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Abstract: Oestrogen receptor expression in breast cancer (BC) cells is a marker of high cellular

differentiation and allows the identification of two BC groups (ER-positive and ER-negative) that,

although not completely homogeneous, differ in biological characteristics, clinical behaviour and

therapeutic options. The study, based on three publicly available EWAS datasets, focuses on the

comparison between these two groups of breast cancer using an epimutation score. The score is

calculated not only based on the presence of the epimutation but also on the deviation amplitude of

the methylation outlier value. For each dataset, we performed a functional analysis based first on

the functional gene region of each annotated gene (we aggregated the data per gene region TSS1500,

TSS200, first-exon, body-gene identified by the information from the Illumina Data Sheet) and then

we performed a pathway enrichment analysis through the REACTOME database based on the genes

with the highest epimutation score. Thus, we blended our results and found common pathways for

all three data sets. We found that a higher and significant epimutation score due to hypermethylation

in ER-positive BC is present in the promoter region of the genes belonging to the SUMOylation

pathway, the NOTCH pathway, the IFN-γ signalling pathway and the deubiquitination protease

pathway; while a higher and significant level of epimutation due to hypomethylation in ER-positive

BC is present in the promoter region of the genes belonging to the ESR-mediated pathway. The

presence of this state of promoter hypomethylation in the ESR-mediated signalling genes is consistent

and coherent with an active signalling pathway mediated by oestrogen function in the group of

ER-positive BC. SUMOylation and NOTCH pathways are associated with BC pathogenesis and have

been found to play distinct roles in the two BC subgroups. We speculated that the altered methylation

profile may play a role in regulating signalling pathways with specific functions in the two subgroups

of ER-BC.

Keywords: epimutation score;breast cancer; EWAS; stochastic epimutation; methylation; epigenetic

association study; epimutation; NOTCH; SUMO; ESR

1. Introduction

Breast cancer (BC) is the most common tumour in women around the world [77]. Several

classification methods have been used to capture the wide heterogeneity of BC: immunohistochemical

techniques, molecular features, histological phenotypes and gene expressions. Immunohistochemically

(IHC), BC can be classified based on the expression of the oestrogen receptor (ER), the progesterone

receptor (PR) and the receptor tyrosine-protein kinase erbB-2 (HER2) [1]. The immunohistochemical

guidelines recommend that BC is considered ER-positive if at least one per cent of the nuclei of
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BC cells are stained, and otherwise ER-negative [2]. ER expression is considered a marker of high

cellular differentiation, plays an important role in prognosis and is a predictive marker of response

to endocrine therapy. Although the two BC groups identified in this way (ER positive/ ER negative)

are not completely homogeneous, they differ in their biological characteristics, clinical behaviour and

therapeutic options [3].

Although BC is known to arise from an accumulation of genetic and epigenetic alterations, the

molecular pathogenesis of this tumour is still not fully understood. DNA methylation is one of the

best characterised epigenetic alterations involved in carcinogenesis [4]. There are a growing number

of reports demonstrating the importance of epigenetic processes in BC pathogenesis and treatment

resistance. Several studies have investigated the DNA methylation pattern in BC using genome-wide

arrays and DNA alteration profiling. DNA methylation changes are considered early events in breast

cancer progression and are widely accepted as early molecular markers for diagnosis, prognosis and

prediction of invasive recurrence [5–8].

In the literature different kind of cancer epigenetic analysis can be found. In most reports, the

mean methylation level (differential methylation), calculated for each CpG site in human BC, is

compared with that in adjacent non-cancerous breast tissue or in normal breast tissue from cancer-free

women [9,10]. Other reports have investigated the presence of epigenetic mutations - also defined as

“epimutations” or stochastic epigenetic mutations (SEMs) - in breast tissue or in white blood cells from

patients with breast cancer [11,12]. However, different definitions of epimutation have been reported in

the literature based on the variability or interquartile range of distributions of methylation beta values

[13,14], and their biological significance is not yet clear. In any case, both types of epigenetic studies

(based on differential methylation or epimutations) usually involve a gene-centred analysis, capturing

genes that have altered mean differential methylation or different epimutation burden. However,

detecting the recurrence of rare alterations often requires a large number of samples and presents

an even greater challenge in distinguishing between functionally relevant or "driving" alterations

and non-oncogenic “passenger" events that may have no functional impact, particularly in tumour

types with a high background of genetic or epigenetic alterations [15]. Pathway-focused analysis, as

opposed to gene-focused one, allows the identification of recurrent altered signals or functions in

cancer, based on changes found in different genes belonging to the same pathway but not altered at

the same frequency [15].

This study evaluates the presence of epimutations in the two main groups of BCs

(ER-positive/ER-negative) identified by the presence of oestrogen receptors as used in clinical practise

and defined by current IHC guidelines. We retrieved data from three publicly available datasets

and examined the presence of epimutations for each dataset, weighted by their difference from the

interquartile range of the distribution of methylation levels in the samples of the entire dataset. We then

calculated an epimutation score aggregating the data per gene region (TSS1500, TSS200, first exon, gene

body) for each gene in each BC sample. Then, we performed a pathway enrichment analysis through

the REACTOME database, based on the genes with a significantly higher epimutation score. Finally,

we intersected the pathways found in the three datasets. These molecular pathways were characterised

by a significantly higher epimutation score in the promoter regions in ER-positive BC samples due

to hypomethylation or hypermethylation. The SUMOylation, the Notch, the interferon-γ and the

deubiquitination proteases pathways, are those identified by a significant higher epimutation score

due to hypermethylation. The ESR-mediated-signalling pathway, on the other hand, is the pathway

with a higher epimutation score due to hypomethylation. Interestingly, for all these pathways, there

are many studies demonstrating their role in the development of BC, especially for the SUMOylation

and Notch pathways, which are directly or indirectly (by affecting many other pathways) involved in

the development, progression, relapse and treatment resistance of BC. Therefore, we speculate that our

findings may highlight the importance of the epimutation process in the pathogenesis of different types

of breast cancer and that a deeper knowledge of these pathways could likely lead to new therapeutic

options to differentially and specifically treat different BC entities. In addition, it cannot be excluded
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that different mechanisms of molecular alterations (for example, epigenetic versus gene mutation)

could involve different genes and signalling pathways. In fact, we obeserved that the Notch and the

SUMOylation pathways are overloaded with epimutations and do not have a high number of genetic

mutations, as confirmed by other gene expression studies [17,18]. Finally, since epimutations affected

a few specific signalling pathways, it cannot be excluded that an apparently stochastic process such as

the epigenetic one could be at least partially under deterministic control, as already suggested by other

authors [30].

2. Materials and Methods

2.1. Selection, downloading and preprocessing of the data sets

For our study, we selected publicly available datasets with methylation profiles of breast cancer

tissue in patients of Caucasian ethnicity. The presence of immunohistochemical assessment of oestrogen

receptor status on breast cancer cells was a preferred indicator for dataset selection. Other clinical

characteristics included patient age and tumour stage, which are generally considered associated to

cancer cell methylation status [13,16]. We identified three datasets: the TCGA-BRCA and the TGCA

27k from the TCGA data portal [80], with raw idat files, and the GSE69914 dataset [81], from the GEO

data portal, with a matrix of beta values already subjected to preliminary quality control.

TCGA-BRCA and GSE69914 datasets were created using Illumina Methylation technology with

450k probes, while the dataset TCGA-BRCA -27k was created using Illumina methylation technology

with 27k probes. All three datasets contain information on immunohistochemically identified oestrogen

receptor status according to the latest clinical guidelines, while age and staging are only available for

the two TCGA datasets.

The characteristics of the three data sets are summarized in Table 1.

Table 1. Characteristics of the three datasets used for our analysis.

Dataset name Number of samples Age available Technology Format Number of probes (% of total)

TCGA-BRCA [80] 521 Yes Human Methylation 450 RAW (idat files) 385578 (79,41%)
TCGA-BRCA-27K [80] 180 Yes Human Methylation 27 RAW (idat files) 25522 (92,54%)

GSE69914 [81] 302 No Human Methylation 450 TXT (beta-values matrix) 290250 (59,78%)

Datasets were downloaded using the R GenomicDataCommons [52] package for the TCGA

platform and the R GEOquery [53] package for the GEO Accession Omnibus [54] platform. All data

processing was performed using the R 4.2.2 ecosystem on a server with 32 cores, 128 Gb RAM and

4 Tb hard disk. Data from the TCGA-BRCA and TCGA-BRCA -27K datasets were imported using

the ChAMP package [50], removing probes with missed values or a detection P-value greater than

1% or with a beads count of less than three in 5% or more of samples. A sample was removed if

more than 10% of the probes were lost due to quality issues. Probes related to SNPs and multi-hit

probes were removed. The datasets were also normalised using the SWAN method. Probes on sexual

chromosomes remain intact. The GSE69914 dataset was a matrix of beta values that had already

undergone pre-processing quality control as indicated in the poster information on the GEO website.

Table 1 shows the characteristics and the number of probes of each dataset after quality preprocessing.

After the preprocessing steps, the resulting matrix expresses the Beta- values coefficients of

methylation. The Beta-value method has a direct biological interpretation - it roughly corresponds to

the percentage of a site that is methylated. However, from an analytical and statistical perspective, the

Beta-value method has strong heteroskedasticity outside the mean methylation range, which is a major

problem in the application of many statistical models. In comparison, the M-value method, which

is roughly equivalent to a logarithmic transformation of the beta value, is statistically more valid in

differential and other statistical analyses because it is approximately homoscedastic and the difference

of the M-value can be interpreted as the fold-change [55]. Therefore, we applied a transformation of

the Beta- value to M-value to our data and performed our next analysis with M-values. The M-values

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 June 2023                   doi:10.20944/preprints202306.1361.v1

https://doi.org/10.20944/preprints202306.1361.v1


4 of 23

were obtained directly via the ChAMP package after a pre-processing check for the TCGA data portal

datasets, while we transformed the beta-values of the GEO dataset into M-values via the beta2m

function of the lumi R package [56].

2.2. DNA methylation analysis

Since DNA methylation is a process known to correlate with age, the biological age for the GEO

dataset GEO69914 was derived using the GP-age package, even though this process is only validated

for blood and not for all tissue types. We then calculated the epithelial component for each sample

using EpiDISH [51], an R package for deriving the proportions of a priori known cell types in a sample

representing a mixture of such cell types. This package can be used for DNAm data from whole blood,

general epithelial tissue and breast tissue. Finally, PCA analysis of the methylation data assessed the

correlation of methylation M values with age, epithelial components of breast tissue and tumour stage.

2.3. Epimutation detection

To identify an epimutation, the method described by Gentilini et al. [16] was used. At the

beginning, each data set was considered as an independent experiment. For each dataset, the

distribution of the M-value of each CpG probe in the dataset population was calculated. Then,

we obtained the inter-range quantile (IRQ) of the distribution of the M-values of each CpG probe and

defined the probe in the sample as epimutated if its methylation level was outside the interval defined

by the limits defined in the following equations for the lower limit

Lmin = Q1 − (3xIQR) (1)

and the following equation for the upper limit

Lmax = Q3 + (3xIQR) (2)

Using the package semseeker [79] with the semseeker function, we calculated the absolute value of

the difference (delta, δ) between the Mvalue of each probe minus the corresponding limit of the interval

used to define an epimutation for all probes: |”M − Value” − Lmax| if it was a hypermethylated probe,

or |Lmin − ”M − Value”| if it was a hypomethylated probe. The probes with an M-Value within the

defined range between Lmax and Lmin were set to zero. In turn, we calculated the distribution of deltas

for both hypermethylated probes and hypomethylated probes. We then applied the quartile ranking of

absolute delta values to the whole genome and assigned a score from 1 to 4 to each quartile. In this way,

we not only determined the presence of a single epimutation but also ranked the epimutation weight of

the whole genome; the higher was the deviant value, the higher was the rank of the epimutation. The

quantile ranking was applied to eliminate technical bias in methylation measurement. To quantify the

total epimutation weight of each gene region (TSS1500, TSS200, 1st-Exon, Body- gene), all probes were

annotated using the official Illumina manifest file [78], using the hg19 genome version as reference.

Finally, the scores of the probes belonging to the same gene region (TSS1500, TSS200, first exon,

body gene) are summed for each annotated gene. At the end, two synthetic values for the score of

each gene region are obtained for each sample: one for the hypermethylated probes and one for the

hypomethylated probes. These results are called weighted stochastic epimutation scores (WSEMS).

Finally, for each gene region, a quantile regression model (at the median) was applied between

the WSEMS obtained for both the hypomethylated and hypermethylated gene regions and oestrogen

receptor status using age, epithelial proportion, and clinical stage (available for both TCGA datasets)

as covariates.

ERstatus ∼ EpimutationBurden + Age + Stage + Epithelialcomponent (3)

The quantile regression model was calculated using the R package lqmm [49]. All results were corrected

for multiple testing using [48] Benjamini and Hochberg method.
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2.4. Identification of genes and pathways

Quantile regression results were filtered to identify gene regions with statistically significant

epimutation burden (hypo- or hypermethylated), and pathway analysis was performed using the

pathfindR R package [57]. As a result, pathfindR generates a table with the ID and the name of the

pathway resulting from the enriched analysis with the significant gene regions, the lowest adjusted

p-value of the given term over all iterations (lowestp), the highest adjusted p-value of the given term

over all iterations (highestp), the number of occurrences of this gene in the pathway over all iterations.

Finally, the pathways identified in each dataset were intersected to find the common pathways among

all datasets.

3. Results

3.1. Clinical and biological characteristics of BC patients and tumour samples

We began by downloading three publicly available data sets. Table 2 summarises the clinical and

biological characteristics of the patients in the three datasets.

Table 2. The clinical characteristics of the patients and the tumour samlples of the three data sets used

for our analysis.

Dataset Age (std) Stage I Stage II Stage III Stage IV ER+ ER- n (patients)

TCGA-BRCA 57.65 (12.74) 91 (17%) 281 (54%) 145 (28%) 4 (0.77%) 426 (82%) 95 (18%) 521 (52%)
GSE69914 49.93 (5.62) - - - - 254 (84%) 48 (16%) 302 (30%)

TCGA-BRCA-27k 59.19 (13.11) 46 (26%) 107 (59%) 20 (11%) 7 (3.89%) 140 (78%) 40 (22%) 180 (18%)

Anamnestic personal age is not available in the GSE69914 dataset; therefore, biological age was

derived from the same methylation data using an algorithm based on blood methylation data, although

only cancer tissue data were available. The mean age was 57.65 ± 12.74 years in the TCGA-BRCA

dataset, 49.93 ± 5.62 years in the GSE69914 dataset, and 59.19 ± 13.11 years in the TCGA-BRCA -27k

dataset. The clinical stage was not included in the GSE 69914 dataset. The distribution of the clinical

stage of BC in the other two datasets for which it is available is similar and consistent with reports in

the literature, with the most part of the cases occurring in the first two stages of BC [77]. As reported

in the literature, the ratio of ER-positive to ER-negative BC is also about 80-20 per cent [19].

3.2. Analysis of methylation profiles of BC tissues

After preprocessing analysis, a correlation was evaluated between the methylation profile of BC

samples and the following three factors: patient age, clinical stage, and epithelial components of BC

samples, which are known variables affecting the methylation profile of BC tissues [4,5]. Therefore, we

performed PCA analysis and confirmed that these variables were correlated with the methylation data.

Finally, we included the epithelial component, patient age, and clinical stage as covariates in our final

regression model (as described in Materials and Methods).
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Figure 1. The corplot diagram of the correlation test between each principal component and phenotypic

trait for the GSE69914 study

Figure 2. The corplot diagram of the correlation test between each principal component and phenotypic

trait for the TCGA-BRCA study

Figure 3. The corplot diagram of the correlation test between each principal component and phenotypic

trait for the TCGA-BRCA-27k study

3.3. Epigenetic mutation analysis and definition of “epimutation score”

In this study, we investigated the association of epimutation score in two main groups of breast

cancer identified immunohistochemically by oestrogen receptor expression according to the latest
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clinical guidelines. We began by analysing methylation data from one data set at a time. We determined

an “epimutation score” for each gene region as explained in the Method section. We then applied

a quantile regression model to the median for each gene region for each type of epimutation that

occurred (by hypermethylation and hypomethylation). In this way, we obtained the beta regression

coefficients explaining how much the epimutation burden differs between the two groups. We plotted

the beta regression coefficients for the expression of ER and their corresponding p-values in the volcano

plots in Figures 4 and 5
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Figure 4. The figure represents the volcano plot for each genomics area: each dot represents, for each

gene, the quantile regression beta coefficient and the corresponfing −log10(pvalue). All the four plots

represent the genes affected by an epimutation score due to hypermethilation.
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Figure 5. The figure represents the volcano plot for each genomics area: each dot represents, for each

gene, the quantile regression beta coefficient and the corresponfing −log10(pvalue). All the four plots

represent the genes affected by an epimutation score due to hypomethilation.

We interpreted the positive beta coefficients (on the right of the vertical axis) as a measure of the

higher total epimutation burden in the gene region for ER-positive BC compared with ER-negative BC

and the negative beta coefficients (on the left of the vertical axis) as a measure of the higher burden of

epimutated probes in the gene region present in ER-negative BC compared with ER-positive BC; this

was applied both to hypermethylated and to hypomethylated analyses.

3.4. Identification of the most epimutated genes

Consequently, we filtered out the genes with statistically significant regression beta coefficients in

the gene regions studied. The ridge plots in Figures 6 and 7 give an idea of a large number of genes

with a statistically significant presence of epimutations, both hypomethylated and hypermethylated.
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The

Figure 6. Ridge plots. Each plot represents for each dataset the distribution of the p-value associated to

the genes that presented an epimutation burden due to hypermethylation

Figure 7. Ridge plots. Each plot represents for each dataset the distribution of the p-value associated to

the genes that presented an epimutation burden due to hypomethylation
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In this way, we obtained for each dataset a list of genes with different epimutation load in the two

BC groups (one list due to hypomethilation and one due to hypermethylation). Using these lists, we

performed pathway enrichment analysis in the Reactome database, the results of which are shown in

Tables 6–8.

Table 3. Pathways HYPO shared for dataset TCGA-BRCA 27k on TSS1500 gene area.

Description Regression Beta Genes with increased burden Genes with decreased burden

Integrin signaling 5.06 BCAR1

Table 4. Pathways HYPO shared for dataset TCGA-BRCA 27k on TSS1500 gene area.

Description Regression Beta Genes with increased burden Genes with decreased burden

Integrin signaling 7.12 FGB SRC

Table 5. Pathways HYPO shared for dataset TCGA-BRCA on TSS1500 gene area.

Description Regression Beta Genes with increased burden Genes with decreased burden

Integrin signaling 3.47 AKT1 RAP1A, SRC

Table 6. Pathways HYPER shared for dataset GSE69914 on TSS1500 gene area.

Description Regression
Beta

Genes with
increased burden

Genes with
decreased
burden

SUMOylation of transcription factors 6.33 PIAS1
RHOJ GTPase cycle 4.60 CAV1, DEPDC1B
Constitutive Signaling by NOTCH1 HD+PEST
Domain Mutants

4.36 HEY2, PSEN1

Constitutive Signaling by NOTCH1 PEST Domain
Mutants

4.36 HEY2, PSEN1

Signaling by NOTCH1 HD+PEST Domain Mutants in
Cancer

4.36 HEY2, PSEN1

Signaling by NOTCH1 PEST Domain Mutants in
Cancer

4.36 HEY2, PSEN1

Signaling by NOTCH1 in Cancer 4.36 HEY2, PSEN1
RHOQ GTPase cycle 4.29 CAV1, DEPDC1B
RHOG GTPase cycle 3.52 CAV1, DEPDC1B
Signaling by NOTCH1 3.42 HEY2, PSEN1
RAC2 GTPase cycle 2.94 CAV1, DEPDC1B
RAC3 GTPase cycle 2.75 CAV1, DEPDC1B
SUMO E3 ligases SUMOylate target proteins 2.32 DDX17, PIAS1 RARA
SUMOylation 2.23 DDX17, PIAS1 RARA

Table 7. Pathways HYPER shared for dataset TCGA-BRCA 27k on TSS1500 gene area.

Description Regression
Beta

Genes with increased burden Genes with
decreased burden

SUMOylation of transcription factors 5.93 TFAP2C TFAP2B
RHOQ GTPase cycle 5.02 CDC42BPA, CDC42EP3, OBSCN,

SYDE1
PREX1

Constitutive Signaling by NOTCH1
HD+PEST Domain Mutants

4.09 HDAC1, HDAC3, HDAC9, JAG2

Constitutive Signaling by NOTCH1 PEST
Domain Mutants

4.09 HDAC1, HDAC3, HDAC9, JAG2

Signaling by NOTCH1 HD+PEST Domain
Mutants in Cancer

4.09 HDAC1, HDAC3, HDAC9, JAG2

Signaling by NOTCH1 PEST Domain Mutants
in Cancer

4.09 HDAC1, HDAC3, HDAC9, JAG2

Signaling by NOTCH1 in Cancer 4.09 HDAC1, HDAC3, HDAC9, JAG2
RHOG GTPase cycle 3.29 ARHGDIG, DOCK3, EPHA2 PREX1
RHOJ GTPase cycle 3.23 CDC42BPA, SYDE1 PREX1
Signaling by NOTCH1 3.20 HDAC1, HDAC3, HDAC9, JAG2
RAC2 GTPase cycle 2.76 DOCK3, EPHA2, SYDE1 PREX1
RAC3 GTPase cycle 2.58 EPHA2, NOX1, SYDE1 PREX1
SUMO E3 ligases SUMOylate target proteins 2.17 CTBP1, HDAC1, L3MBTL2,

TFAP2C
DNMT3B, TFAP2B

SUMOylation 2.09 CTBP1, HDAC1, L3MBTL2,
TFAP2C

DNMT3B, TFAP2B
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Table 8. Pathways HYPER shared for dataset TCGA-BRCA on TSS1500 gene area.

Description Regression
Beta

Genes with increased burden Genes with
decreased burden

SUMOylation of transcription factors 3.43 CDKN2A, PIAS1
RHOJ GTPase cycle 3.11 FMNL3, PAK1, PAK2, RHOJ CDC42BPB
RHOQ GTPase cycle 2.90 ARHGAP17, ARHGAP33, PAK1,

PAK2
CDC42BPB

RAC2 GTPase cycle 2.79 ARHGAP17, BAIAP2L1, DOCK3,
LBR, PAK1, PAK2, VRK2

Constitutive Signaling by NOTCH1
HD+PEST Domain Mutants

2.36 DLL1, HDAC1, HDAC4, PSEN1

Constitutive Signaling by NOTCH1 PEST
Domain Mutants

2.36 DLL1, HDAC1, HDAC4, PSEN1

Signaling by NOTCH1 HD+PEST Domain
Mutants in Cancer

2.36 DLL1, HDAC1, HDAC4, PSEN1

Signaling by NOTCH1 PEST Domain Mutants
in Cancer

2.36 DLL1, HDAC1, HDAC4, PSEN1

Signaling by NOTCH1 in Cancer 2.36 DLL1, HDAC1, HDAC4, PSEN1
RAC3 GTPase cycle 2.23 ARHGAP17, BAIAP2L1, LBR,

PAK1, PAK2, VRK2
RHOG GTPase cycle 1.90 DOCK3, LBR, PAK2, VRK2
Signaling by NOTCH1 1.85 DLL1, HDAC1, HDAC4, PSEN1
SUMO E3 ligases SUMOylate target proteins 1.67 CBX2, CDKN2A, DDX17, HDAC1,

HDAC4, NR3C1, PIAS1
RARA

SUMOylation 1.61 CBX2, CDKN2A, DDX17, HDAC1,
HDAC4, NR3C1, PIAS1

RARA

All these steps are summarised in Figures 8 and 9, which are Venn diagrams of the multiple

crossing steps.

Figure 8. Pathways overlapping among the three studies due burden of probes with hypermethylation
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Figure 9. Pathways overlapping among the three studies due burden of probes with hypomethylation

3.5. Identification of common pathways

The pathways identified by the enrichment analysis of each dataset were crossed as summarised

in the Venn diagrams Figures 8 and 9. We found common pathways for the three datasets characterised

by a higher burden of epimutations in the TSS1500 gene region than for hypomethylation and

hypermethylation probes. The following tables show the pathways shared by all three datasets

analysed.

In the first Table 9 are the pathways corresponding to the pathway retrieved from the TSS1500

gene region with epimutated probes that showed significantly higher epimutation levels in ER -positive

BC versus ER -negative due to hypermethylation. We can note that most of them belong to two main

pathways, the Notch pathway and the SUMOylation pathway, which are associated with breast

cancer, as explained in the next section. Two other pathways are the UCH proteinases pathway

and the Ub-specific processing proteases pathway, both of which are related to the regulation of the

ubiquitination process, which is another post-translational protein process like SUMOylation. The

last pathway is the regulation of signal transduction processes, which have been found to affect

BC development in different ways depending on the expression of ER. We discuss the role of these

signalling pathways in the development of Lyme disease in more detail. We filtered the pathways to

obtain only those present 90% of the iterations performed by pathfindR.

Table 9. Pathways shared for datasetTSS1500 gene area due hypermethylation.

Reactome-ID Description

R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants
R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain Mutants
R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer
R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in Cancer
R-HSA-2644603 Signaling by NOTCH1 in Cancer
R-HSA-1980143 Signaling by NOTCH1
R-HSA-157118 Signaling by NOTCH

R-HSA-3232118 SUMOylation of transcription factors
R-HSA-4551638 SUMOylation of chromatin organization proteins
R-HSA-3108232 SUMO E3 ligases SUMOylate target proteins
R-HSA-2990846 SUMOylation
R-HSA-877312 Regulation of IFNG signaling

R-HSA-5689603 UCH proteinases
R-HSA-5689880 Ub-specific processing proteases
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The second Table 10 lists the pathways corresponding to those retrieved from the TSS1500 gene

region with epimuted probes that showed significantly higher epimutation levels in ER -positive BC

versus ER -negative BC due to hypomethylation. In this case, the common pathway is ESR-mediated

signalling, a known pathway associated with the effects [20,21].

Table 10. Pathways shared for datasetTSS1500 gene area due hypomethylation.

Reactome-ID Description

R-HSA-8939211 ESR-mediated signaling

4. Discussion

Breast cancer (BC) is the most common tumour in women. It is a multifactorial disease with a high

grade of heterogeneity often contributing to making breast cancer difficult to treat. Different methods

of classification, such as immunohistochemical technique, molecular characteristic and gene expression

have been used to frame this high heterogeneity in order to foresee the prognosis and to choose the

best treatment options [22,23]. Immunohistochemically, BC can be classified by the expression of

oestrogen receptors (ERs), progesterone receptors (PRs) and receptor tyrosine-protein kinase erbB-2

(HER2) [1–3]. The clinical guidelines for immunohistochemical (IHC) quantitation of steroid receptors

in BC recommend that ER and PR assays be considered positive if at least one per cent of nuclei are

stained [2]. Although the two groups of BC identified in this way (ER-positive/ER-negative) are not

completely homogeneous, the two BC groups can be differentiated by biological characteristics and

clinical behaviour [24]. It is noteworthy that the tumour ER expression is considered an element of high

cellular differentiation and has a very important role in prognosis and therapy [3]. In fact, breast cancer

prognosis progressively worsens in ER-negative subtypes due to their high aggressiveness, hormonal

therapies insensitivity and chemoresistance and a subset of patients will progress to relapse after CT

remission, which subsequently leads to metastasis. Furthermore, in patients with ER-positive BC, the

relapses have molecular characteristics similar to those of ER-negative BC [24,25]. The underlying

mechanisms of BC heterogeneity features and mechanisms that drive to therapy resistance (both

hormonal and chemotherapeutic) are conundrums that have still to be completely solved and efforts

have to be made in order to better understand the biology of BC and stratify patients to effective

treatments [24].

In our study, we tried to characterise these two groups of breast cancers (ER-positive and negative)

by applying an epigenetic score based on the identification of different epigenetic outliers (defined as

epimutations). An epimutation, at a given CpG site, could be defined as an extreme outlier of DNA

methylation value distribution across individuals [14]. Previous studies evaluated the presence of

epigenetic outliers in BC but they compared BC tumour samples vs normal breast tissue or blood

samples from BC patients vs control women without BC [14,15,27]. Teschendorff AE et al., [15]

demonstrated that DNA methylation outliers in pre-neoplastic lesions define epigenetic field defects,

marking cells which become enriched in invasive breast cancer and cervix cancer and which may

therefore contribute casually to cancer progression. In another study, the same group highlights that

the identification of outlier methylation profiles allows more reliable identification of risk-associated

CpGs than statistics based on differences in mean methylation levels [27].

4.1. Cancer cells, epigenetic mechanisms and DNA methylation

Cancer cells acquire the ability to divide and grow uncontrollably [17]. Though it is well

established that this could be due to both genomic and epigenetic alterations, the process through which

cells acquire this characteristic is not completely understood [26]. Several studies have demonstrated

the importance of epigenetic alterations in multiple aspects of cancer biology (tumour pathogenesis

and immuno-modulation), cancer diagnosis and prognosis and, finally, treatment response and therapy

resistance [26,28]. DNA methylation is one the most commonly occurring epigenetic events, in which
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there is the addition of a methyl group to the carbon 5-position of cytosine within a cytosine guanine

(CpG) dinucleotide by enzyme DNA methyltransferase. DNA methylation can be stable and heritable

through cell divisions but in the meanwhile, it is reversible and modifiable by specific enzymes [26].

Many studies report how breast cancer cells show disrupted methylation patterns in their DNA [24,29].

Moreover, DNA methylation pattern can be very specific not only for different types of tumours

(inter-tumour heterogeneity) but also for different tumour subgroups (intra-tumour heterogeneity)

and therefore has been used also to identify different cancer types and to trace the primary origin of

metastatic tumours [26,29].

In general, global DNA hypomethylation has been associated with cancer. DNA

hypomethylation can determine chromosomal instabilities and gene activation, thus leading to the

upregulation or overexpression of proto-oncogenes, increased recombination and mutation rates [29].

Hypomethylation contributes to oncogenesis also by activation of latent retrotransposons or mobile

DNA, such as long interspersed nuclear elements, that can determine disruption of expression of the

adjacent gene, for example, homeobox [26].

DNA hypermethylation in cancer, instead, is associated with a direct gene repression effect (of

tumour-suppressor genes, for example), but also with compaction of chromatin that in turn modifies

its accessibility and, finally, determines instability and alteration of gene expression (silencing of DNA

repair genes, for example) [29]. However, the inhibition or activation of transcription by methylation

is dependent on the analyzed DNA gene’s segment (promoter, TSS or gene body).

DNA hypermethylation of promoters transcription start sites (TSS) or enhancers contributes

to reducing gene expression or silencing by interfering with the binding of specific transcription

factors to their recognition sites or by binding of transcriptional repressors specific for the methylated

sequence [28]. Estecio and Issa [30] underlined that CpG island promoters are the most straightforward

compartment to evaluate when searching for aberrant DNA methylation in cancer, above all

considering that these CpG islands usually are unmethylated in normal cells (except for imprinted and

X-chromosome inactivated genes). Therefore, they speculate that these abnormally methylated gene

promoters (along with other regions with regulatory function) will likely reveal important players in

tumour biology. They reported examples of promoter hypermethylation of the CDKN2A and MLH1

genes.

On the contrary, hypermethylation at gene bodies is associated with active transcription and

gene expression, as a result of mRNA expression studies (as the case of homeobox) [26]. It has been

suggested that the sliding of RNA polymerase over the gene body attracts DNA methyltransferase

enzymes and therefore that DNA methylation in a gene body is a consequence of transcription, rather

than an active agent promoting it. Others suggested that methylation marks embedded in coding

sequences are associated with the timing of transcription initiation events [31]. Moreover, differences

in CpG methylation between exon and intron regions raise the possibility that gene body methylation

participates in splicing regulation [30]. Finally, the biological meaning of gene body methylation

remains still unclear and more studies are needed to address this issue.

Methylate marks in intergenic regions are thought to have little impact on genome activity [31].

In this study, according to previous studies, we found the most important differences of epimutation

score between the two groups of ER-positive and ER-negative breast cancer precisely in the promoters

of specific genes belonging to few pathways.

4.2. Main pathways identified by our analysis

Pathway-centric analysis, as opposed to gene-centric one, allows to identify of recurrent altered

signalling or function in cancer, based on alterations found in different genes belonging to the same

pathway but not altered at equal frequencies [17]. Moreover, evaluating the burden of epimutations

per gene region (TSS200, TSS1500, promoter, gene body and first exon) and then using these data

for gene enrichment pathway analysis, permits to capture the biological process involved by these

variations avoiding to treat individual occurrences of epigenetic marks like nucleotide polymorphisms

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 June 2023                   doi:10.20944/preprints202306.1361.v1

https://doi.org/10.20944/preprints202306.1361.v1


15 of 23

(i.e., as epialleles), since it was observed that the methylation state of any particular nucleotide in the

promoter, for example, is usually irrelevant and could represent statistically significant alterations but

functionally uninformative differences [31].

The ESR-mediated signalling was identified as the pathway whose genes are overcharged by

higher epimutation score due to hypomethylation of TSS1500 gene region (corresponding at least in

part to promoter region) in ER-positive BC vs ER-negative BC. In light of the fact that a hypomethylated

promoter could permit gene expression (even if it is not the unique condition), we interpreted this

result as coherent with a higher activation of this pathway in the BC group that expresses ER. In

this sense, previous studies centred on the role of epigenetic control of ER function, confirm our

results. This is indirectly suggested by many studies that report higher hypermethylation status of

ER-promoter in the group of ER-negative BC and that ER gene hypermethylation is associated with

lacking ER gene expression [32–35]. Moreover, other studies confirm, for example, that inhibition

of the DNA methyltransferase (DNMT) in ER-negative BC cells induces re-expression of oestrogen

receptor-alpha [36,37].

The pathways identified by a higher epimutation score due to hypermethylation of the TSS1500

gene region in ER-positive BC vs. ER-negative BC belong to the following main groups: the Notch

pathway, the SUMOylation pathway, the signalling and the ubiquitination protease signalling. Other

studies confirm that, generally, the hypermethylated loci in ER-negative tumours were clustered closer

to the transcriptional start site compared to ER-positive tumours[38] and that the cumulative effect of

a very large number of epigenetic perturbations to be correlated specifically and in cis with hundreds

of additional transcriptional changes [39].

Interestingly, the SUMOylation pathway and ubiquitination protease signalling belong to the

same kind of protein post-translational modifications.

The data about the role of signalling in BC are few and contrasting. Todorović-Raković found that

raised serum IFN-γ levels associate independently with favourable disease outcomes in hormonally

dependent breast cancer [40]. On the other side, Yu and colleagues found that IFN-γ induces tumour

resistance to anti-PD-1 immunotherapy in BC [41] and experiments on BC cells demonstrated that

IFN-γ could up-regulate the expression of PD-L1, promote cell migration and transmission and

facilitate the epithelial-mesenchymal transformation of breast cancer cells [42].

The SUMOylation and the Notch signalling are the other two pathways whose genes emerged as

characterised by a higher epimutation score due to hypermethylation in the TSS1500 gene region in

the ER-positive vs ER-negative BCs. Since we performed a direct comparison of the two BC groups,

we hypothesized that the presence of a higher hypermethylation of the gene region that overlaps

to the gene promoters, correspond to a general reduced gene expression (as discussed before) and,

consequently, to a reduced activity of these two pathways in the ER-positive BCs. Moreover, based on

the direct comparison between the two groups of BC, we speculated that the relative hypomethylation

in the ER-negative BC and could justify the hypothesis of a presence of a state of hyper-activation of

these two pathways in ER-negative BC. The presence of a significant activity of these two pathways in

the ER-negative BC group does not lack as discussed thereafter [43].

4.3. About the role of SUMOylation and NOTCH pathways in ER-negative BC and their correlation with
epithelial-mesenchymal transition (EMT) and breast cancer stem cells (BCSC)

Many studies suggest the existence of complex and intricate relations among the biological process

of Epithelial to mesenchymal transition (EMT) and cancer stem cells (CSC) phenotype. The EMT is

characterized by the acquisition of phenotypic plasticity and stem cell-like properties of the tumour

cells, including cytoskeleton adjustment, loss of cell polarity and loss of cell adhesion. During EMT,

cells lose their epithelial features and markers - like cobblestone shape and E-cadherin expression

- to acquire a mesenchymal phenotype - assuming spindle shape and mesenchymal markers, like

vimentin and fibronectin [23,44]. These mesenchymal attributes permit cancer cells to develop new

capabilities, such as migratory and invasiveness, pro-survival ability, stemness, immunosuppression

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 June 2023                   doi:10.20944/preprints202306.1361.v1

https://doi.org/10.20944/preprints202306.1361.v1


16 of 23

and chemoresistance [45]. These characteristics can lead to the formation of CSCs, maintenance of

aggressiveness, initiation of metastasis, and tumour relapse [46].

CSCs have been identified for the first time in 2003 in human breast tumours (BCSCs) and since

then a growing number of evidence has supported their role in breast cancer initiation, intratumoral

heterogeneity, progression, disease recurrence, metastasis and resistance to therapy [47]. Actually, it

is not clear the origin of CSC. In particular, the two main hypotheses are that they are cells already

present in the tumour since its origin but in a state of quiescence or, in alternative, that they originate

in a second moment through a process of de-differentiation (for example, through a process of

partial/total EMT). Finding a set of markers to identify and target these partial/total EMT cells could

lead to understanding the origin of CSCs and their deregulated pathways and could be a strategy for

therapeutics development blocking cancer invasion and dissemination [45].

The EMT and the CSC have been correlated to alterations of NOTCH and SUMOylation pathway

in ER-negative BC in many studies [23,47,58–61].

Numerous studies found that the Notch signalling activation and protein SUMOylation

may promote breast cancer tumorigenesis and progression by accelerating cell cycle transition

and proliferation and facilitating tumor cell EMT in breast epithelial cells in vivo and in vitro

[23,47,58–61,70].

Notch1 knockdown in breast cancer cells suppressed the EMT process, tumour growth, migration,

and invasion using in vitro and in vivo models. Jagged1-mediated Notch signalling activation was

able to activate the EMT process and increase migration and invasion in breast cancer mainly through

upregulation of N1ICD. Notch1 signalling is able to reverse the epithelial cobblestone morphology

cells to the spindle mesenchymal one, to induce switching of epithelial markers like E-cadherin by the

up-regulation of SNAIL, SIP1/ZEB2 and SLUG (which are E-cadherin direct transcriptional repressors)

and the acquisition of mesenchymal markers such as vimentin, N-cadherin and fibronectin to reduce

invasion and migration [47,59–61]. On the contrary, activation of Notch signalling can be suppressed

by EMT-inhibiting microRNAs such as miR-34 and miR-200 [60] The role of Notch signalling in EMT

corresponds to its promotion of invasive and metastatic phenotypes. Activation of Notch signalling

in non-invasive breast cancer cells promotes cell invasion and migration, while inhibition of Notch

in invasive cells reduces their invasive and migratory capacity [47,59–61]and Notch signalling is

correlated with metastasis in vivo [62].

On the same way, SUMOylation participates directly in modifications of many transcription

factors (TFs) and in activation of various signalling involved in the control of EMT [23,44]. Several

transcriptional factors activity - including ZEB1, SNAIL and TWIST - that regulate mesenchymal cell

marker expression, such as CDH1 (the E-cadherin gene) and promote EMT - is directly or indirectly

influenced by SUMOylation pathway. ZEB1, one of the main TFs involved in EMT, has been reported

to be regulated by SUMOylation through different mechanisms. SUMOylation of ZEB1, as well

as its homologue ZEB2, inhibits E-cadherin expression and induces EMT. Moreover, silencing of

SENP1 (which has also the function of peptidase that causes hydrolysis of SUMO bonds) decreases

ZEB1 protein level, suggesting that deSUMOylation of ZEB has a role in activating the TF [44]. By

regulating numerous oncoproteins, ZEB1 plays an important role in metastasis. In the ER-negative

basal-like breast cancer (BLBC), a breast cancer subtype enriched with expression of mesenchymal

genes and reduced expression of epithelial ones including E-cadherin [73], downregulation of CDH1 is

mediated by ZEB1, which recruits DNMT1 (a DNA metil-transferase enzyme) to the CDH1 promoter

to maintain the methylation status in the promoter. These results suggest that ZEB1 could act as

a transcriptional repressor and an epigenetic modulator to induce EMT in breast cancer [72]. A

recent study demonstrates that also ZNF451, a SUMO2/3-specific E3 ligase, is a positive regulator of

EMT through the SUMOylation of TWIST2 at the K129 residue. SUMOylation stabilizes TWIST2 by

inhibiting its ubiquitination and degradation, and, consequently, promotes EMT [44]. Two prominent

mesenchymal transcription factors, Slug and Twist1, are up-regulated in cells that present mesenchymal

characteristics. Expression levels of Slug and Twist1 are highest in ER-negative claudin-low tumors
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and both genes identify letrozole-resistant disease. Slug accumulation in basal-like tumours is also

associated with BRCA1 mutations [63]

Moreover, a direct correlation between aberrant Notch and SUMOylation pathway and the triple

negative phenotype BC has been found in many studies.

Notch signalling has been seen hyperactivated in TNBC and in ER-positive BC with poor

prognosis or with a higher risk of relapse (which have many features in common with ER-negative BC).

It was suggested that this hyperactivation could have an important role in EMT induction and BCSCs

proliferation in TNBC [24], while in ER-positive BC could induce hormone-therapy resistance [64].

Clinical analyses showed that JAG1 as well as NOTCH1, NOTCH3, and NOTCH4 are overexpressed at

high levels in TNBC and correlated with the aggressive, metastatic and therapy resistance phenotype

characteristic of TNBC and are associated with poor clinical prognosis. Moreover, expression of the

Notch target, HES4, was correlated with poor prognosis outcomes in TNBC patients [59]. Reedijk

and colleague [64] observed that patients with tumours expressing high levels of JAG1 or NOTCH1

had a significantly poorer overall survival compared with patients expressing low levels of these

genes and moreover, a synergistic effect of high-level JAG1 and high-level NOTCH1 coexpression

on overall survival was observed. Therefore, they suggest a mechanism whereby Notch is activated

in aggressive and poor prognosis breast tumours (since JAG1 is a ligand of Notch-receptor-1) and

that the basal breast cancer subgroup (belonging to ER-negative BC) shows poor overall survival as a

result of JAG1-induced Notch activation in some of these tumours [65] performed exome sequencing

analysis to identify Notch mutations in various solid tumours, revealing that constitutive receptor

activation induced by NOTCH1 and NOTCH2 mutations is limited to TNBC. A TNBC cell line with

NOTCH1 rearrangement also exhibited high-level N1ICD (notch-1 intracellular domain) accumulation

with subsequent upregulated target gene expression. In addition, NOTCH1 or NOTCH2 mutations

can synergistically act with EZH2 to inhibit the tumour suppressor PTEN transcription at the promoter

in TNBC [66].

In a gene expression study, Orzechowska M. and colleagues evaluate [67] the effect of differential

expression of Notch members on DF) in luminal type A (lumA) and triple-negative (TN) BC. This

study highlights significant differences in the biology of the two tumours and indicates differences

in the signals activating the Notch pathway and particularly suggests a role of Notch signalling in

BRCA progression through triggering EMT. From their analysis emerges that aberrant expression and

regulation of Notch receptors have the most significant influence on the course of the disease. Notably,

their results indicate that while there are subgroups of patients who will probably never experience

disease relapse, other subgroups exist within the ER-positive lumA subtype which have a higher risk

of recurrence due to potential transition into mesenchymal cell type. Moreover, their findings indicate

that the expression profiles of Notch pathway members can be used to differentiate the DFS in lumA

and TNBC subtypes, and so may serve as novel prognostic biomarkers. Finally, they highlight that

MMP11, TAGLN and THB2, three genes involved in acquiring mesenchymal phenotype and which

are regulated by the Notch pathway, can be used as potential therapeutic targets.

On the other hand, also the SUMOylation pathway seems to be involved in the maintenance of

the characteristic of TNBC and basal BC subtype (belonging to the ER-negative BC group). Bogacheck

and colleagues demonstrated that inhibition of the SUMOylation pathway reduced cell invasiveness

and induced functional loss of CSCs in basal BC [75]. Moreover, the same group in another study [58]

established that SUMOylation inhibitors induce a basal-to-luminal transition in BC cells and inhibit

tumour outgrowth of basal cancer xenografts. Wang Q and colleagues reached similar conclusions

about the relation of SUMOylation and ER-negative BC, evaluating the role of SUMO1-activating

enzyme subunti1 (SAE1), an E1-ligase-activating enzyme, indispensable for protein SUMOylation in

TNBC. They found that mRNA and protein SAE1 expression is increased in TNBC tissues compared

to adjacent normal tissue and their expression levels are significantly associated with overall survival

(OS) and disease-free survival (DFS) [74]. In the review by Zhu et al., the multiple ways through which

the SUMOylation pathway can influence stem cell functions in cancer are recapitulated [76].
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Finally, we discuss the role of epigenetic control on Notch and SUMOylation pathways.

Interestingly, DNA methylation has been confirmed to have an important role in the regulation of

Notch and SUMOylation pathways. Yousefi and colleagues, using the TCGA HumanMethylation450

Array data, determined that the epigenetic regulation of the Notch regulators contributes to their

expression and suggested that Notch receptors and ligands expression is generally associated with the

tumour subtype, grade, and stage [68]. Aithal et al., focus on the methylation status of genes in the

Notch signalling pathway from various cancers and highlight how this epigenetic alteration can be

used as a biomarker for cancer diagnosis and subsequent treatment [69]. Accordingly, to the important

role of epigenetic reprogramming and DNA methylation, Hanif and colleagues highlight how these

processes could be determinant specifically in TNBC in which we have seen that the Notch pathway

could play fundamental regulatory functions [24]. Finally, Kagara et al demonstrated that methylation

is a significant mechanism regulating CD44, CD133, and Musashi-1 which are specific BCSC-related

genes and that the hypomethylation of these genes correlates with a significant inverse correlation of

mRNA expression in TNBC subtype [71].

We want also discuss the limits of our study. First and foremost, for one dataset (GSE69914)

the patients’ age and tumour stadiation were not available; therefore, age was inferred through

methylation data, while tumour stadiation was omitted in the analysis of that dataset. Second, we

introduce an epimutation score based on quantile ranking of the difference in the methylation levels;

this is a new method of analysis that need to be validated with other studies. Finally, in the discussion

we interpreted the results of hypomehtilatyion of the genes of ESR-mediated signaling in ER-positive

BC as corresponding to an higher expression of the genes in this group of BC. Yet, we know that this

condition of hypomethylation is not sufficient to draw this conclusion. An analogous consideration

could be drawn when we considered hypermethylation promoter of genes belonging to Notch and

SUMOyaltion pathways in the ER-positive BC. In this case, we concluded that the hypermethylation

in the ER-positive BC corresponded to a reduced mehtylation in ER-negative BC (since we perfomed a

direct comparison of methylation data between these two groups of BCs); we considered this condition

potentially correlated to a higher expression of these genes in this group of ER-negative BC. We know

that these are only indirect hypotheses that need to be confirmed.
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Appendix A

Table A1. This is a table caption.

File Name Description

PATHWAYS.csv List of all pathways found with pathfindR
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