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Abstract: As an option to deal with the insulin-dependent disease, a recent commuted PD control
strategy is designed and carefully analyzed for different clinic diabetic patients. This controller
approach is mainly conceived to stabilize the glucose blood concentration in a diabetic patient around
its basal value, hence avoiding extreme situations such as hypoglycemia and hyperglycemia. This
control strategy receives two inputs carefully tuned to actuate when the measured variable is out
of a prescribed healthy zone. Therefore, one of these variables is invoked to decrease the glucose
concentration to insulin injection, and the other is employed to increase the glucose absorption, both
by using a proper PD controller. According to our numerical experiments, our controller approach
performs well, even when there is an external disturbance in the controlled system.

Keywords: glucose-insulin system; commuted proportional derivative controller; nonlinear system;
exogenous perturbation

1. Introduction

Diabetes (Diabetes mellitus) is a chronic disease that affects millions of persons worldwide (see,
for instance, [1-3], and [4]). This disease is characterized by inadequate control of the blood glucose
concentration in the body, leading to complications such as limb loss, blindness, ischemic heart disease,
and end-stage renal disease [3]. Besides, for diabetic patients with insulin-dependent diabetes, the
glucose/insulin regulatory system can be viewed as a feedback-control example where the blood
glucose levels are frequently measured to control it (see, for instance, [2,5,6,8] and [9]). Additionally,
and according to the Diabetes Control and Complications Trial (DCCT), the blood glucose concentration
should be within the range of 50-120 mg/dL [4]. In [10], the range from 60 mg/dL to 110 mg/dL
is considered as the normal blood glucose concentration level in humans. Therefore, by correctly
applying insulin, this glucose level can be correctly (healthy) manipulated. As reference values, above
120mg/dL the state of the patient is known as hyperglycemia, and below of 50mg/dL, the state is known
as hypoglycemia. Both states are harmful to the diabetic patient [4]. Exogenous factors that can affect
glucose include food intake, rate of digestion, exercise, and reproductive state, among others ([2,4]).
Hence, for control performance evaluation, it is also important that the designed controller be robust
in front of any real kind of internal or external perturbations.

Figure 1 shows the block diagram of a closed-loop controlled system of diabetic patients using
insulin pumps ([4,6]). In this scheme, the glucose sensor can be embedded under the skin, and the
insulin pump can be implanted in the abdomen. So, the control objective consists to keep regulating
the glucose level in the body. In this scenario, the patient is said to be under metabolic control. The
pump injects insulin through a catheter. The system shown in Figure 1 can be referred to as artificial
pancreas due to this closed-loop system replaces, in some way, the pancreas activity in controlling the
glucose level of the body of a healthy person [2].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Block diagram of the closed-loop controlled system of insulin-dependent diabetic patients.

In literature, several approaches have been used to design artificial pancreas. For instance, a
robust controller using higher-order sliding mode control is studied in [6]. Using optimal He.control
theory, an insulin injection control is analyzed in [5]. And employing a parametric programming
approach for the control design is considered in [4]. On the other hand, in [11], control algorithms using
standard linear control techniques, like the proportional-derivative controller, are studied, as in [12-14].
In this paper, the feedback measurement signal is assumed available at discrete-time moments which
results in an interesting and useful technological fact for an artificial pancreas design. In contrast, we
claim that no significant benefit is obtained in using a nonlinear model-based control design strategy.
For instance, in [15], an impulsive model predictive control is presented, but the mathematical model
has to be linear, and in [16], miss undertaken internal dynamics. On the other hand, PID controllers
in the artificial pancreas has been studied in [17], but only for hyperglycemic condition, and in [18] a
PID robust control is presented for the hypoglycemic situation, but both conditions are not studied
simultaneously, as in the present work. However, the nonlinear techniques can offer new ways of
control implementation that can face some nonlinearities ignored in by the linear controller tools.
Some of these nonlinear control design strategies involve sliding mode control [6,7], delay control [19],
optimal control [20], switched LPV control [21], sub-optimal control [22], model predictive control [23],
fuzzy control [24], reinforcement learning [25], etc. Therefore, the use of these control design tools
allows us to innovate new developments for artificial pancreas approaches. Our proposal aims to
act upon the control part of an insulin-dependent diabetic system to develop an effective and simple
solution to avoid non-desired clinical problems.

The main objective of the present work is to design a robust control for an artificial pancreas to
minimize the effect of extreme situation as hyperglycemia or hypoglycemia. Additionally, we evaluate
our artificial pancreas performance under different scenarios. Our control strategy uses a novel
switched strategy: when a peak value on glucose blood concentration is detected, then the controller
tries to minimize its level by injecting insulin to the system; and when the glucose blood concentration
is minor than healthy level, then glucose ingestion is administrated by the controller. The objective is
to maintain a healthy level of glucose. The control strategy is based on a Proportional-Derivative (PD)
theory, where the input signal is the detected peak value of the glucose blood concentration. The PD
controller format is considered due to its simple and easy realization [12], as pointed out by [13,20]. We
avoid using the PID controller because its integral action may be useless [14]. This is also evidenced, in
our numerical experiments, when we noticed that strong hypoglycemia occurs during a long period of
time when the integral part is considered. But in order to complete the study of the proposed switched
strategy, a reset integral part is considered, defining a commuted Proportional Integral Derivative
(PID) controller. This approach is based on Clegg integrator [26], where a reset signal is introduced to
face the overshoots produced by the integral part of the controller as suggested in [27] and [28].

The rest of the paper is organized as follows. First, the nonlinear mathematical model and the
proposed controller are presented in Section 2. Then, Section 3 shows the performance of the combined
PD controller in different scenarios: with decaying disturbance; with external additive perturbation;
and in the presence of dynamical plant changes. Also, in this section, a resetting-PID is evaluated to
see the undesired chattering effect due to the integral part of the control architecture. Finally, Section 4
discusses the obtained results.
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2. Materials and Methods

2.1. Dynamical Model of the Glucose-Insulin Regulatory System

The main objective of this paper is to design a robust PD controller for an artificial pancreas able
to stabilize the glucemia blood level around its basal value and prevent hypoglycemia from appearing
when the administrated insulin is not well assimilated by the patient. In the recent literature, there are
some glucose-insulin regulatory mathematical models [29]. In this paper, we consider the minimal
model called the Bergman minimal model. See, for instance, [4-6,11] and references therein. This is due
to its simplicity. This model is as described follows:

xl(f) = —m (xl(t) — Gh) — xl(t) . x;z(f) + D(f), (1)
X(t) = —paxa(t) + pa(xs(t) — ), )
w(t) = —nxs(t) —Ip) + ) — o]t +u(t), ®)

where x(t), x2(t) and x3(t) are the blood plasma glucose concentration (mg/dL), the insulin’s
effect on the net glucose disappearance (1/min) and the insulin concentration in plasma (¢ U/ml),
respectively. [x; — ¢]" means that when x; (t) is greater that ¢, then the value is taken to be [x; — 0],
otherwise, its value is zero. G, and I, are the basal value levels of pre-injection level of glucose
(mg/dL) and the pre-injection level of insulin (xU/ml), respectively. These values can be also called
the subject’s baseline glycemia (G;) and the subject’s baseline insulinemia (1) [19]. Remark that o
is greater than G;,. D(t) represents the exogenous factors, and u(t) defines the insulin injection rate
being the control input. Parameters p;, p2, p3, n and 7y are the system parameters. These are described,
for instance, in [6,19]. Additionally, x1(0), x2(0), and x3(0) are the corresponding initial conditions.
Finally, x1 (t) is the available output system for the control algorithm.

According to [6], D(t) is supposed to be reduced to zero or to some constant value in finite-time,
and it represents the rate at which glucose is absorbed by the regulatory system. One possible
mathematical representation of D(t) is as follows [4,6,7,20]:

D(t) = Ae” B, B>0. (4)

Therefore, mathematical model (1)-(3) will be taken as a reference pancreas system.

2.2. Modified Mathematical Model

Because the dynamic of glucose concentration is reduced when hypoglycemia occurs, and to
increase its concentration, the control action has to administrate glucose to the pancreas system. In
consequence, equation (1) is modified to include this control manipulation:

X(t) = —pi(x1(t) = Gp) — x1(t) - x2(t) + D(t) + ug(t), @)
X(t) = —paxa(t) +pa(xs(t) — L), (6)
i3(t) = —n(xs(t) — L) +y[xi () — o] Tt +u(t). ?)

From here, the term u¢(t) corresponds to the controller part that is activated under hypoglycemia.
This modified mathematical model defined by equations (5)-(7) allows us to direct influence on the
glucose level of the pancreas system.

2.3. Commuted PD Control

The control objective is to stabilize the glucose blood concentration around the nominal value Gy,
First, we deal with the following PD control law:
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uPD(t> =k (xl(t) — Gb) + kle(t) , (8)

where control parameters ki and k, must be tuned off-line. Once we have determined their nominal
values, we have to implement the combined strategy to face hypo- and hyperglycemia states. The
purpose is to reduce the time that the patient suffers from these unhealthy states. In this section, we
do not consider the integrator term of the classical PID controller. As mentioned in [14], the integral
action can be neglected in front of the proportional and derivative ones. But to obtain a more complete
study, we deal with PID version in section 3.4. Also, from simulation experiments, we notice that
strong hypoglycemia occurs during a long time period of PID control action.

To mitigate the strong effect of insulin, we propose to administrate a slight dose of glucose. The
control action must be present in glucose dynamic (5) and in insulin dynamic (7) too. To identify when
the patient is in a critical situation, we test if the glucose blood concentration x (f) is in a healthy range
60-110 mg/dL. In fact, from the literature, this range can be larger, as 50-120 mg/dL [4]. The idea of
the switched strategy is as follows:

* Hyperglycemia: to decrease the glucose blood concentration, an insulin injection is needed, in
terms of the PD controller. In system equation (7), the control u(t) is:

upp(t) x1(t) > x1,
u(t) = )

0 otherwise.

This administration has to be always positive. The control designer has to decide when this

control is activated, in terms of critical glucose blood concentration value x1,,.
* Hypoglycemia: to increment the glucose blood concentration, ingestion is necessary. In system

equation (5), the control ug(t) is:

—upp(t) x1(t) < xy,
ug(t) = (10)
0 otherwise.

Due to the dynamic of glucose blood concentration (5), the control law tries to increment the
velocity of glucose blood absorption. The control designer has to decide when this control is
activated, in terms of critical glucose blood concentration value x1, .

We will call this control strategy the commuted PD controller. This is because we combine insulin
and glucose administration following a switched decision rule. The design parameters x1,, and x1,
can be off-line determined to ensure the activation when hypoglycemia occurs (we do not have x3(t)
measurements to obtain an adjusted running of this value). In our case, we set x1,, = 110 and x1, = 60,
to meet the given healthy range.

We now discuss why a combined strategy is desirable. First, a PD controller was considered, but
simulations show that the insulin infusion rate is greater than its basal value leading to hypoglycemia
during a long period of time of control activation. To improve the controller performance, and if
possible to not fall into hypoglycemia, one option is to tune the controller’s parameters. Additionally,
we decide to restrict the action of insulin administration only when hyperglycemia is really happening.
In this case, with control laws {u = upp, ug = 0}, the controlled artificial pancreas will try to minimize
the error between the measured glucose blood concentration x;(t) and the basal concentration G,.
Then, when the glucose blood concentration of the patient is in a healthy range, no control action is
required {u = 0,1y = 0}. To complete this strategy, we consider a control action when hypoglycemia
occurs: {u = 0,1y = —upp}. This action can be seen as an ingestion or administration of glucose. The
minus sign in ug is necessary due to the dynamics of (1).


https://doi.org/10.20944/preprints202306.1352.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 June 2023 doi:10.20944/preprints202306.1352.v1

5o0f 14

2.4. Robustness and Stability

Our control objective consists of stabilizing the glucose level around the basal value in finite-time.
To study the stability, we consider two switching surfaces: s; = {x; = x1, } and s = {x; = x1,,}. So,
the glucose level can be into three possible regions:

Sl = (lelh) ’ SO = (xlh/le) ’ SZ = (le/ —|—OO>, (11)

verifying that x1(t) € R = S; USyUS,. Considering x(t) = (x1(t),x2(t), x3(t))T, the closed-loop
system has the following general representation:

(1) = f(t x(t)),

with f(t,x(t)) as a piecewise continuous function in each S; (11). To simplify the presentation, we omit
the dependence on t of x(t). Function f(t, x) is then defined as:

fi(t,x), x1 €8
Ftx) = fo(t,x), x1 € So (12)
fa(t,x), x1 €8,
where
25 (=(p1+ k) (x1 — Gy) — x1x2 + D(1))
filt,x) = —p2x2+p3(xs — 1) , (13)

—n(x3 — Iy)

—p1(x1 — Gp) — x1x2 + D(t)
fo(t,x) = —paxa + p3(x3 — Ip) ’ (14)

—n(xz —Iy) +y(x1 —0)*t

-1 (x1 — Gb) — X1X2 + D(f)
falt,x) = —pax2 + pa(x3 — I) .15

—n(xg —Iy) +7(x1 — )"t + (k1 — pik2) (x1 — Gp) — kax1x2 + k2 D(t)

According to Filippov’s theory (see [31,32] and [33] to an overview on this subject), a vector
solution x(t) of (12) is said to exist if it is absolutely continuous on [0, o), and for almost all ¢ € [0, c0),
x belongs to C[f}, fo] with j = 1,2, the convex closure over all sets of measure zero. Moreover, system
(12) is quadratically stable if there exist Lyapunov functions V;(x), j = 1,2, verifying two conditions
[32]:

(i) x € R® — {s;}: Vj(x) <0,

i) x € {s;}: sup (95 (afolt,x) + (1 - a)fj(t,x))) <O,
ae(0,1]
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To ensure stability, the control design parameters k; and k; have to verify (i) and (ii), obtaining a rule
on how to choose these values. Appendix A presents stability’s proof details.

The control algorithm to establish a healthy behavior in our pancreatic system can be summarized
as follows:

Step 1: Determine parameters xq,, > 0 and x;, > 0, necessary to active controllers ug(t) or u(t).

Step 2: Set the control parameters k1 > 0 and k > 0 of control upp(t) (8), satisfying the stability
conditions.

Step 3: Measure x1(t) every sample time; and define u(t) in (7) and ug(t) in (5) as:

x(t) € [xy, xy] = { Z:,?t)_zoo

u(f) =0
x1(t) < x, = { ug(t) = —upp(t)
x (t) > X1y = { Z;t()t)::ugD(t)

3. Results

Simulation experiments of our controlled pancreatic model are carried out here, and for different
patients shown in Table 1 [6] (the value * in Patient 3 denotes a modified value to obtain a notable
hyperglycemia case). The total simulation time is over 800 minutes, and the sample time is set to 2s.
The control parameter values are stated as k; = 0.09 and k, = 0.04 [12]. Note that these values verify
the stability conditions, as shown in Appendix A. In [30], algorithms to tune PD control parameters
are presented. Our purpose is to test the switched strategy, not to find the best PD control parameters.

Table 1. Parameter values [6]. The value * in Patient 3 denotes a modified value to obtain a notable
hyperglycemia case.

Healthy Patient 1 Patient 2 Patient 3

1 0.0317 0 0 0
P2 0.0123 0.02 0.0072 0.0142
ps 492x107% 53x107° 216x107® 9.94x107°
¥ 0.0039 0.005 0.0038 0.0*
n 0.2659 0.3 0.2465 0.2814
o 79.0353 78 77.5783 82.9370
Gy 70 70 70 70
I, 7 7 7 7
x1(0) 291.2 220 200 180
x2(0) 0 0 0 0
x3(0) 364.8 50 55 60

To test the effectiveness of our switched control strategy, different scenarios are considered:
commuted controller (9)-(10) is compared to the uncontrolled situation, and to system (1)-(3) with the
classic PD controller u(t) = u(t) defined in [12] and [14]:

x1(t) = —pi(x1(t) — Gp) — x1(t) - x2(t) + D(), (16)
X(t) = —paxa(t) + pa(xs(t) — L), (17)
x3(t) = —n(xa(t) = Ip) +y[xa(t) — o]t +uc(t), (18)

where the control is defined by:

uc(t) = ki (x1(t) — Gp) + ko1 (t). (19)
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Also, decaying and additive disturbance are considered, all to each patient in Table 1 [6]. Figures 2-9
present different scenarios that reinforce our proposal (each one in a different subsection):

¢ Decaying exponential disturbance D(t) (4): open-loop and closed-loop with commuted PD
controller (Figures 2-4).

¢ Additive disturbance (Figure 5-6).

¢ Change on the dynamic equation (5), proving the efficiency of our control algorithm against
slight modification on glucose assimilation (Figure 7).

¢ Finally, a reset-PID controller is implemented, showing that despite the rise time being reduced,
the control law presents chattering, a non-desired effect for a pancreatic system (Figure8-9).

Each figure of glucose blood concentration displays the healthy range 60-110 [10] to measure the
duration of hypo- and hyperglycemia episodes. For each patient, we compute the glucose and insulin
blood concentration x; (t) and x3(t) respectively, and the control action u(t) and ug(t) (verifying in
this case that they are both positive). The simulation results of patients are obtained using the data in
Table 1, with D(t) = 0.5¢7%0%* [7]. Note that in [6], D(t) = 0 is used. We decided to use a different
value of it to be more realistic taking the exogenous factor into account. Also, the pump dynamics
have been ignored (for a justification, see [6]).

3.1. Decaying Exponential Disturbance Simulations

Figure 2a pictures the open-loop system response (1)-(4) with u(t) = 0. Figure 2b presents the
signal output of the closed-loop system (2)-(5) with the commuted PD control (9)-(10) showing the
effectiveness of the proposed commuted PD controller. Also, a comparison is presented in Figure
3, where the behavior of classic PD control [12] does not perform better than the proposed control
strategy. Furthermore, the commuted PD controller stabilizes the glucose blood concentration at the
basal value Gy, in the three cases. As Figure 3 shows, no hypoglycemia is attained when commuted
PD control (9)-(10) is chosen. That is not the case when u g(t) (10) is not considered, as u,(t) behavior
shows. In Figure 3¢, considering commuted controller, in just a few minutes, hypoglycemia occurs.
Then, the glucose blood concentration is normalized, but the basal glucose concentration is not reached.

300 300
——Healthy ——Healthy
~250 — Patient 1 ~250 —Patient 1
Q — Patient 2 Q —Patient 2
2200 — Patient 3 2200 —Patient 3
;; — Basal level ;0’ — Basal level
3150 3150
[0} (0]
2110 g110
2 — 2 @_‘:ﬁ
S 60 S 60
0 0
0 200 400 600 800 0 200 400 600 800
Time (min) Time (min)
(@) Open-loop system (b) Closed-loop system
(1)-(4) (2)-(5), with control (9)-(10)

Figure 2. From (a), we notice that Patient 2 presents strong hypoglycemia (reaching 30 mg/dl), and
Patient 3 hyperglycemia (reaching 120 mg/dl). From closed-loop system (b), only Patient 3 presents
hypoglycemia for one hour approximately, reaching the lowest glucose level 52mg/dl (considered
healthy in [4]).
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250 250 250
a3 — i ---ug(t) = — i
%200 Combined PD 5200 ¢ g 200 Combined PD
£ 2 2
3150 < 150 <150
> [ >
B0 H <110
3 g 110 3
2 L\ 3 o g
o = = 8 I N S
g 60 % 60 S S 60

0 i) 0
0 200 400 600 800 % 200 200 500 800 0 200 400 600 800
Time (s) Time (min) Time (min)
(a) Patient 1 (b) Patient 2 (c) Patient 3

Figure 3. Closed-loop simulations. Classic model (16)-(18) with u.(t) (19) from [12], is compared to
proposed system (2)-(5) with commuted PD controller (9)-(10). It shows how under the commuted PD
controller (9)-(10) the glucose blood concentration is stabilized at G;.

20 20 —u()
10 —\ 10
= 0
0
200 %00 500 300 200 400 500 800 200 . 600 800
. 40 ime (min)
Time (min) Time (min)
s 2 e 2
2 — 8 e |
%15 il gL15
o E 2 E
gL £E 4
22 g
§ 2os § 2os
5, g o
200 400 600 800 0 200 400 600 800 0 100 200 300 400 500 600 700 800
Time (min) Time (min) Time (min)
(a) Patient 1 (b) Patient 2 (c) Patient 3

Figure 4. Control input u(t) (9) and ug(t) (10), with D(t) defined in (4), for each Patient under study.
To prevent hypoglycemia, after a few minutes of the end of its injection, glucose ingestion is needed.

Analysing Figure 4, we see how commuted PD controller works. We comment on the Patient 1
case. During the first minutes after meal ingestion, when D(t) is biggest, the system needs insulin
injection to reduce the glucose concentration (graphic of u(t) in Figure 4a). To normalize its level,
glucose ingestion is needed an hour after (graphic of u¢(t) in Figure 4a). This is a common situation
difficult to deal with. This due to the insulin administration could be too strong for a pancreatic system.
To mitigate this effect, we suggest ingesting some controlled quantity of glucose. This is done by ug(t)
(10) action. The same can be seen for Patients 2 and 3 given in Figures 4b and 4c, respectively.

3.2. External Noise Perturbation

We consider now an intake meal after 230 minutes after the controller is activated. It corresponds
to the case of additive perturbation on (1) or (5), and defined as:

w(t) =5 (H(t —230) — H(t — 250)) + Ae B0 (¢t — 230), (20)

where the function H(t — a) is the well-known Heaviside expression:

H(t—a):{ 0 t<a

1 t>a.


https://doi.org/10.20944/preprints202306.1352.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 June 2023

doi:10.20944/preprints202306.1352.v1

9of 14

Due to the additional glucose ingestion, an additional rate of glucose absorption has to be considered

(exponential function in (20)). Hence, the classic mathematical model of the pancreatic system is given
by [12]:

Which modified to our controlled system, results:

with u(t) defined in (9) and ug(t) in (10).

X1 (t)
Xo(t)
X3(t)

—p1(x1(t) = Gp) — x1(t) - x2(t) + D(t) +w(t),
—pax2(t) + pa(x3(t) — L),
—n(x3(t) — Ip) + ylxr(t) — o]t 4 uc(t).

—p1(x1(t) = Gp) — x1(t) - x2(t) + D(t) + ug(t) +w(t),
—p2x2(t) + pa(x3(t) — Ip),
—n(x3(t) — Iy) + ylx1 (t) — o] Tt +u(t),

(21)
(22)
(23)

(24)
(25)
(26)

Figures 5-6 present the simulations of Patients 1, 2, and 3 under the commuted PD controller

action. In these cases, the commuted PD controller has a good performance, because no hypoglycemia
range is attained. Hyperglycemia is attained only during ingestion, as expected.

Glucose level (mg/dl)

w
o
(=

— Healthy
250 —— Patient 1
—Patient 2
200 —Patient 3
---Basal level
150\ , A ,
110 \'\ 1 ’
60 - & ==
0
0 200 400 600 800
Time (min)
(@ System (24)-(26)

with the commuted PD
controller (9)-(10).

300
—Healthy

250 —— Patient 1

3 —Patient 2

E’ 200 —Patient 3
5 ---Basal level
3 150 : A :
I\

o
=2 [ S '\ VO
G 60 U — —

0
0 200 400 600 800
Time (min)

(b) System (21)-(23) with
the PD controller u.(f)

(19) in [12].

Figure 5. Simulations of closed-loop system with external perturbation (20). The proposed control

strategy performs better than PD control u. () [12], noticing that glucose ingestion is needed to prevent
hypoglycemia episodes.
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Figure 6. Commuted PD controller (9)-(10), under external perturbation (20). Notice that the glucose
ingestion suggested is small compared with the glucose blood concentration.
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3.3. Changes on Glucose Assimilation

Consider a more general case to system in (5), where the dynamic of x; (¢) is modified using an
auxiliary variable x,(t) with an stable dynamic (27)-(28):

X1(t) = —p1(x1(t) — Gp) — x1(t) - x2(t) + D(t) + xa(t), (27)

Xa(t) = —a (xa(t) —ug(t)) . (28)

We set o = 2. Figure 7 presents the simulations, where it can be noticed that its behavior is similar

to (5). So, we can conclude that our control algorithm is robust against to changes in patient dynamics
for glucose assimilation.

—Healthy —Healthy

250 —Patient 1 — Patient 1

—Patient 2 —Patient 2

200 —Patient 3 —Patient 3
\ ---Basal level ---Basal level

(L —— \\\\_JAL =

w

o

o
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n
o
o
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o

Glucose level (mg/dl)
=z @
o
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o
o

(=]
o

0 200 | dop 600 800 0 200 4o 600 800
(a) Unperturbed (b) Perturbed modified
modified system system (27)-(28) with
(27)-(28). w(t) # 0 (20).

Figure 7. Simulations of closed-loop system with commuted PD controller (9)-(10) when dynamical
changes on the glucose assimilation are considered (27)-(28). Two comparative situations: (a) with

w(t) = 0 and (b) under external perturbation (20). The behavior is similar to commuted model (5), as
Figures 2b and 5a show.

3.4. PID Using Reset Integrator

As was mentioned in the introduction, we noticed from simulations that strong hypoglycemia
occurs during a long period of time when the integral part in the PD controller is considered. In order

to complete the study of the proposed switched strategy, we consider now a reset integral part. Hence,
defining a commuted PID controller as:

upip (1) = k1 (1(1) ~ ) + kasia (1) + ks [ (ra(0) — G 29)

The limitations of the linear integrator can be faced using a reset integrator, also named as Clegg
integrator [26]. This integrator resets its output to zero whenever its input and output have different
signs [27,28]. Due to this resetting condition, the transient response of the controller can be arranged.
Figure 8 captures the Matlab Simulink model used to compute the numerical simulation experiments.
Based on Clegg integrator [26], we define a reset integrator block by taking into account that we need
to integrate the error and to vanishing it. Then, from Figure 8, we set:

* Clegg integrator Input. The error between glucose blood concentration x;(¢) and the nominal
value Gy,

¢ (legg integrator Initial condition. After each reset to the Clegg integrator, an initial condition is
needed to integrate at each resetting action. We use the zero initial condition setting.

¢ Clegg integrator Resetting actions. The block can reset its state to the specified initial condition

based on an external signal. We choose to reset the integrator when the sinus function changes
its sign.
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¢ Clegg integrator gain. The parameter k3 = 0.1 was found by the trial and error method.

Proportional

1
> X1 ) . s
Ug - Reset X0
Glucose/Insuline Reset Integrator
System (1)-(3)

Initial Cond.

) 4

Integral

a=0: Classic PD
a=1: Commuted PD s

0.1s+1

Derivative

Ug x1 g

u u g

Commuted PD Controller

Figure 8. Matlab Simulink diagram block model used to study the behavior of the proposed control
strategy to our pancreatic plant, considering reset integrator (29). When k3 = 0, we obtain the
commuted PD controller (9)-(10). As a resetting signal, we use a sinusoidal function r(¢) = sin(), and
zero initial condition.

Figure 9 shows the behavior of the commuted PID controller (29), where the rise time is reduced
to 10 minutes approximately. But the controller presents chattering in all cases (we picture Patient 1 in
Figure 9b as an example), and the insulin injection is increased.

300 g’
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(20)

Figure 9. Simulations of closed-loop system with external perturbation (20), using PID with reset
integrator (29). The rise time is reduced in 10 minutes approximately compared to Figure 5a, but the
control laws present chattering.

4. Discussion of Results

This paper proposes a new strategy to control the glucose blood concentration in a pancreatic
system, and with the control objective to reduce the error between this concentration with respect to the
basal one. As it is well-known, the main idea is to administrate insulin to prevent hyperglycemia. But
this insulin dose could be too strong, falling into the hypoglycemia region. To mitigate this effect, we
suggest ingesting some controlled quantity of glucose. The method used to define the controllers is the
Proportional-Derivative one, which is able to stabilize the glucose concentration around its basal value.
The key feature is to avoid an unhealthy glucose concentration range, combining insulin injection with
glucose administration. Then, two control actions are defined: one to modify the insulin dynamic
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(and prevent hyperglycemia), and the other one to to improve the perform the glucose dynamic (and
prevent hypoglycemia).

The simulations test the closed-loop performance on four different human behaviors. Moreover,
external perturbations are considered, as meal ingestion. The results are comparable or improved with
respect to other works. The purpose of this work is to study the behavior of this novel strategy, and
opens the possibility of testing this switched strategy on another type of controller.

Finally, two complementary studies are presented. One is based on modifying the glucose
absorption dynamic, to test the robustness of the commuted PD controller. The other study was to
include an integral part to our controller approach, defining a PID with a resetting integrator action,
showing that despite the rise-time of closed-loop dynamics is reduced, chattering on the controller
appears inevitably.

Appendix A

In this appendix, we check the stability conditions established in section 2.4 without external
disturbances, that is, considering D(f) = 0. We apply Filippov’s theory [31]-[33], where a vector
solution x(t) in (12) is said to exist if it is absolutely continuous on [0, o), and for almost all t € [0, o),
if & belongs to the convex closure over all sets of measure zero. Moreover, system (12) is quadratically
stable if there exist Lyapunov functions V;j(x), j = 1,2, verifying two conditions [32]:

(i) x € R —{s;}: Vj(x) <0,
(i) x € {s;}: sup1 (%‘f (afolt,x) + (1— uc)fj(t,x))) <0.

ae0,1]

First, we linearize nonlinear system (12) around the equilibrium point (Gy, 0, I ):

kG, 0

~ —ky
1= 0 -p2 3 (30)
0 0 —n
) -1 =G 0
fo= 0 —p2 p3 (31)
0 0 —n
) - -G 0
fo= 0 P2 P3 (32)

kl_PlkZ _kZGh —n

The existence of Lyapunov function of Condition (i) from Filippov’s theory is ensured by the
negativeness of the eigenvalues of the matrices (30)-(32) from the linearilized model. Hence, from the
triangular expression of (31) the negativeness is obvious. The eigenvalues of (30) have negative real
part if _1’717;2](1 < 0, where p; > 0. So, that’s define a condition on PD-control parameters:

—rn-hk pithk
-5 <0= 1% >0=ky <1
Under assumption ky < 1, the stability of (32) is verified, and the existence of Lyapunov function V;(x)

is guaranteed if k; < anppz3 . From the experimental data on Table 1, we obtain k; < 0.301. Condition

(ii) ensures the stability where x; takes its critical value.
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