =t 0> + 2 / el gy ds + 200 / POl ) ds
T 2 T
<Al [ P05 3 [ DO )P+ furiPe
T—1 T—1
(4.50)
Replacing w in (4.50) by 6_,w and using
w(s, 7 —t,0_rw, ur_y) = WETF)OEDy (s 1t 0w ury), (4.51)
we get that
i 3 —w(—T1
Jurym = 8,0ty ) P27 4 20y [ N BT s
T (=) o 2w(s—T)+2w(—T) [, (12
+2/7-_t62 e HuHDé’Q(O,a’)dS
§2H/81HL1(O)/ e 3ME=T) 2T H8) (=T g 4 (22 D)||y, 126~ 3N
T—1
2 [T SA(s—7)=2(w(—T+s)—w(—T
+ A/ BB g o) . (4.52)

Then from (4.52)), we get

0
W, T —t,0_rw, ur—1)||? + 204 e3Xs=20(8) || y|P  ds
Lr(0)

—00

0
3\s —
+2/ e2"%e zw(S)Hu||2Dé’2((9,a')d8
—0o0

O sy, 2 [0 sy,
T B e B e O TR
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e 2 (g3 |y |2, (4.53)
By (3.10) and (4.9)), we have
0 3 As—2w(s) 1 2
2 [ ez ($llgs + DI + 181l £1(0))ds < oo (4.54)
-0
Note that if ur—y € Di(7 —t,0_4w) and Dy € Dy, then by (4.9) we have

lim sup e_Q‘”(_t)e_%)‘t||uT,1t||2 = 0. (4.55)

t——+o0
Then there exists some Ty = Ty(7,w, D1) > 0 such that for all ¢ > Ty,
—2w(—t) . — 3t 2 0 3 As—2w(s) 1 2
e e 2 Jurf|F <2 [ e2 ($Mgs + D7+ 1181l L2 )ds, (4.56)
—0oQ

which along with (4.43) implies that

(Iv’o(t,T —t,0_yw,D(T —t,0_w)) C Eo(T,w), YVt > Ty,

where By(T,w) is given by (4.44). In addition, by (3.11)), (4.9) and the continuity of w(t), we
can easily get that By is tempered, that is, By € D;1. Hence, By € D; is a closed measurable
Di-pullback absorbing set for Wy. The proof is completed. O

Theorem 4.2 Suppose (4.2))-(4.4) and (3.10)-(3.11) hold. Then the continuous cocycle Ty
for system (4.37)) s Dy-pullback asymptotically compact and possesses a unique D1-pullback

random attractor Ay = {Ao(T,w) : 7 € R,w € Q} € Dy in L?*(O).

Proof. The proof of Di-pullback asymptotical compactness of cocycle ¥q in L?(O) is similar
to that of Lemma And then by [34, Proposition 2.1] and Lemma we can easily get
the cocycle Wy possesses a unique Di-pullback random attractor Ayg. O

Lemma 4.6 Suppose (4.2 and ) hold. Then the continuous cocycle \115 for
Eq. - possesses a closed measumble D1 —pullback absorbing set Bs = {B(;(T, w):TERwE

Q} € Dy, _ _
Bs(t,w) = {us € L2(O) : Hu5||2 < Rs(1,w)}, (4.57)

where 0
Rs(r,w) = 4/ 302 ) Ga(0re0) dr( lg(s +7)I* + 1811l 22 o)) ds. (4.58)

In addition, we have for every T € R and w € Q)

lim R =R
615)% R5 (7—7 W) RO(Ta (4.)), (459)

where Eo(T,w) is given by (4.45)).
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Proof. By (4.42) we get

1d

— llvsl® + flos|| 7
2dt

D} (0,0 —|— )\HUJHZ +/ e I g‘swrw)drf(x,uls)vgdx
o
= e~ Jo GsErw)dr (g 4y, (4.60)
By (4.2) and ( -, we get
- / ¢ o GO £ us)vsda
@
—2 [t w)dr —2 [t ~w)dr
< — are 2B GOD o By oye 2 GO, (4.61)

By Cauchy’s inequality, we obtain

_ [t w)dr 1 oy w)dr
e RO (g, 05) < Do+ T2 902 (162

Then it follows from ([4.60)-(4.62) that

d 3 o
vl + 2llvsl 2 ) + 50l + 2010 2ho G0 g1,

(00)

< 2e72Jo G5(0) d7"( lgll* + 1181l 1 0)) (4.63)

For all 7 € R,t € RT and w € Q, multiplying e and then integrating with respect to s from
T —t to 7, we have

)
Jos(r,m = tewovse )P +2 [ BN g, s
T—t
)
20y [ PR E SO s

T
<o P ug,ifP 42 [ BT TEBOO L) 4 ailo)ds. (1L61)

T—t

Replacing w in (4.64) by 0_,w, we get

-
- 2 SA(s—7) 2
9 Yy =T T— s
lvs(T,7 — t,0_rw,v5—4)|| +2/ e2 [vs .2 ds
) o ((’)

T—t o)

ds

T
3 s
+ 2a1 / ) e§>‘(5—7)e_2 fo g&(erfrw)drnu(s“ip(o)
T—

,
3
<o P ugyi|? 42 [ BT OO (g (s) P+ 5113 o)), (465)
T—1

By (4.41)) and we get
lus(r, 7 = t,0—rw, us )|
<e™ 2)\t 2f G5 (0r—rw dr“uéT t||2

bz [ BRI 90 (L 5) [+ 1611 0
T—1
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<e~ At 2f_ Gs(0rw) drHu S t||2

0
2 / D290 (L5 7)o+ B3 130y (4.66)

By (3.10), (4.9), (d.11) and the continuity of w(t) we get

0
2 [ BRI (Lot D) 4 0y < o6 (4.67)
—0o0
Note that if us,—; € Di(7 —t,0_4w) and D; € Dy, then by (4.9), (4.11) and the continuity of
w(t), we get
lim sup e~ 2 e 2J2, 9a(6rw) g _¢)|? = 0, (4.68)
t——+o0

which implies that there exists T5 = T5(7,w, D1,d) > 0 such that for all ¢ > Tj,

)\t 2f Gs(0rw) dr||u57_ t||2

0
3 S w)ar
<2 / N2 LGOI (L lg(s 472+ 1611 o)) (4.69)

By (4.66)-(4.69), we get

0 o 1
e, 7 1,0 sus O <4 [ PR gls 4 P 4 Br o). (470)

—00

In other words, we get for all t > Tk,

u5(7_7 T = ta efﬂ'wa D(T - tv eftw)) g 55(7—7 w)? (471)

where §5(T,~w) is given by (4.57). In addition, By is tempered due to (3.11f), (4.9), (4.11).
Therefore, By is a closed measurable D;-pullback absorbing set of Ws. The proof of (4.59) is
similar to that of 21, Lemma 3.7] and the details are omitted here. ]

Theorem 4.3 Suppose (4.2)-(4.4) and (3.10)-(3.11)) hold. Then the cotinuous cocycle Uy for
Eq. (4.38)) is D1-pullback asymptotically compact and possesses a unique Di-pullback random

attractor As = {As(t,w) : 7 € R,w € Q} € Dy in L*(O).

Proof. The proof is similar to that of Theorem [£.2] O

Now, we show the solution of Eq. (4.38) converges to the solution of Eq. (4.37) as § — 0.
Toward this end, we further assume the following assumption hold: there exists some ay > 0
such that for all x € O, u € R,

of
E»
Lemma 4.7 Suppose — and — hold. Let uw and ugs be the solutions of Eq.
and Eq. , respectively, with initial data u, and us;. Ifu(;,t—) ur in L?(O) as
0 — 0, then for every 7 € R, w € Q and T > 0, there exists some oy = do(T,w,T) > 0 such
that for any 0 < |8 < 0 and t € [r,7 + T, us(t, 7,w,us5,) — u(t,7,w,u,) in L*(O).

(z,u)] < ag(l+ |ulP~?). (4.72)
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Proof. Let £ = vs — v and then we have

e + N2 0 + MIEI?

:/Yew@ﬂauw«e%%fmwﬂawmam+&aﬁ%@@“—ew@xmw@» (4.73)
O

By using ( and , we have

<e—w“°f<x,u>—-e-JKGﬂeﬂﬂdrf<m,u5»£

(70 (2, 00) — 0 f 05 O)) + (70 f (1, 050°0) — GO (5000 )¢
+ ( - Q5(9Tw)drf(x, véew(t)) e I gg(OTw)drf(m, véefg Qg(erw)dr))f

gi( O (ve®) — U5ew(t)))f + f(=, Uzsew(t))(e_‘*’(t) —e b Gs (Orw)dry ¢
4o Jo G5(0ro)dry (olt) _ oJg Ga(0rw)dry gi ¢
af§2 + f(a, v5e?®)g (e ® — o= Jo GoOrw)dry 4 o ()= fg Gs(Orw)dr )gﬁ ¢
<| B3 | €2 + (ane® DO ]usP=1g] + |Byl|¢]) e ®) — e Jo Galbredr]
L= OS] (2o o0 e ). (4.74)

From Lemma we find that for any € > 0, there exists some o1 = o1 (e,7,w,T) > 0 such

that

1 — 2O Jo GoOrw)dr| o ¢ o0t _ o= Jo GsOr)dr) < ¢ w0 < |5 < &y, t € [r, 7+ T].  (4.75)

It follows from (4.74]) and (4.75)) that

A@“@ﬂaw—eﬁWWMWﬂ%w»wmémMW+cmmu s+ ol o) + -
(4.76)

By Cauchy’s inequality, we have

¢ —w t . 1 1
(el G0 =0)(g(1),€) < [ei GO e O|(Lgl? 1 L) (477)
Combing (4.73)-(4.77), we get
d
S ll> < Gl + OclllvslE oy + 01y + gl + 1) (4.78)
Applying Gronwall’s inequality to ([£.78)), we get for all 0 < |§| < 01 and ¢ € [r,7 + T7,

t

JE@IP <P + 0 [ (14 s 3

T

ol mw,vn) (0 + lg(s)]2) ds. (4.79)
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By (#.39), (@.41), ([@.50), (@.64) and (4.79), we get that there exists some 5y € (0,01) and
é = ¢1(1,T,w) > 0 such that for all 0 < |§| < d3 and t € [r, 7+ T],

||U5<ta T, W, U(S,T) - U(ta T, W, UT)”2

t
<™ s = oI + 1™ (1 Jorl 4 s+ [ lgts) ). (4.80)

Using (4.39)) and (4.41) again, we get

||U5(7f, T, W, u5,’r) - u(t, T, W, u‘r) ||

<o (t, 7,0, v57) = v, 7,10, v7) o GOl

+ ’efot gé(erw)dT — ew(t)

lott, 7w, 0,) . (4.81)

Note that us, = v(g,TefOT G5 (0r)dr and u, = v,e¥("). Then by the continuity of w(t), (&.12)),
(4.50), and (4.80))-(4.81), we can obtain the desired convergence. O

Lemma 4.8 Suppose (4.2)-(4.4) and (3.10)-(3.11) hold. For any given 7 € R, T > 0 and
w e Q, if 6, = 0 and uy, € As, (T,w), then the sequence {u,}°2, has a convergent subsequence

in L?(0).

Proof. By using Lemma and the similar method as that of Lemma 3.10 in [2I], we can
get the result. O

Theorem 4.4 Suppose (4.2))-(4.3) and (3.10)-(3.11)) hold. Then for any given 7 € R and

w € Q, the following relationship holds:

lim dLQ(O) (Zg(T, U)), AVO(Ta CU)) =0.
6—0

Proof. By Lemma [£.5] and Lemma [£.6] we obtain that, for any 7 € R and w € Q,

lim || Bs(7,w)||> = || Bo(,w)||* < Bo(r,w),

0—0
where By(r,w) is given by ([@.45) and By = {Bo(r,w) : 7 € Rw € Q} € Dy. Let § — 0
and us — u,, and then from Lemma we get, for every 7 € R, t € R", and w € Q, that

V(T t,w,us) — Wo(r,t,w,u,) in L*(O). Then, by Lemma and Theorem 3.1 in [28] we
can get the result. O
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