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Abstract: Alzheimer's disease is a neurological illness that worsens gradually. It is known as the most frequent 

cause of dementia. Moreover, Alzheimer's disease is a general term for memory loss and other cognitive 

impairments severe enough to disrupt daily life. The disease often grows in middle-aged and elderly people 

with the gradual loss of cognitive ability. Since the diagnosis of the illness is time consuming, a novel machine 

learning approach is proposed in this research to diagnose Alzheimer's levels based on Magnetic Resonance 

Imaging (MRI). More specifically, to provide distinct information for classification we have implemented the 

proposed method on a native MRI scans dataset containing three MRI channels; namely T1, T2, and, T2 tirm, 

which are shown in red, blue and green, respectively. The five middle layers of these three types of MRI scans 

are combined to form five RGB layers. In addition, we use a Convolutional Neural Network to classify each 

composed layer, and the final disease type is predicted using majority voting. finally, the F1-Score has been 

used to assess method performance, indicated that 92% of predictions of the proposed model were accurate. 

Keywords: Alzheimer's disease; neurological illness; dementia; machine learning; Magnetic 

Resonance Im-aging  

 

Introduction  

Alzheimer's disease (AD) is a degenerative neurological disease that primarily affects the 

elderly. The illness is frequently accompanied by a decline in cognitive abilities, such as daily tasks 

and decision-making skills, as well as a deterioration in social life abilities, such as mobility 

impairment, aphasia, and agnosia. Alzheimer's disease has surpassed cancer as the most feared 

disease in the United States, killing more people than breast and prostate cancer combined [1]. Since 

symptomatic treatment is still only effective for a limited time, early diagnosis and prognosis of 

AD/MCI is critical. Therefore, many researchers devoted their efforts to developing an expert 

mechanism assisted by computers in predicting or diagnosis diseases. Recent research indicates MRI 

[2] and PET [3] can be sufficient means for classifying and diagnosis Alzheimer’s disease. 

This disease's progression can be divided into four following stages: 

1. Healthy Control (HC) 

2. Mild Demented 

3. Moderate Demented 

4. Alzheimer’s Disease 
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Throughout the last decade, efforts to identify Alzheimer's biomarkers have accelerated. There 

is now broad consensus that the pathology of Alzheimer's disease can be seen in brain scans years 

before the disease manifests itself [4].  

Many researchers have adapted complex machine learning approaches to learn pathology 

patterns by classifying healthy controls from Alzheimer's disease patients. Moreover, numerous 

studies have demonstrated the effectiveness of neuroimaging techniques in distinguishing 

Alzheimer's disease patients from healthy controls [5]. 

The effectiveness of these algorithms (which have an accuracy rate of above 90%) has driven to 

attempts at fine-grained classification. including distinguishing healthy people from Mild 

Cognitively Impaired (MCI) individuals, and even determining which MCI subjects will develop 

Alzheimer's disease [6,7]. 

Deep neural networks have emerged as one of the most powerful solutions for computer vision 

and medical imaging workloads in recent years. Although deep learning-based algorithms are 

adequate for a variety of medical tasks, they require large volumes of data, which is a significant 

barrier in medical applications such as neuroimaging and bioinformatics [8]. Furthermore, the lack 

of large datasets is widely recognized as the main distinction between medical imaging and other 

computer vision fields [5]. 

To gain a better understanding of the proposed method, it is vital to become acquainted with 

the three types of MRI scans T1, T2, and T2 tirm, as well as the differences of these three types of 

scans, which are explained below: 

T1 weighted image : 

Since T1-weighted volume scans with thin slices provide excellent anatomical detail, they have 

become a major component of scanning procedures for structural (or "morphological") imaging [9]. 

also, in the clinical perspective, T1-weighted are better at representing natural anatomy. 

The longitudinal relaxation of a tissue's net magnetization vector is used in a T1WI (NMV). A 

radiofrequency (RF) pulse, in essence, puts spins aligned in an external field (B0) into the transverse 

plane. They eventually return to B0's initial equilibrium. The time it takes for a tissue's protons' spins 

to realign with the main magnetic field is reflected in its T1 (B0). 

Fat quickly realigns its longitudinal magnetization with B0, appearing bright on a T1 weighted 

image. further, Water has much slower longitudinal magnetization realignment after an RF pulse 

resulting in less transverse magnetization. As a result, water appears dark and has low signal [11]. 

T2 weighted image: 

T2-weighted images (T2WI) are one of the main pulse sequences on MRI scans and provide a 

map of proton energy within the body's fatty AND water-based tissues. Fatty tissue is distinguished 

from water-based tissue by comparing with the T1 images – anything that is bright on the T2 images 

but dark on the T1 images is fluid-based tissue. For example, CSF1 is free fluid and contains no fat, 

so it appears white on the T2 images but dark on the T1. Moreover, it emits no signal on either T1 or 

T2 images because the bone cortex is black and contains no free protons [12]. 

Turbo Inversion Recovery Magnitude (TIRM): 

The benefits of fat suppression in images include enhanced lesional contrast, as well as the 

elimination of fat-induced motion and chemical-shift misregistration artefacts [13]. 

Bone marrow pathology is evaluated by T2-weighted (T2-W), turbo spin-echo (TSE) MRI and 

short tau inversion recovery (STIR) imaging and, also shown these three types of imaging are highly 

effective [14-16]. However, Because of the long repetition times (TR), incorporation of inversion time 

(TI), and the spin echo (SE) component, traditional STIR sequences have extended scan periods of up 

to 12 minutes and more. Turbo inversion recovery magnitude (TIRM) images have similar quality 

and fat-suppression capabilities as STIR images [17, 18]. TIRM images can be acquired using low 

 

1. Cerebro Spinal Fluid 
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magnetic field systems and appear to be more stable than spectral fat suppression sequences (TSE 

with fat suppression) [13]. 

The proposed method has trained on a native dataset containing 300 MRI scans from various 

patients. As previously stated, the dataset instances have seventeen layers, and the five middle layers 

of each sample have been used to train and test the neural network. As a result, training the model 

on more data is made possible by using five middle layers of each sample. 

Our method is built on a pipeline that includes novel data preprocessing, a classifier, and an 

ensemble learning component. Regarding data preprocessing a novel data preprocessing method has 

been used to convert scans to RGB images. The prepared data is fed into a convolutional neural 

network for Alzheimer's variant diagnosis. Finally, we used majority voting to predict the best 

outcome which is shown the stage of the disease. Therefore, the proposed methodology can be 

summarized as follows: 

1 A novel data preprocessing method is developed for efficient training on small datasets. 

2 We have employed a convolutional neural network to classify the data which is provided by 

initial step. 

3 majority voting is utilized to predict the final result. 

The goal of this paper was to develop a novel method for detecting Alzheimer's disease levels 

based on MRI scans. The proposed method contains three steps: a novel preprocessor, a CNN 

classifier, and ensemble learning. The approach can predict five levels of Alzheimer's disease: healthy 

people, people with mild, medium, and severe cognitive impairments, and people with Alzheimer's. 

The difference between this study and others is the incorporation of the intermediate layers of T1, T2, 

and T2 TIRM imaging to a single RGB image which contains valuable information. 

Related Work 

In this section, we mainly review the most relevant work. Firstly, the role of Machine learning 

in Alzheimer’s diagnosis is discussed since Machine learning approaches have been fruitful to 

diagnose the disease more accurately(Mahnaz Boush et al., 2023; M. Boush et al., 2023; Jafari et al., 

2022; Kiaei et al., 2022, n.d.; Mohammadi et al., 2021; Safaei et al., 2023; Salari et al., 2023, 2022a, 2022a, 

2022b, 2021). Then, we investigate several deep learning methods which are the most relevant to our 

research. 

As one of the pioneering works by Haller [23] has used Support Vector Machines (SVMs) to 

classify stable MCI patients from progressive MCI ones with 98% accuracy. Although Support Vector 

Machines are effective for binary classification, they are insufficient for multi-class classification; 

hence, a deep learning-based classifier is used to classify the four Alzheimer's disease variants in our 

work. 

Deep learning approaches have grown over time and have been widely used in many 

applications. Due to the need for vast volumes of data for training a deep neural network, researchers 

and engineers initially utilized convolutional neural networks as a feature extractor [24]. In [paper 

reference number], Sarraf and et all have employed a convolutional neural network to classify 

Alzheimer's patients from healthy cases. Sarraf has designed a CNN network similar to LeNet 

network [paper reference number] used to extract SIFT features from scans. Finally, they could 

classify test set cases with 96.85%. In 2015, Payan et al. proposed a method that has employed 3D 

convolution layers to process brain MRI scans. The network contains sparse AE and CNN. In this 

approach, the applied CNN layers have been already trained by sparse AE. Although this work has 

offered a novel approach to diagnosing Alzheimer’s disease, the results are not accurate enough [25]. 

Some works use more than one type of data to train their proposed approaches. For instance, 

functional Magnetic Resonance Imaging (fMRI) known as One of these types of data, is vastly used 

in medical diagnosis to measure the size of the initial visual cortex of a human and is widely utilized 

for brain topography detection. This scan type can demonstrate fruitful information about brain 

performance [26]. 

In [27], the authors have used a binary classifier to classify AD from HC. as the first step, they 

have employed a sufficient preprocessor for noise reduction. Since they have used two types of data 
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to train the classifier, two pipelines have been utilized to feed data to the classifier. They used 

structural fMRI with a classification accuracy of 99.9% in one pipeline and structural MRI with a 

classification accuracy of 98.84 % in the other. Since the fMRI pipeline uses many 4D time-series 

images, the network training is time-consumed and it incurs a heavy computational burden. 

Table 1. Comparing pioneer works. 

Paper Dataset Accuracy 

[25] ADNI 

AD vs. HC 95.39% (2D)   95.39% (3D) 

AD vs. MCI 82.24%(2D)    86.84% (3D) 

HC vs. MCI 90.13% (2D)   92.11%(3D) 

[27] 
ADNI 

 

MRI adopted LeNet    98.79% 

MRI Adopted GoogleNet   98.8431% 

fMRI Adopted LeNet   99.9986% 

fMRI Adopted GoogleNet   100% 

[24] 
ADNI  

(binary classification) 
CNN and LeNet-5   96.85% 

[28] ADNI 

GoogleNet   98.88% 

ResNet-18   98.01% 

ResNet-152   98.14% 

[29] OASIS 
VGG16   92.3% 

Inception V4   96.25% 

[30] 
OASIS (train) 

MIRAD (test) 

Trained on all of 2 dimensional MRI 

83%  

Recently, researchers have been using transfer learning to overcome the lack of data. As stated 

previously, there is not enough data for training deep neural network models designed for medical 

diagnosis. Therefore, these models can benefit from transfer learning to diagnose more accurately. 

Farooq et al [28]. have used a preprocessing pipeline to convert MRI scans to gray matter. They have 

fed the prepared data to a CNN for classifying four classes (AD, MCI, LMCI, and, CN). The proposed 

approach benefits from transfer learning. Hence, it employs pre-train GoogleNet and ResNet which 

drive the network to predict more accurately. Hon et al. [29] classify healthy cases and Alzheimer's 

patients using InceptionV4 and VGG16. They've also used image entropy to improve the training 

phase. YIGIT et al. [30] have employed a CNN to diagnose AD and MCI. MRI T1-Weighted scans 

have been used to diagnose AD and MCI. The authors have considered the image of skull stripping 

as a noise of scans and eliminated it during preprocessing. Additionally, the approach benefits from 

a CNN backbone which is responsible to extract feature maps from prepared scans. Finally, they have 

indicated that 80% of the approach predictions are accurate. 

the stated methods are compared in Table.1. As illustrated in the table, most of the described 

papers use ADNI dataset collected in South America. 

Methodology 

The proposed method classifies AD in two steps; i.e. Deep and ensemble learning. It consists of 

a novel data preprocessing method which makes our work unique. As shown in Figure 1, we choose 

five middle layers of each type of brain scan and integrate them to create an RGB image as shown in 

preprocessing section, then feed the provided layers to the CNN classifier and predict the type of 
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each layer. finally, we use majority voting to predict the result. In section (section-num), we introduce 

the novel data preprocessing method. In section (section-num), we develop a convolutional neural 

network as a backbone for classifying the layers. Finally, we introduce the utilization of majority 

learning to predict the type of Alzheimer’s disease. 

 

Figure 1. Illustration of the proposed approach. 

Preprocessing 

TIV is commonly measured by T1-weighted MRI sequences, whereas T2-weighted MRI 

sequences provide superior contrast between the CSF bounding the premorbid brain space and 

surrounding dura mater [35]. Although integration of T1 and T2-weighted scans improve diagnostic 

ability in brain tissue [36], We employ TIV measurement based on T1, T2 and T2 TIRM to 

classification. 

As illustrated in Figure 3, brain MRI scans contain seventeen 2D vectors, each representing a 

transverse view of different layer of the brain. the primary and final layers often provide us with less 

information about the disease. Hence, the five middle layers (layers 8-12) of scan types T1, T2, T2 

TIRM have been employed in the data preprocessing step because the middle layers can be more 

effective in the classification portion. 
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Figure 2. Layer 12 is provided with a) T1, b) T2, and c) T2 TIRM imaging. 

As depicted in Figure 3, each type of MRI imaging is regarded as an RGB channel. T1-weighted 

image, T2-weighted image, and T2 TIRM are referred to as the red, blue, and green channels, 

respectively. As shown in Figure 2, the integration of these three types of imaging provided extensive 

information for the classification step, Due to the differences in how the brain's tissues and internal 

materials are displayed in each type of imaging. 
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Figure 3. T1, T2, and T2 TIRM have been used to create an RGB image. 

Classification 

Here, we take the advantage of the Convolutional Neural Network to construct a backbone for 

visual feature extraction also use a fully connected neural network to classify extracted features from 

the provided layers produced during the data preprocessing step. In this research, we employ 

convolutional neural networks with fourteen layers to extract feature maps. As shown in Figure 4, 

the network contains four convolutional layers which are followed by a Max Pooling layer. Moreover, 

the architecture contains three Dropout, one Flatten, and two Fully Connected layers. Also, we use 

RELU as the activation function of hidden layers, and SoftMax has been employed in the fully 

connected layer. 
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Figure 4. Architecture of Convolutional Neural Network. 

Ensemble learning  

Ensemble learning is a machine learning approach that involves training several learners to solve 

the same issue. Ensemble methods, in contrast to traditional machine learning approaches that 

attempt to learn a single hypothesis from training data, attempt to generate a set of hypotheses and 

aggregate them for usage.  

Typically, an ensemble approach has constructed in two steps. First, several base learners are 

produced, which can be generated in a parallel fashion or in a sequential style where the generation 

of a base learner influences the generation of subsequent learners. Then, the base learners have 

integrated to use, where it employed majority voting for classification and weighted averaging for 

regression. 

As previously stated, we employ a convolutional neural network to classify the five layers 

generated in step one. As a result, the classifier predicts five classes for each layer. The classifier 

predictions were then combined using majority voting (Also known as plurality voting) to determine 

the level of Alzheimer's disease. Majority voting only use predicted labels to determine final result 

based on the most repetitions of a label. Therefore, during the test phase, five layers of different MRI 

images of the individual's brain are given to the trained network and used majority voting to 

diagnose the level of disease progression. 

One of the usages of such solutions at this stage is that the results can be significantly used by 

combining the same types of classifiers, each of which is presented in a different set of different 

training features. Different categories can be used in similar training sets. 

The better performance of the same classifiers trained on the same set of features drives us to 

employ this solution to improve the classifier results. The used approach is significantly better than 

those taught by combining different classifiers but trained by similar feature sets [39]. As proven in 
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[40], since the proposed model's results are independent, majority learning improves performance in 

most cases. Hence, using more layers from MRI images will result in greater accuracy. 

Dataset: 

We use a native dataset collected by our research team. The dataset includes 300 samples 

gathered from 300 cases referred to a health center in Tehran. As previously stated, Each Sample 

consists of three different types of MRI imaging (T1-weighted, T2-weighted, and T2 TIRM). We use 

five layers of image types to train and test the proposed approach. During data preprocessing, we 

resize layers to 200 * 256 (height :200 and weight:256). Finally, 1500 training samples were generated 

by our novel preprocessing methodology. Furthermore, some publicly available datasets are used by 

researchers in their work. Table.1 compares our dataset to other publicly available datasets. 

Table 2. Details of the OASIS, ADNI, IBSR, MICCAI and Ours datasets. 

Numbe

r of 

scans 

MMSE Age Gender Numbe

r of 

patients 

Class 
Dataset 

name 
ST

D 

Averag

e 
STD 

Averag

e 

Mal

e 

Femal

e 

100 

316 

4.16 

0.83 

24.32 

29.63 

7.11 

23.11 

76.76 

45.09 

59 

197 

41 

119 

100 

316 

AD 

HC 
OASIS 

530 

1126 

877 

2.1 

1.8 

1.0 

23.3 

27 

29.1 

7.5 

7.4 

5 

75.3 

74.7 

75.8 

91 

141 

109 

101 

257 

120 

192 

398 

229 

AD 

MCI 

HC 

ADNI 

18  -  -  - 71 4 14 18 HC IBSR 

35  -  -  -  -  -  - 35 HC MICCAI 

708 

4 

0.8 

19.2 

29.4 

7.1 

7.2 

69.4 

69.7 

19 

12 

27 

11 

46 

23 

AD 

HC 

MIRIA

D 

  CELLS 
THES

E 
FILL 

Hav

e to 
WE 300 

Mild 

Mediu

m 

High 

AD 

OURS 

Experiments: 

Implementation Details 

The proposed approach is implemented in python with TensorFlow and Trained on one Nvidia 

GTX 1080 card. During the training process, the batch size is set as 32 and totally 50 iterations are 

performed by employing Adam with an initial learning rate 0.0001. In addition, we decrease the 

learning rate every 10 epochs. the testing phase uses the trained model to predict the class of each 

layer then executes the Majority voting algorithm for detaining the final result.  

Metric 

Many academics believe the accuracy metric which is known as the ratio between correct 

predictions and the total number of instances is the most realistic concept to measure the performance 

of an approach. In contrast, When the dataset is unbalanced, this metric loses its validity because it 

provides an over-optimistic estimate of the classifier's ability on the majority class [52]. Hence, we 
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use F1-Score to assess the performance of our approach because it retains its reliability even when 

using an unbalanced dataset. 

The F-score, also known as the F-measure, is used to measure the performance of an approach. 

It consists of two main components: Precision and Recall, where Precision is the number of True 

Positive predicted results divided by the total number of Positive results, including those that 

incorrectly identified, and Recall is the number of True Positive predicted results divided by the total 

number of samples that should have been identified as Positive [52]. Additionally, in diagnostic 

binary classification, Precision is known as a positive predictive value, and Recall is also known as 

Sensitivity [53]. The F1-score equation is illustrated in Equation 1: 

𝑓𝑓1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ×  
𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟 

Results: 

We tested various sets of hyperparameters to determine the best one because the more important 

hyperparameters in the proposed method are the selection and number of MRI imaging layers. 

As a first experiment, we separately used the layers of MRI images for training the model. And, 

then we evaluated the performance of the trained models. The F1-score, model loss diagrams, and 

confusion matrix of the employment of layers 8, 9, 10, 11, and 12 are shown in Figure 5, 6, and 7, 

respectively. As shown in these figures (Figure 5, 6, and 7), this method of data utilization could not 

drive the model to have satisfactory and accurate performance on test data. Additionally, the model 

has overfitted due to the small amount of data. Therefore, we have used the integration of layers to 

prevent overfitting and be more precise predictions . 

Since the approach has performed better when it is trained by integration of layers, we have 

trained the model with layers 1, 2, 3, 4, and 5 as well as layers 11, 12, 13, 14, and 15. As reported in 

Figure 8 9 10 and Table 3, the best performance is provided by using layers 8 to 12. And it indicated 

that 92% of predictions of the proposed model were accurate. 

 

Figure 5. the diagrams illustrate the f1-score for models which were trained by layers: a)8, b)9, c)10, 

d)11 and e)12. 
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Figure 6. the loss diagrams of models which were trained by layers: a)8, b)9, c)10, d)11 and e)12. 

 

Figure 7. Confusion matrix of predictions on validation data. Diagram (a) to (e) illustrate the 

confusion matrix of the models’ predictions which were trained by layers 8 to 12, respectively. 
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Figure 8. F1-Score diagrams a) the model is trained by layers 1, 2, 3, 4, 5 b) the model is trained by 

layers 11, 12, 13, 14, 15 c) the model is trained by layers 8, 9, 11, 12 (proposed layers for training the 

model). 

 

Figure 9. the loss diagram of models which were trained by the various integration of layers. a) layers 

1 to 5, b) layers 11 to 15, c) layers 8 to 12. 

 

Figure 10. Confusion Matrix: a) layers 1 to 5 b) layers 11 to 15 c) layers 8 to 12. 

Table 3. The table shows the accuracy, F1 score, and loss of models trained by various layers during 

train and test time. 

Validation 

loss 
loss 

Validation 

F1 score 

train  

F1 score 
train Accuracy   layers 

2.731 0.17 0.519 0.91 0.95 Layer 9 

4.501 0.05 0.417 0.961 0.98 Layer 10 

3.080 0.123 0.498 0.941 0.96 Layer 11 

2.683 0.138 0.416 0.901 0.944 Layer 12 
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4.137 0.074 0.466 0.948 0.98 Layer 13 

0.487 0.057 0.817 0.965 0.981 Layer 1,2,3,4,5 

0.2 0.03 0.92 0.98 0.99 Layer 8,9,10,11,12 

0.617 0.072 0.782 0.955 0.975 Layer 11,12,13,14,15 

Conclusions: 

In this paper, we have introduced a three-step approach to predict the levels of Alzheimer’s 

progression using brain MRI scans. As the first experiment, we have trained the proposed model by 

T1-weighted, T2-weighted, and T2 TIRM images separately. And the results were not satisfactory. 

Hence, we used a hybrid method to integrate the five middle layers of T1 weighted, T2 weighted, 

and T2 TIRM imaging, treating each type of scans as an RGB channel to produce a single image with 

three RGB channels. Additionally, we have used mentioned method as data augmentation means to 

increase the amount of data in the dataset. As the next step, a convolutional neural network has been 

employed as a classifier to predict the type of each entry. In the last step, we have used majority 

voting to diagnose the levels of Alzheimer’s progression. As shown in Table.2, the F1-Score has been 

used to assess method performance, and it indicated that 92% of predictions of the proposed model 

were accurate. 
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