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ABSTRACT. In history, theta function identities have been studied extensively and deeply.
In this paper, applying the residue theorem of an elliptic function, we obtain a parameterized theta

function identity. Then, by selecting the appropriate parameter,
we derive some famous Jacobi identities, as well as other relatively simple theta function
identities.
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1. INTRODUCTION

Theta function identities are classical and important objects of study. There are
many relations between theta function identities, combinatorics, number theory and
modular forms.

Around 1995, Farkas and Kopeliovich [1,2] proved some Ramanujan’s identities and
modular equations by applying the residue theorem of elliptic functions. In 2001, using
similar methods, Liu [4] studied the theta function satisfying the following functional

equations [f(z+m) = (=1)"f(2) and f(z+77)= (_q_le_m)n f(2),

where n = 3,4,5. He arrived at many theta identities, some of which are classical
and others are new. For more theta functions, their remarkable history and modern
developments, see [5-8,10-12].

First, we will give a brief view of fundamental facts about classical theta functions.

Let ¢ = €™, and Im(7) > 0. The Jacobi theta functions are defined by

91(2 | 7_) — —iqi Z (_l)nqn(n-i-l) (2n+1)z iz n n (n+1) Sm(?n + 1)
n=—00 n=0
92(z | 7_) _ qi Z qn(n+1)e(2n+1)zi _ Zq% an(n+1) cos(2n T 1)27
n=-—oo n=0
Os(z | 7) = Z q" 62"’“—1+22q cos 2nz,

n=—oo
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Ou(z | 7) = Z (—1)"q" e =1+ 22(—1)”(]”2 cos 2nz.
n=-—o00 n=1

We will use 0;(z|q) to denote the partial derivative with respect to the variable z.

Lemma 1.1 ( [4]). We have

9! o 2n
bi(217) :cotz+4z a 5 sin 2nz. (1.1)

The g—shifted factorial [3] is defined by

@ao=1,  (@ah=][0-ad) (0w =]]0ad)

For convenience, we use (a), to denote (a;q),.

When z = %, we have
G-
n(517) = \/ T )
SRERCERE
1) R

With respect to the (quasi) periods m and 77, we have
O(z+7|7)=—0i(2|7); O(z+a7|7)=—q e *0 (2] 1), (1.6)
Oz +7|T)=—0s(2 | T); Oo(z+77|7T)=q e y(z | 1), (1.7)
O3(z+7 | 7)=05(2 | 7); O3(z+77|7)=q e ?0s5(2 | 7), (1.8)
Oz +7|7)=04(2|7); Os(z+77|7)=—q e 204z | 7). (1.9)

We also have the following relations:

01<z+g|7>—02(z|7), (+—|7) iAG,(z | T), (1.10)
02<Z+g|7):—01(z|7), 0, (z—i——|7’>:A93(z|7') (1.11)
93<2+g|7>:94(z|7), (+—| r) = Aby(x | 7), (1.12)
04<z+g|7>:93(2]7), (z+—\7):erlz\T (1.13)
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In the following, we will provide the definition for the residue and the process of
computing for the residue of f(z). Let

a_n, a_
f(Z) ::?+---+71+a0+a1+---.

Throughout this paper, we will denote the residue of f(z) by Resf(z). Set F(z) :=
2" f(z). It is well-known that

1
(n—1)!

Res(f;0) = F=(0).

When 2 < n <6, we have the following theorem.

Theorem 1.2. Let F(z) be the above definition , and set ¢(z) = %, then

F(0) (¢*(0) + 36(0)¢'(0) + ¢"(0)) ,

n=5:Res(f;0) = 57 F(0) (6"(0) + 66°(0)¢"(0) + 46(0)¢"(0)
+3¢/(0)* + ¢"(0)) ,

n=6:Res(f;0) = El()Fm) (¢5<0) +106°(0)6(0) + 1062(0)6" (0)
+15¢(0)¢(0)* + 56(0)¢"(0) + 10¢'(0)¢" (0)

+¢W(n)).

Theorem 1.3. The sums of all the residues of an elliptic function in the period par-
allelogram is zero.

In this paper, we study the case n = 6. We get an identity with five paremeters. As
applications, we obtain the Jacobi identity and some new identities.

2. MAIN RESULTS

In this section, we apply logarithmic differerentiation to compute the residue of
elliptic functions at high order poles. Then we obtain an theta identity with five
parameters.

Theorem 2.1. Suppose f(z) is an entire function satisfying the functional equations

flz+m) = (=0°f(2) and f(z+77) = (¢ e72%)° f(2), (2.1)
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then, we have

o) SO(I-AER T on) glp(m) A () ()
i 050

2071(0 | 7)? 61(0 | 7)? 7

Proof. We consider the following function
f(2)

M EETaE
From (1.6) and (2.1), we find that g(z) satisfies

glz+m) =g(z) and g(z+77) = g(2).
Thus, ¢g(z) is an elliptic function with the periods = and 7w7. The poles of g(z) are 0,

T [T T4TT : :
5755, all of which are simple poles.

Based on Theorem 1.3, we have

Res(g;0) + Res (g; g) + Res (g; %) + Res <g; T +27TT) = 0. (2.3)

Now let us computer the above residues, respectively.

Suppose G(z) = 23g(z) and ¢(2) = ¢ Notice that
G(z)

ti 01z | 7) = lig 264z | 7).
. o . /
il_r)r(l) 012z | 1) = lli’)I}) 2201(2z | 7).
By using L’Hoptital’'rule, we derive
2 f(2)
G(0) = 1i
O = Tz )
e 7(2)
= lim
=0 2230 (2 | 7)20, (22 | )
0
201(0 ] 7)3°

(2.4)

From the expression of G(z), we have
InG(z) =Inzg(2) =3Inz +Ing(2)

and

On the other hand, we have
f(z)
0%(z | 7)61(22 | 7)
=Inf(z) —2Inbi(z|7) —Inb(22 | 7),

Ing(z) =1In
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and
I PGl e
9(z)  flz)  Ou(z[7) 0i(2z]7)
Thus,

In view of (1.1), we arrive at

G'(z (= z 3 = mo
(b(z):G((z)) 224—];((2)) —2<%—§—O(2)+4;13q2nsm2nz>

1 2z 3 = q .
_2<£—§—O(z)+4;1_q2n51n4nz>

f/(Z)_ 0 q2n
o) D2

=2z +

(sin2nz + sin4nz) + O (%) . (2.5)

n=1

Furthermore, we have

' (z) = <%§;) =2+ <%) — 82 | z;% (2n cos 2nz+ | 4ncosdnz) + O (27).
(2.6)

n=1

Based on Theorem 1.2, (2.4), (2.5), and (2.6), we have

Res(g;0) = 36(0) (6%(0) + &/(0)

1 f(0) (f’(O))2 (f’(O))' — ¢
== : + +2—48 ‘n
2 20,01 7)° ( 7o) "o 2
f”(O) f(()) (1 —24 220:1 % . n)
S 40,07 207(0 | 7)3 ‘
In terms of the definition of residue, we have the following results.
T . (2—3) f(2)
) =1 2
Res (9 ’ 2) D10z [ 1622 | 7)
zf (z + %)
im
=003 (242 |7)01(2z 47| 7)

. 13)
2070 7)63(0] )

(2.7)

(%) (2.9)

TN 2
Res (g: 2) 20000 [ 1)62(0] 7)’
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and
3
T4+ 7T qz f (—7”'2”)
: _ . 9.1
Res(g’ 2 > 26,0 [ 720 | 7) (2.10)

Substituting the (2.7) -(2.10) into (2.3), we obtain (2.2). We complete the proof. [

Theorem 2.2. For any complex numbers a,b,c,d e, let f(z) =01(z+a | 7)01(z + b |
T)01(z +c|T)01(z+d| 7)o (24 e | T)01(z —a—b—c—d—e|T), we have
/"(0)
201(0 | 7)2
Or(a | OB | )0 (c | IO | T)ou(e | T)or(at bt et dre|7) (1- 24500, (Lo )
01(0 [ 7)?

Os(a | 7)03(b | T)05(c | 7)03(d | T)03(e | T)Os3(a+b+c+d+e|T)
030 | 7)

Os(a | 7)04(b | T)04(c | T)0s(d | T)04(e | T)Os(a+b+c+d+e|T)
010 | 7)

Or(a | T)02(b | T)0a2(c | T)02(d | T)O2(e | T)O2(a+b+c+d+e|T)
03(0 | 7) '

+

(2.11)

Proof. Based on (1.6)-(1.9) and the following
(=2 |7)==bu(z|7),

Or(=z [ 7) =ba2(2 | 7),
O3(—z | 1) = 0s(2 [ 7)
Ou(=z [ 7) = ba(2 | 7),
Oi(=z|7) = —=01(z | 7),
0/ (=2 7)=01(z|7),

we can derive
flz+m) = (=1)°f(2) = f(2)
fletmr) = (="' e)° f(2)
so, f(z) satisfies (2.1).
On the other hand, we have

f (g) = 0y(a | 7)02(b | 7)0s(c | T)02(d | T)Os(e | T)Oa(a+b+c+d+e]|T),

f (%) = —q_%94(a | T)04(b | T)04(c | T)04(d | T)0s(e | T)0s(a +b+c+d+e|T),

f <7T+27TT) = q 203 | T)05(b | )0s(c | T)0s(d | T)0s(e | T)0s(a+b+c+d+e] 7).

Substituting the above three identities into (2.2), we derive (2.11). We compete the
proof. O
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Let a=b=c=d=e=0in (2.11), we obtain the famous Jacobi identity [13].

03(0|7) + 03(0]7) = 05(0]7).

Let a =0,b =c=d=%,e=0in (2.11), we have the following theta identity.

01
m m m
03 (5 17) 0201 7)+ 03 (51 7) 660 | 7) = 6 (5 | 7) 0200 | 7).
Based on (1.2)-(1.5), we have

02(0 | 37')
G20 | 7)

0,(0 | 37) +05(0 | 37) — 0,(0 | 37)

Let 7 — —%, we get

050 | 7) + 640 | 7) =001 7)

Notice that the above two identities are relative with modular equations which are
found by Ramanujan [9].
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