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Abstract: Since the emergence of convolutional neural networks (CNNs), and later vision transform-
ers (ViTs), the standard paradigm for model development has been using a set of identical block types
with varying parameters/hyper-parameters. To leverage the benefits of different architectural designs
(e.g., CNNs and ViTs), we propose alternating structurally different types of blocks to generate a
new architecture, mimicking how Lego blocks can be assembled. Using two CNN-based and one
SwinViT-based blocks, we investigate three variations to the so-called LegoNet that apply the new
block alternation concept for the segmentation task in medical imaging. We also study a new clinical
problem that has not been investigated before — the right internal mammary artery (RIMA) and
perivascular space segmentation from computed tomography angiography (CTA). It was proven to
demonstrate a prognostic value to primary cardiovascular outcomes. We compare the model perfor-
mance against popular CNN and ViT architectures using two large datasets (achieving 0.749 dice
similarity coefficient (DSC) on the larger dataset). We also evaluate the model’s performance on three
external testing cohorts, where an expert clinician corrected model-segmented results (DSC>0.90 for
the three cohorts). To assess our proposed model for suitability in clinical use, we perform intra- and
inter-observer variability analysis. Finally, we investigate a joint self-supervised learning approach to
determine its impact on model performance.

Keywords: Internal Mammary Artery Segmentation; Alternating Blocks; Medical Imaging Segmenta-
tion; Self-supervised Pretraining; LegoNet.

1. Introduction

From the early U-Net [1] to the most recent vision transformer (ViT) models [2,3],
deep learning (DL) segmentation architectures follow the typical style of an encoder and
decoder network, where the encoder is usually made of a set of identically designed blocks
with varying hyper-parameters. Other tasks, such as classification, detection, etc., are no
exception to the segmentation encoder. Although this design choice has demonstrated
excellent results on a wide range of applications, it is essential for the research community
to investigate different design alternatives. That begs the question, “Does a deep learning
encoder learn better representations when trained on identical or nonidentical blocks?".

Several papers study the selection of architectures and various components, such as
type and number of layers, hyperparameters, etc., under the umbrella of neural architecture
search (NAS) [4-6]. With a pre-defined search space, NAS approaches investigate the
automation of selection, which naturally means a considerable amount of time and resource
consumption. In [7], the authors study the knowledge-transfer task for general-purpose
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model reuse. Again, such approaches heavily rely on intensive network/block search in
the first phase and then use the selected network/blocks for model training. Additionally,
these methods study the blocks that are from the same family e.g., only CNN-based blocks.
Unlike these approaches, we handpick and study network stitching using structurally
different neural blocks.

We study the behavior of harmonizing internally nonidentical blocks to perform
segmentation of the right internal mammary artery (RIMA) and perivascular space from
two types of imaging protocols, namely computed tomography coronary angiography
(CTCA) and computed tomography pulmonary angiography (CTPA) scans. While several
works focus on combining ViT and CNN encoders together [8,9], either side-by-side or
sequentially, to the best of our knowledge, no work studied the block-level integration of
different deep learning architectures. We propose to alternate structurally different yet
compatible blocks with each other to build DL models. This new perspective opens many
avenues on how to construct the model and what blocks to choose, and we test it using three
different (two CNN-based and one SwinViT-based) blocks, providing three alternatives
of the architecture. One can think of the approach as using compatible Lego blocks to
assemble the structure, hence the name LegoNet. We assume that structurally varied blocks
could learn different features that could be beneficial to learn more discriminative features,
especially on complex problems such as medical image segmentation. Therefore, we aim to
evaluate the proposed LegoNet on a unique and challenging problem.

RIMA is proven to be clinically valuable in several studies [10-12]. The inflammatory
status of the entire vasculature can be represented by the inflammation in the RIMA and
perivascular region given that atherosclerotic plaque does not affect it [11,12]. In recent
work, Kotanidis et al. [10] studied the RIMA region by manually segmenting it to assess
the vascular inflammatory signature of COVID-19 SARS-COV-2 viral infection on CTPA of
435 patients (The C19RS inflammatory signature). This C19RS signature extracted from
the RIMA region is a novel non-invasive imaging biomarker that can help predict the
in-hospital mortality of patients. The fact that it can provide homogeneous perivascular
adipose tissue along its length allows us to extract reliable radiomic features from the
perivascular region around it. Manual segmentation is highly time-consuming and labor-
intensive, especially when the number of patients increases for better generalizability.
When new cohorts of patients are to be segmented from the ORFAN study, for example, an
automatic approach for RIMA segmentation is particularly beneficial. Localizing the RIMA
region is challenging because it is a small rounded structure on the axial view but elongated
vertically in the chest. Therefore, this work investigates the problem of segmenting the
RIMA and perivascular space from CT angiography scans.

The main contributions of our work are as follows:

*  We propose a new concept of alternating different deep learning blocks to construct a
unique architecture that demonstrates how the aggregation of different block types
could help learn better representations.

*  We propose a joint self-supervised method of inpainting and shuffling as a pretraining
task. That enforces the models to learn a challenging proxy task during pretraining,
which helps improve the finetuning performance.

*  Weintroduce a new clinical problem to the medical image analysis community; i.e.,
the segmentation of the RIMA and perivascular space, which can be helpful in a range
of clinical studies for cardiovascular disease prognosis.

¢  Finally, we provide a thorough clinical evaluation on external datasets through intra-
observer variability, inter-observer variability, model-versus-clinician analysis, and
post-model segmentation refinement analysis with expert clinicians.

2. Materials and Methods

We propose a simple yet effective concept of alternating different blocks to construct
a DL architecture. The concept is similar to how Lego blocks are constructed together
to build a standing structure. The only constraint is the compatibility of structures with
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Figure 1. The figure shows the inner structure of each block type used for our model construction. (a)
is the squeeze-and-excitation block; (b) is the Swin block; and (c) is the UX block.

each other while assembling them. We explore the concept of building a DL network from
nonidentical blocks to hopefully benefit from the strength of these different blocks. We
propose to alternate two blocks in a single architecture, with three different types of blocks
to choose from.

2.1. Building Blocks
2.1.1. SE block

Squeeze-and-excitation (SE) block consists of stacks of a 3 x 3 x 3 convolutional block
with residuals, a ReLU activation function, and a SE normalization (norm) module [13]
within the layers. Figure 1(a) depicts the complete block. SE norm is similar to instance
norm (IN) [14], but different in the parameters ; and p; in Equation 1. IN treats them as
fixed parameters, while in SE norm, they are modeled as functions of input [13].

yi = vix; + Bi 1)

where x/ is the mean of a batch of input data X, and v; and B; are the scale and shift
normalization values.

2.1.2. Swin block

Swin transformer [15] with shifted windows boosted the performance of ViT-based
models due to its ability to capture global and local information. We employ the Swin
block to see its compatibility with other CNN-based blocks and how well it performs in
conjunction. The block consists of a linear normalization, regular and window partitioning
multi-head attention (W-MSA and SW-MSA, respectively), and MLP, with skip connections
as shown in Figure 1(b) and Equation 2 (left).

2.1.3. UX block

The UX block, recently proposed in [16], is a convolution-based network block that
relies on large kernel sizes and depth-wise convolutions. It mimics the Swin block in
structure but uses depth-wise convolution (DWC) using 7 x 7 x 7 kernels, depth-wise
convolutional scaling (DCS), and linear normalization as illustrated in Figure 1(c) and
Equation 3 (right).

The outputs of the Swin and UX blocks, respectively, are computed in the sequential
layers of l and [ + 1 as:

gl = W-MSA(LN(Z 1)) + 277, 2l = DWC(LN(Z' 1)) + 2171,
zl = MLP(LN(Z)) + 2 zl = DCS(LN(2")) + 2/,
211 = SW-MSA(LN(Z))) + 2, 241 = DWC(LN(Z)) + 2,

21 = MLPAN(EH ) +271, (2 21 =DCSIN(Z™) +£71, ()

where 2! and z' are the outputs of the modules, W-MSA and SW-MSA denote regular
and window partitioning multi-head self-attention modules, respectively, and DWC and
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Figure 2. The figure shows LegoNetV2 architecture. F;_4 indicate the feature size, which is set to
{24,48,96,192}, and S is the hidden size, set to 768. This typical U-shaped architecture utilizes the
block alternation concept, switching between Swin and SE blocks in the encoder in this example. The
decoder is kept the same for all the variations of the model.

DCS denote depthwise convolution (with kernel size starting from 7 x 7 x 7) and depthwise
convolution scaling modules, respectively.

2.2. LegoNet Architecture

The proposed network uses combinations of the aforementioned blocks. The input
in the size of X € RT*WxDxC (where H, W, D and C correspond to dimensions and the
number of channels, respectively) goes through a stem block, as shown in Figure 2. It is
two 3D convolutional blocks with 7 x 7 x 7 and 3 x 3 x 3 kernel sizes, respectively, which
rearranges the input to the size of H x W x D x 24. The concept of alternating the different
blocks surfaces here, with two sets of blocks rotating with one another. Here, we propose
three variations to the network as further detailed in Section 2.3. Depicted in Figure 2 is the
second version with Swin and SE blocks. The first block (e.g. Swin) downsamples the data
to % X % X % x 48. The next block (e.g. SE) reshapes the output to % X % X % x 96. The
same two blocks will repeat the procedure to generate the representations with the sizes
% X % X % x 192 and % X % X % x S, respectively, where S is the hidden size of the final
block and is set to 768.

2.3. Alternating Composition of LegoNet

Although we believe that LegoNet as a concept is agnostic to the block type, we
demonstrate the idea in three versions, with the difference being in the blocks chosen for
the model construction, as listed in Table 1. The second version is depicted in Figure 2
with Swin and SE blocks alternating with each other. The other versions are structured in a
similar manner, with SE and UX for the first version and Swin and UX for the third.
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Table 1. The table shows the different configurations for the network. These configurations can easily

be changed in the code.

Network Used blocks Hidden size Feature size
LegoNetV1 SE—UX—SE—UX 768 (24, 48,96, 192)
LegoNetV2 SE—Swin—SE—Swin 768 (24, 48,96, 192)
LegoNetV3 Swin—UX—Swin—UX 768 (24, 48, 96, 192)

—>  LegoNet

Original CT Shuffled CT Shuffled & Masked CT Segmentation Model Perfect Reconstruction

Figure 3. The figure shows the pipeline for SSL pretraining. Scans are first shuffled and then masked
before feeding into the network with the objective of reconstructing the original scans.

2.4. Joint SSL Pretraining

The proposed self-supervised learning (SSL) method reaps the benefits of inpaint-
ing [17] and jigsaw puzzle [18] approaches in the same pipeline, as shown in Figure 3.
While the two approaches exist in the literature, the originality in this approach is the
dual-task nature of pretraining that makes it ever so challenging. The initial scan is cut into
N number of equal patches (set to 9) and shuffled randomly. Then, a portion of the shuffled
image is masked (set to 40%), and the pretraining model is expected to regenerate the initial
image, understanding the positional change and hidden information, which makes it a
harder challenge.

3. Dataset and Preprocessing

The proposed concept was validated using two datasets and further verified with four
external cohorts to exhaust the generalizability performance of the networks.

3.1. CTCA

The first dataset comprises 155 CTCA scans from three different centers from Oxford
University Hospitals that is a substudy of the ORFAN study [10]. The manual segmentation
is performed around the right internal mammary artery from the level of the aortic arch
to 120mm caudally, and the perivascular space is calculated by taking one diameter of
RIMA. The data acquisition and more details are described in [10]. Because the data is
from multiple centers and the field of view for each patient is different, the dimensions,
spacing, orientation, and direction of the scans are different. We preprocess the data to
have the same direction, orientation, and isotropic spacing of 1 x 1 x 1mm?, and as such,
the dimensions are highly mismatched. To alleviate that issue, we resize the scans and
corresponding masks to 96 x 96 x 96 during training, and the preserved data size is used
to resize it back to the original sizes in the final stage.

3.2. CTPA

The second dataset consists of 112 CTPA scans coming from four different centers
from Oxford University Hospitals from the same study as CTCA scans. Following the
same procedure, we apply the resampling and resizing techniques on this dataset too. The
scans were resized to 176 x 176 x 176 because they cover the whole body, and as such, the
RIMA region is completely suppressed if we resize them to even lower dimensions. The
common preprocessing for both datasets is normalizing the scans before feeding them into
the network. We clip the CT scans between (-1024, 1024) and normalize them to (-1, 1).
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Table 2. The table reports the mean and standard deviation of DSC, precision, recall, and HD95 for
5-fold cross-validation and the number of parameters and FLOPs of different models. The results are
for the CTCA dataset. All the experiments in this table are trained with random initialization.

Models DSCt Precision? Recallt HD95| Params (M)] FLOPs (G)|
UNet [1,19] 0.686+0.03 0.724+0.04 0.69+0.03 2.70 3.99 27.64
SegResNet [20] 0.732+0.01 0.75+0.02 0.74+0.03 2.50 1.18 15.58
UX-Net [16] 0.695+0.03 0.7340.06 0.7040.01 3.17 27.98 164.17
UNETR [2] 0.690+0.02 0.7240.03 0.6940.03 3.00 92.78 82.48
SwinUNETR [3] 0.71340.02 0.7440.02 0.7140.04 2.46 62.83 384.20
UNesT [21] 0.555+0.04 0.5940.06 0.55+0.05 4.35 87.20 257.91
LegoNetV1 0.74740.02 0.75+0.02 0.77+0.03 2.34 50.58 175.77
LegoNetV2 0.749+0.02 0.7740.01 0.7610.04 2.11 50.71 188.02
LegoNetV3 0.7414-0.02 0.76+£0.02 0.75+0.03 2.34 11.14 173.41

3.3. External Datasets

Apart from the two above datasets used for training and comparison of models, we
use several external datasets. For inter- and intra-observer variability analysis, a new cohort
of 49 CTCA scans from the ORFAN study is used. Additionally, as external validation for
the post-model agreement analysis, we used three cohorts of 40, 40, and 60 CTCA scans
from different centers from the ORFAN study. These scans undergo the same preprocessing
steps as above, including normalization and resampling.

4. Experimental Setup

A set of experiments are conducted on the CTCA and CTPA scans for a group of CNN
and ViT networks. A single NVIDIA Tesla V100 GPU was utilized for the experiments.
We evaluate our proposed method against a range of popular deep learning networks,
including U-Net [19], SegResNet [20], UNETR [2], Swin UNETR [3], UX-Net [16], and
UNesT [21]. All the experiments are trained for 100 epochs when started with random
initialization. Pretraining performed for LegoNet is run for 300 epochs, and the model
initialized with pretrained weights is finetuned for 100 epochs, with an early stopping
method, having patience at 25 epochs to avoid overfitting. For LegoNet, AdamW optimizer
with a learning rate of 1e — 3 and weight decay of 1e — 5, and cosine annealing scheduler
with minimum 7 of 1e — 5 and Ty at 25 are used. The loss function is calculated as the
summation of Dice and Focal losses (Equation 4 and 5).

2Y N diyi
LDice = ————5 4)
SN+ TN y?
N
Lrocal = — Z€yi(1 —7:)¥log(vi) — (1 —y;)yi¥1og (1 — 1), ®)
1
‘CFinal = EDice + ‘CFocal (6)

where 7 is the prediction of the model, y is the ground truth, € is the weightage for the
trade-off between precision and recall in the focal loss (empirically set to 1), ¢ is focusing
parameter (set to 2), and N is the sample size.

The primary metric of performance is the dice similarity coefficient (DSC), with an
additional report of precision, recall, and 95% Hausdorff distance for further comparison.
The reported results are the mean and standard deviation of 5-fold cross-validation for
the training/validation data. To compare the complexity, we also report the number of
learnable parameters and FLOPs for each model.
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Table 3. The table reports the mean and standard deviation of DSC, precision, and recall for 5-fold
cross-validation for different models for the CTPA dataset. All the experiments in this table are
trained with random initialization.

Models DSCt Precision?t Recall?
UNet [1,19] 0.611£0.10 0.66+0.10 0.61£0.10
SegResNet [20] 0.638+0.09 0.68+0.10 0.65+0.08
UX-Net [16] 0.608+0.08 0.65+0.10 0.62+0.06
UNETR [2] 0.581+0.10 0.62+0.12 0.61+0.07
LegoNetV1 0.642+0.08 0.66+0.11 0.67+0.07

* The complexity comparison of models is provided in Table 2.

5. Results
5.1. CTCA

Table 2 shows the main results for the CTCA dataset and model complexities. The
baseline CNN and ViT models respectively, U-Net and UNETR, show similar performance,
with mean DSC of 0.686 and 0.690. UX-Net model achieves 0.695 in DSC, whereas UNesT
performs poorly, outputting only 0.555. SwinUNETR vyields better results, with 0.713 DSC.
SegResNet demonstrates the highest performance compared to the other existing works.
All three variations of the LegoNet outperform all the models in DSC as well as precision,
recall, and HD95. LegoNetV2, that is, Swin and SE alteration, yields the highest DSC of
0.749, followed by the other two versions with 0.747 and 0.741 DSC, respectively. A similar
trend is observed with precision, recall, and HD95 metrics, with LegoNet showing superior
results to other networks.

5.2. CTPA

On the CTPA dataset, the performance is lower for all the models due to the large
field of view of the pulmonary region that generally suppresses the RIMA and perivascular
space, as visualized in Figure 4(c,d). As Table 3 shows, U-Net and UX-Net achieve similar
mean DSC of 0.611 and 0.608, respectively, whereas UNETR performs poorly with 0.581
DSC. SegResNet again shows the best performance among the existing models, with 0.638
in DSC. LegoNet (version 1) shows superior performance with 0.642 mean DSC. The trade-
off between precision and recall works for the benefit of SegResNet in precision (0.68) and
LegoNet in recall (0.67) as the highest results.

5.3. Inter- and Intra-observer Variability

We explore the performance variability in terms of inter-observer, intra-observer, and
model-versus-human agreement DSC. The model-vs-human agreement is calculated as the
mean DSC of the three values for model prediction masks and the three manual segmen-
tation masks. We use a new cohort of 49 CTCA scans for this set of experiments, which
undergo the same preprocessing steps as the initial CTCA dataset. An expert radiologist
performs segmentation twice on two occasions (with around 12 months difference) to
assess intra-observer variability. A less senior radiologist segments the scans following the
same protocol to evaluate inter-observer variability. The intra-clinician and inter-clinician
variability reach 0.804 and 0.761 DSC, respectively. The model-vs-human variability for
this cohort achieves 0.733 DSC.

5.4. External Cohorts

We validate the performance of our model on a set of external/unseen CTCA cohorts
iteratively (40, 40, 60 scans), which are preprocessed in the same way. These cohorts are
from a different center than the centers of the training data. The data acquisition protocol
is the same for all the centers. An expert clinician analyzes and corrects the segmentation
masks from the model, and then we calculate the post-model agreement in DSC. Table 4
(right) shows the total number of cases for three cohorts and their corresponding DSC
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Table 4. The left table shows the intra- and inter-observer variability and model-vs-human perfor-
mance of the model on an unseen CTCA dataset. Years of XP refers to years of professional experience,
specifically in cardiovascular medicine. The right table shows the count and performance of three
unseen cohorts of CTCA scans for post-model agreement.

Variability Years of XP  DSC External ~ Number of cases  DSC
Intra 3 0.804 Cohort 1 40 0.935
Inter 1 0.761 Cohort 2 40 0.942
Model vs Human NA 0.733 Cohort 3 60 0.947

‘\‘

(a) CTC (b) CTCA (c) CTPA ‘ (d) CTPA - (e) 3D

Figure 4. The figure shows samples from the datasets and corresponding ground truth (in green) and
prediction masks (in red) from LegoNet. (a) and (c) are well-predicted samples, and (b) and (d) are
poorly predicted samples. (e) is a 3D visualization.

values. The agreement in DSC between the model’s prediction and the clinician’s corrected
masks are 0.935, 0.942, and 0.947 for the three cohorts, respectively.

5.5. SSL

The pretraining is performed exclusively for LegoNet to analyze the benefit of using
the approach instead of randomly initializing it. Note that this experiment is conducted
to merely illustrate the effect of the proposed joint method rather than applying it to
compare LegoNet with other models. The performance of LegoNetV2 on the CTCA dataset
shows a marginal improvement from 0.749 (from Table 2) to 0.754 when initialized with the
pretrained weights. HD95 also shows a positive trend, reaching the lowest of 2.08. Precision
and recall are 0.75 and 0.78, respectively. These results only confirm the advantage of using
an SSL approach over the model.

6. Discussion

While the performance of LegoNet is superior to other networks experimented with,
there is a noticeable discrepancy between the cross-validation results (~0.75 DSC) and the
post-model agreement on external cohorts (~0.90 DSC). It is primarily on account of the
flexibility in the segmentation regions. That is, the clinician accepts the masks predicted by
the model as representative of RIMA and perivascular space such that it can be used for
patient diagnosis in [10], for example. With intra- and inter-observer and model-vs-human
agreement analyses, we show that the results indeed reflect the cross-validation results.

Figure 4 illustrates samples for well-predicted (a and c) and poorly-predicted (b and
d) masks from LegoNetV2 for CTCA and CTPA datasets. While most of the slices are
well-predicted, beginning/ending slices are occasionally missegmented, which is observed
as the most common mistake. The clinician, following a protocol, makes a judgment
on which slice to start and which slice to end with to extract 120mm length (although
RIMA is still visible in the next few slices). As long as RIMA is visible in the scan, the
models continue to predict, going beyond 120mm, as is visualized in Figure 4(e). This
behavior is commented by the clinician as negligible, and we will investigate the effect of
the automatically segmented regions on the patient prognosis in the future.

Figure 5 shows more qualitative results for each model for a random slice. The
existing models show inferior predictions visually; U-Net under-segments the regions,
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(a) UNet

(b) SegResNet

L

(e) SWinUNETR (f) LegoNetV1 (g) LegoNetV2

(h) LegoNetV3

Figure 5. Prediction masks from different models for a sample scan from the CTCA dataset. Green
corresponds to ground truth, and red indicates the prediction mask.

and SwinUNETR and UX-Net over-segment them. LegoNet is more accurate with the
contouring of the masks, which helps it outperform other models.

We attribute the superior performance of LegoNet to (i) structurally different blocks
that are assumed to learn more discriminative features and (ii) the complexity of the model.
Compared to CNN models, the complexity, both in parameters and FLOPs, is much higher.
However, that is on par with ViT models, such as UNETR, SwinUNETR, and UNesT. The
best-performing LegoNetV2, for example, stands at 50.71M parameters and 188.02G FLOPs,
which is smaller than the three ViT-driven models.

7. Conclusion

The work proposes a new concept of alternating differently structured blocks to
harmonize the benefits of different blocks to construct an architecture. This concept escapes
the typical approach of building networks using the same blocks and shows that the
dissimilar blocks can benefit model learning. Three variations of the LegoNet model that
uses this concept are proposed for the segmentation of RIMA and perivascular space. RIMA
has not been studied before; however, it is proven to provide clinical value for vascular
inflammation and the prognosis of cardiovascular diseases. LegoNet performs superior
to other leading CNN and ViT models on two CTA datasets, and we perform further
validation on three external cohorts for the agreement in DSC between clinician and model
prediction. We also study intra- and inter-observer variability as additional affirmation. As
a limitation, the SSL method studies only the joint method of shuffling and masking and
does not dive into the performance of the standalone methods. Finally, further assessment
of different applications and tasks of the new novel LegoNet is needed.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional neural networks

CTA Computed tomography angiography

CTCA Computed tomography coronary angiography
CTPA Computed tomography pulmonary angiography

DCS Depth-wise convolutional scaling
DL Deep learning
DSC Dice similarity coefficient

DWC Depth-wise convolution

FLOPs  Floating point operations

IN Instance normalization

MSA Multi-head self-attention

ORFAN  The Oxford risk factors and non-invasive imaging study

ReLU Rectified linear activation unit
RIMA Right internal mammary artery
SE Squeeze-and-excitation
ViT Vision transformer
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