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Abstract: The major goal of this work is to present a novel fractional temperature-dependent 

boundary element model (BEM) for solving thermoelastic wave propagation problems in smart 

nanomaterials. The computing performance of the suggested methodology was demonstrated by 

using stable communication avoiding S-step – generalized minimal residual method (SCAS-

GMRES) to solve discretized linear BEM systems. The benefits of SCAS-GMRES are investigated 

and compared to those of other iterative techniques. The numerical results are graphed to 

demonstrate the influence of fractional, piezoelectric, and length scale characteristics on total force-

stresses. These findings also demonstrate that the BEM methodology is practical, feasible, effective, 

and has superiority over domain methods. The results of the present paper help to develop the 

industrial uses of smart nanomaterials. 

Keywords: Fractional-order; temperature-dependent; size-dependent; Boundary element method; 

thermoelastic problems; smart nanomaterials 

 

1. Introduction 

Many engineering research in recent years have aroused academics' interest in investigating the 

thermoelastic behavior of materials [1–6] due to their potential in geological and engineering 

applications. Nanotechnology is concerned with developing tools for studying the properties of 

nanomaterials, whereas nanoscience is concerned with moving and manipulating atoms to achieve 

the properties required in a particular field of life [7,8]. Nanostructures are one of the most important 

outcomes of nanotechnology. A structure is classified as a nanostructure if one of its dimensions is 

100 nanometers or less. Understanding the mechanical behavior of deformed nanostructures is 

critical because they are used in a wide range of industries and professions, including engineering, 

medicine, renewable energy, and military applications. In the industrial sector, certain nanoparticles 

are used to create filters due to their greater strength as compared to traditional materials [9]. Because 

of recent advances in nanoscale electronics and photonics [10–12], certain nanoparticles can be 

utilized as drug-carrying materials in the medical profession because they have a unique sensitivity 

to the place inside the human body to which the drug is supposed to be conveyed. When they reach 

that location, they accurately release the drug. Encouragement studies have also confirmed the 

potential for employing nanoparticles as a cancer treatment. Furthermore, gold nanoparticles are 

employed to detect pregnancies in home pregnancy test kits. Nanowires are being employed in 

nanoscale biosensors for early illness detection [13,14]. In the field of renewable energy, the panel, 

which is connected by an electrical circuit and contains hundreds of solar cells, converts solar energy 

into electrical energy. Military uses for nanomaterials include the creation of nanoscale cylinders with 

strength and rigidity that have a million times the storage capacity of conventional computers, 

military clothing that can absorb radar waves for stealth and infiltration, and nanosatellites [15–17]. 

Specific nanomaterials are incorporated into concrete in the building and construction industry to 

improve its tenacity, rigor, and water resistance. These materials include silica nanoparticles, carbon 

nanotubes, and titanium dioxide (TiO2). Many nanotechnology applications rely on 
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porothermoelastic interactions that vary with size [18–20]. Because size-dependent 

thermopiezoelectric problems are computationally complex to solve and do not have a general 

analytical solution, numerical methods for solving them should be developed [21]. The BEM model 

of Fahmy et al. [22] described the thermopiezoelectricity theory in smart nanomaterials. In the 

considered BEM model, we introduced a new solution for fractional, temperature-dependent, and 

wave propagation size-dependent thermopiezoelectricity problems in smart nanomaterials. This 

paper may be considered as a generalization for [22] with fractional, temperature-dependent, and 

wave propagation effects which are not considered in [22]. The boundary element method (BEM) is 

an efficient numerical approach employed to solve partial differential equations [23–26]. It 

outperforms the finite element method (FEM) in several ways [27]. Only the problem's boundary 

needs to be discretized for the BEM. In comparison to FEM, which necessitates discretization of the 

entire problem domain, it has a substantial advantage. Because it requires less computational work 

and input data preparation, this feature is critical for solving complex problems in smart 

nanomaterials. It also improves the feature's usability. Only the BEM formulation procedure can 

address infinite domain problems with complicated borders and geometrical quirks accurately. The 

BEM approach is particularly effective for measuring field derivatives such as tractions, heat fluxes, 

and sensitivities. The BEM solution is provided by the integral representation expression. In the FEM, 

the solution is only computed at nodal points. As a result, BEM has recently emerged as a reliable, 

practical, and widely used alternative to FEM for modelling of fractional temperature- and size-

dependent thermoelastic problems in smart nanomaterials technology. 

In this paper, the temperature-dependent thermoelasticity problems have been solved using the 

boundary element method (BEM) to understand the mechanical characteristics of deformed smart 

nanomaterials. The numerical results show the impacts of the fractional parameter, piezoelectric 

parameter and length scale parameter on the total force-stresses. The numerical results also show 

temperature-dependent and temperature-independent effects on smart nanomaterials and nonsmart 

nanomaterials, as well as the viability, effectiveness, and precision of the current BEM methodology. 

2. Formulation of the Problem 

Consider a cross section of thermoelastic smart nanomaterial in the 𝑥ଵ𝑥ଶ − plane, occupies the 

region 𝑉  that bounded by 𝑆 as shown in Figure 1. Assume 𝑛ఈ can be written as 𝑛ఈ = 𝑒ఈఉ 𝑑𝑥ఉ𝑑𝑠                                                                        (1) 

where 𝑒ఈఉ (𝑒ଵଶ = −𝑒ଶଵ = 1, 𝑒ଵଵ = 𝑒ଶଶ = 0 ). 

 

Figure 1. Size-dependent thermoelastic smart nanomaterial. 

All quantities in the 𝑥ଵ𝑥ଶ − plane are independent of 𝑥ଷ. 

The rotation in terms of deformation displacement vector (𝑢ଵ, 𝑢ଶ) and electric field in terms 

of electric potential 𝜑 can be expressed as 
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Ω = Ωଷ = 12 ൫𝑢ଶ,ଵ − 𝑢ଵ,ଶ൯= 12 𝑒ఈఉ𝑢ఉ,ఈ                                                                      (2) 𝐸ఈ = −𝜑,ఈ                                                                         (3) 

The strain tensor, mean curvature vector and true couple-stress can be written as follows 𝜀ఈఉ= 12 ൫𝑢ఈ,ఉ + 𝑢ఉ,ఈ൯                                                                (4) 𝑘ఈ = 𝑒ఈఉ𝑘ଷఉ= 12 𝑒ఈఉΩ,ఉ                                                                            (5) 𝑀௜ = 12 𝑒௜௝௞𝑀௞௝                                                                       (6) 

where 𝑘ଵ = 𝑘ଷଶ = ଵଶ Ω,ଶ, 𝑘ଶ = −𝑘ଷଵ = − ଵଶ Ω,ଵ and 𝑘ଷఈ = −𝑘ఈଷ = ଵଶ Ω,ఈ. 

and 𝑀ఈ = 𝜀ఈఉ𝑀ଷఉ , 𝑀௜௝ = −𝑀௝௜ , 𝑀ଵ = −𝑀ଶଷ, 𝑀ଶ =  𝑀ଵଷ, and 𝑀ଷ = 𝑀ଶଵ = 0 

The force-stress tensor can be divided into two sections 𝜎ఈఉ = 𝜎(ఈఉ) + 𝜎ሾఈఉሿ,𝜎ଷఈ = 𝜎ఈଷ= 0                                                             (7) 
The electric displacement 𝐷ఈ is given as 𝐷ఈ = 𝑒଴𝐸ఈ + 𝑃ఈ                                                                   (8) 
The governing equations for entropy balance, force equilibrium, moment equilibrium equations 

and Gauss’s law for electric field of considered smart nanomaterial can be expressed as −𝑞ఈ,ఈ + 𝑄 = 0                                                                    (9) 𝜎ఉఈ,ఉ + 𝐹ఈ= 0                                                                                         (10) 𝜎ሾఉఈሿ = −𝑀ሾఈ,ఉሿ, 𝜎ሾଶଵሿ = −𝜎ሾଵଶሿ= −𝑀ሾଵ,ଶሿ                                                  (11) 𝐷ఈ,ఈ = 𝜌ா                                                                              (12) ൣ𝜎(ఉఈ) − 𝑀ሾఈ,ఉሿ൧,ఉ + 𝐹ఈ= 0                                                              (13) 
Now, we present the following constitutive equations of considered smart nanomaterial 

The heat flux 𝑞ఈ = −𝑘Θ,ఈ                                                                       (14) 
The force-stress, couple-stress and electric displacement are 𝜎(ఈఉ) = 𝜆𝜀ఊఊ𝛿ఈఉ + 2𝜇𝜀ఈఉ− (3𝜆 + 2𝜇)𝛼തΘ𝛿ఈఉ                            (15) 𝑀ఈ = −8𝜇𝑙ଶ𝑘ఈ + 2𝑓𝐸ఈ ,𝑙ଶ = ఎఓ                                                       (16) 𝐷ఈ= 𝑒𝐸ఈ+ 4𝑓𝑘ఈ                                                                                 (17) 
The force-traction, couple-traction and normal electric displacement are                            𝑡ఈ = 𝜎ఉఈ𝑛ఉ                                                                                                (18) 
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𝑚 = 𝑒ఉఈ𝑀ఈ𝑛ఉ= 𝑀ଶ𝑛ଵ − 𝑀ଵ𝑛ଶ                                                        (19)                                                       𝑑 = 𝐷ఈ𝑛ఈ                                                                                  (20) 
Thus, the total force-stress tensor is 𝜎ఉఈ = 𝜆𝜀ఊఊ𝛿ఈఉ + 2𝜇𝜀ఈఉ + 2𝜇𝑙ଶ𝑒ఈఉ∇ଶΩ− 𝐸1 − 2𝜈 𝛼തΘ𝛿ఈఉ                                     (21) 

where  𝐸 = 2𝜇(1 + 𝑣), 𝜆 = 2𝜇 𝑣1 − 2𝑣                                                     
The fractional-order temperature-dependent heat equation is 𝐷ఛ௔Θ(𝐱, 𝜏) = 𝜉∇ሾ𝜆(Θ)∇Θ(𝐱, 𝜏)ሿ + 𝜉𝑄(𝐱, Θ, 𝜏), 𝜉= 1𝜌(Θ)𝑐(Θ)                             (22) 

in which 𝑄(𝐱, Θ, 𝜏) = 𝑄ത(𝐱, Θ, 𝜏) + 1 − 𝑅𝐱଴ 𝑒ቀି𝐱ೌ𝐱బቁ௃(ఛ), 𝐽(𝑡)
= 𝐽଴ 𝜏𝜏ଵଶ 𝑒ି ఛఛభ , 𝑎 = 1, 2, 3                   

As a result, equations (9), (10) and (12) may be expressed as 𝑘∇ଶΘ + 𝑄= 0                                                                      (23) 𝜆𝑢ఉ,ఉఈ + 𝜇((1 + 𝑙ଶ∇ଶ)𝑢ఉ,ఉఈ + (1 − 𝑙ଶ∇ଶ)∇ଶ𝑢ఈ)− 𝐸1 − 2𝜈 𝛼തΘ,ఈ + 𝐹ఈ = 0          (24) 𝑒∇ଶ𝜑 + 𝜌ா = 0,𝑒 = 𝑒௥𝑒଴                                                           (25) 
Now, we can introduce the following definitions for 𝑞, 𝑡ఈ, 𝑚, and 𝑑 as follows 

The normal heat flux 𝑞 = 𝑞ఈ𝑛ఈ= −𝑘 𝜕Θ𝜕𝑛                                                                   (26) 

The force-traction vector 𝑡ఈ = 𝜎ఉఈ𝑛ఉ = ൬𝜆𝜀ఊఊ𝛿ఈఉ + 2𝜇𝜀ఈఉ + 2𝜇𝑙ଶ𝑒ఈఉ∇ଶΩ− 𝐸1 − 2𝜈 𝛼തΘ𝛿ఈఉ൰ 𝑛ఉ                          (27) 

The couple-traction 𝑚 = 𝑒ఉఈ𝜇ఈ𝑛ఉ= 4𝜇𝑙ଶ 𝜕Ω𝜕𝑛 − 2𝑓 𝜕𝜑𝜕𝑠                                                       (28) 

The normal electric displacement 𝑑 = 𝐷ఈ𝑛ఈ = −𝑒 డ𝜑డ௡ +2𝑓 డஐడ௦                                                            (29)    

3. Boundary Conditions 

The temperature and displacement boundary conditions under consideration are 
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Θ = Θഥ  𝑜𝑛  𝑆୘                                                                      (30) 𝑞 = 𝑞ത  𝑜𝑛  𝑆௤ , 𝑆் ∪ 𝑆௤ = 𝑆, 𝑆் ∩ 𝑆௤ = ∅                                               (31) 𝑢ఈ = 𝑢തఈ  𝑜𝑛  𝑆௨                                                                      (32) 𝑡ఈ = 𝑡ఈ̅   𝑜𝑛  𝑆௧ , 𝑆௨ ∪ 𝑆௧ = 𝑆, 𝑆௨ ∩ 𝑆௧ = ∅                                               (33) 

where Ω = Ωഥ  𝑜𝑛  𝑆ఠ                                                                       (34) 𝑚 = 𝑚ഥ  𝑜𝑛  𝑆௠, 𝑆ఠ ∪ 𝑆௠ = 𝑆, 𝑆ఠ ∩ 𝑆௠ = ∅                                             (35) 

and 𝜑 = 𝜑ത  𝑜𝑛  𝑆ఝ                                                                      (36) 𝑑 = 𝑑̅  𝑜𝑛  𝑆ௗ , 𝑆ఝ ∪ 𝑆ௗ = 𝑆, 𝑆ఝ ∩ 𝑆ௗ = ∅                                               (37) 

where 𝑆୘, 𝑆௤ , 𝑆௨, 𝑆௧, 𝑆ஐ, 𝑆௠, 𝑆ఝ and 𝑆ௗ  are the sprcified boundary values for T, 𝑞, 𝑢ఈ , 𝑡ఈ, Ω, 𝑚, 𝜑 and 𝑑, respectively. 

4. Boundary Element Implementation 

By using Caputo's formula and Eq. (22), we can write [28,29] 𝐷ఛ௔Θ௙ାଵ + 𝐷ఛ௔Θ௙ ≈ ෍ 𝑊௔,௃ ቀΘ௙ାଵି௃(𝐱) − Θ௙ି௃(𝐱)ቁ௞
௃ୀ଴                                           (38) 

where 𝑊௔,଴ = (∆𝜏)ି௔𝛤(2 − 𝑎)   and 𝑊௔,௃ = 𝑊௔,଴((𝐽 + 1)ଵି௔ − (𝐽 − 1)ଵି௔)                                  (39) 

By using Eq. (38), Eq. (22) may be written as 𝑊௔,଴Θ௙ାଵ(𝐱) − 𝜆(𝐱, Θ)Θ,௜௜௙ାଵ(𝐱) − 𝜆,௜(𝐱, Θ)Θ,௜௙ାଵ(𝐱) = 𝑊௔,଴Θ௙(𝐱) − 𝜆(𝐱)Θ,௜௜௙  (𝐱) −𝜆,௜(𝐱, Θ)Θ,௝௙  (𝐱) − ෍ 𝑊௔,௃ ቀΘ௙ାଵି௃(𝐱) − Θ௙ି௃(𝐱)ቁ௙
௃ୀଵ + ℎ௠௙ାଵ(𝐱, Θ, 𝜏) + ℎ௠௙ (𝐱, Θ, 𝜏)      (40) 

By using Kirchhoff transformation 𝑇 = ׬ ఒ(஀)ఒబ்்బ 𝑑Θ [30], Eq. (22) may be written as follows [31]   ∇ଶ𝑇(𝐱, τ) + 1𝜆଴ ℎ(𝐱, 𝑇, τ) = 𝜌଴ 𝑐଴𝜆଴ 𝜕𝑇(𝐱, τ)𝜕τ + 𝑁𝑙൫𝐱, 𝑇, 𝑇ሶ ൯                          (41) 

which can be expressed as [31]   ∇ଶ𝑇(𝐱, τ) + 1𝜆଴ ℎே௟൫𝐱, 𝑇, 𝑇ሶ , τ൯ = 𝜌଴ 𝑐଴𝜆଴ 𝜕𝑇(𝐱, τ)𝜕τ                                              (42) 

in which 𝑁𝑙൫𝐱, 𝑇, 𝑇ሶ ൯ = ൤𝜌(𝑇) 𝑐(𝑇)𝜆(𝑇) − 𝜌଴ 𝑐଴𝜆଴ ൨ 𝑇ሶ                                             (43) ℎே௟൫𝐱, 𝑇, 𝑇ሶ , τ൯ = ℎ(𝐱, 𝑇, τ) + ൤𝜌଴ 𝑐଴ − 𝜆଴𝜆(𝑇) 𝜌(𝑇) 𝑐(𝑇)൨ 𝑇ሶ                                    (44) 

The fundamental solution of (40) can be used to define the integral equation corresponding to 

(42) as [32].  𝐶(𝑃)𝑇(𝑃, 𝜏௡ାଵ) + 𝑎଴ න න 𝑇(Q, τ)ఛ೙శభఛ೙ 𝑞∗(𝑃, 𝜏௡ାଵ; 𝑄, τ)୻ 𝑑τ dΓ 

= 𝑎଴ න න 𝑞(Q, τ)ఛ೙శభఛ೙ 𝑇∗(𝑃, 𝜏௡ାଵ; 𝑄, τ)୻ 𝑑τ dΓ 

                       + 𝑎଴𝜆଴ න න ℎே௟൫Q, 𝑇, 𝑇ሶ , τ൯ఛ೙శభఛ೙ 𝑇∗(𝑃, 𝜏௡ାଵ; 𝑄, τ)ஐ 𝑑τ dΩ 

                                        + න 𝑇(Q, 𝜏௡)𝑇∗(𝑃, 𝜏௡ାଵ; 𝑄, τ)dΩஐ , 𝑎଴ = 𝜆଴𝜌଴ 𝑐଴        (45) 

By using the same technique of Fahmy [31], where the radial point interpolation method (RPIM) 

and Cartesian transformation method (CTM) [33–36] have been used to treat the domain integrals in 
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Eq. (45) which is resulted from fractional-order temperature-dependent heat conduction equation 

(22).  

The boundary integral equations can now be expressed as follows [37–39] 𝑐ொ∗(𝜉)𝑇(𝜉) − න 𝑞ொ∗(x, 𝜉)𝑇(x)𝑑𝑆(x)ௌ= − න 𝑇ொ∗(x, 𝜉)𝑞(x)𝑑𝑆(x) +  න 𝑇ொ∗(x, 𝜉)𝑄(x)𝑑𝑉(x)௏ௌ         (46) 𝑐ఈఉ(𝜉)𝑢ఈ(𝜉) + ර 𝑡ఈఉி∗ (x, 𝜉)𝑢ఈ(x)𝑑𝑆(x)ௌ + න 𝑚ఉி∗(x, 𝜉)Ω(x)𝑑𝑆(x)ௌ+ න ℎఉி∗ௌ (x, 𝜉)𝑇(𝑥)𝑑𝑆(x) + න 𝑑ఉி∗(x, 𝜉) 𝜑(x)ௌ 𝑑𝑆(x)
= න 𝑢ఈఉி∗ (x, 𝜉)𝑡ఈ(x)𝑑𝑆(x)ௌ + න Ωఉி∗(x, 𝜉)𝑚(x)𝑑𝑆(x)ௌ                + න 𝑢ఈఉி∗௏ (x, 𝜉)𝐹ఈ(x)𝑑𝑉 + න 𝑓ఉி∗(x, 𝜉)𝑞(x)𝑑𝑆(x)ௌ− න 𝑓ఉி∗(x, 𝜉)𝑄(x)𝑑𝑉௏            (47)  𝑐ஐ(𝜉)Ω(𝜉) + න 𝑡ఈ஼∗(x, 𝜉)𝑢ఈ(x)𝑑𝑆(x) + ර 𝑚஼∗(x, 𝜉)Ω(x)𝑑𝑆(x)ௌௌ+ ර 𝑑஼∗(x, 𝜉)𝜑(x)ௌ 𝑑𝑆(x)
= න 𝑢ఈ஼∗(x, 𝜉)𝑡ఈ(x)𝑑𝑆(x) + න Ω஼∗(x, 𝜉)𝑚(x)𝑑𝑆(x)ௌௌ+ න 𝑢ఈ஼∗(x, 𝜉)𝐹ఈ(x)𝑑𝑉௏         (48) 𝑐𝜑(𝜉)𝜑(𝜉) + ර 𝑚ோ∗(x, 𝜉)Ω(x)ௌ 𝑑𝑆(x) + ර 𝑑ோ∗(x, 𝜉)𝜑(x)𝑑𝑆(x)ௌ= න 𝜑ோ∗(x, 𝜉)𝑑(x)ௌ 𝑑𝑆(x) − න 𝜑ோ∗(x, 𝜉)𝜌ா(x)௏ 𝑑𝑉                               (49) 

The integral equations (46) - (49) in absence of body forces and volume charge density can be 

written in matrix form as follows 

   ⎣⎢⎢⎢
⎡ 𝑐𝒬∗(𝜉)𝑇(𝜉)𝑐ఈఉ(𝜉)𝑢ఈ(𝜉)𝑐ఠ(𝜉)Ω(𝜉)𝑐థ(𝜉)𝜑(𝜉) ⎦⎥⎥⎥

⎤ + ∮ ⎣⎢⎢
⎢⎡−𝑞𝒬∗ 0 0 0ℎఉி∗ 𝑡ఈఉி∗ (x, 𝜉) 𝑚ఉி∗(x, 𝜉) 𝑑ఉி∗(x, 𝜉)0 𝑡ఈ஼∗(x, 𝜉) 𝑚஼∗(x, 𝜉) 𝑑஼∗(x, 𝜉)0 0 𝑚ோ∗(x, 𝜉) 𝑑ோ∗(x, 𝜉)⎦⎥⎥

⎥⎤ ൦ 𝑇(x)𝑢ఈ(x)Ω(x)𝜑(x) ൪ௌ 𝑑𝑆(x) 

  = ׬ ⎣⎢⎢
⎢⎡ −𝜗𝒬∗ 0 0 0𝑓ఉி∗(x, 𝜉) 𝑢ఈఉி∗ (x, 𝜉) Ωఉி∗(x, 𝜉) 00 𝑢ఈ஼∗(x, 𝜉) Ω஼∗(x, 𝜉) 00 0 0 𝜑ோ∗(x, 𝜉)⎦⎥⎥

⎥⎤ ⎣⎢⎢
⎡ 𝑞(x)𝑡ఈ(x)𝑚(x)𝑑(x) ⎦⎥⎥

⎤௦ 𝑑𝑆(x)                              (50) 

Now, it is convenient to rewrite Eq. (50) in compact index-notation form as 

  𝑐ூ௃(𝜉)𝑢ூ(𝜉) + ∮ 𝑡ூ௃∗ (x, 𝜉)ௌ 𝑢ூ(x)𝑑𝑆(x) = ׬ 𝑢ூ௃∗ (x, 𝜉)𝑡ூ௦ (x)𝑑𝑆(x)                                  (51) 

This leads to the following linear algebraic equations system 𝑇ത𝑢ത = 𝑈ഥ𝑡̅                                                                                 (52) 

that can also be expressed as 𝐴𝑋 = 𝐵                                                                                  (53) 
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5. Numerical Results and Discussion 

To demonstrate the numerical computations calculated using the proposed methodology, we 

consider the temperature-dependent thermoelastic smart nanomaterial [40,41] using the boundary 

conditions depicted in Figure 2, to exemplify the numerical computations computed by the suggested 

methodology. Under thermal and piezoelectric loadings, the considered thermoelastic smart 

nanomaterial deforms and becomes electrically polarized. As illustrated in Figure 3, the BEM 

discretization used 42 border elements and 68 internal points. 

 

Figure 2. Geometry of the considered thermoelastic smart nanomaterial. 

 

Figure 3. BEM  model of the current problem. 

Table 1. Considered properties of pure copper (Cu) nanoparticles [42]. 

T(oC) 0 500 900 

C(J/kg) oK 385 433 480 𝝆(𝐤𝐠/𝐦𝟑) 8930 8686 8458 

The thermal conductivity pure copper (Cu) nanoparticles is 𝝀 = 𝟒𝟎𝟎 ൬𝟏 − 𝑻𝟔𝟎𝟎𝟎൰ 

The solid line indicates Case A, which stands for temperature-dependent smart nanomaterials (𝑓 = −1).  Case B is shown by the dashed line, which represents for temperature-dependent 

nonsmart nanomaterials (𝑓 = 0). The dotted line indicates Case C, which stands for temperature-

independent smart nanomaterials (𝑓 = −1). Case D is shown by the dash-dot line, which represents 

for temperature-independent nonsmart nanomaterials (𝑓 = 0). 

In the present paper, to solve linear systems generated by BEM discretization efficiently, we 

used stable communication avoiding S-step – generalized minimal residual method (SCAS-GMRES) 

of Zan et al. [43] to reduce the number of iterations and computation time. The SCAS-GMRES) [43],  

fast modified fast modified diagonal and toeplitz splitting (FMDTS) of Xin and Chong [44], and 
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unconditionally convergent - respectively scaled circulant and skew-circulant splitting (UC-RSCSCS) 

of Zi et al. [45] were compared during our solution of the current problem in Table 2. This table shows 

the number of iterations (Iter.), processor time (CPU time), relative residual (Rr), and error (Err.) 

calculated for different length scale values. According to Tab. 2, the SCAS-GMRES iterative method 

requires the least amount of IT and CPU time, implying that it outperforms the FMDTS and UC-

RSCSCS iterative methods. 

Table 2. Results in numbers for the iteration techniques that were tried. 𝒍 Method Iter. CPU time Rr Err. 0.01 

 

SCAS-GMRES 30 0.0119 1.96e-07 1.48e-09 

FMDTS 60 0.0564 5.50e-07 1.72e-07 

UC-RSCSCS 70 0.0730 7.02e-07 2.50e-06 

 0.1 

 

SCAS-GMRES 40 0.0538 0.19e-06 2.06e-08 

FMDTS 90 0.2239 1.72e-05 4.52e-06 

UC-RSCSCS 120 0.3764 1.16e-04 0.58e-05 

 1.0 

 

SCAS-GMRES 60 0.1758 2.22e-05 1.80e-07 

FMDTS 270 0.7940 1.80e-04 3.62e-05 

UC-RSCSCS 280 0.8950 1.22e-03 4.60e-04 

Table 3 explains the numerical solutions obtained for total force-stress 𝝈𝟏𝟏 at points 𝑨ഥ and 𝑩ഥ  

for various length scale values (𝑙 = 0.01, 0.1 and 1.0). Table 3 additionally provides the finite element 

method (FEM) data of Sladek et al. [46], and the analytical data of Yu et al. [47] for our investigated 

problem. As demonstrated in Tab. 3, the BEM data are very consistent with the FEM and analytical 

data. As a result, the proposed BEM's validity and precision have been demonstrated. 

Table 3. Numerical values for total force-stress σଵଵ at points Aഥ and Bഥ. 𝒍 
BEM FEM Analytical (𝝈𝟏𝟏)𝑨ഥ (𝝈𝟏𝟏)𝑩ഥ  (𝝈𝟏𝟏)𝑨ഥ (𝝈𝟏𝟏)𝑩ഥ  (𝝈𝟏𝟏)𝑨ഥ (𝝈𝟏𝟏)𝑩ഥ  

0.01 -0.04766ൈ 10ିଵଶ -0.01847ൈ 10ିଵଶ -0.04769ൈ 10ିଵଶ -0.01850ൈ 10ିଵଶ -0.04767ൈ 10ିଵଶ -0.01848ൈ 10ିଵଶ 

0.1 -0.02452ൈ 10ିଵଶ -0.02113ൈ 10ିଵଶ -0.02455ൈ 10ିଵଶ -0.02116ൈ 10ିଵଶ -0.02453ൈ 10ିଵଶ -0.02114ൈ 10ିଵଶ 

1.0 -0.01984ൈ 10ିଵଶ -0.02582ൈ 10ିଵଶ -0.01987ൈ 10ିଵଶ -0.02586ൈ 10ିଵଶ -0.01985ൈ 10ିଵଶ -0.02583ൈ 10ିଵଶ 

From Figure 4, it is obvious that the total force-stress 𝜎ଵଵ increases, decreases then increases 

tends to zero as 𝑥ଵ tends to infinity for different theories. 
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Figure 4. Total force-stress 𝜎ଵଵ distribution on 𝑥ଵ-axis for various smart nanomaterials theories. 

From Figure 5, it is obvious that the total force-stress 𝜎ଵଶ decreases, increases, decreases then 

increases tends to zero as 𝑥ଵ tends to infinity for different theories. 

 

Figure 5. Total force-stress 𝜎ଵଶ distribution on 𝑥ଵ-axis for various smart nanomaterials theories. 

From Figure 6, it is obvious that the total force-stress 𝜎ଵଵ increase, decrease then increases tends 

to zero as 𝑥ଵ tends to infinity also it is shown that the total force-stress 𝜎ଶଶ increases with the small 

values of 𝑥ଵ and then decrease and increase with the large values of the 𝑥ଵ  

 

Figure 6. Total force-stress 𝜎ଶଶ distribution on 𝑥ଵ-axis for various smart nanomaterials theories. 

From Figure 7, it is obvious that the total force-stress 𝜎ଵଵ, decreases with an increasing of 𝑥ଵ but 

it increases with an increasing of fractional order parameter 𝑎. 
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Figure 7. Total force-stress 𝜎ଵଵ distribution on 𝑥ଵ-axis for various fractional parameter 𝑎 values. 

From Figure 8, it is clear that the total force-stress 𝜎ଵଶ, increases and decreases with an increasing 

of 𝑥ଵ, and tends to zero as 𝑥ଵ tends to infinity, it is display also that the values of total force-stress 𝜎ଵଶ almost coincide at the different values of fractional order parameter 𝑎, except for the interval 1.25 ൏ 𝑥ଵ ൏ 2.20  where we find that the total force-stress 𝜎ଵଶ  decreases with an increasing of 

fractional order parameter 𝑎 

 

Figure 8. Total force-stress 𝜎ଵଶ distribution on 𝑥ଵ-axis for various fractional parameter 𝑎 values. 

From Figure 9, it is obvious that the total force-stress 𝜎ଶଶ, increase, decrease and tend to zero as 𝑥ଵ  tends to infinity also it is clear that the total force-stress 𝜎ଶଶ decreases with the increasing of 

fractional order parameter 𝑎 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 June 2023                   doi:10.20944/preprints202306.1356.v1

https://doi.org/10.20944/preprints202306.1356.v1


 11 

 

 

Figure 9. Total force-stress 𝜎ଶଶ distribution on 𝑥ଵ-axis for various fractional parameter 𝑎 values. 

From Figure 10, it is obvious that the total force-stress 𝜎ଵଵ increase, decrease and tend to zero 

as 𝑥ଵ tends to infinity also it is clear that the total force-stress 𝜎ଵଵ decreases with the increasing of 

piezoelectric parameter f 

 

Figure 10. Total force-stress 𝜎ଵଵ distribution on 𝑥ଵ-axis for various piezoelectric parameter f values. 

From Figure 11, it is seen that big values of of piezoelectric parameter f are very origin comparing 

with small values of piezoelectric parameter f 
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Figure 11. Total force-stress 𝜎ଵଶ distribution on 𝑥ଵ-axis for various piezoelectric parameter f values. 

From Figure 12, it is clear that the total force-stress 𝜎ଶଶ, increase, decrease and tend to zero as 𝑥ଵ tends to infinity, it is display also that the values of total force-stress 𝜎ଶଶ almost coincide at the 

different values of piezoelectric parameter f, except for the interval 1.25 ൏ 𝑥ଵ ൏ 2.20 where we find 

that the total force-stress 𝜎ଵଶ decreases with an increasing of piezoelectric parameter f 

 

Figure 12. Total force-stress 𝜎ଶଶ distribution on 𝑥ଵ-axis for various piezoelectric parameter f values. 

From Figure 13, it is obvious that the total force-stress 𝜎ଶଶ, increase, decrease and tends to zero 

as 𝑥ଵ tends to infinity also it is clear that the total force-stress 𝜎ଵଵ decreases with the small values of 

length scale parameter 𝑙  and then increase and inclined with the large values of length scale 

parameter 𝑙 
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Figure 13. Total force-stress 𝜎ଵଵ distribution on 𝑥ଵ-axis for various length scale 𝑙 values. 

From Figure 14, it is obvious that the total force-stress 𝜎ଵଶ, increase, decrease and tends to zero 

as 𝑥ଵ tends to infinity also it is clear that the total force-stress 𝜎ଵଶ decreases with the small values of 

length scale parameter 𝑙  and then increase and inclined with the large values of length scale 

parameter 𝑙 

 

Figure 14. Total force-stress 𝜎ଵଶ distribution on 𝑥ଵ-axis for various length scale 𝑙 values. 

From Figure 15, it is concluded that the total force-stress 𝜎ଶଶ along  𝑥ଵ-axis increases for the 

small values of 𝑥ଵ with an increasing of length scale parameter 𝑙, also it is clear that the total force-

stress 𝜎ଶଶ decreases and increasing with the large values of 𝑥ଵ and tends to zero as 𝑥ଵ tends to 

infinity.  
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Figure 15. Total force-stress 𝜎ଶଶ distribution on 𝑥ଵ-axis for various length scale 𝑙 values. 

6. Conclusion 

A new BEM model for temperature- and size-dependent fractional thermoelastic problems in 

smart nanomaterials is introduced. 

A new efficient BEM methodology is developed for treating temperature-dependent and size-

dependent thermoelastic problems in smart nanomaterials. 

The BEM efficiency has been shown by the usage of the SCAS-GMRES, which minimizes 

memory needs and processing time. 

The suggested model includes thermoelastic and piezoelectric impacts, which allows us to 

explain the differences between temperature--dependent smart nanomaterials, temperature--

independent smart nanomaterials, temperature--dependent nonsmart nanomaterials, and 

temperature--independent nonsmart nanomaterials. 

The numerical data are plotted to show the impacts of the fractional order parameter, 

temperature, and size on the total force-stresses. 

The computational effectiveness of the suggested methodology has been established. 

The proposed BEM approach has been shown to be valid and accurate. 

We can conclude from current study that our proposed BEM technique is practicable, feasible, 

effective, and superior to FDM or FEM. 

The proposed methodology can be utilized to examine a wide range of thermoelastic problems 

in smart nanomaterials that are temperature and size dependent. 

It can be argued that our research has a wide range of applications, including shape memory 

alloys, environmental sensors, photovoltaic cells, nanoceramics, sunscreens, air purifiers, food 

packaging, flame retardants, antibacterial cleansers, filters, smart coatings, and thin films. 

Recent numerical calculations for issues with smart nanomaterials may be of interest to 

nanophysicists, nanochemists, nanobiologists, in addition to mathematicians with expertise in 

nanotechnology, quantum computing, artificial intelligence and optogenetics. 
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Nomenclature 𝛼ത coefficient of thermal expansion 𝐹ఈ Body force vector 𝛿ఈఉ Kronecker delta function 𝑓 Piezoelectric coefficient 𝜆 & 𝜇 Lamé elastic constants  𝐽(𝜏) Non-Gaussian temporal profile 𝜌ா Volume electric charge density 𝐽଴ Total energy intensity 𝜂 Couple-stress parameter 𝑘 Thermal conductivity 𝜎ఈఉ Total force-stress tensor 𝑘ఈ Mean curvature vector 𝜎(ఈఉ) Symmetric force-stress tensor 𝑘ఈఉ Pseudo mean curvature tensor 𝜎ሾఈఉሿ Skew-symmetric force-stress tensor 𝑙 The material length scale parameter  𝜏 Time 𝑀௜ True couple-stress vector 𝜏ଵ Laser pulse time characteristic 𝑀௞௝ Pseudo couple-stress tensor 𝜑 Electric potential 𝑚 Couple-traction  Ω Rotation 𝑛ఈ Outward unit normal vector  𝐴 Non-symmetric dense matrix 𝑃ఈ Polarization of piezoelectric material 𝐵 Known boundary values vector 𝑄 External heat source 𝐶∗ Point couple kernel function 𝑄∗ Point heat source kernel function 𝐷ఈ Electric displacement 𝑞 Normal flux 𝑑 Normal electric displacement  𝑞ఈ Heat flux vector 𝐸 Young's modulus 𝑅 Irradiated surface absorptivity 𝐸ఈ Electric field 𝑅∗ Point electrical source kernel function 𝑒ఈఉ 2D permutation symbol 𝑇 Temperature 𝑒௜௝௞ 3D Levi-Civita permutation symbol 𝑡ூ Generalized tractions 

e Electric permittivity 𝑡ఈ Force-traction vector  𝑒௥ Relative permittivity 𝑢ఈ Displacement vector 𝑒଴ Vacuum permittivity 𝑣 Poisson ratio 𝐹∗ Point force kernel function 𝑋 Unknown boundary values vector 
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