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Abstract: Unmanned construction machinery vehicles mostly carry work in bridges, tunnels, and
outdoor open spaces. Obtaining accurate pose estimation of the entire vehicle and establishing a
map of the surrounding environment is of great significance for path planning and control in the
later stage. Traditional simultaneous localization and mapping (SLAM) schemes, which mostly
use a single sensor, but there are problems with localization drift and mapping failure in scenarios
where there are few geometric features and the environment is prone to degradation. Currently, the
multi-sensor fusion strategy has been proven to be an effective solution and widely used in the field
of unmanned vehicle localization and mapping. This paper proposes a SLAM framework that tightly
couples a LiDAR, IMU and camera to achieve accurate and reliable pose estimation. The framework
is based on LiDAR-inertial system(LIS) and factor graph optimization theory. Texture information
provided by vision is integrated into the LiDAR-inertial odometry to generate a new visual-inertial
subsystem(VIS).The two subsystems, VIS and LIS, can assist each other and work jointly. Through
real vehicle tests, the system can perform incremental, real-time state estimation, reconstruct dense
3D point cloud maps,and effectively solve the problems of localization drift and mapping failure in
the lack of geometric features or challenging construction environments. Meanwhile, the system has
a safety redundancy mechanism. When any subsystem fails, the system can also operate normally, to
ensure the reliability and robustness of vehicle positioning.

Keywords: SLAM; multi-sensor fusion; tight coupling; factor graph optimization; construction
machinery

0. INTRODUCTION

Simultaneous Localization and Mapping(SLAM) technology aims to achieve positioning and
mapping as two major goals, and has been widely used in the field of mobile robotics. The sensors
widely used in SLAM technology include cameras, LiDARs, and IMUs. In simple scenarios, robot
localization and mapping can be achieved using a single sensor. However, single sensor has defects.
For monocular cameras, it is unable to observe the scale information of pixels, which can easily lead to
localization drift and motion estimation bias in pure rotation motion. Although LiDARs can capture
rich environmental information from a long distance, it has poor dynamic performance and degrades
in environments with few geometric features.

In order to compensate for the deficiencies of single sensors, a SLAM framework that fuses
multiple sensors has been proposed, combining the strengths of different sensors and complementing
the detected information to better adapt to complex scenarios with poor lighting conditions or fast
motion speeds, and to improve the robustness of localization and mapping. For example, V-LOAM [1]
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and DV-LOAM [2] are SLAM frameworks that fuse cameras, LiDARs, and IMUs. Detection information
from vision was used to provide initial positional estimates for LiDAR odometry(LIO). However,
LiDAR measurements are not jointly optimized with vision or inertial measurements, which belongs
to loosely coupled SLAM. This makes map updating difficult, increases the computational and storage
burden of the system, and is unsuitable for localization and mapping in dynamic environments. In
order to avoid the drawbacks of loose coupling, subsequent multi-sensor fusion SLAM schemes
mostly adopt tightly coupled methods, which can simultaneously consider all variables and have
higher computational efficiency. There are examples such as LIC-fusion [3] and its extended version
LIC-Fusion 2.0 [4], LVI-SAM [5], R2live [6], etc. R2LIVE consists of an odometry module based on
a filtering approach and an optimization module based on a factor graph, and the LiDAR-inertial
system is based on the FAST-LIO2 [7] framework, which incorporates sparse visual features and
estimates the robot’s state in real-time by minimizing feature reprojection error, optimizing visual
landmark points within the sliding window, and achieving good positioning accuracy and robustness
in fast-moving environments with small LiDAR viewing angles. However, these multi-sensor fusion
SLAM frameworks that use feature-based methods in the visual front-end require a lot of time to
extract visual features from each frame of the image to estimate the robot’s pose, this leads to high
computational complexity and low execution efficiency of the system.

Based on the studies of many predecessors, this paper proposes a multi-sensor tightly-coupled
SLAM framework for addressing the problem of positioning and mapping failures that are prone to
occur during autonomous operation of construction machinery in tunnels, mining areas, and open
outdoor spaces. This framework ensures accurate and reliable pose estimation and mapping even in
geometrically feature-poor and challenging environments. The framework is based on the existing
LiDAR-inertial system and factor graph optimization theory, incorporates texture information provided
by vision, and using direct method to establish matching relationships between adjacent image frames
to execute visual-inertial odometry(VIO). The VIO and LIO subsystems can work together and assist
each other. Additionally, the system has a safety redundancy mechanism. When any subsystem fails,
the system can also operate normally, to ensure the reliability and robustness of vehicle positioning.

1. Overview of the system

The framework of multi-sensor fusion SLAM technology proposed in this paper is shown in
Figure 1, consisting of a LiDAR-inertial system and a visual-inertial system. LIO subsystem uses
feature-based methods to detect edge and planar features of point cloud, matches the LiDAR key
frames to the global map, estimates the state of the system by minimizing the point-to-plane residuals,
executes LiDAR odometry, and constructs the geometric structure of the global map. To ensure the
real-time and efficient performance of the system, the feature map maintains key frames in a sliding
window. VIO system initializes using the state estimated by LIO system. The visual front-end of the
system adopts direct methods, updates the system state by minimizing the photometric error from the
frame to the map, performs visual odometry, and constructs the texture information of the map. Two
subsystems are tightly coupled to jointly perform pose estimation. The whole system incorporates
IMU preintegration constraint, visual odometry constraint, LiDAR odometry constraint and Loop
closure detection constraint as factors into the factor graph to achieve global pose optimization.
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Figure 1. Framework diagram of the system.

2. LIDAR-inertial odometry

As early as 2005, the framework of LiDAR SLAM was initially determined, and many studies
have been achieved later on LiDAR-based SLAM. For example, the early 2D LiDAR SLAM frameworks
cartographer [8] and hector [9] can build environmental maps in a 2D plane, but the localization
accuracy is poor. Later, 3D LiDAR SLAM was proposed, such as the LOAM series [10,11], which
significantly improved the performance of localization and mapping. Pure LiDAR SLAM relies
on simple scanning and matching methods, which has poor performance in dynamic and complex
environments and cannot achieve reliable localization and mapping. Therefore, the SLAM framework
with fusion of LiDAR and inertial measurement unit (IMU) is proposed. IMU can measure the
acceleration and angular velocity of robots, and is not easily affected by external interference. The
fusion of IMU can solve the problem of localization drift of pure LiDAR SLAM in fast motion scenarios.
For example, Lego-LOAM [12] eliminates unreliable feature points based on LOAM, but adopts a
loosely coupled approach to fuse IMU, which does not fully utilize sensor data. The later proposed
LIOM [13], LIO-SAM [14], and FAST-LIO [15] are all tightly coupled LiDAR-inertial SLAM systems
based on factor graph optimization, which does not require making Gaussian distribution assumptions
compared to the traditional filtering method, by calculating the conditional probability between
variables and passing the results to Bayesian trees [16] for posterior inference, it can efficiently handle
large scale sparse matrices, improve the accuracy and robustness of the model, and has become the
mainstream SLAM optimization method.

Table 1 shows the explanation of some important notations in this section. The LiDAR-inertial
subsystem in this framework is based on the LIO-SAM, which has better localization and mapping
effects. Assuming that the IMU coordinate frame is the same as the robot body coordinate frame, the
state of the robot is defined

x =
[

RT pTvTbT
]T

(1)

As shown in Figure 2, the factor graph of the LIO subsystem is composed of four constraints: IMU
preintegration constraint, LiDAR odometry constraint, loop closure constraint, and robot state. The
raw measurement data of IMU is used to estimate the sensor motion during LiDAR scanning. The
estimated motion can be used not only to eliminate point cloud distortion, but also as the initial guess
for LiDAR odometry optimization. The obtained initial guess can then be used to estimate the IMU
bias and form a loop closure constraint through closed-loop detection. Finally, the relationships among
all constraints are considered to achieve global factor graph optimization.
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Table 1. Notations and their Explanation.

Notation Explanation

W World coordinate frame
B Robot body coordinate frame
R Rotate the matrix, R ∈ SO(3)
p Position vector, P ∈ R3

v Velocity
b IMU Bias
T Conversion matrix from B to W

2.1. LiDAR odometry

The front-end of LIO subsystem is mainly processes sensor data. Following the methods of LOAM
and Lego-LOAM. Firstly, the distorted point cloud is corrected, and then feature extraction is started
to extract edge points and plane points by calculating the curvature of the point cloud in the frame. Fe

i
and Fp

i are the sets of edge features and planar features extracted at moment i, respectively, and they

together form the LiDAR frame sets Fi at moment i, Fi =
{

Fe
i , Fp

i

}
, where LiDAR frame F is represented

under B. After obtaining the LIDAR frames, to avoid the factor graph being too large, which leads to
data complexity and cumulative errors, each LIDAR frame extracted cannot be directly added to the
factor graph as a factor. The widely used key frame strategy is used to select the most representative
LiDAR frames at each moment as key frames. If the robot’s pose xi exceeds the defined threshold at
moment i , the LiDAR frame Fi+1 of the next moment will be used as the keyframe and the LiDAR
frames between keyframes Fi and Fi+1 will be discarded to reduce the computational effort. The latest
saved keyframe Fi+1 will be associated with the new robot state xi+1 for data association. Then, the
set {Fi−n, ..., Fi} of n closest keyframes at moment i, also known as subkeyframes, are extracted and
transformed to W through the corresponding transformation matrix set {Ti−n, ..., Ti}. This results
in a voxel map Mi consisting of a edge voxel map Me

i and a planar voxel map Mp
i . The relationship

between the LiDAR frame and voxel map is

Mi = {Me
i , Mp

i } (2)

Me
i=
′Fe

i∪′Fe
i−1 ∪ ...∪′Fe

i−n (3)

Mp
i =
′Fp

i ∪
′Fp

i−1 ∪ ...∪′Fp
i−n (4)

In order to preserve the basic shape and geometric structure of the original point cloud as much as
possible and improve the efficiency of voxel map processing, it is necessary to divide the map into
several voxels and keep only one representative point in each voxel to realize the downsampling of
point cloud data.

After filtering out the redundant point cloud features, the new keyframe set Fi+1 is
feature-matched to the voxel map Mi that has already been created. Following the point to line
and point to plane point cloud registration methods [17,18], Fi+1 is converted from B to W to obtain
′Fi+1, and the distance equation from the point cloud feature to the corresponding edge or plane block
is

dek =

∣∣∣(Pe
i+1,k − Pe

i,u

)
×
(

Pe
i+1,k − Pe

i,v

)∣∣∣∣∣∣Pe
i,u − Pe

i,v

∣∣∣ (5)

dpk =

∣∣∣(Pp
i+1,k − Pp

i,u

) (
Pp

i,u − Pp
i,v

)
×
(

Pp
i,u − Pp

i,w

)∣∣∣∣∣∣(Pp
i,u − Pp

i,v

)
×
(

Pp
i,u − Pp

i,w

)∣∣∣ (6)
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where k, u, v, w denotes the index in the corresponding feature set. With the IMU preintegration factor
(Section 2.2), frame-by-frame matching is not required, and the method of matching features from
frame to local map is directly used, which saves processing time for global map and improves matching
efficiency. Pe

i,u and Pe
i,v are the two points closest to the edge feature ′Pe

i+1,k of the previous frame,
which form the edge line. Pp

i,u , Pp
i,v, and Pp

i,w are the three points closest to the previous frame plane
feature ′Fp

i+1,k and not on the same line, which together form a plane block in Mp
i . Following the

principle that edge features correspond to edge lines and plane features correspond to plane blocks,
the equation for minimizing the positional transformation is

min
Ti+1

 ∑
Pe

i+1,k∈′F
e
i+1

dek + ∑
Pp

i+1,k∈′F
p
i+1

dpk

 (7)

Using the Gauss-Newton method to solve for the optimal pose transformation relationship of the robot
at moments i and i + 1: ∆Ti,i+1 = TT

i Ti+1, and added to the factor graph as a LiDAR odometry factor.

2.2. IMU preintegration

During the optimization process of the factor graph, the robot’s state is inevitably adjusted
continuously. Each adjustment requires a re-integration of the pose from the current moment and
the previous moment, which can be very time-consuming. To avoid reintegration and make the IMU
integration independent of the previous state, a preintegration strategy [19–21] is adopted.

Firstly, modeling the angular velocity and acceleration observed by IMU under B

ω̂t = ωt + bw
t + nw

t (8)

ât = RBW
t (at − g) + ba

t + na
t (9)

where ω̂t and ât are the original measurements at moment t, and RBW
t denotes the rotation matrix

from W to B. bt,nt are the bias and white noise, respectively. g is the constant gravity vector under
W. Assuming that ω̂t and ât in B remain unchanged, the motion of the robot is inferred from the
measurement values of the IMU. The velocity v, pose p, and rotation q at moment t + ∆t are

vt+∆t = vt + g∆t + Rt(ât − ba
t − na

t )∆t (10)

pt+∆t = pt + vt∆t +
1
2

g∆t2 +
1
2

Rt(ât − ba
t − na

t )∆t2 (11)

Rt+∆t = Rt exp((ω̂t − bω
t − nω

t )∆t) (12)

where Rt = RWB
t = RBWT

t , here it is assumed that the angular velocity and acceleration of the B are
constant during the integration process. The relative motion of the robot between moments i and j
is calculated using the IMU preintegration, and the preintegrated measurements ∆vij, ∆pij, and ∆Rij
between these two moments are

∆vij = RT
i (vj − vi − g∆tij) (13)

∆pij = RT
i (pj − pi − vi∆tij −

1
2

g∆t2
ij) (14)

∆Rij = RT
i Rj (15)

By using IMU preintegration, the poses of the robot can be jointly optimized using IMU bias and
LiDAR odometry in the factor graph.
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2.3. Loop closure detection

Loop closure detection [22] means that the robot can recognize the scenes it has reached before
during its motion, forming loopback edges, and matching the map generated at this moment with the
previous one to minimize the error between predicted and observed values. Using the closed-loop
detection method proposed by Kaess et al. [23], the LiDAR odometry is used to determine whether
there is a loop closure. Based on the latest keyframe, the keyframe within a distance of 15 m is searched
for, and the timestamp difference between the two frames is greater than 30 s. Only when both
conditions are satisfied, the corresponding loopback frame is considered to be found. After detecting
loop closure, the ICP matching algorithm is used to calculate the Euclidean distance between the
two key frames, iteratively update the matching relationship between them continuously to get the
robot’s pose. The indexes of the two frames, inter-frame pose, and noise (ICP score) are added into the
loop closure constraint. As shown in Figure 2, assuming that the latest state of the robot is Xi+1, and
X2 is the prior state detected by loop closure, the relative transformation of Fi+1 to the subkeyframe
{F2−m, ..., F2, ..., F2+m} is calculated as ∆T2i+1.

Figure 2. Factor graph of the system.

3. Visual-inertial odometry

The SLAM systems that combining vision and IMU have also been widely studied. With the
measurements and short-term motion constraints of IMU can assist visual odometry to recover scale
information, and effectively solve the problem of localization drift in scenes with a lack of texture and
fast motion. Currently, feature-based methods are commonly used in the front-end of visual-inertial
SLAM, with adjacent frames detecting features for matching and estimating camera motion, such as
the newer ORB-SLAM framework [24,25] and MonoSLAM [26]. There are also visual-inertial SLAM
frameworks based on direct methods, such as LSD-SLAM [27], which directly estimate the motion of
the camera using pixel information. Compared with feature-based methods, the direct method does
not require feature extraction, data association, and minimization of feature reprojection errors. They
are computationally more efficient and applicable to sparse, semi-dense, and dense point clouds.

The VIO subsystem in this paper, is a tightly coupled visual-inertial odometry based on the direct
method. It estimates the camera pose and establishes the environment’s texture information by jointly
minimizing the photometric error and IMU measurement error between image frames.The estimation
is further optimized by factor graph optimization to obtain the best estimate state. In order to reduce
the complexity of the system and to ensure that the nonlinear optimization problem is handled in a
reasonable time range, this paper adopts marginalization technique [28], which continuously removes
the old variables from the factor graph to optimize the latest state.

Table 2 shows the explanation of some important notations in this section, where gravity is
defined as perpendicular to the negative Z-axis in the world coordinate frame. This system is based on
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nonlinear optimization, the camera’s pose and scene depth are estimated by continuously iteratively
minimizing the energy function. Firstly, establish the minimum energy function

Eall = λ · Epicture + Einertial (16)

where Epicture denotes the photometric error and Einertial denotes the inertial error. λ denotes the
balance coefficient, which is used to weigh the effects of photometric error and inertial error.

Table 2. Notations and their Explanation.

Notation Explanation

H Matrix
x Vector
λ Scalar quantity

Ti−j ∈ SE(3) Transformation between coordinate
systems,using the equation Pi = Ti−jPj, points

in the i coordinate frame can be converted to the
j coordinate frame

ξ̂ ∈ se(3) Lie algebra elements, where ξ ∈ R6, and use
them to apply small increments to the 6D pose

ξ ′ i−j = ξi−jξ := log (eξ̂i−j .eξ̂)
∨

G1∪G2 A factor graph containing all factors that are
either in G1 or in G2

Ti−j ∈ SE(3) The set of factors

3.1. Visual odometry

The task of the VIO front-end is to execute visual odometry. Firstly, roughly estimating the camera
pose by minimizing the photometric error. Assuming that there is a point p in the reference frame
i,p ∈ Ωi, which is also observable under another frame j, the photometric error of the two adjacent
frames images is

Epj = ∑
p∈Np

wp

∥∥∥∥∥(Ij
[
p′
]
− bj)−

tje
aj

tieai
(Ii [p]− bi)

∥∥∥∥∥
γ

(17)

where Np is the pixel around point p. Ii, Ij is the image of frame i and frame j. ti, tj is the exposure
time of the image. ai, aj, bi, bj is the coefficient for correcting affine illumination variation. γ is the
Huber parametric number. ωp is the weight related to the gradient. p′ is the projection on Ii. Then the
total photometric error is

Epicture = ∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Epj (18)

where F is the set of keyframes to be optimized. Pi is the sparse set of points in the keyframes. obs(p)
is the set of keyframes where the point p is observed.

3.2. Inertial measurement and initialization

The frequency of IMU detection data is usually higher than that of the camera. In order to avoid
the repetition of IMU integration, the VIO system still adopts preintegration method. The acceleration
value aij and angular velocity value ωij measured by the IMU are added between two image frames si
and sj. The visual observations and inertial measurements are combined to further estimate the pose
of the most nearest frame. According to the nonlinear dynamic model [28], establish the error term

of speed and linear acceleration, and obtain the prediction ŝj and covariance
∧

∑ s,j . The inertial error
function is

Einertial
(
si, sj

)
:=
(
sj � ŝj

)T s ˆ∑
−1

s,j

(
sj � ŝj

)
(19)
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Accurate initial values are crucial for guiding monocular systems. Monocular cameras cannot recover
environmental scale information, but can use inertial data to obtain metric scale and gravity direction.
However, there is inevitably bias in the IMU, so these quantities need to be properly initialized before
processing in a tightly-coupled system. To address the issue that monocular visual-inertial systems
cannot be immediately initialized during constant velocity or zero-acceleration motion, this paper
treats scale and gravity direction as parameters of the system, and optimizes them together with pose
to achieve initialization at any scale. The parameters that need to be initialized include the rough
pose estimate between two frames, the average depth of nearby points, the initial gravity direction,
velocity, scale, and IMU bias. Before initialization, the visual-inertial frame needs to be converted to
the metric frame, with a transformation matrix of Tm_d ∈ {T ∈ SIM(3) |translation(T) = 0}, where
ξm_d = log(Tm_d) ∈ sim(3). The average depths are all normalized to 1, the gravity direction is
calculated using acceleration measurements, the velocity and IMU bias are 0, and the scale is 1. Then,
all variables and parameters at the initial frame are transformed into the world coordinate frame, and
these values based on real scale will continue to be used in the VIO system.

3.3. Optimization of visual-inertial systems

As shown in Figure 3, the poses of the keyframes, IMU bias, and velocity are combined as
constraints to form a factor graph for global optimization of the visual-inertial system.The optimized
keyframe poses are in the visual-inertial coordinate system and are not affected by environmental
scale.The IMU factors are connected between two consecutive keyframes in the form of pre-integration
as described in Section 2.2.The time interval threshold between two consecutive keyframes is set to 0.5
seconds to avoid errors in preintegration results due to long time intervals.

v0

P3

b2

v1

b1

P1P0

v3

b3

ξm_d

ai，bi，di

b0

v2

P2

v0

P3

b2

P0

v3

b3

ξm_d

ai，bi，di

b0

v2

P2

combined visual factors
IMU factor
bias random walk factor
prior factor
factor from marginalization
pose pi :=ξcam_w
bias
velocity
visual variables
scale and gravity direction

(a)  Factor graph for the visual-inertial
optimization

(b) Factor graph after keyframe 1
was marginalized

Figure 3. Graph of visual-inertia optimization factor before and after marginalization.

3.3.1. Position optimization

Based on the least squares problem, common optimization methods include Gaussian-Newton
method, L-M method, and global nonlinear optimization method. To ensure computational efficiency
and good convergence. In this paper, the Gauss-Newton method is used for positional optimization.
Firstly, define the state vector of each effective key frame

si :=
[
(ξD

cam_ω)
T

, vi
T , bT

i , ai, bi, d1
i , ..., dm

i

]T
(20)

where vi ∈ R3 denotes the velocity. bi ∈ R6 denotes the IMU bias. ai, bi are the affine illumination

coefficients. dj
i is the inverse depth of the point in the key frame. The full state vector is established as

s =
[
cT , ξT

m_d, sT
1 , sT

2 , ..., sT
n

]T

(21)

where c denotes the geometric parameters of the camera and ξT
m_d denotes the rotational transformation

from visual-inertial frames to metric frames.
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Using stacked residual vector r to establish equation

J =
dr(s � ε)

dε
|ε=0, H = JTW J, b = −JTWr (22)

where W is the weight matrix. The photometric error term Epicture and the inertial error term Eimu
have no common residual. The update equation is established as Equation (23), and the state vector of
inertial residual in metric frame is defined as Equation (25)

δ = H−1b (23)

H = Hpicture + Himu, b = bpicture + bimu (24)

s′ i :=
[
ξM

w_imui
, υi, bi

]T
, s′ =

[
s′1

T , s′2
T , ..., s′n

T
]T

(25)

The inertial residuals lead to

H′ imu = J′imu
TWimu J′ imu, b′ imu = −J′imu

TWimuγimu (26)

To achieve the joint optimization of the data. Firstly, the values of Himu and bimu are calculated from
Equation (21) , and Jrel is calculated according to the method proposed by Von Stumberg et al. [29]

Himu = JT
rel · H

′
imu · Jrel (27)

and
bimu = JT

rel · b
′
imu (28)

3.3.2. Marginalization

As time goes on, there will be more and more landmark points and camera poses, leading to an
increasing amount of computation. To achieve large-scale Gauss-Newton nonlinear optimization, the
number of optimization variables needs to be limited. This paper uses the Schur-Complement method
to marginalize out older keyframes and all variables related to that keyframe continuously. When
marginalizing the visual factors between two keyframes, the method proposed by Engel et al. [30] is
used. Firstly, all points in the keyframe are marginalized, and then remove the residual terms that
affect the sparsity of the system. To maintain the consistency of the system, it is necessary to evaluate
the Jacobian matrix for the marginal factors related variables and ensure that their values are the same.
For visual factors, the Jacobian matrix can be evaluated at the linearized points. When computing
the inertial factors, it is necessary to determine the evaluation points for all variables related to the
marginal factors and evaluate their Jacobian matrices. As shown in Figure 3b, it can be intuitively
understood how marginalization affects the connection between the factors.

4. Real vehicle experiments and results analysis

In order to verify the performance of the proposed system in real environment, a private dataset
was self-made for real-vehicle experiments, and the public dataset M2DGR is used to compare this
algorithm with several other mainstream LiDAR SLAM algorithms.

4.1. Establishment of experimental platform

The mobile robot experimental platform is shown in Figure 4. The electronically controlled
crawler chassis can realize omnidirectional movement. Mobile power supply, display, on-board
computing platform JETSON AGX ORIN (built-in ubuntu 20.04 OS), sensor equipment including
ZED2i camera, 16-line LIDAR VLP-16 (vertical field of view of 30°, horizontal field of view of 360°),
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GUI-610GNSS combined navigation suite (positioning accuracy of 1cm+1ppm, attitude accuracy of
0.1°),and WHEELTEC N100 nine-axis IMU have been deployed on the car.

Figure 4. Electric tracked chassis data acquisition platform.

4.2. Collection of private datasets

In this paper, two groups of experimental datasets were collected to verify the performance of the
system. The first group was an outdoor large-scale scene, as shown in Figure 5a, which collects a scene
driving around a teaching building. It includes buildings, pedestrians, trees, and moving vehicles.
The walking trajectory is shown as the green path in the bird’s-eye view satellite map in Figure 5b.
The second group was a dimly-lit long corridor environment inside a teaching building, as shown in
Figure 5c, the geometric features on the white walls on both sides of the corridor are lacking and the
scene repeatability is high, which is in line with the degradation scenario. The experimental car was
controlled to move in the above two scenarios and collect datasets.

(a) (b) (c)

Figure 5. Realistic environment of dataset collection.

4.3. Experimental results and analysis

Conduct real vehicle experiments using the collected dataset. Figure 6 shows the positioning and
mapping results obtained by the experimental car driving around the teaching building. The entire
trajectory did not experience any drift, and a dense 3D environmental point cloud was reconstructed
with a clear outline. To preliminarily verify the accuracy of the trajectory obtained by this algorithm,
the GPS trajectory during the driving process was first obtained using combined inertial navigation as
the true trajectory, and the two complete trajectories were compared, as shown in Figure 7. The two
trajectories have a high degree of overlap except for a slight deviation in position shown in Figure 7b.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 June 2023                   doi:10.20944/preprints202306.1193.v1

https://doi.org/10.20944/preprints202306.1193.v1


11 of 15

Figure 8 shows the localization and mapping result of the indoor long corridor. In the face of this scene
with insufficient features and easy degradation, there was no positioning tilt or displacement occurred,
and the constructed map has distinct edges that reproduce the long corridor environment very well.

Figure 6. Positioning and mapping results around the teaching building.

(a)  (b)

Figure 7. Comparison between the trajectory of this algorithm and the ground truth trajectory.

Figure 8. Positioning and mapping results of the long corridor inside the teaching building.

In order to evaluate the system’s performance using a better dataset, the high-quality public
dataset M2DGR is adopted to compare this algorithm with several other mainstream LiDAR SLAM
algorithms. The widely used M2DGR dataset is provided by Shanghai Jiaotong University, which
contains rich sensor suites and diverse scenarios. Moreover, the speed of the ground robot in each test
sequence is close to the actual speed in real environments, which helps to evaluate the effects of various
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SLAM algorithms more fairly. This paper chose sequence 1 of the M2DGR dataset for testing, with its
scene being a relatively empty street and includes significant rotation during movement. Firstly, the
trajectories of this algorithm, A-LOAM, Lego LOAM, and LIO-SAM are obtained. Then, the trajectory
evaluation tool - evo is used to compare and analyze the obtained trajectories with the true value
trajectories. Figure 9 shows the trajectory in a three-dimensional coordinate frame, and Figure 10 is the
trajectory projected on the xy two-dimensional plane. It can be observed intuitively that compared to
other algorithms, the localization trajectory obtained by this algorithm is generally closer to the ground
truth trajectory, even in sections with significant shaking (Figure 10b), where it still performs well.

Figure 9. Schematic diagram of the trajectory in 3D space.

(a) (c)

(b)

Figure 10. Schematic diagram of the trajectory in 2D plane frame system.

The positioning accuracy of each algorithm is further evaluated through absolute trajectory error
(ATE) and relative trajectory error (RPE). The ATE is the direct difference between the estimated
pose and the ground truth pose, which can intuitively reflect the overall accuracy of the algorithm in
estimating poses and the global consistency of the estimated trajectory. The RPE is used to measure
local accuracy and is suitable for evaluating the drift of the system. Table 3 and Table 4 show the ATE
and RPE values obtained by the four algorithms in sequence 1. There are seven indicators used to
measure the localization accuracy of a system, including maximum error (max), mean error (mean),
median error (median), minimum error (min), root mean square error (rmse), sum of squared errors
(sse), and standard deviation (std). The values of each indicator are inversely proportional to the
localization accuracy. Among them, the most commonly used and representative indicator are mean,
median, and rmse. Therefore, this section focuses on these three indicators. As shown in Figure 11,
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for absolute trajectory error, the three error values obtained by this algorithm are all the smallest.
Since the backend of ALOAM is a grid-based map, the accumulated error after long-distance mapping
is significant. However, Lego-LOAM incorporates a loop closure detection module, resulting in a
significant reduction of the error. Compared with Lego-LOAM and LIO-SAM, the absolute positional
error of this algorithm is reduced by about 4.6% and 24%, respectively. For relative pose error, Lego
LOAM has the largest error. The three error values of this algorithm are very close to LIO-SAM, but
there is still a decrease, and the rmse is also the smallest among the four algorithms. Compared to
LOAM, Lego-LOAM and LIO-SAM, the relative positional errors of this algorithm are reduced by
about 5.7%, 48% and 0.3%, respectively.

Table 3. ATE values for different algorithms.

Algorithm ATE

Max Mean Median Min Rmse Sse Std

ALOAM 1.231 0.424 0.380 0.038 0.509 226.777 0.282
Lego-LOAM 0.369 0.148 0.141 0.026 0.158 10.729 0.055
LIO-SAM 0.934 0.177 0.145 0.028 0.210 38.003 0.114
this paper 0.320 0.140 0.136 0.020 0.151 19.535 0.056

Table 4. RPE values for different algorithms.

Algorithm RPE

Max Mean Median Min Rmse Sse Std

ALOAM 0.609 0.252 0.240 0.002 0.294 75.526 0.152
Lego-LOAM 0.909 0.370 0.364 0.004 0.412 72.903 0.182
LIO-SAM 0.806 0.256 0.262 0.001 0.279 66.935 0.111
this paper 0.561 0.255 0.265 0.001 0.278 66.434 0.110

(a)                                                                (b)

Figure 11. ATE and RPE of different algorithms.

5. Conclusions

This paper proposes a multi-sensor fusion SLAM system for complex environments in
construction machinery. The system integrates visual texture information into LiDAR-inertial odometry
to generate a new visual-inertial subsystem. The visual odometry front end uses direct method to
establish the matching relationship between adjacent frames for pose estimation. The LIO and VIO
subsystems are tightly coupled to build multiple constraint items for factor graph optimization,
ensuring the consistency of the global map. Through experiments on real vehicles and the M2DGR
public dataset, this system achieves good localization and mapping results in both indoor long
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corridors and outdoor large scenes. Compared with the well-performing open-source frameworks
Lego-LOAM and LIO-SAM, the absolute pose errors obtained by this algorithm are reduced by 4.6%,
24%, respectively , and the relative pose errors are reduced by 48% and 0.3%, respectively. This fully
demonstrating that proposed system has better localization accuracy and can solve the problem of poor
localization and mapping robustness of unmanned vehicles in environments with lack of geometric
features and easy degradation.
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