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Abstract: The importance of performance excellence and operator’s safety is fundamental not only when 
operators perform repetitive and controlled industrial tasks, but also in case of abrupt gestures due to 
inattention and unexpected circumstances. Since optical systems work at too low frequencies and they are not 
able to detect gestures as early as possible, combining the use of wearable magneto-inertial measurement units 
(MIMUs) with the adoption of deep learning techniques can be useful to instruct the machine about human 
motion. To improve the initial training phase of neural networks for high classification performance, gestures 
repeatability over time has to be verified. Since test-retest approach has been poorly applied based on MIMUs 
signals in a context of human-machine interaction, the aim of this work was to evaluate the repeatability of 
pick-and-place gestures composed of both normal and abrupt movements. Overall, results demonstrated an 
excellent test-retest repeatability for normal movements and a fair-to-good test-retest repeatability for abrupt 
movements. Moreover whereas the reduction of time between test and retest sessions increased repeatability 
indices.. In detail, results of the test suggested how to improve the reinforcement learning for the identification 
of gestures onset, whereas results of the retest gave important information about the time necessary to retrain 
the network.  

Keywords: Industry 5.0; MIMUs; collaborative robotics; upper limb; human-machine interaction 
 

1. Introduction 

The concept of collaborative robotics, introduced by Industry 4.0 and reinforced by Industry 5.0, 
involves different levels of human-machine interaction. The most demanding case in terms of safety 
occurs if human and robot simultaneously share the same workspace [1]. Two different approaches 
can be exploited to guarantee safety, the power and force limiting (PFL) and the speed and separation 
monitoring (SSM). PFL combines methods of passive safety design with an energy control of mobile 
robotic components, limiting force, torques, and velocity. On the contrary, SSM imposes a protection 
distance between the robot and the operator, without specifying any limitations for the robotic 
system. In detail, when the operator is inside the shared workspace, SSM approach implies an online 
control of the robot to generate alternative paths without collisions. In this case, systems for the 
human motion tracking must be adopted to monitor the minimum distance. Moreover, algorithms 
for the collision avoidance have to be implemented to update the robot trajectory in real-time. 

Many literature works [2–5] have already exploited different technologies to track the human 
motion and recognize human gestures in case of repetitive and controlled industrial tasks such as 
assembly [6] and pick-and-place [2]. However, the operators can perform abrupt gestures different 
from normal movements due to inattention and unexpected circumstances not directly related to the 
job task. When these situations occur, it is essential to detect abnormal gestures at their onset avoiding 
collisions between the human and the machine while maintaining a high efficiency of execution [7]. 
Some literature works have studied the characteristics of abrupt movements, their effects on the 
performance of tasks execution, and the methods for identifying their occurrence [8–11]. Optical 
systems are not adequate for this purpose, because they work at too low frequencies and they are not 
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able to detect abrupt gestures as early as possible. The problem of frequency can be solved by 
adopting wearable magneto-inertial measurement units (MIMUs), which collect data from the triaxial 
accelerometer, gyroscope, and magnetometer embedded in each sensor [12]. Instead, the problem of 
early detection of abrupt movements can be approached through deep learning techniques, which 
are useful to extract and learn features directly from raw data and hence to instruct the machine about 
human motion [13–15]. To guarantee high classification performance, deep learning neural networks 
need an initial training phase. Considering this scenario, repeatability of the gesture over time has to 
be verified to understand whether and after how long it is necessary to retrain the network.  

Therefore, a consistency evaluation referring to both the degree of correlation and the 
correspondence between measurements has to be assessed through a test-retest. The estimation of 
test-retest repeatability based on MIMUs signals has been approached in different contexts such as 
the classification of construction activities in the industrial field [16], the biomechanical 3D 
investigation of gait [17], or the improvement of sport training load quantification [18]. However, 
since this approach has been poorly applied in a context of human-machine interaction, the aim of 
this work was to evaluate the test-retest repeatability in a typical industrial gesture. In detail, twenty-
six participants performed a pick-and-place task composed of normal and regularly paced 
movements interspersed with abrupt movements caused by randomly generated visual or acoustic 
alarms. Since the present work was thought for the industrial context and specifically for identifying 
suitable training and testing modalities of deep learning techniques, the time between test and retest 
sessions (between 20 and 65 days) was higher than the one typical of other literature studies [18, 19]. 
Results represent the first step for the optimization of a procedure enabling the real-time human 
activities recognition and hence the improvement of human-machine interaction in terms of safety 
and effectiveness when abrupt movements occur. 

2. Materials and Methods 

2.1. Participants, experimental set-up, and protocol 

Twenty-six healthy participants (fourteen males and twelve females) with no musculoskeletal 
or neurological diseases were recruited for the experiment. Twenty-three subjects were right-handed, 
three subjects were left-handed. Their main anthropometric data (mean ± standard deviation) are 
reported in the following: age = 27.7 ± 2.3 years, BMI = 22.2 ± 2.0 kg/m2, forearm length = 0.29 ± 0.01 
m, upper arm length = 0.34 ± 0.01 m. The study was conducted in accordance with the Declaration of 
Helsinki and the informed consent was obtained from all involved subjects. 

Two wireless MIMUs (OpalTM APDM, USA) containing tri-axial accelerometer (range ± 200 g), 
gyroscope (range ± 2000 deg/s), and magnetometer (range ± 8 Gauss) were exploited during the test. 
As shown in Figure 1a, these units were positioned on participants’ right (RFA) and left (LFA) 
forearms aligning their x-axes with the longitudinal axes of the corresponding human segments. The 
communication between MIMUs and a PC was guaranteed via Bluetooth. The proprietary software 
Motion StudioTM (APDM, USA) was used to acquire data at 200 Hz. 

A typical industrial task of pick-and-place was realized through the workstation illustrated in 
Figure 1b. It was composed of a table, a chair, a box containing 30 golf balls, and four stations: S0, S1, 
S2, and S3. Due to the heterogeneity of the tested group in terms of anthropometric characteristics, it 
was necessary to adapt the experimental set-up to each participant. To this purpose, a board with 
thirty holes (diameter of 6 cm) was realized to choose the more appropriate distances for S0, S1, and 
S2 stations. Moreover, a second board with just one hole (diameter of 6 cm) corresponding to S3 
station was added to the set-up at a fixed height of 30 cm from the table and an adjustable distance 
from the participants. 

The task was the same proposed in a previous pilot study [11]. In detail, it was composed of 30 
pick-and-place gestures identified as normal movements. Each of these gestures consisted in picking 
a ball at a time from the box and placing it into a specific hole corresponding to one of the four 
stations. In detail, participants were asked to place the balls in the holes following a lighting sequence 
of green LEDs positioned near each station. In addition, during the task, sudden visual alarms or 
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acoustic alarm were randomly produced by lighting red LEDs positioned near each station or 
switching on a sound buzzer, respectively. 

 

 

 
(a) (b) 

Figure 1. a) MIMUs positioning on forearms; b) experimental set-up. 

In both cases, participants were asked to perform an abrupt movement as fast as possible, 
placing the ball inside the hole corresponding to the activated red LED or vertically extending the 
arm in case of the sound buzzer [11]. An Arduino Nano microcontroller (Arduino, Italy) with the 
following characteristics was exploited to generate both the visual and acoustic alarms: processor = 
ATmega328, clock speed = 16 MHz, operating voltage = 5 V. The periodic lighting of the green LEDs 
(every 3 seconds = 20 bpm) and the random lighting of the red LEDs or of the buzzer were controlled 
by a code written through an integrated development environment. The Arduino microcontroller 
was also used to send a voltage trigger of 5V to Opal sensors for systems synchronization. 

The experimental protocol involved two different sessions, the test and the retest. Both sessions 
were performed under the same conditions by all subjects with an intercurrent period between 20 
and 65 days (42.2 ± 11.2 days) depending on the subject. In detail, two main groups can be identified 
based on a threshold of 45 days. Fourteen participants (four males and ten females) performed the 
retest after less than 45 days from the test: age = 27.8 ± 2.3 years, BMI = 21.9 ± 2.3 kg/m2, forearm length 
= 0.28 ± 0.01 m, upper arm length = 0.33 ± 0.01 m. Twelve participants (ten males and two females) 
performed the retest after at least 45 days from the test: age = 27.6 ± 2.5 years, BMI = 22.5 ± 1.5 kg/m2, 
forearm length = 0.30 ± 0.01 m, upper arm length = 0.35 ± 0.02 m. In both sessions, each participant 
repeated the pick-and-place task in three different modalities: (i) with the right hand and with the 
trunk frontal with respect to the table (rFR); (ii) with the left hand and with the trunk frontal with 
respect to the table (lFR); (iii) with the left hand and with the trunk lateral with respect to the table 
(lLA). Inside each repetition, four random alarms were emitted, two visuals and two acoustics. 

2.2. Data analysis 

Data analysis was conducted with custom Matlab® (MathWorks, USA) routines. Raw data of 
linear accelerations were processed to obtain the accelerations magnitude, after removing the 
gravitational acceleration. Single gestures were extracted from the entire acquisition by means of 
windows with a length of three seconds, which was imposed by the regular pace of the green LEDs 
at 20 bpm. In addition, gestures were distinguished between abrupt and normal movements based 
on the occurrence of the visual and acoustic alarms. Subsequently, values of acceleration Root Mean 
Square (RMS) were estimated for each signal considering all the windows within the same movement 
type. Accordingly, the analysis differentiated movements into three groups: normal movements, 
abrupt movements caused by a visual alarm and abrupt movements generated by the acoustic 
buzzer. Since the application of the Shapiro–Wilk test (2-tails, significance level: α=0.05) 
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demonstrated a non-normal distribution of data, a non-parametric statistical analysis was performed 
on acceleration RMS values with the following tests: 

• Mann–Whitney U test (2-tails, significance level: α = 0.05) to verify the eventual presence of 
differences between males and females; 

• Mann–Whitney U test (2-tails, significance level: α = 0.05) to verify the eventual presence of 
differences among the three test modalities (rFR, lFR, lLA); 

• Wilcoxon test (2-tails, significance level: α = 0.05) to investigate the eventual presence of 
statistical differences among normal movements, visual – abrupt movements, and acoustic – 
abrupt movements for each modality. 

As suggested in literature [20], the test-retest modality can be applied to study the repeatability 
of the proposed task over time. Test-retest repeatability was evaluated using SPSS® (IBM, USA) 
statistical package. Accordingly, in this analysis, acceleration RMS values of test and retest were used 
for the estimation of repeatability. A common measure of repeatability is represented by the 
Intraclass Correlation Coefficient (ICC), which is calculated as the ratio between the true variance 
and the total variance of the variable of interest [21]. This dimensionless index assumes values inside 
the range [-1, 1], highlighting a higher repeatability the closer it gets to 1. In general, two slightly 
different models of ICC are adopted as measures of relative repeatability of a single measurement 
[22]. The ICC (3,1) does not consider the effect of any systematic bias as part of the measurement 
error. On the contrary, the ICC (1,1) assumes all within-subject variability to be part of the 
measurement error. These two models produce the same result if no systematic error is present [19]. 
Another common measure of repeatability is represented by the Coefficient of Variation (CV), which 
is the percentage ratio between the standard deviation and the mean of a values distribution [23]. The 
repeatability improves the lower the CV is. 

In this work, the test-retest repeatability was evaluated in four conditions: 

• considering all participants (all); 
• excluding the outliers, automatically identified as participants with acceleration RMS values 

exceeding 1.5 times the interquartile range above the 75th quartile or below the 25th quartile 
(no_o); 

• considering only the participants who performed the retest after less than 45 days from the test 
(u_45); 

• considering only the participants who performed the retest after at least 45 days from the test 
(o_45). 

Hence, for each of these four conditions, the test-retest repeatability was assessed through ICC 
(1,1), ICC (3,1), and CV estimated for each group of movements (normal, abrupt – visual alarm, 
abrupt – acoustic alarm) and for each modality (rFR, lFR, lLA). 

3. Results 

Since acceleration RMS values of males and females did not produce statistically significant 
differences for both test and retest of all modalities (p-value > 0.05), the analysis was conducted 
without any gender distinctions. On the contrary, the three modalities (rFR, lFR, lLA) showed 
statistically significant differences (p-value ≤ 0.05). Hence, the following analyses continued keeping 
the three modes separated. Figure 2 represents the comparison of averaged RMS values for the three 
modalities separately for the three types of movements. Single asterisks are related to 0.01 < p-values 
≤ 0.05, whereas double asterisks represent p-values ≤ 0.01. 
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Figure 2. Averaged RMS values of forearm acceleration for the three modalities of each type of 
movements. 

Statistically significant differences among the three types of movements (normal, visual – 
abrupt, acoustic – abrupt) were found for both test and retest of the three modalities (p-value ≪ 
0.001). Accordingly, the following repeatability analysis was conducted considering the three types 
of movements separately. Figure 3 shows RMS values of forearm acceleration magnitude recorded 
during the rFR modality, as an example. The three groups of movements (normal, abrupt – visual 
alarm, abrupt – acoustic alarm) are compared. The scatterplot is with test values on the x-axis vs retest 
values on the y-axis. Each point is related to one participant. 

 

Figure 3. Acceleration RMS value for all subjects comparing test and retest in rFR modality, as an 
example. 

Figure 4 represents the outliers identification based on the interquartile range. The upper and 
lower values of the colored bands correspond to 1.5 times the 75th quartile and 1.5 times the 25th 
quartile, respectively. Figure 4 is composed of nine panels related to the combination of the three 
types of movements (rows) and the three modalities (columns). Each panel shows the scatterplot of 
acceleration RMS obtained with test values on the x-axis and the difference between test and retest 
values on the y-axis. Each participant is represented by a single point. Outliers are the elements not 
included in the colored band. 

Test-retest repeatability based on the evaluation of ICC and CV is showed in Tables 1, 2 and 3. 
ICC (3,1) and ICC (1,1) results are reported in the tables including their 95% confidence intervals. For 
each type of movements, the three trials are investigated considering all subjects together (all), 
subjects after the removal of outliers (no_o), subjects who performed the retest after less than 45 days 
from the test (u_45), and subjects who performed the retest after at least 45 days from the test (o_45). 
Since for both normal and abrutp_visual movements no outliers were identified, repeatability results 
are coincident when considering all participants (all) and participants without outliers (no_o). 

0 2 4 6 8 10
Test

2

4

6

8

10

R
et

es
t

RMS of forearm acceleration (m/s2)

normal
abrupt- visual alarm
abrupt - acoustic alarm

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 June 2023                   doi:10.20944/preprints202306.1383.v1

https://doi.org/10.20944/preprints202306.1383.v1


 6 

 

 
Figure 4. Outliers identification for each trial and for all groups of movements. 

4. Discussions 

Since abrupt movements are randomly caused by involuntary reactions, their accelerations are 
greater than the ones of normal movements, as shown by the comparison between the green and the 
other two clusters presented in Fig. 3. Moreover, abrupt movements generated by the acoustic alarm 
(blue cluster) produce greater accelerations than abrupt movements generated by the visual alarm 
(red cluster). This trend can be explained considering the specific protocol of this study, because the 
movement required in response of an acoustic alarm was wider than the one associated to a visual 
alarm. Overall, the distribution of the three groups follows the principal diagonal, suggesting a 
repeatability between test and retest RMS values (Fig. 3). 

The definition of a band based on the interquartile range of RMS values allowed the 
identification of a number of outliers between 0 and 3 for each combination of the three types of 
movements and the three modalities (Fig. 4). As reported in Tables 1-3, the removal of outliers (no_o) 
before the evaluation of test-retest repeatability did not produce a significant improvement with 
respect to the analysis involving all participants (all). On average, it is possible to note a minimum 
increase in both ICC (3,1) (normal +0.07, abrupt_visual +0.10, abrupt_acoustic +0.13) and ICC (1,1) 
(normal +0.07, abrupt_visual +0.10, abrupt_acoustic +0.11). Coherently, CV values are interested by a 
slight reduction (normal −0.75%, abrupt_visual −1.56%, abrupt_acoustic −2.08%). In industrial 
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scenarios, real-time should be a key feature for performance optimization. Indeed, an online risk 
assessment is suitable to evaluate the biomechanical load in repetitive efforts [24] or manual material 
handling [25], to build a warning system for the prevention of musculoskeletal disorders [26], and to 
improve assembly workstations [27]. 

Considering scenarios of human-machine interaction, a real-time exchange of information 
between the operator and the robot improves both the interaction [28, 29] and the robotic control [30, 
31]. Accordingly, the similarity of repeatability with and without the outliers (all vs no_o) represents 
a positive aspect to approach real-time conditions. Indeed, the possibility of avoiding the post-
elaboration of data guarantees the reduction of time. 

Another important aspect highlighted from results is the influence of the time occurring between 
test and retest sessions. Indeed, when this time was < 45 days (u45), the test-retest repeatability was 
higher with respect to the analysis related to a test-retest time ≥ 45 days (o45). On average, a general 
strong increase can be noticed in both ICC (3,1) (normal +0.67, abrupt_visual +0.13, abrupt_acoustic 
+0.35) and ICC (1,1) (normal +0.68, abrupt_visual +0.14, abrupt_acoustic +0.35).  Coherently, an 
evident reduction involved CV values (normal −8.03%, abrupt_visual −4.06%). The only exception is 
represented by abrupt movements generated by the acoustic alarm with an average increment of CV 
(+2.27%) from u45 to o45 despite a strong increase of both ICCs. 

Table 1. ICC (3,1), ICC (1,1) and CV results of normal movements. 

          ICC (3,1) 

Lower limit 

95% CI 

for ICC 

(3,1) 

Upper limit 

95% CI 

for ICC 

(3,1) 

ICC (1,1) 

Lower limit 

95% CI 

for ICC 

(1,1) 

Upper limit 

95% CI 

for ICC 

(1,1) 

CV (%) 

         

rFR 

all 0.37 -0.02 0.66 0.34 -0.05 0.63 11.31 
         no_o 0.37 -0.02 0.66 0.34 -0.05 0.63 11.31 
         u45 0.81 0.51 0.94 0.82 0.55 0.94 5.64 
         o45 -0.20 -0.68 0.40 -0.27 -0.71 0.32 17.92 
         

lFR 

all 0.52 0.17 0.75 0.52 0.18 0.75 9.85 
         no_o 0.64 0.33 0.82 0.65 0.35 0.83 8.60 
         u45 0.77 0.43 0.92 0.78 0.47 0.93 6.43 
         o45 0.09 -0.49 0.61 0.11 -0.46 0.62 13.83 
         

lLA 

all 0.63 0.33 0.82 0.64 0.34 0.82 8.54 
         no_o 0.72 0.45 0.87 0.72 0.47 0.87 7.54 
         u45 0.75 0.38 0.91 0.75 0.39 0.91 6.50 
         o45 0.44 -0.15 0.80 0.47 -0.09 0.81 10.92 

Table 2. ICC and CV results of abrupt movements generated by the visual alarm. 

         
 ICC (3,1) 

Lower limit 

95% CI 

for ICC (3,1) 

Upper limit 

95% CI 

for ICC (3,1) 
ICC (1,1) 

Lower limit 

95% CI 

for ICC (1,1) 

Upper limit 

95% CI 

for ICC (1,1) 
CV (%) 

         

rFR 

all 0.34 -0.05 0.64 0.36 -0.02 0.65 19.08 
         no_o 0.34 -0.05 0.64 0.36 -0.02 0.65 19.08 
         u45 0.53 0.03 0.82 0.54 0.06 0.82 15.00 
         o45 0.14 -0.45 0.64 0.18 -0.40 0.66 23.33 
         

lFR 

all 0.45 0.08 0.71 0.46 0.10 0.72 16.31 
         no_o 0.51 0.16 0.75 0.52 0.18 0.76 15.44 
         u45 0.62 0.15 0.86 0.64 0.20 0.87 12.86 
         o45 0.11 -0.48 0.62 0.15 -0.42 0.64 20.33 
         

lLA 

all 0.46 0.09 0.71 0.43 0.06 0.70 16.04 
         no_o 0.71 0.43 0.87 0.68 0.39 0.85 12.22 
         u45 0.25 -0.30 0.68 0.27 -0.27 0.68 17.71 
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         o45 0.77 0.37 0.93 0.69 0.25 0.90 14.08 

Table 3. ICC and CV results of abrupt movements generated by the acoustic alarm. 

         
 ICC (3,1) 

Lower limit 

95% CI 

for ICC (3,1) 

Upper limit 

95% CI 

for ICC (3,1) 
ICC (1,1) 

Lower limit 

95% CI 

for ICC (1,1) 

Upper limit 

95% CI 

for ICC (1,1) 
CV (%) 

         

rFR 

all 0.57 0.25 0.78 0.58 0.25 0.78 13.42 
         no_o 0.52 0.17 0.76 0.53 0.19 0.76 12.96 
         u45 0.62 0.16 0.86 0.59 0.12 0.85 15.64 
         o45 0.53 -0.03 0.84 0.55 0.02 0.84 10.83 
         

lFR 

all 0.50 0.14 0.74 0.51 0.16 0.74 13.65 
         no_o 0.78 0.55 0.90 0.78 0.71 0.95 10.34 
         u45 0.69 0.27 0.89 0.71 0.32 0.89 13.64 
         o45 0.08 -0.50 0.60 0.11 -0.46 0.62 13.67 
         

lLA 

all 0.61 0.30 0.81 0.62 0.31 0.81 13.19 
         no_o 0.77 0.54 0.89 0.77 0.54 0.89 10.71 
         u45 0.68 0.26 0.89 0.70 0.31 0.89 14.14 
         o45 0.34 -0.26 0.75 0.30 -0.28 0.73 12.08 

In industrial scenarios, deep learning techniques can be involved to provide the robot with 
important information about the human motion in real-time. Consequently, these results suggest 
updating the network training within around 45 days. Indeed, as reported in literature [19], 
repeatability can be considered poor if ICC < 0.4, fair-to-good if 0.4 ≤ ICC < 0.75, and excellent if ICC 
≥ 0.75. Observing results related to u45 condition, average values of ICCs are 0.78 for normal 
movements, 0.48 for abrupt movements generated by the visual alarm, and 0.68 for abrupt 
movements generated by the acoustic alarm. As expected, normal movements are characterized by 
an excellent repeatability because they are repetitive and predictable. Accordingly, when abrupt 
gestures occur, the involved higher accelerations cause less controlled movements and hence produce 
lower ICCs values. In particular, even if both values are fair-to-good, the lighting of visual alarms 
occurred in different stations whereas the lighting of the sound buzzer caused always the same 
abrupt movement. Consequently, ICCs values related to the abrupt_acoustic movements are higher 
than the ones associated with abrupt_visual movements. In general, these values of ICCs also 
highlight the suitability of MIMUs to conduct this kind of analysis. 

The main limit of this study is represented by the specific task required to participants, although 
one of the most common in the industrial field. In this regard, current activities consist in 
investigating other typical industrial tasks also from other MIMUs positioned on upper arms and 
trunk. In order to have a wider and more homogeneous sample of subjects, the same experimental 
campaign is going to be extended to around 100 participants. Considering the importance of 
unexpected situations in terms of safety in human-machine interaction, current efforts also aim 
exploiting deep learning techniques to distinguish between normal and abrupt movements. 
Moreover, great attention is dedicated to the achievement of real-time processes. 

5. Conclusions 

The present study aimed at evaluating the test-retest repeatability of a typical industrial pick-
and-place gesture composed of both normal and regularly paced movements and abrupt movements 
caused by randomly generated visual or acoustic alarms. Acceleration RMS values obtained from 
MIMUs on forearms were exploited for conducting this analysis. The proposed study is a first step 
in optimizing the real-time human activities recognition and hence improving human-machine 
interaction in terms of safety and effectiveness. Overall, results demonstrated an excellent test-retest 
repeatability for normal movements and a fair-to-good test-retest repeatability for abrupt 
movements. In detail, the removal of outliers did not produce significant improvements in 
repeatability, whereas the reduction of time between test and retest sessions increased repeatability 
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indices. The general test-retest repeatability highlighted that the proposed procedure and the selected 
instruments are promising for improving the human gestures recognition in industrial scenarios of 
human-machine interaction. 

Author Contributions: Conceptualization, E.D., E.C, M.P., L.G. and S.P.; methodology, E.D., E.C, M.P., L.G. and 
S.P.; investigation and data collection, E.D., M.P and E.C.; data post-processing, E.D. and E.C.; writing—original 
draft preparation, E.D., E.C. and M.A.; writing—review and editing, E.D., E.C, M.A, L.G. and S.P.; supervision, 
L.G. and S.P.; funding acquisition, L.G. and S.P. All authors have read and agreed to the published version of 
the manuscript. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. ISO/TS 15066:2016 (2016) Robots and robotic devices - Collaborative robots. Geneva. 
2. Digo E, Antonelli M, Cornagliotto V, Pastorelli S, Gastaldi L (2020) Collection and analysis of human upper 

limbs motion features for collaborative robotic applications. Robotics 9:33. 
https://doi.org/10.3390/ROBOTICS9020033. 

3. Digo E, Gastaldi L, Antonelli M, Pastorelli S, Cereatti A, Caruso M (2022) Real-time estimation of upper 
limbs kinematics with IMUs during typical industrial gestures. Procedia Comput Sci 200:1041–1047. 
https://doi.org/10.1016/j.procs.2022.01.303. 

4. Boldo M, Bombieri N, Centomo S, De Marchi M, Demrozi F, Pravadelli G, Quaglia D, Turetta C (2022) 
Integrating Wearable and Camera Based Monitoring in the Digital Twin for Safety Assessment 
in the Industry 4.0 Era. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics) 13704 LNCS:184–194. https://doi.org/10.1007/978-3-031-
19762-8_13/TABLES/1. 

5. De Feudis I, Buongiorno D, Grossi S, Losito G, Brunetti A, Longo N, Di Stefano G, Bevilacqua V (2022) 
Evaluation of Vision-Based Hand Tool Tracking Methods for Quality Assessment and Training in Human-
Centered Industry 4.0. Applied Sciences 2022, Vol 12, Page 1796 12:1796. 
https://doi.org/10.3390/APP12041796. 

6. Cohen Y, Faccio M, Galizia FG, Mora C, Pilati F (2017) Assembly system configuration through Industry 
4.0 principles: the expected change in the actual paradigms. IFAC-PapersOnLine 50:14958–14963. 
https://doi.org/10.1016/J.IFACOL.2017.08.2550. 

7. Meziane R, Li P, Otis MJD, Ezzaidi H, Cardou P (2014) Safer hybrid workspace using human-robot 
interaction while sharing production activities. ROSE 2014 - 2014 IEEE International Symposium on 
RObotic and SEnsors Environments, Proceedings 37–42. https://doi.org/10.1109/ROSE.2014.6952980. 

8. Kirschner RJ, Burr L, Porzenheim M, Mayer H, Abdolshah S, Haddadin S (2021) Involuntary motion in 
human-robot interaction: Effect of interactive user training on the occurrence of human startle-surprise 
motion. ISR 2021 - 2021 IEEE International Conference on Intelligence and Safety for Robotics 28–32. 
https://doi.org/10.1109/ISR50024.2021.9419526. 

9. Görür OC, Rosman B, Sivrikaya F, Albayrak S (2018) Social Cobots: Anticipatory Decision-Making for 
Collaborative Robots Incorporating Unexpected Human Behaviors. ACM/IEEE International Conference 
on Human-Robot Interaction 398–406. https://doi.org/10.1145/3171221.3171256. 

10. Rosso V, Gastaldi L, Pastorelli S (2022) Detecting Impulsive Movements to Increase Operators’ Safety in 
Manufacturing. Mechanisms and Machine Science 108 MMS:174–181. https://doi.org/10.1007/978-3-030-
87383-7_19. 

11. Polito M, Digo E, Pastorelli S, Gastaldi L (2023) Deep Learning Technique to Identify Abrupt Movements 
in Human-Robot Collaboration. 73–80. https://doi.org/10.1007/978-3-031-32439-0_9. 

12. Digo E, Pastorelli S, Gastaldi L (2022) A Narrative Review on Wearable Inertial Sensors for Human Motion 
Tracking in Industrial Scenarios. Robotics 11:. https://doi.org/10.3390/robotics11060138. 

13. Añazco EV, Han SJ, Kim K, Lopez PR, Kim TS, Lee S (2021) Hand gesture recognition using single patchable 
six-axis inertial measurement unit via recurrent neural networks. Sensors (Switzerland) 21:1–14. 
https://doi.org/10.3390/s21041404. 

14. Rivera P, Valarezo E, Choi M-T, Kim T-S Recognition of Human Hand Activities Based on a Single Wrist 
IMU Using Recurrent Neural Networks. https://doi.org/10.18178/ijpmbs.6.4.114-118. 

15. Sopidis G, Haslgrübler M, Azadi B, Anzengruber-Tánase B, Ahmad A, Ferscha A, Baresch M, Baresch M 
2022 Micro-activity recognition in industrial assembly process with IMU data and deep learning. 
https://doi.org/10.1145/3529190.3529204. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 June 2023                   doi:10.20944/preprints202306.1383.v1

https://doi.org/10.20944/preprints202306.1383.v1


 10 

 

16. Bangaru SS, Wang C, Aghazadeh F (2020) Data quality and reliability assessment of wearable emg and 
IMU sensor for construction activity recognition. Sensors (Switzerland) 20:1–24. 
https://doi.org/10.3390/s20185264. 

17. Teufl W, Miezal M, Taetz B, Fröhlich M, Bleser G (2018) Validity, test-retest reliability and long-term 
stability of magnetometer free inertial sensor based 3D joint kinematics. Sensors (Switzerland) 18:. 
https://doi.org/10.3390/s18071980. 

18. Wilmes E, Bastiaansen BJC, de Ruiter CJ, Vegter RJK, Brink MS, Weersma H, Goedhart EA, Lemmink 
KAPM, Savelsbergh GJP (2023) Construct Validity and Test-Retest Reliability of Hip Load Compared With 
Playerload During Football-Specific Running, Kicking, and Jumping Tasks. Int J Sports Physiol Perform 
18:3–10. https://doi.org/10.1123/ijspp.2022-0194. 

19. Henriksen M, Lund H, Moe-Nilssen R, Bliddal H, Danneskiod-Samsøe B (2004) Test-retest reliability of 
trunk accelerometric gait analysis. Gait Posture 19:288–297. https://doi.org/10.1016/S0966-6362(03)00069-9. 

20. Weir JP (2005) QUANTIFYING TEST-RETEST RELIABILITY USING THE INTRACLASS CORRELATION 
COEFFICIENT AND THE SEM. 

21. Moe-Nilssen R (1998) Test-Retest Reliability of Trunk Accelerometry During Standing and Walking. 
22. Koo TK, Li MY (2016) A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for 

Reliability Research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012. 
23. Shechtman O (2013) The Coefficient of Variation as an Index of Measurement Reliability. pp 39–49. 
24. Peppoloni L, Filippeschi A, Ruffaldi E (2014) Assessment of task ergonomics with an upper limb wearable 

device. In: 22nd Mediterranean Conference on Control and Automation (MED 2014). IEEE, pp 340–345. 
25. Giannini P, Bassani G, Avizzano CA, Filippeschi A (2020) Wearable sensor network for biomechanical 

overload assessment in manual material handling. Sensors (Switzerland) 20:1–29. 
https://doi.org/10.3390/s20143877. 

26. Yan X, Li H, Li AR, Zhang H (2017) Wearable IMU-based real-time motion warning system for construction 
workers’ musculoskeletal disorders prevention. Autom Constr 74:2–11. 
https://doi.org/10.1016/J.AUTCON.2016.11.007. 

27. Li J, Lu Y, Nan Y, He L, Wang X, Niu D (2018) A Study on Posture Analysis of Assembly Line Workers in 
a Manufacturing Industry. Advances in Intelligent Systems and Computing 820:380–386. 
https://doi.org/10.1007/978-3-319-96083-8_50. 

28. Al-Yacoub A, Buerkle A, Flanagan M, Ferreira P, Hubbard EM, Lohse N (2020) Effective Human-Robot 
Collaboration through Wearable Sensors. IEEE Symposium on Emerging Technologies and Factory 
Automation (ETFA 2020) 2020-Septe:651–658. https://doi.org/10.1109/ETFA46521.2020.9212100. 

29. Resende A, Cerqueira S, Barbosa J, Damasio E, Pombeiro A, Silva A, Santos C (2021) Ergowear: An 
ambulatory, non-intrusive, and interoperable system towards a Human-Aware Human-robot 
Collaborative framework. In: 2021 IEEE International Conference on Autonomous Robot Systems and 
Competitions (ICARSC). IEEE, pp 56–61. 

30. Škulj G, Vrabič R, Podržaj P (2021) A Wearable IMU System for Flexible Teleoperation of a Collaborative 
Industrial Robot. Sensors (Switzerland) 21:5871. 

31. Chico A, Cruz PJ, Vásconez JP, Benalcázar ME, Álvarez R, Barona L, Valdivieso ÁL (2021) Hand Gesture 
Recognition and Tracking Control for a Virtual UR5 Robot Manipulator. In: 2021 IEEE Fifth Ecuador 
Technical Chapters Meeting (ETCM). IEEE, pp 1–6. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 
products referred to in the content. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 June 2023                   doi:10.20944/preprints202306.1383.v1

https://doi.org/10.20944/preprints202306.1383.v1

