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Abstract: The major goal of this work is to present a novel fractional temperature-dependent
boundary element model (BEM) for solving thermoelastic wave propagation problems in smart
nanomaterials. The computing performance of the suggested methodology was demonstrated by
using stable communication avoiding S-step — generalized minimal residual method (SCAS-
GMRES) to solve discretized linear BEM systems. The benefits of SCAS-GMRES are investigated
and compared to those of other iterative techniques. The numerical results are graphed to
demonstrate the influence of fractional, piezoelectric, and length scale characteristics on total force-
stresses. These findings also demonstrate that the BEM methodology is practical, feasible, effective,
and has superiority over domain methods. The results of the present paper help to develop the
industrial uses of smart nanomaterials.

Keywords: Fractional-order; temperature-dependent; size-dependent; Boundary element method;
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1. Introduction

Many engineering research in recent years have aroused academics' interest in investigating the
thermoelastic behavior of materials [1-6] due to their potential in geological and engineering
applications. Nanotechnology is concerned with developing tools for studying the properties of
nanomaterials, whereas nanoscience is concerned with moving and manipulating atoms to achieve
the properties required in a particular field of life [7,8]. Nanostructures are one of the most important
outcomes of nanotechnology. A structure is classified as a nanostructure if one of its dimensions is
100 nanometers or less. Understanding the mechanical behavior of deformed nanostructures is
critical because they are used in a wide range of industries and professions, including engineering,
medicine, renewable energy, and military applications. In the industrial sector, certain nanoparticles
are used to create filters due to their greater strength as compared to traditional materials [9]. Because
of recent advances in nanoscale electronics and photonics [10-12], certain nanoparticles can be
utilized as drug-carrying materials in the medical profession because they have a unique sensitivity
to the place inside the human body to which the drug is supposed to be conveyed. When they reach
that location, they accurately release the drug. Encouragement studies have also confirmed the
potential for employing nanoparticles as a cancer treatment. Furthermore, gold nanoparticles are
employed to detect pregnancies in home pregnancy test kits. Nanowires are being employed in
nanoscale biosensors for early illness detection [13,14]. In the field of renewable energy, the panel,
which is connected by an electrical circuit and contains hundreds of solar cells, converts solar energy
into electrical energy. Military uses for nanomaterials include the creation of nanoscale cylinders with
strength and rigidity that have a million times the storage capacity of conventional computers,
military clothing that can absorb radar waves for stealth and infiltration, and nanosatellites [15-17].
Specific nanomaterials are incorporated into concrete in the building and construction industry to
improve its tenacity, rigor, and water resistance. These materials include silica nanoparticles, carbon
nanotubes, and titanium dioxide (TiO2). Many nanotechnology applications rely on
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porothermoelastic  interactions that vary with size [18-20]. Because size-dependent
thermopiezoelectric problems are computationally complex to solve and do not have a general
analytical solution, numerical methods for solving them should be developed [21]. The BEM model
of Fahmy et al. [22] described the thermopiezoelectricity theory in smart nanomaterials. In the
considered BEM model, we introduced a new solution for fractional, temperature-dependent, and
wave propagation size-dependent thermopiezoelectricity problems in smart nanomaterials. This
paper may be considered as a generalization for [22] with fractional, temperature-dependent, and
wave propagation effects which are not considered in [22]. The boundary element method (BEM) is
an efficient numerical approach employed to solve partial differential equations [23-26]. It
outperforms the finite element method (FEM) in several ways [27]. Only the problem's boundary
needs to be discretized for the BEM. In comparison to FEM, which necessitates discretization of the
entire problem domain, it has a substantial advantage. Because it requires less computational work
and input data preparation, this feature is critical for solving complex problems in smart
nanomaterials. It also improves the feature's usability. Only the BEM formulation procedure can
address infinite domain problems with complicated borders and geometrical quirks accurately. The
BEM approach is particularly effective for measuring field derivatives such as tractions, heat fluxes,
and sensitivities. The BEM solution is provided by the integral representation expression. In the FEM,
the solution is only computed at nodal points. As a result, BEM has recently emerged as a reliable,
practical, and widely used alternative to FEM for modelling of fractional temperature- and size-
dependent thermoelastic problems in smart nanomaterials technology.

In this paper, the temperature-dependent thermoelasticity problems have been solved using the
boundary element method (BEM) to understand the mechanical characteristics of deformed smart
nanomaterials. The numerical results show the impacts of the fractional parameter, piezoelectric
parameter and length scale parameter on the total force-stresses. The numerical results also show
temperature-dependent and temperature-independent effects on smart nanomaterials and nonsmart
nanomaterials, as well as the viability, effectiveness, and precision of the current BEM methodology.

2. Formulation of the Problem

Consider a cross section of thermoelastic smart nanomaterial in the x;x, — plane, occupies the
region V that bounded by S as shown in Figure 1. Assume n, can be written as

_, dx 1
Mo = Cap™0 )
where €ap (e12=—ey =1,e;; = ey, =0).

Figure 1. Size-dependent thermoelastic smart nanomaterial.

All quantities in the x;x, — plane are independent of x;.
The rotation in terms of deformation displacement vector (u;,u,) and electric field in terms
of electric potential ¢ can be expressed as
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1
A=0Q; = E(uz,l - u1,2)
1
=5 Caplipa (2)
Ea = _(p'a (3)
The strain tensor, mean curvature vector and true couple-stress can be written as follows
Ea[;
1
=5 (tap +upa) 1)
k(x = eaﬁk3ﬁ
1
=3 eqapp 5)
1
M; = EeijkMkj (6)
Where kl = k32 = %Qyz,kz = _k31 = _%le and k3a = _ka3 = %Q‘a.
and Ma = g“BM3ﬁ' Ml] = _Mji' Ml = —M23,M2 = M13,and M3 = M21 =0
The force-stress tensor can be divided into two sections
Oap = O(ap) + Olap);
O3q = Og3
=0 (7)

The electric displacement D, is given as
Dy = egEq + Fy (8)
The governing equations for entropy balance, force equilibrium, moment equilibrium equations
and Gauss’s law for electric field of considered smart nanomaterial can be expressed as

~qgat Q=0 9)
Oga,p + Fx
=0 (10)
Olpal = ~Mia,p) O[21] = ~0[12)
= Mz (1
Doo = PE (12)
o) = M1l 5 + F
=0 (13)
Now, we present the following constitutive equations of considered smart nanomaterial
The heat flux
qa = —kO4 (14)

The force-stress, couple-stress and electric displacement are

Oap) = AyyOap + 2HEap

— (31 + 2W)a@08, (15)
M, = —8ul?k, + 2fE,,

12 = % (16)
Da
=eE,
+ 4fk, (17)

The force-traction, couple-traction and normal electric displacement are

ta = aﬁanﬁ (18)
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m = egoMgng
= Myny — Min, (19)
d = Dyn, (20)
Thus, the total force-stress tensor is
Opq = A&y Oap + 21eqp + 21l eqV2Q

708, 21)

1-—2v

where

E=2u(1+v),A=2u

1-2v
The fractional-order temperature-dependent heat equation is

D7O(x,7) = fV[/l(G)Y@(X, D] +$0(x,06,7),¢

= 2(0)c(®) (22)

in which

0(x,0,7) =0(x,0,7) + l;—Re(_i_z)](T),](t)
0

T %
=]°—2e ,a=1,23

51
As a result, equations (9), (10) and (12) may be expressed as
kV?0 + Q
=0 (23)
Mg go + u((1 4 12V*)ug g, + (1 = 12V*)V?u,)

150 tR=0 (24

eVip + pp =0,
e = ee (25)
Now, we can introduce the following definitions for g, t,, m, and d as follows
The normal heat flux
q = (qagNgy
00

= —k% (26)

The force-traction vector

ty = Ogalp = (Asw&xﬁ + 2pueqp + 2ul’e,g V20

E
—EaGé‘aﬁ) n,g (27)
The couple-traction
m = egalaNp
, 00 do
The normal electric displacement
d
d =Dyn, = —eﬁ +
a0
> (29)

3. Boundary Conditions

The temperature and displacement boundary conditions under consideration are
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© =0 on St (30)
q=q on S;,SrUS,; =5,5:NS; =0 (D
Uy =Uzon Sy (32)
ty =t, on S, S, US, =85,5,nS, =0 (33)
where
Q=QonS, (34)
m=mon S,,S,US,,=5,5S,NS, =0 (35)
and
p=¢ onsS, (36)
d=d on S4,S,US3=5,5,NSq=0 (37)

where St, Sy, Sy, St Sa, Sm, Sy and S, are the sprcified boundary values for T, q, uq, tq, Q,
m, ¢ and d, respectively.

4. Boundary Element Implementation

By using Caputo's formula and Eq. (22), we can write [28,29]
k

D2@ 1 + DS ~ Z W, (@f“-f x) — 0/ (x)) (38)
7=0
where
W, = ﬂ and W, , =W, (J+1D - (J-1)19% 39)
a0 — r(z _ a) a,] — a,0

By using Eq. (38), Eq. (22) may be written as
W00 "1 (%) — A(x,0)0% (%) — 1,(x,0)0/ " (x) = W,,0" (X) — 1(x)0’; (%)
f
~A000)0, 00— Y W (671700 ~ 0/1(0) + W (%,0,1) + (%, 0,1)  (40)
J=1
By using Kirchhoff transformation T = f r A(e) d® [30], Eq. (22) may be written as follows [31]
Do Co 6T(X 1)
Ao Jt

1
V2T (x, 1) + A—h(x, T,1T) = + NI(x,T,T) (41)
0

which can be expressed as [31]
po ¢y 0T (X, 1)

V2T (X, T) + ! hm(x T,T,1) = 7 (42)
in which
NI(x,T,T) = [p (2)(;)@ Po C°] T (43)
hv(x T, T,7) = h(x,T,T) + [po Co— A(T)p(T) C(T)] (44)

The fundamental solution of (40) can be used to define the integral equation corresponding to
(42) as [32].

Tn+1
CPYT(P, Tnss) + a0 f j T(Q0 " (P, Tup; 0, 0) dr dT
r Tn

st
= g f j 4(Q O T*(P,Tnss; ,7) drdl
r

Tn

a ?n+1 .
+/1—0 f f hi(Q T, T,7) T* (P, Tpy1; Q, T) dT dQ
00 Y7

n

— e — A
[ TQETC R0, a=t @5)
Q

0 %0

By using the same technique of Fahmy [31], where the radial point interpolation method (RPIM)
and Cartesian transformation method (CTM) [33-36] have been used to treat the domain integrals in
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Eq. (45) which is resulted from fractional-order temperature-dependent heat conduction equation
2).
The boundary integral equations can now be expressed as follows [37-39]

@ (OTE) - L 4% (%, HT(x)dS ()
_ f T (x, £)q()dS(x) + f T (%, QEIAV(X)  (46)
Cap@ua®) + § iy DS + [ mf (6,600
b | B e OT@seo + [ df .6 060 dsCo
- fs ulp(x, &)t (x)dS(x) + fs QF (x, E)m(x)dS (x)
+ fv ubp (%, OF,X)dV + fs i (x8)qx)dS(x)
- fv a0y (47)
UOED) + fs tg*(x,f)ua(X)dS(X)+£ mC (x, )IAS ()
+£ d° (%, g (x) dS)
= fs uS’ (x, &)ty (x)dS(x) + fs Q¢ (x, Hm(x)dS (x)
n fV uS ( OF AV (48)
P (©)p(E) + fs mP (x, )09 dS () + 565 47 (%, )p()dS ()
= f P (%, )d(x) dS() — f o (%, §)ps () dV (49)

The integral equations (46) - (49) in absence of body forces and volume charge density can be
written in matrix form as follows

2 (OT(E) —q% 0 0 0 e
Cap(§tta($) hg  tap(xd) mp x&) dp x8)||ug(®) is
c©0®) |5 0 i w mewe ol 200 |C
PP 0 0 mFEE d¥EHlte®
—9¢ 0 0 0 q(x)
_ fBF* (X, E) u;;; (X, f) ‘Qg* (X, E) 0 ta (X)
0 wen wwn o |[meo| 0 0
0 0 0PIt
Now, it is convenient to rewrite Eq. (50) in compact index-notation form as
cyOw® + 6 5% wEIdSE) = [, uy(x Ot (IdSK) (51)
This leads to the following linear algebraic equations system
Tu=1Ut (52)

that can also be expressed as
AX =B (53)
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5. Numerical Results and Discussion

To demonstrate the numerical computations calculated using the proposed methodology, we
consider the temperature-dependent thermoelastic smart nanomaterial [40,41] using the boundary
conditions depicted in Figure 2, to exemplify the numerical computations computed by the suggested
methodology. Under thermal and piezoelectric loadings, the considered thermoelastic smart
nanomaterial deforms and becomes electrically polarized. As illustrated in Figure 3, the BEM
discretization used 42 border elements and 68 internal points.

=
N

P =¢.,0=0,

v >

‘ » X1 _
q=0d=0 h Bée q=0d=0
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Figure 3. BEM model of the current problem.

Table 1. Considered properties of pure copper (Cu) nanoparticles [42].

T(C) 0 500 900
C(J/kg) °K 385 433 480
p(kg/m?) 8930 8686 8458

The thermal conductivity pure copper (Cu) nanoparticles is
T
a=400(1-—)

The solid line indicates Case A, which stands for temperature-dependent smart nanomaterials
(f = —1). Case B is shown by the dashed line, which represents for temperature-dependent
nonsmart nanomaterials (f = 0). The dotted line indicates Case C, which stands for temperature-
independent smart nanomaterials (f = —1). Case D is shown by the dash-dot line, which represents
for temperature-independent nonsmart nanomaterials (f = 0).

In the present paper, to solve linear systems generated by BEM discretization efficiently, we
used stable communication avoiding S-step — generalized minimal residual method (SCAS-GMRES)
of Zan et al. [43] to reduce the number of iterations and computation time. The SCAS-GMRES) [43],
fast modified fast modified diagonal and toeplitz splitting (FMDTS) of Xin and Chong [44], and
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unconditionally convergent - respectively scaled circulant and skew-circulant splitting (UC-RSCSCS)
of Zi et al. [45] were compared during our solution of the current problem in Table 2. This table shows
the number of iterations (Iter.), processor time (CPU time), relative residual (Rr), and error (Err.)
calculated for different length scale values. According to Tab. 2, the SCAS-GMRES iterative method
requires the least amount of IT and CPU time, implying that it outperforms the FMDTS and UC-
RSCSCS iterative methods.

Table 2. Results in numbers for the iteration techniques that were tried.

l Method Iter. CPU time Rr Err.

SCAS-GMRES 30 0.0119 1.96e-07 1.48e-09

0.01 FMDTS 60 0.0564 5.50e-07 1.72e-07
UC-RSCSCS 70 0.0730 7.02e-07 2.50e-06
SCAS-GMRES 40 0.0538 0.19e-06 2.06e-08

0.1 FMDTS 90 0.2239 1.72e-05 4.52¢-06
UC-RSCSCS 120 0.3764 1.16e-04 0.58e-05
SCAS-GMRES 60 0.1758 2.22e-05 1.80e-07

1.0 FMDTS 270 0.7940 1.80e-04 3.62e-05
UC-RSCSCS 280 0.8950 1.22e-03 4.60e-04

Table 3 explains the numerical solutions obtained for total force-stress @, at points A and B
for various length scale values (I = 0.01,0.1 and 1.0). Table 3 additionally provides the finite element
method (FEM) data of Sladek et al. [46], and the analytical data of Yu et al. [47] for our investigated
problem. As demonstrated in Tab. 3, the BEM data are very consistent with the FEM and analytical
data. As a result, the proposed BEM's validity and precision have been demonstrated.

Table 3. Numerical values for total force-stress ¢,; at points A and B.

BEM FEM Analytical
(011)a (011p (011)a (01108 (011)a (0110p
0.01 -0.04766x 10712 -0.01847x 10712 -0.04769% 10712 -0.01850x 10~1? -0.04767x 10~'? -0.01848x 10~1?
0.1 -0.02452x 1072 -0.02113x 1072 -0.02455x 10712 -0.02116x 10712 -0.02453x 10712 -0.02114x 10712

1.0 -0.01984x 10712 -0.02582x 10712 -0.01987x 10712 -0.02586x 10~2 -0.01985x 1012 -0.02583x 1012

l

From Figure 4, it is obvious that the total force-stress o1, increases, decreases then increases
tends to zero as x; tends to infinity for different theories.

x 10712
0.01 T T T T T T T T T

011 [Pa]

—— CaseA |]
--- CaseB

Case C [1
----- Case D
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Figure 4. Total force-stress 0y, distribution on x;-axis for various smart nanomaterials theories.

From Figure 5, it is obvious that the total force-stress oy, decreases, increases, decreases then
increases tends to zero as x; tends to infinity for different theories.

x 10712

T T T T T
—— CaseA
- -~ CaseB

Case C
----- Case D

-1 1 1 1 1 1 1 1 1 1

Figure 5. Total force-stress o, distribution on x;-axis for various smart nanomaterials theories.

From Figure 6, it is obvious that the total force-stress 0;; increase, decrease then increases tends
to zero as x; tends to infinity also it is shown that the total force-stress o0,, increases with the small
values of x; and then decrease and increase with the large values of the x;

x 10~12

=

-0.01 =
~
&
— -0.015 -1
N
o~
)
-0.02 -1
—— CaseA
-0.025 - -~ CaseB [
Case C
————— Case D
003 1 ] ] ] ] ] ] 1 :
1 12 14 16 18 2 22 24 26 28 3

Figure 6. Total force-stress o, distribution on x;-axis for various smart nanomaterials theories.

From Figure 7, it is obvious that the total force-stress o4, decreases with an increasing of x; but
it increases with an increasing of fractional order parameter a.
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x 10712
1 T T T T T T T T
. —— a=0.01
08 ——=-a=0.1
a=1.0
0.8
~—~ -
S
] il
-
-
[ _
1 1 1 L
22 24 28 28 3

Figure 7. Total force-stress o0y, distribution on x;-axis for various fractional parameter a values.

From Figure §, it is clear that the total force-stress o;,, increases and decreases with an increasing
of x1, and tends to zero as x; tends to infinity, it is display also that the values of total force-stress
01, almost coincide at the different values of fractional order parameter a, except for the interval
1.25 < x; < 2.20 where we find that the total force-stress oy, decreases with an increasing of
fractional order parameter a

x 10~12
0.01

0.005

-0.005

-0.01

o1, [Pa]

-0.015

-0.02

— a=0.01|]
---a=0.1
a=1.0

-0.025

003 [ R ] | | ! | ] T

Figure 8. Total force-stress oy, distribution on x;-axis for various fractional parameter a values.

From Figure 9, it is obvious that the total force-stress o,,, increase, decrease and tend to zero as
x, tends to infinity also it is clear that the total force-stress o,, decreases with the increasing of
fractional order parameter a
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x 10-12
n
v g | I
_o'm -
-0.01 -
T
a,
— 0015 -
8
)
-0.02 E
-0.025 7 —— a=0.01]]
-=-=a=0.1
a=1.0
| 1 l | | l l | 1
—0.031 12 1.4 1.8 1.8 2 22 24 28 28 3

Figure 9. Total force-stress o0,, distribution on x;-axis for various fractional parameter a values.

From Figure 10, it is obvious that the total force-stress oy, increase, decrease and tend to zero
as x; tends to infinity also it is clear that the total force-stress oy, decreases with the increasing of
piezoelectric parameter f

x 10712
0 T T T T — e T T T
-0.005 .
-0.01 -1
e
&
-
i
)
-0.02 -
-002s |7 —— f=o001
——- f=01
,,,,,,, f=10
-0.08 ! ! ! | | I | 1
1 1.2 14 18 1.8 2 22 24 28 28 3

Figure 10. Total force-stress oy, distribution on x;-axis for various piezoelectric parameter f values.

From Figure 11, it is seen that big values of of piezoelectric parameter f are very origin comparing
with small values of piezoelectric parameter f
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12

0.01 el T T T T T T T T

Figure 11. Total force-stress oy, distribution on x;-axis for various piezoelectric parameter f values.

From Figure 12, it is clear that the total force-stress o,,, increase, decrease and tend to zero as
x, tends to infinity, it is display also that the values of total force-stress o,, almost coincide at the
different values of piezoelectric parameter f, except for the interval 1.25 < x; < 2.20 where we find
that the total force-stress o0y, decreases with an increasing of piezoelectric parameter f

x 10-12
0.01 T T T T T T T T T

Figure 12. Total force-stress o, distribution on x;-axis for various piezoelectric parameter f values.

From Figure 13, it is obvious that the total force-stress o,,, increase, decrease and tends to zero
as x; tends to infinity also it is clear that the total force-stress oy, decreases with the small values of
length scale parameter [ and then increase and inclined with the large values of length scale
parameter [
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x 10712

-0.04 | 1 | | | | | 1 I

Figure 13. Total force-stress o0y, distribution on x;-axis for various length scale [ values.

From Figure 14, it is obvious that the total force-stress oy,, increase, decrease and tends to zero
as x; tends to infinity also it is clear that the total force-stress oy, decreases with the small values of
length scale parameter [ and then increase and inclined with the large values of length scale
parameter [

x 10712
0.01 T T T T T T T T T

—_— 1=0.01
-0.035 |- --=-1=01
..... [=1.0
~0.04 | ! 1 | | | | |
1 12 14 16 18 2 22 24 28 28 3

Figure 14. Total force-stress oy, distribution on x;-axis for various length scale [ values.

From Figure 15, it is concluded that the total force-stress o0,, along x;-axis increases for the
small values of x; with an increasing of length scale parameter [, also it is clear that the total force-
stress o,, decreases and increasing with the large values of x; and tends to zero as x; tends to
infinity.
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Figure 15. Total force-stress o, distribution on x;-axis for various length scale [ values.

6. Conclusion

A new BEM model for temperature- and size-dependent fractional thermoelastic problems in
smart nanomaterials is introduced.

A new efficient BEM methodology is developed for treating temperature-dependent and size-
dependent thermoelastic problems in smart nanomaterials.

The BEM efficiency has been shown by the usage of the SCAS-GMRES, which minimizes
memory needs and processing time.

The suggested model includes thermoelastic and piezoelectric impacts, which allows us to
explain the differences between temperature--dependent smart nanomaterials, temperature--
independent smart nanomaterials, temperature--dependent nonsmart nanomaterials, and
temperature--independent nonsmart nanomaterials.

The numerical data are plotted to show the impacts of the fractional order parameter,
temperature, and size on the total force-stresses.

The computational effectiveness of the suggested methodology has been established.

The proposed BEM approach has been shown to be valid and accurate.

We can conclude from current study that our proposed BEM technique is practicable, feasible,
effective, and superior to FDM or FEM.

The proposed methodology can be utilized to examine a wide range of thermoelastic problems
in smart nanomaterials that are temperature and size dependent.

It can be argued that our research has a wide range of applications, including shape memory
alloys, environmental sensors, photovoltaic cells, nanoceramics, sunscreens, air purifiers, food
packaging, flame retardants, antibacterial cleansers, filters, smart coatings, and thin films.

Recent numerical calculations for issues with smart nanomaterials may be of interest to
nanophysicists, nanochemists, nanobiologists, in addition to mathematicians with expertise in
nanotechnology, quantum computing, artificial intelligence and optogenetics.
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Nomenclature
a coefficient of thermal expansion F, Body force vector
8ap Kronecker delta function f Piezoelectric coefficient
A& Lamé elastic constants J(@) Non-Gaussian temporal profile
PE Volume electric charge density Jo Total energy intensity
n Couple-stress parameter k Thermal conductivity
Oap Total force-stress tensor kg Mean curvature vector
O(ap) Symmetric force-stress tensor kap Pseudo mean curvature tensor
Olap) Skew-symmetric force-stress tensor l The material length scale parameter
T Time M; True couple-stress vector
T; Laser pulse time characteristic My; Pseudo couple-stress tensor
0] Electric potential m Couple-traction
Q Rotation Ng Outward unit normal vector
A Non-symmetric dense matrix B, Polarization of piezoelectric material
B Known boundary values vector Q External heat source
c* Point couple kernel function Q" Point heat source kernel function
D, Electric displacement q Normal flux
d Normal electric displacement qa Heat flux vector
E Young's modulus R Irradiated surface absorptivity
E, Electric field R* Point electrical source kernel function
eap 2D permutation symbol T Temperature
€ijk 3D Levi-Civita permutation symbol ty Generalized tractions
e Electric permittivity t, Force-traction vector
e, Relative permittivity Ug Displacement vector
€y Vacuum permittivity v Poisson ratio
F* Point force kernel function X Unknown boundary values vector
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