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Abstract: Since the emergence of convolutional neural networks (CNNs), and later vision transform- 1

ers (ViTs), the standard paradigm for model development has been using a set of identical block types 2

with varying parameters/hyper-parameters. To leverage the benefits of different architectural designs 3

(e.g., CNNs and ViTs), we propose alternating structurally different types of blocks to generate a 4

new architecture, mimicking how Lego blocks can be assembled. Using two CNN-based and one 5

SwinViT-based blocks, we investigate three variations to the so-called LegoNet that apply the new 6

block alternation concept for the segmentation task in medical imaging. We also study a new clinical 7

problem that has not been investigated before – the right internal mammary artery (RIMA) and 8

perivascular space segmentation from computed tomography angiography (CTA). It was proven to 9

demonstrate a prognostic value to primary cardiovascular outcomes. We compare the model perfor- 10

mance against popular CNN and ViT architectures using two large datasets (achieving 0.749 dice 11

similarity coefficient (DSC) on the larger dataset). We also evaluate the model’s performance on three 12

external testing cohorts, where an expert clinician corrected model-segmented results (DSC>0.90 for 13

the three cohorts). To assess our proposed model for suitability in clinical use, we perform intra- and 14

inter-observer variability analysis. Finally, we investigate a joint self-supervised learning approach to 15

determine its impact on model performance. 16

Keywords: Internal Mammary Artery Segmentation; Alternating Blocks; Medical Imaging Segmenta- 17

tion; Self-supervised Pretraining; LegoNet. 18

1. Introduction 19

From the early U-Net [1] to the most recent vision transformer (ViT) models [2,3], 20

deep learning (DL) segmentation architectures follow the typical style of an encoder and 21

decoder network, where the encoder is usually made of a set of identically designed blocks 22

with varying hyper-parameters. Other tasks, such as classification, detection, etc., are no 23

exception to the segmentation encoder. Although this design choice has demonstrated 24

excellent results on a wide range of applications, it is essential for the research community 25

to investigate different design alternatives. That begs the question, “Does a deep learning 26

encoder learn better representations when trained on identical or nonidentical blocks?". 27

Several papers study the selection of architectures and various components, such as 28

type and number of layers, hyperparameters, etc., under the umbrella of neural architecture 29

search (NAS) [4–6]. With a pre-defined search space, NAS approaches investigate the 30

automation of selection, which naturally means a considerable amount of time and resource 31

consumption. In [7], the authors study the knowledge-transfer task for general-purpose 32
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model reuse. Again, such approaches heavily rely on intensive network/block search in 33

the first phase and then use the selected network/blocks for model training. Additionally, 34

these methods study the blocks that are from the same family e.g., only CNN-based blocks. 35

Unlike these approaches, we handpick and study network stitching using structurally 36

different neural blocks. 37

We study the behavior of harmonizing internally nonidentical blocks to perform 38

segmentation of the right internal mammary artery (RIMA) and perivascular space from 39

two types of imaging protocols, namely computed tomography coronary angiography 40

(CTCA) and computed tomography pulmonary angiography (CTPA) scans. While several 41

works focus on combining ViT and CNN encoders together [8,9], either side-by-side or 42

sequentially, to the best of our knowledge, no work studied the block-level integration of 43

different deep learning architectures. We propose to alternate structurally different yet 44

compatible blocks with each other to build DL models. This new perspective opens many 45

avenues on how to construct the model and what blocks to choose, and we test it using three 46

different (two CNN-based and one SwinViT-based) blocks, providing three alternatives 47

of the architecture. One can think of the approach as using compatible Lego blocks to 48

assemble the structure, hence the name LegoNet. We assume that structurally varied blocks 49

could learn different features that could be beneficial to learn more discriminative features, 50

especially on complex problems such as medical image segmentation. Therefore, we aim to 51

evaluate the proposed LegoNet on a unique and challenging problem. 52

RIMA is proven to be clinically valuable in several studies [10–12]. The inflammatory 53

status of the entire vasculature can be represented by the inflammation in the RIMA and 54

perivascular region given that atherosclerotic plaque does not affect it [11,12]. In recent 55

work, Kotanidis et al. [10] studied the RIMA region by manually segmenting it to assess 56

the vascular inflammatory signature of COVID-19 SARS-COV-2 viral infection on CTPA of 57

435 patients (The C19RS inflammatory signature). This C19RS signature extracted from 58

the RIMA region is a novel non-invasive imaging biomarker that can help predict the 59

in-hospital mortality of patients. The fact that it can provide homogeneous perivascular 60

adipose tissue along its length allows us to extract reliable radiomic features from the 61

perivascular region around it. Manual segmentation is highly time-consuming and labor- 62

intensive, especially when the number of patients increases for better generalizability. 63

When new cohorts of patients are to be segmented from the ORFAN study, for example, an 64

automatic approach for RIMA segmentation is particularly beneficial. Localizing the RIMA 65

region is challenging because it is a small rounded structure on the axial view but elongated 66

vertically in the chest. Therefore, this work investigates the problem of segmenting the 67

RIMA and perivascular space from CT angiography scans. 68

The main contributions of our work are as follows: 69

• We propose a new concept of alternating different deep learning blocks to construct a 70

unique architecture that demonstrates how the aggregation of different block types 71

could help learn better representations. 72

• We propose a joint self-supervised method of inpainting and shuffling as a pretraining 73

task. That enforces the models to learn a challenging proxy task during pretraining, 74

which helps improve the finetuning performance. 75

• We introduce a new clinical problem to the medical image analysis community; i.e., 76

the segmentation of the RIMA and perivascular space, which can be helpful in a range 77

of clinical studies for cardiovascular disease prognosis. 78

• Finally, we provide a thorough clinical evaluation on external datasets through intra- 79

observer variability, inter-observer variability, model-versus-clinician analysis, and 80

post-model segmentation refinement analysis with expert clinicians. 81

2. Materials and Methods 82

We propose a simple yet effective concept of alternating different blocks to construct 83

a DL architecture. The concept is similar to how Lego blocks are constructed together 84

to build a standing structure. The only constraint is the compatibility of structures with 85
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(a) (b) (c)

Figure 1. The figure shows the inner structure of each block type used for our model construction. (a)
is the squeeze-and-excitation block; (b) is the Swin block; and (c) is the UX block.

each other while assembling them. We explore the concept of building a DL network from 86

nonidentical blocks to hopefully benefit from the strength of these different blocks. We 87

propose to alternate two blocks in a single architecture, with three different types of blocks 88

to choose from. 89

2.1. Building Blocks 90

2.1.1. SE block 91

Squeeze-and-excitation (SE) block consists of stacks of a 3 × 3 × 3 convolutional block 92

with residuals, a ReLU activation function, and a SE normalization (norm) module [13] 93

within the layers. Figure 1(a) depicts the complete block. SE norm is similar to instance 94

norm (IN) [14], but different in the parameters γi and βi in Equation 1. IN treats them as 95

fixed parameters, while in SE norm, they are modeled as functions of input [13]. 96

yi = γix
′
i + βi (1)

where x′i is the mean of a batch of input data X, and γi and βi are the scale and shift 97

normalization values. 98

2.1.2. Swin block 99

Swin transformer [15] with shifted windows boosted the performance of ViT-based 100

models due to its ability to capture global and local information. We employ the Swin 101

block to see its compatibility with other CNN-based blocks and how well it performs in 102

conjunction. The block consists of a linear normalization, regular and window partitioning 103

multi-head attention (W-MSA and SW-MSA, respectively), and MLP, with skip connections 104

as shown in Figure 1(b) and Equation 2 (left). 105

2.1.3. UX block 106

The UX block, recently proposed in [16], is a convolution-based network block that 107

relies on large kernel sizes and depth-wise convolutions. It mimics the Swin block in 108

structure but uses depth-wise convolution (DWC) using 7 × 7 × 7 kernels, depth-wise 109

convolutional scaling (DCS), and linear normalization as illustrated in Figure 1(c) and 110

Equation 3 (right). 111

The outputs of the Swin and UX blocks, respectively, are computed in the sequential 112

layers of l and l + 1 as: 113

ẑl = W-MSA(LN(zl−1)) + zl−1,

zl = MLP(LN(ẑl)) + ẑl ,

ẑl+1 = SW-MSA(LN(zl)) + zl ,

zl+1 = MLP(LN(ẑl+1)) + ẑl+1, (2)

ẑl = DWC(LN(zl−1)) + zl−1,

zl = DCS(LN(ẑl)) + ẑl ,

ẑl+1 = DWC(LN(zl)) + zl ,

zl+1 = DCS(LN(ẑl+1)) + ẑl+1, (3)

114

115

116

where ẑl and zl are the outputs of the modules, W-MSA and SW-MSA denote regular 117

and window partitioning multi-head self-attention modules, respectively, and DWC and 118
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Figure 2. The figure shows LegoNetV2 architecture. F1−4 indicate the feature size, which is set to
{24, 48, 96, 192}, and S is the hidden size, set to 768. This typical U-shaped architecture utilizes the
block alternation concept, switching between Swin and SE blocks in the encoder in this example. The
decoder is kept the same for all the variations of the model.

DCS denote depthwise convolution (with kernel size starting from 7 × 7 × 7) and depthwise 119

convolution scaling modules, respectively. 120

2.2. LegoNet Architecture 121

The proposed network uses combinations of the aforementioned blocks. The input 122

in the size of X ∈ R
H×W×D×C (where H, W, D and C correspond to dimensions and the 123

number of channels, respectively) goes through a stem block, as shown in Figure 2. It is 124

two 3D convolutional blocks with 7 × 7 × 7 and 3 × 3 × 3 kernel sizes, respectively, which 125

rearranges the input to the size of H ×W × D × 24. The concept of alternating the different 126

blocks surfaces here, with two sets of blocks rotating with one another. Here, we propose 127

three variations to the network as further detailed in Section 2.3. Depicted in Figure 2 is the 128

second version with Swin and SE blocks. The first block (e.g. Swin) downsamples the data 129

to H
2 × W

2 × D
2 × 48. The next block (e.g. SE) reshapes the output to H

4 × W
4 × D

4 × 96. The 130

same two blocks will repeat the procedure to generate the representations with the sizes 131

H
8 × W

8 × D
8 × 192 and H

16 ×
W
16 ×

D
16 × S, respectively, where S is the hidden size of the final 132

block and is set to 768. 133

2.3. Alternating Composition of LegoNet 134

Although we believe that LegoNet as a concept is agnostic to the block type, we 135

demonstrate the idea in three versions, with the difference being in the blocks chosen for 136

the model construction, as listed in Table 1. The second version is depicted in Figure 2 137

with Swin and SE blocks alternating with each other. The other versions are structured in a 138

similar manner, with SE and UX for the first version and Swin and UX for the third. 139
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Table 1. The table shows the different configurations for the network. These configurations can easily
be changed in the code.

Network Used blocks Hidden size Feature size

LegoNetV1 SE→UX→SE→UX 768 (24, 48, 96, 192)
LegoNetV2 SE→Swin→SE→Swin 768 (24, 48, 96, 192)
LegoNetV3 Swin→UX→Swin→UX 768 (24, 48, 96, 192)

Figure 3. The figure shows the pipeline for SSL pretraining. Scans are first shuffled and then masked
before feeding into the network with the objective of reconstructing the original scans.

2.4. Joint SSL Pretraining 140

The proposed self-supervised learning (SSL) method reaps the benefits of inpaint- 141

ing [17] and jigsaw puzzle [18] approaches in the same pipeline, as shown in Figure 3. 142

While the two approaches exist in the literature, the originality in this approach is the 143

dual-task nature of pretraining that makes it ever so challenging. The initial scan is cut into 144

N number of equal patches (set to 9) and shuffled randomly. Then, a portion of the shuffled 145

image is masked (set to 40%), and the pretraining model is expected to regenerate the initial 146

image, understanding the positional change and hidden information, which makes it a 147

harder challenge. 148

3. Dataset and Preprocessing 149

The proposed concept was validated using two datasets and further verified with four 150

external cohorts to exhaust the generalizability performance of the networks. 151

3.1. CTCA 152

The first dataset comprises 155 CTCA scans from three different centers from Oxford 153

University Hospitals that is a substudy of the ORFAN study [10]. The manual segmentation 154

is performed around the right internal mammary artery from the level of the aortic arch 155

to 120mm caudally, and the perivascular space is calculated by taking one diameter of 156

RIMA. The data acquisition and more details are described in [10]. Because the data is 157

from multiple centers and the field of view for each patient is different, the dimensions, 158

spacing, orientation, and direction of the scans are different. We preprocess the data to 159

have the same direction, orientation, and isotropic spacing of 1 × 1 × 1mm3, and as such, 160

the dimensions are highly mismatched. To alleviate that issue, we resize the scans and 161

corresponding masks to 96 × 96 × 96 during training, and the preserved data size is used 162

to resize it back to the original sizes in the final stage. 163

3.2. CTPA 164

The second dataset consists of 112 CTPA scans coming from four different centers 165

from Oxford University Hospitals from the same study as CTCA scans. Following the 166

same procedure, we apply the resampling and resizing techniques on this dataset too. The 167

scans were resized to 176 × 176 × 176 because they cover the whole body, and as such, the 168

RIMA region is completely suppressed if we resize them to even lower dimensions. The 169

common preprocessing for both datasets is normalizing the scans before feeding them into 170

the network. We clip the CT scans between (-1024, 1024) and normalize them to (-1, 1). 171
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Table 2. The table reports the mean and standard deviation of DSC, precision, recall, and HD95 for
5-fold cross-validation and the number of parameters and FLOPs of different models. The results are
for the CTCA dataset. All the experiments in this table are trained with random initialization.

Models DSC↑ Precision↑ Recall↑ HD95↓ Params (M)↓ FLOPs (G)↓

UNet [1,19] 0.686±0.03 0.72±0.04 0.69±0.03 2.70 3.99 27.64
SegResNet [20] 0.732±0.01 0.75±0.02 0.74±0.03 2.50 1.18 15.58

UX-Net [16] 0.695±0.03 0.73±0.06 0.70±0.01 3.17 27.98 164.17

UNETR [2] 0.690±0.02 0.72±0.03 0.69±0.03 3.00 92.78 82.48
SwinUNETR [3] 0.713±0.02 0.74±0.02 0.71±0.04 2.46 62.83 384.20

UNesT [21] 0.555±0.04 0.59±0.06 0.55±0.05 4.35 87.20 257.91

LegoNetV1 0.747±0.02 0.75±0.02 0.77±0.03 2.34 50.58 175.77
LegoNetV2 0.749±0.02 0.77±0.01 0.76±0.04 2.11 50.71 188.02
LegoNetV3 0.741±0.02 0.76±0.02 0.75±0.03 2.34 11.14 173.41

3.3. External Datasets 172

Apart from the two above datasets used for training and comparison of models, we 173

use several external datasets. For inter- and intra-observer variability analysis, a new cohort 174

of 49 CTCA scans from the ORFAN study is used. Additionally, as external validation for 175

the post-model agreement analysis, we used three cohorts of 40, 40, and 60 CTCA scans 176

from different centers from the ORFAN study. These scans undergo the same preprocessing 177

steps as above, including normalization and resampling. 178

4. Experimental Setup 179

A set of experiments are conducted on the CTCA and CTPA scans for a group of CNN 180

and ViT networks. A single NVIDIA Tesla V100 GPU was utilized for the experiments. 181

We evaluate our proposed method against a range of popular deep learning networks, 182

including U-Net [19], SegResNet [20], UNETR [2], Swin UNETR [3], UX-Net [16], and 183

UNesT [21]. All the experiments are trained for 100 epochs when started with random 184

initialization. Pretraining performed for LegoNet is run for 300 epochs, and the model 185

initialized with pretrained weights is finetuned for 100 epochs, with an early stopping 186

method, having patience at 25 epochs to avoid overfitting. For LegoNet, AdamW optimizer 187

with a learning rate of 1e − 3 and weight decay of 1e − 5, and cosine annealing scheduler 188

with minimum η of 1e − 5 and T0 at 25 are used. The loss function is calculated as the 189

summation of Dice and Focal losses (Equation 4 and 5). 190

LDice =
2 ∑

N
i ŷiyi

∑
N
i ŷi

2 + ∑
N
i y2

i

, (4)

LFocal = −
N

∑
i

ǫyi(1 − ŷi)
ψlog(ŷi)− (1 − yi)ŷi

ψlog(1 − ŷi), (5)

LFinal = LDice + LFocal (6)

where ŷ is the prediction of the model, y is the ground truth, ǫ is the weightage for the 191

trade-off between precision and recall in the focal loss (empirically set to 1), ψ is focusing 192

parameter (set to 2), and N is the sample size. 193

The primary metric of performance is the dice similarity coefficient (DSC), with an 194

additional report of precision, recall, and 95% Hausdorff distance for further comparison. 195

The reported results are the mean and standard deviation of 5-fold cross-validation for 196

the training/validation data. To compare the complexity, we also report the number of 197

learnable parameters and FLOPs for each model. 198
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Table 3. The table reports the mean and standard deviation of DSC, precision, and recall for 5-fold
cross-validation for different models for the CTPA dataset. All the experiments in this table are
trained with random initialization.

Models DSC↑ Precision↑ Recall↑

UNet [1,19] 0.611±0.10 0.66±0.10 0.61±0.10
SegResNet [20] 0.638±0.09 0.68±0.10 0.65±0.08

UX-Net [16] 0.608±0.08 0.65±0.10 0.62±0.06
UNETR [2] 0.581±0.10 0.62±0.12 0.61±0.07

LegoNetV1 0.642±0.08 0.66±0.11 0.67±0.07
* The complexity comparison of models is provided in Table 2.

5. Results 199

5.1. CTCA 200

Table 2 shows the main results for the CTCA dataset and model complexities. The 201

baseline CNN and ViT models respectively, U-Net and UNETR, show similar performance, 202

with mean DSC of 0.686 and 0.690. UX-Net model achieves 0.695 in DSC, whereas UNesT 203

performs poorly, outputting only 0.555. SwinUNETR yields better results, with 0.713 DSC. 204

SegResNet demonstrates the highest performance compared to the other existing works. 205

All three variations of the LegoNet outperform all the models in DSC as well as precision, 206

recall, and HD95. LegoNetV2, that is, Swin and SE alteration, yields the highest DSC of 207

0.749, followed by the other two versions with 0.747 and 0.741 DSC, respectively. A similar 208

trend is observed with precision, recall, and HD95 metrics, with LegoNet showing superior 209

results to other networks. 210

5.2. CTPA 211

On the CTPA dataset, the performance is lower for all the models due to the large 212

field of view of the pulmonary region that generally suppresses the RIMA and perivascular 213

space, as visualized in Figure 4(c,d). As Table 3 shows, U-Net and UX-Net achieve similar 214

mean DSC of 0.611 and 0.608, respectively, whereas UNETR performs poorly with 0.581 215

DSC. SegResNet again shows the best performance among the existing models, with 0.638 216

in DSC. LegoNet (version 1) shows superior performance with 0.642 mean DSC. The trade- 217

off between precision and recall works for the benefit of SegResNet in precision (0.68) and 218

LegoNet in recall (0.67) as the highest results. 219

5.3. Inter- and Intra-observer Variability 220

We explore the performance variability in terms of inter-observer, intra-observer, and 221

model-versus-human agreement DSC. The model-vs-human agreement is calculated as the 222

mean DSC of the three values for model prediction masks and the three manual segmen- 223

tation masks. We use a new cohort of 49 CTCA scans for this set of experiments, which 224

undergo the same preprocessing steps as the initial CTCA dataset. An expert radiologist 225

performs segmentation twice on two occasions (with around 12 months difference) to 226

assess intra-observer variability. A less senior radiologist segments the scans following the 227

same protocol to evaluate inter-observer variability. The intra-clinician and inter-clinician 228

variability reach 0.804 and 0.761 DSC, respectively. The model-vs-human variability for 229

this cohort achieves 0.733 DSC. 230

5.4. External Cohorts 231

We validate the performance of our model on a set of external/unseen CTCA cohorts 232

iteratively (40, 40, 60 scans), which are preprocessed in the same way. These cohorts are 233

from a different center than the centers of the training data. The data acquisition protocol 234

is the same for all the centers. An expert clinician analyzes and corrects the segmentation 235

masks from the model, and then we calculate the post-model agreement in DSC. Table 4 236

(right) shows the total number of cases for three cohorts and their corresponding DSC 237
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Table 4. The left table shows the intra- and inter-observer variability and model-vs-human perfor-
mance of the model on an unseen CTCA dataset. Years of XP refers to years of professional experience,
specifically in cardiovascular medicine. The right table shows the count and performance of three
unseen cohorts of CTCA scans for post-model agreement.

Variability Years of XP DSC

Intra 3 0.804
Inter 1 0.761
Model vs Human NA 0.733

External Number of cases DSC

Cohort 1 40 0.935
Cohort 2 40 0.942
Cohort 3 60 0.947

(a) CTCA (b) CTCA (c) CTPA (d) CTPA (e) 3D

Figure 4. The figure shows samples from the datasets and corresponding ground truth (in green) and
prediction masks (in red) from LegoNet. (a) and (c) are well-predicted samples, and (b) and (d) are
poorly predicted samples. (e) is a 3D visualization.

values. The agreement in DSC between the model’s prediction and the clinician’s corrected 238

masks are 0.935, 0.942, and 0.947 for the three cohorts, respectively. 239

5.5. SSL 240

The pretraining is performed exclusively for LegoNet to analyze the benefit of using 241

the approach instead of randomly initializing it. Note that this experiment is conducted 242

to merely illustrate the effect of the proposed joint method rather than applying it to 243

compare LegoNet with other models. The performance of LegoNetV2 on the CTCA dataset 244

shows a marginal improvement from 0.749 (from Table 2) to 0.754 when initialized with the 245

pretrained weights. HD95 also shows a positive trend, reaching the lowest of 2.08. Precision 246

and recall are 0.75 and 0.78, respectively. These results only confirm the advantage of using 247

an SSL approach over the model. 248

6. Discussion 249

While the performance of LegoNet is superior to other networks experimented with, 250

there is a noticeable discrepancy between the cross-validation results (∼0.75 DSC) and the 251

post-model agreement on external cohorts (∼0.90 DSC). It is primarily on account of the 252

flexibility in the segmentation regions. That is, the clinician accepts the masks predicted by 253

the model as representative of RIMA and perivascular space such that it can be used for 254

patient diagnosis in [10], for example. With intra- and inter-observer and model-vs-human 255

agreement analyses, we show that the results indeed reflect the cross-validation results. 256

Figure 4 illustrates samples for well-predicted (a and c) and poorly-predicted (b and 257

d) masks from LegoNetV2 for CTCA and CTPA datasets. While most of the slices are 258

well-predicted, beginning/ending slices are occasionally missegmented, which is observed 259

as the most common mistake. The clinician, following a protocol, makes a judgment 260

on which slice to start and which slice to end with to extract 120mm length (although 261

RIMA is still visible in the next few slices). As long as RIMA is visible in the scan, the 262

models continue to predict, going beyond 120mm, as is visualized in Figure 4(e). This 263

behavior is commented by the clinician as negligible, and we will investigate the effect of 264

the automatically segmented regions on the patient prognosis in the future. 265

Figure 5 shows more qualitative results for each model for a random slice. The 266

existing models show inferior predictions visually; U-Net under-segments the regions, 267
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(a) U-Net (b) SegResNet (c) UX-Net (d) UNETR

(e) SwinUNETR (f) LegoNetV1 (g) LegoNetV2 (h) LegoNetV3

Figure 5. Prediction masks from different models for a sample scan from the CTCA dataset. Green
corresponds to ground truth, and red indicates the prediction mask.

and SwinUNETR and UX-Net over-segment them. LegoNet is more accurate with the 268

contouring of the masks, which helps it outperform other models. 269

We attribute the superior performance of LegoNet to (i) structurally different blocks 270

that are assumed to learn more discriminative features and (ii) the complexity of the model. 271

Compared to CNN models, the complexity, both in parameters and FLOPs, is much higher. 272

However, that is on par with ViT models, such as UNETR, SwinUNETR, and UNesT. The 273

best-performing LegoNetV2, for example, stands at 50.71M parameters and 188.02G FLOPs, 274

which is smaller than the three ViT-driven models. 275

7. Conclusion 276

The work proposes a new concept of alternating differently structured blocks to 277

harmonize the benefits of different blocks to construct an architecture. This concept escapes 278

the typical approach of building networks using the same blocks and shows that the 279

dissimilar blocks can benefit model learning. Three variations of the LegoNet model that 280

uses this concept are proposed for the segmentation of RIMA and perivascular space. RIMA 281

has not been studied before; however, it is proven to provide clinical value for vascular 282

inflammation and the prognosis of cardiovascular diseases. LegoNet performs superior 283

to other leading CNN and ViT models on two CTA datasets, and we perform further 284

validation on three external cohorts for the agreement in DSC between clinician and model 285

prediction. We also study intra- and inter-observer variability as additional affirmation. As 286

a limitation, the SSL method studies only the joint method of shuffling and masking and 287

does not dive into the performance of the standalone methods. Finally, further assessment 288

of different applications and tasks of the new novel LegoNet is needed. 289
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Abbreviations 313

The following abbreviations are used in this manuscript: 314

315

CNN Convolutional neural networks
CTA Computed tomography angiography
CTCA Computed tomography coronary angiography
CTPA Computed tomography pulmonary angiography
DCS Depth-wise convolutional scaling
DL Deep learning
DSC Dice similarity coefficient
DWC Depth-wise convolution
FLOPs Floating point operations
IN Instance normalization
MSA Multi-head self-attention
ORFAN The Oxford risk factors and non-invasive imaging study
ReLU Rectified linear activation unit
RIMA Right internal mammary artery
SE Squeeze-and-excitation
ViT Vision transformer
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