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Abstract: We propose a method of cooling nuclear spin systems of solid-state nanostructures by 

application of a time-dependent magnetic field synchronized with spin fluctuations. Optical spin 

noise spectroscopy is considered as the method of fluctuation control. Depending on the mutual 

orientation of the oscillating magnetic field and the probe light beam, cooling might be either 

provided by dynamic spin polarization in an external static field or result from population transfer 

between spin levels without build-up of a net magnetic moment (“true cooling”).  
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1.Introduction 

The energy transfer between nuclear spins and phonons in solids is known to be extremely slow, 

especially if the crystal lattice is kept at a cryogenic temperature, so that the spin-lattice relaxation 

time can reach hours [1,2]. At the same time, energy exchange between nuclear spins due to their 

magneto-dipole interaction occurs on the spin-spin relaxation timescale of approximately 0.1 

millisecond. Off-diagonal elements of the density matrix of the nuclear spin system (NSS) decay 

within approximately the same time. As a result, the NSS reaches internal equilibrium 

characterized by a spin temperature that can be many orders of magnitude lower than the lattice 

temperature, deep into the micro- or even nanoKelvin range [2]. Over the years that passed since 

the first experimental demonstration of the nuclear spin temperature [3], several methods were 

developed for cooling the NSS down to ultra-cryogenic temperatures.  

Application of an oscillating magnetic field to the nuclear spin system (NSS) is known to warm it 

up. If an external static magnetic field is applied, this effect amounts to depolarization of nuclear 

spins and peaks up at NMR frequencies [1]; in zero external field, it manifests itself as a decrease 

of magnetic susceptibility of the NSS [4]. The question arises whether it is possible to create 

conditions under which an oscillating field would act in the opposite way, cooling the NSS?   
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From general considerations, this might be possible if the oscillating field is synchronized with 

nuclear spin fluctuations. The rate of changing the NSS energy under influence of the field ( )B t  

equals 

( )
( )dB tdE

M t
dt dt

= −            (1) 

where ( )M t  is the total magnetic moment of the NSS. To provide a net change of the NSS energy, 

( )M t  must be correlated with the field; in particular, if an oscillating magnetic field 

( ) ( )1 1 cosB t b t=  is applied, the averaged over the period 
2

T



=  time derivative of the energy 

reads 

( ) ( ) ( ) ( )1
1 cos sinB B

T T

bdE d
M t b t M t t

dt dt T


 = −  =         (2) 

It is easy to show that in macroscopic solids, where spin fluctuations are negligible, the field-

induced change of energy always results in heating up the NSS. Indeed, the mean magnetic 

moment induced by the field equals ( ) ( ) ( )1 cos sinBM t b t t     = +   . Now, as follows 

from Eq.(2),  

( )2 2 2 2

1 1

1 1

2 4
B

B N

dE
b b M

dt k
   


= =        (3) 

where N  is the nuclear spin temperature. Here we used the well-known result of the fluctuation-

dissipation theorem in the high-temperature limit [5]: ( ) 21

2
B

B N

M
k

   


 = . One can see from 

Eq.(3) that the oscillating field pumps energy into the NSS in case of positive N  and out of it in 

case of negative N . In both cases, the absolute value of N  increases, i.e. the interaction of the 

oscillating magnetic field with the average magnetic moment induced by this field always warms 

up the NSS. 

However, if we are dealing with a finite-size NSS of a nanostructure, its magnetic moment includes 

a nonzero fluctuating part ( )M t : ( ) ( ) ( )M t M t M t= + . Let us suppose that we can measure 

( )M t  in real time. This can be done, for instance, by optical spin noise spectroscopy [6]. Then 

we can apply an oscillating field in such a way that it would correlate with the nuclear spin 
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fluctuation so that the average product of time derivative of ( )B t  and the magnetic moment would 

be nonzero:  

( ) 0
dB

M t
dt

             (4) 

 The resulted energy influx to the NSS would not depend on the NSS spin temperature, as distinct 

from the warm-up process, and would be linear in the magnetic field (and, consequently, its sign 

could be made positive or negative at will of the experimentalist). This opens up a possibility of 

cooling the NSS to low positive or negative temperatures.  

In the following, two examples of experimental arrangement in which nuclear spins can be cooled 

by oscillating magnetic fields are considered. In the first example, application of a constant 

magnetic field is necessary; here cooling of the NSS is provided by the build-up of nuclear spin 

polarization parallel or antiparallel to this field. In the second example, the NSS cooling amounts 

to population change of energy levels of nuclear spins split by Zeeman, spin-spin or quadrupole 

interactions, and is not necessarily accompanied by net spin polarization (“true cooling”).  

2.Dynamic spin polarization by oscillating magnetic field in a static external field 

We consider the experimental geometry shown in Fig.1 

 

Figure1. Scheme of the experiment on dynamic spin polarization in a constant magnetic field perpendicular 

to the structure axis. Red arrow shows the direction of the probe beam of linearly polarized light with the 

fluence J. Fluctuations of its polarization plane induced by spin fluctuations in the sample, detected with 

the polarimetric device, form the spin noise signal snu  used to control the current in the magnetic coil 

that creates the time-dependent magnetic field ( )1B t . 
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A constant magnetic field XB B=  is applied along the axis X. The Z component of the total 

magnetic moment of the probed volume, ZM , is measured, and the time-dependent magnetic field  

( ) ( )1 ZB t M t=           (5) 

is applied along Y. Here   is an adjustable transformation factor. One should note, that Eq.(1) is 

an idealization: in fact, the time-dependent field will inevitably contain an uncontrollable random 

contribution due to e.g. conversion of the photonic shot noise in the optical channel. The 

detrimental effect of this noise field will be considered later in Section 4. 

Qualitatively, the effect of the time-dependent field ( )1B t  on the nuclear magnetic moment is 

explained by the scheme shown in Fig.2. As ( )1B t  is correlated with YM , the latter is turned 

always in the same direction, feeding the X-component of magnetization. At the same time, XM

is turned so that it tends to compensate YM , reducing the amplitude of the transverse spin 

fluctuation. The latter is on average restored within the transverse relaxation time 2T . On the other 

hand, since the longitudinal relaxation time 1T  is much longer than 2T , XM  accumulates and 

becomes much greater than the average fluctuation.  

 

Figure 2. Schematic explanation of the dynamics of the nuclear magnetic moment under the magnetic field 

( )1B t , correlated with the nuclear spin fluctuation. The field ( )1B t  turns the Y-component of the 

fluctuating part of nuclear magnetic moment so that it feeds the regular magnetization along X. At the same 

time, XM  turns in the XY plane so that YM  decreases. 
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The quantitative description of this process is provided by dynamic equations for the components 

of the magnetic moment ( )M t : 

( ) ( ) ( )
( )

( )
( )

( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

2

1

1 1

2

1

2 2

X X

X Z Z

Y

Y Z

Z Z

Z Y X Y Z X

M t M t
M t B t M t M t

T T

M t
M t BM t

T

M t M t
M t BM t B t M t BM t M t M t

T T

 



   


= − = −




= − −


 = − − = − −


 (6) 

where   is the nuclear gyromagnetic ratio.  

In the following, we will develop these equations in the rotating-frame representation. It is the 

standard technique for the NMR theory, but as we are dealing with fluctuating magnetic moments, 

we choose to present a detailed derivation of the rotating-frame counterpart of Eqs.(6). In terms of 

the magnetic moment components in the coordinate frame rotating with the Larmor frequency 

B = , ( )YM t  and ( )ZM t , 

( ) ( ) ( )

( ) ( ) ( )

cos sin

cos sin

Z Z Y

Y Y Z

M t M t t M t t

M t M t t M t t

 

 

 = +

 = −
       (7) 

Substituting these expressions into Eq.(6) we obtain 

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 2

1

2

2

cos 2 cos sin sin

1
cos sin cos sin

1
cos sin cos sin

X

X Z Z Y Y

Y Z Y Z

Z Y X Y Z

M t
M t M t M M t t M t

T

M t t M t t M t t M t t
T

M t t M t t M t M t t M t t
T

    

   

    


     = + + − 





   − = − −   

  
    + = − + −    
  

 (8) 

Multiplying the 2nd equation in Eq.(8) by cos t  and the 3rd one by sin t  and adding up these 

two equations, we obtain the equation for the time derivative of ( )YM t : 

( ) ( ) ( ) ( ) ( ) 2

2

1
cos sin sinY Y X Z YM t M t M t M t t t M t t

T
       = − − +     (9) 

Similarly, by multiplying the 2nd equation in Eq.(8) by sin t  and the 3rd one by cos t  and 

subtracting, we obtain the equation for the time derivative of ( )ZM t : 
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( ) ( ) ( ) ( ) ( )2

2

1
cos sin cosZ Z X Z YM t M t M t M t t M t t t

T
       = − − +     (10) 

The 1st equation in Eqs.(8), Eq.(9) and Eq.(10) form the system of equations for the magnetic 

moment components in the rotating frame: 

( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 2

1

2

2

2

2

cos 2 cos sin sin

1
cos sin sin

1
cos sin cos

X

X Z Z Y Y

Y Y X Z Y

Z Z X Z Y

M t
M t M t M M t t M t

T

M t M t M t M t t t M t t
T

M t M t M t M t t M t t t
T

    

   

   


    = + + −  




    = − − +  



    = − − +  


  (11) 

By using the identities ( )2 1
cos 1 cos 2

2
t t = +  and 

1
sin cos sin 2

2
t t t  = , and neglecting 

terms oscillating at double frequency, Eq.(11) is reduced to 

( )
( )

( ) ( ) ( )

( ) ( ) ( )

2 2

1

2

2

1

2

1 1

2

1 1

2

X

X Z Y

Y X Y

Z X Z

M t
M t M M

T

M t M t M t
T

M t M t M t
T








  = + −  


  

 = − +  
 

  
  = − + 
  

       (12) 

Averaging of the first equation in Eqs.(12) yields the equation for the mean value of ( )XM t : 

( ) ( ) ( )
( )

2 2

1

1

2

X

X Z Y

M td
M t M t M t

dt T
    = + −

 
     (13) 

where ZM   and YM   are fluctuations of Z and Y components of the magnetic moment in the 

rotating frame, whose mean values remain zero. Further, assuming ( ) 2

1
1

2
XM t T  , where 

( )XM t  is the fluctuation of the X-component of magnetic moment, one can replace ( )XM t  in 

the second and third equations in Eqs.(12) with its average given by Eq.(13) 

The equations for fluctuations ZM   and YM   are obtained from second and third equations in 

Eqs.(12) by adding to their right-hand sides Langevin forces ( )Z t  and ( )Y t  [5] with correlation 

functions  
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) 0

Z Z Z

Y Y Y

Z Y

t t a t t

t t a t t

t t

  

  

 

 = −

 = −

 =

         (14) 

The factors Za  and Ya  are found from the condition that in the absence of the time-dependent 

field, i.e. when 0 = , the mean squared values ZM   and YM   take their thermodynamically 

equilibrium form. In the case of weak spin polarization, i.e. when ZM N I , where I  is the 

spin of a single nucleus and N is the number of nuclei in the probed volume,  

( )
( )

22 2
1

3
Z Y

I I
M M N  

+
 = =         (15) 

The correlation function of a random value x(t) described by the Langevin equation 

( ) ( ) ( )xx t x t t = − + , equals ( ) ( ) ( )0 exp
2

xa
x x t t


= −  [5]. From Eqs.(12), (14) and (15) we 

then find 

( )
( )2

2

1 1
2

3
Y Z

I I
a a N

T


+
= =          (16) 

At nonzero  , 
2

1 1

2
XM

T
 = + . Therefore,  

( ) ( ) ( ) ( )

( )
( ) 1

2

2

2

0 0

1 1 1 1
1 exp

3 2 2

Z Z Y Y

X X

M M t M M t

I I
N M T t M

T
  

−

   = =

 +   
= + − +   

    

   (17) 

The equation for XM  (see Eq.(13)) now takes the form 

( ) ( )
( ) ( )1

2

2

1

1 1
1

3 2

X

X X

M tI Id
M t N M T

dt T
  

−
+  

=  + − 
 

   (18) 

Its stationary solution is 

( ) ( )( )
2 2

1 2

2

1 1 2 1 / 3
X

TT NI I
M

T

 



− + + +
=       (19) 

The spin polarization of nuclei in the probed volume is then equal to 
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( )
2

0

0

0

1 1 2 /

/

XM
p p

IN

 

  

− + +
= =         (20) 

where 

1
0

2

1

3

TI
p

IN T

+
=            (21) 

and 

( )
0 2

1 2

1

1 / 3NI I TT



=

+
         (22) 

At small   

0 0/p p              (23) 

At large  the nuclear polarization saturates, approaching the value 0 2p , which is 1

2

2
T

T
 times 

larger than its mean squared fluctuation at thermodynamic equilibrium.  

One can easily check that Eq.(18) indeed describes the cooling process of the nuclear spin system. 

Multiplying it by the constant field B||X, we arrive to the equation of the energy balance in the 

NSS: 

1

dE E
q

dt T
= −            (24) 

where q  is the energy influx into the NSS. In the limit of small  , when transverse spin 

fluctuations are not suppressed, 

( )
( )

( )
( )2 21 1

3 3

I I I I
q N B N    

+ +
= −  = −       (25) 

As follows from Eq.(7),  

( ) ( )
( )22 21

11

2 3
Y Y Z X Y

I IdB d
M M M M M N

dt dt
        

+
 = =  + =  (26) 

Comparing Eqs.(25) and (26), we find that 
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1
Y

dB
q M

dt
= −           (27) 

in full agreement with Eq.(1). However, we note that cooling in this experimental geometry occurs 

via dynamic polarization: transverse spin fluctuations are turned so as to build up a net 

magnetization along X, besides the polarity of this magnetization is defined by the sign of 

transformation coefficient   and does not depend on the polarity of the static field B. This is 

similar to what happens when nuclear spins are cooled via dynamic polarization by electrons [7]: 

the spin temperature is reduced because the Zeeman energy of the NSS changes, as spins are 

polarized along or opposite to the static external field. One can change the sign of the Zeeman 

energy acquired by the NSS and, therefore, the sign of spin temperature, by changing the polarity 

of the static field. No cooling is possible if there is no static field, because in that case the Zeeman 

energy would be zero. 

3. “True cooling” of nuclear spins by oscillating magnetic fields  

In this section, we consider the experimental arrangement that allows one to cool nuclear spins to 

certain sign of spin temperature irrespective of the polarity of the external static field. As distinct 

from the case considered in the previous Section, the field ( )1B t is applied parallel to the probe 

beam along Z (see Fig.3). An electronic circuit ensures that ( )1B t  is delayed with respect to the 

magnetization fluctuation by quarter period of spin precession in the static field B directed along 

X.   
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Figure 3. Experimental arrangement for “true” nuclear spin cooling in external field. The time-dependent 

field ( )1B t  is applied parallel to the probe beam, with the ( )/ 4 / 2T B − = −  phase shift between the 

field and the optical spin noise signal being provided by the electronics. 

The dynamics of the cartesian components of magnetic moment in this case is described by the 

following equations: 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )
( )

1

1

1

2

2

X

X Y

Y

Y Z X

Z

Z Y

M t
M t B t M t

T

M t
M t BM t B t M t

T

M t
M t BM t

T



 




= −




= − + −


 = −


      (28) 

Presenting the transverse components in the form given by Eq.(7), we find that  

( ) ( ) ( ) ( ) ( ) ( ) 

( ) ( )

( ) ( ) ( ) ( ) ( )

1 / 4 cos / 4 sin / 4

cos sin
2 2

sin cos

Z Z Y

Z Y

Z Y Y

B t M t T M t t T M t t T

B B
M t Bt M t Bt

B B

B B
M t t M t t M t

B B

   

 
  

   

 = − = − + − =      

     
 = − + − =    

     

 = − = −  

 (29) 

Substituting this result into the first equation in Eq.(29) and taking the ensemble average, one 

obtains the equation for the X-component of the magnetic moment: 

( ) ( ) ( )
( )

2 2

1

1

2

X

X Y Z

M tB
M t M t M t

B T
   = −  + −

 
     (30) 

It is easy to show that the equations for mean squared transverse components, derived from 

Eq.(29), appear to be the same as in the previous Section. Therefore, the absolute value of the spin 

polarization will be given by Eq.(20).  However, comparing Eqs.(13) and (30), one can see that 

the sign of ( )XM t , that builds up under influence of the field ( )1B t , now depends on the polarity 

of B. Consequently, the sign of Zeeman energy does not depend on the polarity of B and is solely 

determined by the sign of transformation coefficient  .  

Imagine now that each nuclear spin is subjected to a local magnetic field with the strength B , 

besides polarities of these fields are random. It follows from Eq.(30) that the average 

magnetization of the NSS in this case will remain close to zero, while the energy will increase in 
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absolute value, and consequently the absolute value of spin temperature will decrease. This is what 

we would like to call “true cooling”: the spin temperature is reduced in absolute value, while no 

net magnetization builds up. 

In real nanostructured solids, a similar situation can occur due to spin-spin or quadrupole 

interactions. If no external magnetic field is applied, energy levels of the nuclear spin can still be 

split by internal magnetic fields created by other nuclear spins or, in case of spins I>1/2, by 

quadrupole interaction with electric field gradients. Such gradients are ubiquitous in 

nanostructures due to almost unavoidable internal strains. In particular, quadrupole splitting results 

in appearance of distinct peaks at frequencies of the order of 10 kHz, clearly observed in the 

nuclear spin warm-up spectra [8] in GaAs. The splitting can become greater in intentionally 

strained structures or e.g. self-assembled quantum dots [9-11]. If this splitting is much larger than 

the characteristic energy of dipole-dipole interactions that defines the transverse relaxation time 

2T , one can describe the dynamic of populations of these two levels by a 2x2 density matrix, which 

is conveniently expanded over the Pauli matrices. The coefficients of this expansion can be 

considered as components of the pseudospin ½ [12]. This way, the theoretical description of spin 

dynamics of the pair of quadrupole-split levels reduces to solving a system of equations analogous 

to Eq.(28), where spin components along Z, X and Y are replaced with the population difference 

of the two levels, real and imaginary parts of the off-diagonal element of the density matrix, 

correspondingly. Therefore, the overall picture of cooling of quadrupole-split nuclear spins should 

be similar to that of cooling in an external static field, the cooling rate being dependent on specific 

matrix elements of the field ( )1B t  between quadrupole-split levels. 

As shown in Ref.[13], quadrupole, dipole-dipole and Zeeman reservoirs in semiconductor 

structures are effectively coupled even at quadrupole splitting exceeding 10 kHz. Therefore, the 

“true” cooling of the quadrupole reservoir would result in establishing a low spin temperature in 

the entire NSS, which can be detected by measuring its susceptibility to weak probe magnetic 

fields via e.g. Faraday rotation induced by the Overhauser field [14]. 

4. Limitations of the method and numerical estimates 

The main limitation of the method comes from the background noise in the optical channel, which, 

being amplified and converted into the current in the magnetic coil, gives rise to a noise magnetic 

field that warms up the nuclear spin system. Up-to-date spin noise spectroscopy can successfully 

fight all sources of noise except the shot noise of photons in the probe beam [6]. This photonic 

noise results in fluctuations of the Faraday rotation angle with the flat spectral power density 
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inversely proportional to the fluence of the probe beam. A typical spectrum of Faraday rotation 

noise of a spin system in a transverse magnetic field is shown in the inset to Fig.4. 

 

 

Figure 4. Spin polarization vs the transformation coefficient   for different ratios of spectral power 

densities of spin noise snW  (at the peak) and of background photonic noise 
phW . Inset: typical spectrum of 

spin noise in a transverse magnetic field over the background of photonic noise. 

If the spectral power density (SPD) of photonic noise is snW , while that of the spin noise at the 

resonance peak is 
phW , transformation of the photonic noise by the circuitry results in the random 

magnetic field with the SPD equal to   

( )
( )2 2 2 2

2

1

3

ph

ph

sn

W NI I
B T

W
  

+
          (31) 

This random field induces depolarization of nuclear spins at the rate 

 ( )
( ) 2

2 2 2 2 4

2 2

0 1

11 1

3

ph ph

ph

sn sn sn

W WNI I
B T

T W W T


   



+
=   =       (32) 

where 2

0  is given by Eq.(22). Therefore, to take into account spin depolarization, or warm-up, 

due to the photonic noise, one should replace 1T  in Eqs.(19)-(21) with *

1T  defined as 
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The dependences of spin polarization on the transformation coefficient   for different ratios of 

spectral power densities of the spin noise and the background photonic noise are plotted in Fig.4. 

One can see that the warm-up due to the background noise results in a decrease of polarization at 

large  . The polarization that can be reached at optimal 0   rather weakly depends on 

/sn phW W ; actually it amounts to a considerable fraction of 0p  once the spin noise peak is 

discernible over the photonic noise background. 

To estimate the effect in numbers, one needs to consider a specific object. The possibility to detect 

the nuclear spin fluctuations optically has been already demonstrated experimentally in bulk GaAs 

[15]. We propose to use GaAs/AlGaAs microcavity structures, which vastly improve the 

sensitivity of the method [16,17]. In order to estimate the efficiency of nuclear spin cooling by 

oscillating fields, we assume using of an optical microcavity with a GaAs active layer, similar to 

one studied in Ref.[14]. With the thickness of the active layer of 0.35 m  and the beam diameter 

of 2 m , the probed volume is approximately  1
3m  and the number of nuclei in the probed 

volume is 
104 10N   . The probe beam makes about 1000 round trips inside the cavity, which 

results in the effective optical path 0.7effL  mm. The Faraday rotation angle f , induced by the 

Overhauser field of nuclear fluctuations, 
NfB , equals  

f N eff NfV L B =           (4) 

where the nuclear Verdet constant is 0.1NV  mrad/(cm.G) [14]. The mean squared Overhaused 

field of the projection of the nuclear spin fluctuation on the structure axis Z equals: 

2 21

3
NfZ N

I
B b

IN

+
=           (5) 

where Nb  5.3T is the maximum Overhauser field reached when all the nuclear spins are fully 

polarized.  

Thus, the mean squared fluctuation of the Faraday angle equals  

( )
2

2 21

3
f N eff N

I
V L b

IN


+
          (6) 
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Substituting here the structure parameters, we obtain 
2 12 23 10f rad −  . The frequency range of 

the fluctuating Faraday signal induced by nuclear spins is determined by the inverse of the spin-

spin relaxation time 4

2 10 sT − . The mean squared fluctuation of the polarization plane due to the 

photonic noise of the probe beam with the intensity J in the frequency band 1/Т2 is 

2

2

1
ph

JT
             (7) 

Taking equal these two values, we obtain the light intensity under which the spin noise has the 

same SPD as the photonic one, 
153 10 /J ph s  , which corresponds, with the photon energy of 

1.4 eV, to the probe beam transmitted power of 0.7 mW. This is a realistic value for this kind of 

experiment. 

With the typical 1 100T = seconds, one gets, according to Eq.(21), 0 0.004p   that corresponds, 

for / 1sn phW W = , to the maximum polarization 
31.6 10p −   and maximum Overhauser field of 80 

G. Such effective fields are easily detected and measured with optical methods, e.g. by Faraday 

rotation [14]. These values of polarization and Overhauser field are reached at 0  , which 

corresponds to the amplitude of the field ( )1B t  about 
( )

0

1 2

1 1
1

3

NI I

TT




+
=  mG. 

On the whole, the estimated values of experimental parameters and the expected magnitude of the 

outcome suggest that observation of the effect in GaAs-based microcavity structures is quite 

realistic. Using more sophisticated structures, e.g. ones with quantum dots in the microcavity, 

might further enhance the achievable nuclear spin polarization via reducing the number of spins 

in the probed volume.  

5. Conclusions 

We have proposed a theoretical background for development of a new method of nuclear spin 

cooling, which does not involve dynamic polarization by electrons. In fact, the NSS is cooled by 

an “optical Maxwell demon”, which monitors nuclear spin fluctuations and controls the external 

magnetic field in a way to pump energy to NSS or out of it. In one of the considered examples, a 

net nuclear magnetization is built up along certain direction defined by the experimental geometry, 

similarly to dynamic polarization by spin-polarized electrons. In the other experimental 

arrangement, the cooling that is not accompanied by the magnetization build-up, or “true cooling” 

can be realized. Numerical estimates for a GaAs-based microcavity structure demonstrate 
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feasibility of the proposed method. The efficiency of spin cooling can be enhanced by using a 

quantum dot structure with the reduced total number of nuclear spins.  

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, 

investigation, acquisition, data curation, writing—original draft preparation, writing—review and 

editing, visualization, supervision, project administration, funding acquisition, K.V.K. All authors 

have read and agreed to the published version of the manuscript.  

Funding: This work was supported by Russian Science Foundation, grant number 22-42-09020.  

Acknowledgments: The author thanks D.S.Smirnov for fruitful discussions.  

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 

design of the study; in the collection, analyses, or interpretation of data; in the writing of the 

manuscript; or in the decision to publish the results. 

 

References 

1. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961). 

2. M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids— International 

Series of Monographs on Physics (Clarendon, Oxford, UK, 1970). 

3. E. M. Purcell, H. C. Torrey, and R. V. Pound, Resonance Absorption by Nuclear Magnetic 

Moments in a Solid, Phys. Rev. 69, 37 (1946). 

4. V. M. Litvyak, R. V. Cherbunin, V. K. Kalevich, A. I. Lihachev, A. V. Nashchekin, M. 

Vladimirova, and K. V.  Kavokin, Warm-up spectroscopy of quadrupole-split nuclear spins in n-

GaAs epitaxial layers, Phys. Rev. B 104, 235201 (2021). 

5. L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd edn. (Butterworth-Heinemann, Oxford, 

1980) (Chap. 12). 

6. V. S. Zapasskii, Spin-noise spectroscopy: from proof of principle to applications, Advances in 

Optics and Photonics 5, 131–168 (2013). 

7. M. I. Dyakonov, Spin Physics in Semiconductors, 2nd ed., Springer Series in Solid-State 

Sciences Vol. 157 (Springer, Berlin, 2017). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 June 2023                   doi:10.20944/preprints202306.1232.v1

https://journals.aps.org/pr/abstract/10.1103/PhysRev.69.37
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.235201
https://doi.org/10.20944/preprints202306.1232.v1


8. M. Vladimirova, S. Cronenberger, A. Colombier, D. Scalbert, V. M. Litvyak, K.V. Kavokin, 

and A. Lemaître, Simultaneous measurements of nuclear-spin heat capacity, temperature, and 

relaxation in GaAs microstructures, Phys. Rev. B 105, 155305 (2022). 

 

9. K. Flisinski, I. Ya. Gerlovin, I. V. Ignatiev, M. Yu. Petrov, S. Yu.Verbin, D. R. Yakovlev, D. 

Reuter, A. D. Wieck, and M. Bayer, Optically detected magnetic resonance at the quadrupole-split 

nuclear states in (In,Ga)As/GaAs quantum dots, Phys. Rev. B 82, 081308(R) (2010). 

10. E. A. Chekhovich, K. V. Kavokin, J. Puebla, A. B. Krysa, M. Hopkinson, A. D. Andreev, A. 

M. Sanchez, R. Beanland, M. S. Skolnick, and A. I. Tartakovskii, Structural analysis of strained 

quantum dots using nuclear magnetic resonance, Nat. Nanotechnol. 7, 646 (2012). 

11. R. I. Dzhioev and V. L. Korenev, Stabilization of the electron-nuclear spin orientation in 

quantum dots by the nuclear quadrupole interaction, Phys. Rev. Lett. 99, 037401 (2007). 

12. Optical Orientation, eds. F. Meier and B. P. Zakharchenja (North-Holland, Amsterdam, 1984), 

Chapter 5. 

13. M. Vladimirova, S. Cronenberger, D. Scalbert, I. I. Ryzhov, V. S. Zapasskii, G. G. Kozlov, A. 

Lemaître, and K. V. Kavokin, Spin temperature concept verified by optical magnetometry of 

nuclear spins, Phys. Rev. B 97, 041301(R) (2018). 

14. R. Giri, S. Cronenberger, M. M. Glazov, K. V. Kavokin, A. Lemaître, J. Bloch, M. 

Vladimirova, and D. Scalbert, Nondestructive Measurement of Nuclear Magnetization by Off-

Resonant Faraday Rotation, Phys. Rev. Lett. 111, 087603 (2013). 

15. F. Berski, J. Hübner, M. Oestreich, A. Ludwig, A. D. Wieck, and M. Glazov, Interplay of 

Electron and Nuclear Spin Noise in n-Type GaAs, Phys. Rev. Lett. 115, 176601 (2015). 

16. I. I. Ryzhov, S. V. Poltavtsev, K. V. Kavokin, M. M. Glazov, G.G. Kozlov, M. Vladimirova, 

D. Scalbert, S. Cronenberger, A. V. Kavokin, A. Lemaître, J. Bloch, and V. S. Zapasskii, 

Measurements of nuclear spin dynamics by spin-noise spectroscopy, Appl. Phys. Lett. 106, 

242405 (2015). 

17. I. I. Ryzhov, G. G. Kozlov, D. S. Smirnov, M. M. Glazov, Y.P. Efimov, S. A. Eliseev, V. A. 

Lovtcius, V. V. Petrov, K. V.Kavokin, A. V. Kavokin, and V. S. Zapasskii, Spin noise explores 

local magnetic fields in a semiconductor, Sci. Rep. 6, 21062 (2016). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 June 2023                   doi:10.20944/preprints202306.1232.v1

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.155305
https://doi.org/10.20944/preprints202306.1232.v1


 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 June 2023                   doi:10.20944/preprints202306.1232.v1

https://doi.org/10.20944/preprints202306.1232.v1

