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Abstract: Plant height is one of the key agronomic traits for improving the yield of sweet potato. The
phytohormones, especially gibberellins (GAs) are crucial to regulate plant height. The 9-cis-epoxycarotenoid
dioxygenase (NCED) is the key enzyme for abscisic acid (ABA) biosynthesis signalling in higher plants.
However, its role in regulating plant height has not been reported to date. Here, we cloned a new NCED gene,
IDNCED1, from the sweet potato cultivar Jishu26. This gene encoded the 587-amino acid polypeptide
containing an NCED superfamily domain. The expression level of IINCED1 was highest in the stem and the
old tissues in the in vitro-grown and field-grown Jishu26, respectively. The expression of IINCED1 was induced
by ABA and GA3. Overexpression of IINCED1 promoted the accumulation of ABA and inhibited the content
of active GA3 and plant height, and affected the expression levels of genes involved in the GA metabolic
pathway. Exogenous application of GA3 could rescue the dwarf phenotype. In conclusion, we suggest that
IbNCED]1 regulates plant height and development by controlling the ABA and GA signalling pathways in
transgenic sweet potato.
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1. Introduction

Sweet potato, Ipomoea batatas (L.) Lam., is one of the important root crops worldwide[1,2]. In the
actual production, due to the genotype, excessive nitrogen application, uneven rainfall distribution
and improper irrigation, sweet potato is easily overgrown, which seriously impacts the yield,
mechanization degree and the sustainable development of the sweet potato industry[3]. The ideal
plant height of sweet potato is helpful to break through the bottleneck. However, the research is lack
a clear genetic basis and constituent elements in sweet potato.

Plant height is an agronomic trait with a complex genetic basis[4,5]. It is confined by stem
elongation and plays important role in crop yield and quality[6]. With the rise of the green revolution,
a large number of dwarf mutants, quantitative trait loci (QTLs), and genes have been identified to
control plant height[7-10]. In wheat, the Rduced height (Rht) alleles, such as Rht-1, Rht-B1b, and Rht-
D1b, were introduced to reduce plant height, providing improved lodging resistance through
interfering with the action or production of the gibberellins (GAs) plant hormones[11-13].

GAs are a class of tetracyclic diterpenoid phytohormones that mediate different processes of
plant development including stem elongation, seed germination, trichome development, leaf
expansion, induction of flowering, and pollen maturation[14,15]. More than 130 GAs have been
identified, and GA1l, GA3, GA4, and GA7 show capital biological activity that controls plant
development[16-18]. The higher GA levels and more active GA biosynthesis were found to be
correlated with the plant height[19-21]. GA metabolism or signalling conferred grain productivity
during the Green Revolution by reshaping plant stature[22,23]. Many genes have been identified
relating to plant height through the GA signaling pathway. In rice, OsDREB2B, OsAP2-39 and
OsWRKY?21 reduce plant height development by GA biosynthesis pathway[24]. TaLecRK-IV.1 and
TaRht24 are regulators of plant height through the gibberellic acid and auxin-signaling pathways in
wheat[25,26]. Overexpression of CmDRP resulted in a semi-dwarf phenotype with a significantly
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decreased active GA3 content, while reduced expression generated the opposite phenotype in the
chrysanthemum[27].

It has always been clear that GAs interacts with other plant hormones[28]. GA and ABA usually
play antagonistic roles in the regulation of germination, growth, and flowering in plants[29,30]. ABA
affect the GA pathway by different mechanism, such as an ABA-induced Ser/Thr protein kinase
(PKABA1) and transcriptional regulators of ABA-induced WRKY, DELLA and MYB[31-35].
Arabidopsis ABF2 and ABF4 transcription factors positively regulate potato tuber induction by
regulating the expression of ABA- and GA-metabolism genes[36].

The 9-cis-epoxycarotenoid dioxygenase (NCED) is the key enzyme for ABA biosynthesis
signalling[37,38]. NCED genes are associated with develolpment and tolerance by the ABA signalling
pathway in plants. Overexpression of VaNCEDI1 delayed the development of transgenic Vitis
vinifera[39]. OsNCED3 and OsNCED5 mediated seed dormancy, plant growth, abiotic stress
tolerance, and leaf senescence by regulating ABA biosynthesis in rice[40,41]. LeNCEDI
overexpression in tomato increased ABA concentration and prevented the induction of genes
involved in ABA metabolism and the deactivations of GA and auxin that occurred in WT[42]. The
expression of NCED genes in dwarf cotton accession was higher than that in taller ones, and
GhNCED1-silenced cotton plants could increase the plant height[43]. Up to now, NCED genes have
not been identified in sweet potato. In this study, we cloned a new [bNCED1 gene for the 587-aa from
sweet potato. Functional analysis showed that IINCED1 enhanced the accumulation of ABA and
inhibited plant height, affected the expression levels of genes involved in the GA metabolic pathway
and affected the content of active GA.

2. Results

2.1. Cloning and Sequence Analysis of IINCED1

The novel IhINCED1 gene was isolated from the sweet potato cultivar Jishu26. The 1764-bp ORF
sequence of IbNCED1 encoded a protein of 587 aa with a molecular weight of 65.33 kDa and a
predicted plI of 6.12, which belongs to the RPE65 superfamily (Figure 1A). Phylogenetic analysis of
NCED proteins with a neighbor-joining method revealed that IbNCED1 has high homology with
NCED proteins from Ipomoea triloba (ENCED1, XP_031110150.1), Ipomoea nil (InNCED1,
XP_019153780.1) and Solanum lycopersicum (SINCED1, NP_001234455.1)(Figure 1B).
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Figure 1. Sequence alignment (A) and phylogenetic tree (B) of IINCED1 with its homologs from other
plants.

2.2. Expression Analysis of IINCED]1

To study the potential function of IINCEDI in sweet potato, its expression in different tissues
and treatments of Jishu26 was analyzed with qRT-PCR. The expression level of IINCED1 was the
highest in the stem of the in vitro-grown Jishu26 plants (Figure 2A). For the field-grown Jishu26
plants, the expression level of [IINCEDI was higher in the old stem, pencil root and storage root
tissues than in other young tissues (Figure 2B).

The expression of IINCED1 was downregulated in the leaf and upregulated in the stem and root
after ABA and GA treatments. The expression level peaked at 3 h (4.520-fold in the stem and 4.56-
fold in the root, respectively) after ABA treatment (Figure 2C), while it peaked at 12 h in the stem and
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at 6 h in the root, respectively (4.11- and 3.08-fold, respectively) after GA treatment (Figure 2D). These
results suggest that IINCED1 might be involved in ABA and GA response pathways.
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Figure 2. Expression analysis of IbNCEDI1 in different tissues of Jishu26 plants. The expression
analysis of IINCED1 in different tissues of in vitro-grown (A) and field-grown (B) plants of Jishu26.
LL: Leaflet; L: Leaf; PR: Pencil root; R: Root; S: Stem; SR: Storage root; YS: Young stem. The transcript
levels of IINCEDI in the leaf tissue or leaflet were set to 1. The expression analysis of IINCED1 in
different tissues of Jishu26 plants after different time points (h) in response to 100 mM ABA (C) and
100 mM GA (D), respectively. The expression level of IINCED] in the plant sampled at 0 h was set to
1. The data are presented as the means + SEs (n=3). * indicates significant differences from that of WT
at P<0.05, according to Student’s f-test.

2.3. Regeneration of the Transgenic Sweet Potato Plants

The overexpression vector pCAMBIA1301s-IlbNCEDI was introduced into the Agrobacterium.
tumefaciens strain EHA105 (Figure 3A). Cell aggregates of Xushu22 (Figure 3B) cocultivated with
EHA105 carrying pCAMBIA1301-IbNCED1 were cultured on the selective MS medium with 2.0 mg
L1 2,4-dichlorophenoxyacetic acid (2,4-D), 100 mg L carbenicillin (Carb) and 10 mg L hygromycin
(Hyg) ( Figure 3C). Seventeen Hyg-resistant embryogenic calluses of 132 cell aggregates were
obtained after 6 weeks. These Hyg-resistant embryogenic calluses were transferred to MS medium
with 1.0 mg L-* ABA and 100 mg L' Carb, and after 4 weeks of transfer, they formed plantlets (Figure
3D). Nine regenerated plants were transferred to MS medium and seven of them showed dwarf
phenotype (Figure 3E). The seven regenerated plants were proved to be transgenic by PCR and GUS
analyses, named L1, L2, ..., and L7, respectively (Figures 3F-G). qRT-PCR analysis revealed that the
expression level of IINCED1 was significantly increased in most of the transgenic plants compared
with that of WT (Figure 3H).
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Figure 3. Production of the IINCED1-overexpressing sweet potato plants. (A) Diagram of constitutive
expression of the 355 promoter::IbNCED1 construct. (B) Embryogenic cultures proliferating in MS
medium with 2.0 mg L* 2,4-D. (C) Hyg-resistant calluses formedafter 4 weeks of selection on MS
medium with 2.0 mg L 2,4-D, 100 mg L Carb and 10 mg L Hyg. (D) Germination of somatic
embryos from Hyg-resistant calluses on MS medium with 1.0mg L ABA and 100 mg L Carb. (E)
Whole regenerated plantlets. (F) PCR analysis of the transgenic plants. Lane M: BL2000 plus DNA
marker; Lane W: Water; Lane P: plasmid pCAMBI1301::IbNCED1 as a positive control; Lane WT:
Xushu?22 plant as a negative control. (G) GUS analysis of the transgenic plants. (H) qRT-PCR analysis
of IPNCED1 in the transgenic plants. ** indicates a significant difference from that of WT at P<0.01
according to Student’s t-test.

2.4. Plant Height Assay

In vitro propagation of sweet potato is a basic step for routine genebank and biotechnology
research activities. The seven regenerated sweet potato lines were raised plant numbers by vegetative
propagation using MS medium. The three transgenic sweet potato plants, L1, L2 and L4, with high
relative expression of IINCED1 and stable drawf phenotype, were selected to test the plant height.
The result shown than overexpression of IINCED1 conferred a reduction in height of in vitro-grown
and greenhouse-grown transgenic plants (Figures 4A-B). The histological analysis of the longitudinal
section showed that the pith cell length of the transgenic plants decreased in comparison to the WT
(Figure 4C). All the results demonstrated that IINCEDI demoted stem elongation primarily by
reducing cell length.
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Figure 4. Plant height of transgenic sweet potato plants and WT. (A1, A2) Phenotypes and plant height
of in vitro-grown transgenic sweet potato plants and WT cultured on MS medium for 4 weeks. The
data are presented as the means + SEs (n = 5). (B) Phenotypes and plant height of transgenic sweet
potato plants and WT grown in transplanting boxes for 6 weeks. Bar = 10 cm. The data are presented
as the means + SEs (n = 5). (C) The histological analysis and cell length of in vitro-grown transgenic
sweet potato plants and WT cultured on MS medium for 4 weeks. Bar =100 pm. The data are presented
as the means + SEs (n = 20). The data are presented as the means+ SEs (n = 5). The different small
letters indicate a significant difference at P <0.05 according to Student’s t-test.

2.5. Underlying Mechanism of IINCED]1 in Plant Height

To explore the dwarfing mechanism and the dwarf genes of sweet potato, differentially
expressed genes and metabolic pathways in transgenic sweet potato were analyzed by RNA
sequencing (RNA-Seq) using 4-week-old in vitro-grown WT and transgenic line L2 (OE). After
removing the adapter and low-quality reads, a total of 614,283,286 clean reads were obtained from
two lines (three biological replicates per line), and the quality control and quality assessment of RNA-
Seqdata showed that the sample quality is reliable and can be analyzed later (Table S1 and Figure
S1). Using WT as the control group and | log2 (Fold Change) | > 1 & q <0.05 as the standard of gene
differential expression, we obtained a total of 2938 differential expressed genes (DEGs), of which 1827
genes were downregulated and 1111 genes were upregulated. KEGG enrichment analysis showed
that the DEGs were primarily enriched metabolism, biosynthesis of secondary metabolites, plant
MAPK signalling, and plant hormone signal transduction pathway (Figure 5A). The DEGs of GA
biosynthesis and signal transduction pathway were downregulated (Figure 5B).
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Figure 5. The analysis of KEGG pathway in transgenic sweet potato (A) and the expression analysis
of DEGs in GA signalling pathway (B).

To investigate the underlying mechanism of IbNCEDI in plant height, the phytohormone
components of 4-week-old in vitro-grown sweet potato plants were measured. The results showed
that the ABA and ABA-GE contents of the transgenic plants were significantly increased, while the
GAS3 content was significantly decreased compared with those of WT (Table 1). Exogenous GA3
treatment was performed on WT and transgenic sweet potato to determine the factors of height
reduction. The WT plant and transgenic sweet potato could not grow on MS with 10 ng L' GA3 and
30 ng L1 GAS3, respectively (Figure 52). These results indicated that overexpression of IINCED1 could
reduce the GA sensitivity of transgenic sweet potato. To further prove the function of GA in plant
height, we analyzed the plant height of transgenic sweet potato plants and WT after GA3 treatment
and the results showed that exogenous GA3 can restore the plant height of transgenic sweet potato
(Figure 6). In conclusion, we suggest that IINCED1 negatively regulates plant height by controlling

the GA biosynthesis and signal transduction pathway.

Table 1. The contents of ABA and GAs (mg g).

Class Index WT L2

ABA ABA 7.60 = 0.68 83.42 +1.77
ABA-GE 133.91 +4.82 355.59 +8.22

GA1l N/A N/A

GA3 5.02+0.16 N/A

GA4 N/A N/A

GA7 N/A N/A

GA GA9 N/A N/A

GA15 N/A N/A
GA19 21.15+0.53 23.85 +0.84

GA20 N/A N/A

GA24 N/A N/A
GA53 6.36 +0.68 11.34+0.30
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Figure 6. Plant height of transgenic sweet potato plants and WT after GA3 treatment. (A1-A3)
Phenotypes and plant height of in vitro-grown transgenic sweet potato plants and WT cultured on MS
medium for 6 weeks. (B1-B3) Phenotypes and plant height of in vitro-grown transgenic sweet potato
plants and WT cultured on MS medium with 10 ng L' GA3 for 6 weeks. Bar = 10 cm. The data are
presented as the means + SEs (n = 3). The different small letters indicate a significant difference at P
<0.05 according to Student’s t-test.

3. Discussion

The Green Revolution has promoted a significant yield increase through the development of
semi-dwarf plant architecture in rice, wheat, maize and soybean[44—47]. The ideal architecture for
sweet potato also could promote the mechanization degree and yield of storage root. However, the
dwarfing mechanism and the dwarf genes of sweet potato are still unclear. In this study, we cloned
an [DNCED1 from the sweet potato cv. Jishu26 (Figure 1). The expression of IbNCED! was
downregulated in the leaf and upregulated in the stem and root after ABA and GA treatments (Figure
2). Its overexpression significantly conferred a reduction in the height of the transgenic sweet potato
plants and promoted the accumulation of ABA and ABA-GE in transgenic sweet potato (Table 1). It
is thought that IINCED]1 is is key enzyme gene for ABA biosynthesis signalling in sweet potato.

The other functions of NCED genes have been identified in different plants. GENCED1 reduced
the plant height in cotton[48]. AtNCED3 and AtNCEDS5 contributed to ABA production affecting
vegetative growth and drought tolerance in Arabidopsis[49,50]. OsNCED3 mediates seed dormancy,
plant growth, abiotic stress tolerance, and leaf senescence by regulating ABA biosynthesis in rice[40].
In our study, overexpression of IINCED1 reduced the plant height and cell length of the stem in
transgenic sweet potato (Figure 4). The results indicated that IINCED]1 plays an important role in
reducing the growth of transgenic sweet potato by regulating ABA biosynthesis.

To date, many Rht genes have been identified in regulating plant height via participating in GA
biosynthesis regulation in different plants[11-13]. The antagonistic regulations of GA and ABA have
been reported in deed germination, cell development of the hypocotyls and plant height[51-55]. The
miR528 and its target gene DWARF3 (D3) negatively regulate rice plant height by triggering a
reduction of GA content and a significant increase inABA accumulation in transgenic plants[56].
Overexpression of LeNCEDI1 limited biomass accumulation increased ABA concentration and
prevented the induction of genes in ABA metabolism and GA deactivation[42].GA20-oxidases
(GA200xs) that produce GA precursors, GA3-oxidases (GA3oxs) that produce bioactive GAs, and
GA2-oxidases (GA20xs) that deactivate precursors and bioactive GAs, were kay enzymes of GA
biosynthesis pathway[57,58]. GA20oxs were known to affect cell division and cell expansion,
resulting in larger plants[59,60]. GA3ox1 and GA30x2, which encodes a GA3 beta-hydroxylase in GA
biosynthesis, were significantly associated with cell lengths and plant height[61,62]. GA20xs
regulated plant growth by regulating endogenous bioactive GAs[63,64]. In the GA signal
transduction pathway, the gibberellin receptor GIBBERELLIN INSENSITIVE DWAR (GID) was a
putative candidate gene controlling plant height[65-68]. Interactions between GID1 and DELLAs
mediated the GA signalling in land plants[69,70]. The plant-specific gibberellic acid-stimulated
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Arabidopsis (GASA) gene family plays roles in hormone response, promoted seedling germination
and root extension and plant development[71]. In this study, the expression of genes in GA
biosynthesis and signal transduction pathway was downregulated in the transgenic sweet potato
(Figure 5B). Overexpression of IbNCED1 reduced the accumulation of GA3 and exogenous
application of GA3 could rescue the dwarf phenotype (Table 1, Figure 6, S2). These results suggest
that ILINCED]1 regulates plant height and development by controlling the GA signalling pathway in
transgenic sweet potato. All the analyses revealed that the occurrence of dwarfing in the transgenic
sweet potato with high ABA content was likely to be caused by the GA signalling pathway.

In wheat and rice, the Rht alleles were introduced to reduce plant height allowing the application
of higher fertilizer rates to substantially increase grain yield[11]. The fertilizer rates of the dwarf
transgenic sweet potato would impact the yield of storage roots. The main objective of dwarf sweet
potato research should optimize the fertilizer rates in the future.

4. Materials and Methods

4.1. Plant Material

Sweet potato cv. Jishu26 was used for isolation and expression analysis of the IINCED1 gene.
Sweet potato cv. Xushu22 was employed to characterize the function of IhINCED1.

4.2. Cloning and Sequence Analysis of IINCED1

Total RNA from sweet potato cv. Jishu26 plants was extracted using the Trozol Up Kit (ET111,
Transgen, Beijing, China). The first-strand cDNA was transcribed from the total RNA with the
PrimeScript™ RT reagent Kit with gDNA Eraser (PR047A, Takara, Beijing, China). Amino acid
sequence alignment was analyzed using DNAMAN V6 software. The phylogenetic tree was
constructed with MEGA 7.0 software with 1000 bootstrap replicates. The molecular weight and
theoretical isoelectric point (pI) of IbNCED1 were calculated with ProtParam tool
(https://web.expasy.org/protparam/).

4.3. Expression Analysis of IINCED1

The transcript levels of IINCED] in leaf, stem and root tissues of the 4-week-old in vitro-grown
plants and leaflet, leaf, stem, pencil root and storage root tissues of the 80-day-old field-grown plants
of Jishu26 were analyzed with qRT-PCR using SYBR Green Pro Taq HS kit (AG11701, ACCURATE
BIOLOGY). Furthermore, the 4-week-old Jishu26 plants were stressed in Hoagland solution with 100
mM ABA and 100 mM GA, respectively, and sampled at 0, 3, 6, 12 and 24 h after stresses for analyzing
the expression of IINCED1. Ibactin (AY905538) was used to normalize the expression levels in sweet
potato[72]. All the specific primers are shown in Supplementary Table S2.

4.4. Regeneration of the Transgenic Sweet Potato Plants

Embryogenic suspension cultures of sweet potato cv. Xushu22 were prepared using MS medium
with 2.0 mg L 2, 4-D[73]. The overexpression vector pPCAMBIA1301-IbNCED1 was introduced into
the A. tumefaciens strain EHA105. The transformation and plant regeneration were performed as
previously described[71]. The identification of the transgenic plants was conducted by PCR with
specific primers (Supplementary Table 52). The expression levels of IINCED1 in the in vitro-grown
transgenic and WT plants were analyzed using specific primers designed in the non-conserved
domain (Supplementary Table S2).

4.5. Plant height analysis

The phenotypic of the 4-week-old in vitro-grown transgenic sweet potato plants and WT
cultured on MS medium and the 6-week-old plants grown in transplanting boxes in the greenhouse
were analyzed. At least 5 plants were measured plant height. For paraffin section, the stem tissues
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were collected from WT and transgenic lines. The methods of paraffin section were dissected as
described by Fang et al. (2021)[74]. At least 20 cells were measured in length.

4.6. RNA-sequencing and hormone analysis

Due to the dwarf phenotype, total RNA was extracted from 4-week-old in vitro-grown sweet
potato plant Xushu22 (WT) and transgenic lines L2(OE) using a plant RNA kit (DP441, TTANGEN).
The sequencing library was constructed using Ultra RNA sample preparation kit (Illumina) and then
sequenced using an Illumina HiSeq 2500 according to the standard method (Illumina). Total reads
were mapped to the I Trifida genome (Sweetpotato GARDEN (kazusa.or.jp)). Differentially
expressed genes were identified using Cuffdiff with default criteria (fold change >1.5) and adjusted
false discovery rate (P value <0.05). Three independent biological replicates were used for the RNA-
sequencing analysis. Analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway was conducted according to database instructions (KEGG PATHWAY Database). The gene
expression patterns were graphically represented in a heat map by cluster analysis using TBtools
software. The hormone contents of 4-week-old in vitro-grown WT and transgenic lines L2 plants were
determined using high-performance liquid chromatography (HPLC).

4.7. Exogenous GA3 treatment analysis

In order to investigate the effect of GA3 on plant, the in vitro-grown transgenic and WT plants
were cultured on MS medium with 0 (control), 5, 10, 20, 30 and 50 ng L' GA3 for 4 weeks.
Furthermore, we measured the plant height of the in vitro-grown transgenic and WT plants culturing
on MS medium with 0 (control) and 10 ng L' GA3 for 6 weeks.

4.8. Statistical Analysis

For cell length, at least 20 biological replicates were analysed. Data were presented as the mean
+ SE and analyzed using Student’s t-test (two-tailed analysis). For biochemical and molecular biology
analysis, all experiments were done at least for three biological replicates. Significance levels at P<
0.05 and P<0.01 were denoted by * (or different small letters) and **, respectively.

5. Conclusions

A novel 9-cis-epoxycarotenoid dioxygenase gene, IINCED]1, was isolated and characterized from
sweet potato. Its overexpression in sweet potato led to a semi-dwarf phenotype, increased contents
of ABA, decreased level of GA3 and downregulated genes expression of GA3 signal transduction
pathway. IDNCED1 overexpression reduced sensitivity to GA3 and exogenous GA3 treatment
rescued the dwarfism phenotype. It is suggested that [INCED1 regulates plant height by the ABA
and GA signalling pathways in transgenic sweet potato.

Supplementary Materials: FIGURE S1 | The results of reads mapping (A, B), the correlation analysis of six
samples (C), the PCA analysis of six samples (D), and the differentially expressed genes between two parents
(E). FIGURE S2 | Phenotypes of in vitro-grown transgenic sweet potato plants and WT cultured on MS medium
with 0, 5, 10, 20, 30 and 50 ng L' GA3 for 4 weeks. Table S1 | The quality summary of RNA-Seq data. Table S2 |
Primers used in this study.
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